rtc-pcf85063.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * An I2C driver for the PCF85063 RTC
  4. * Copyright 2014 Rose Technology
  5. *
  6. * Author: Søren Andersen <san@rosetechnology.dk>
  7. * Maintainers: http://www.nslu2-linux.org/
  8. *
  9. * Copyright (C) 2019 Micro Crystal AG
  10. * Author: Alexandre Belloni <alexandre.belloni@bootlin.com>
  11. */
  12. #include <linux/clk-provider.h>
  13. #include <linux/i2c.h>
  14. #include <linux/bcd.h>
  15. #include <linux/rtc.h>
  16. #include <linux/module.h>
  17. #include <linux/of.h>
  18. #include <linux/pm_wakeirq.h>
  19. #include <linux/regmap.h>
  20. /*
  21. * Information for this driver was pulled from the following datasheets.
  22. *
  23. * https://www.nxp.com/docs/en/data-sheet/PCF85063A.pdf
  24. * https://www.nxp.com/docs/en/data-sheet/PCF85063TP.pdf
  25. *
  26. * PCF85063A -- Rev. 7 — 30 March 2018
  27. * PCF85063TP -- Rev. 4 — 6 May 2015
  28. *
  29. * https://www.microcrystal.com/fileadmin/Media/Products/RTC/App.Manual/RV-8263-C7_App-Manual.pdf
  30. * RV8263 -- Rev. 1.0 — January 2019
  31. */
  32. #define PCF85063_REG_CTRL1 0x00 /* status */
  33. #define PCF85063_REG_CTRL1_CAP_SEL BIT(0)
  34. #define PCF85063_REG_CTRL1_STOP BIT(5)
  35. #define PCF85063_REG_CTRL1_EXT_TEST BIT(7)
  36. #define PCF85063_REG_CTRL2 0x01
  37. #define PCF85063_CTRL2_AF BIT(6)
  38. #define PCF85063_CTRL2_AIE BIT(7)
  39. #define PCF85063_REG_OFFSET 0x02
  40. #define PCF85063_OFFSET_SIGN_BIT 6 /* 2's complement sign bit */
  41. #define PCF85063_OFFSET_MODE BIT(7)
  42. #define PCF85063_OFFSET_STEP0 4340
  43. #define PCF85063_OFFSET_STEP1 4069
  44. #define PCF85063_REG_CLKO_F_MASK 0x07 /* frequency mask */
  45. #define PCF85063_REG_CLKO_F_32768HZ 0x00
  46. #define PCF85063_REG_CLKO_F_OFF 0x07
  47. #define PCF85063_REG_RAM 0x03
  48. #define PCF85063_REG_SC 0x04 /* datetime */
  49. #define PCF85063_REG_SC_OS 0x80
  50. #define PCF85063_REG_ALM_S 0x0b
  51. #define PCF85063_AEN BIT(7)
  52. struct pcf85063_config {
  53. struct regmap_config regmap;
  54. unsigned has_alarms:1;
  55. unsigned force_cap_7000:1;
  56. };
  57. struct pcf85063 {
  58. struct rtc_device *rtc;
  59. struct regmap *regmap;
  60. #ifdef CONFIG_COMMON_CLK
  61. struct clk_hw clkout_hw;
  62. #endif
  63. };
  64. static int pcf85063_rtc_read_time(struct device *dev, struct rtc_time *tm)
  65. {
  66. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  67. int rc;
  68. u8 regs[7];
  69. /*
  70. * while reading, the time/date registers are blocked and not updated
  71. * anymore until the access is finished. To not lose a second
  72. * event, the access must be finished within one second. So, read all
  73. * time/date registers in one turn.
  74. */
  75. rc = regmap_bulk_read(pcf85063->regmap, PCF85063_REG_SC, regs,
  76. sizeof(regs));
  77. if (rc)
  78. return rc;
  79. /* if the clock has lost its power it makes no sense to use its time */
  80. if (regs[0] & PCF85063_REG_SC_OS) {
  81. dev_warn(&pcf85063->rtc->dev, "Power loss detected, invalid time\n");
  82. return -EINVAL;
  83. }
  84. tm->tm_sec = bcd2bin(regs[0] & 0x7F);
  85. tm->tm_min = bcd2bin(regs[1] & 0x7F);
  86. tm->tm_hour = bcd2bin(regs[2] & 0x3F); /* rtc hr 0-23 */
  87. tm->tm_mday = bcd2bin(regs[3] & 0x3F);
  88. tm->tm_wday = regs[4] & 0x07;
  89. tm->tm_mon = bcd2bin(regs[5] & 0x1F) - 1; /* rtc mn 1-12 */
  90. tm->tm_year = bcd2bin(regs[6]);
  91. tm->tm_year += 100;
  92. return 0;
  93. }
  94. static int pcf85063_rtc_set_time(struct device *dev, struct rtc_time *tm)
  95. {
  96. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  97. int rc;
  98. u8 regs[7];
  99. /*
  100. * to accurately set the time, reset the divider chain and keep it in
  101. * reset state until all time/date registers are written
  102. */
  103. rc = regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1,
  104. PCF85063_REG_CTRL1_EXT_TEST |
  105. PCF85063_REG_CTRL1_STOP,
  106. PCF85063_REG_CTRL1_STOP);
  107. if (rc)
  108. return rc;
  109. /* hours, minutes and seconds */
  110. regs[0] = bin2bcd(tm->tm_sec) & 0x7F; /* clear OS flag */
  111. regs[1] = bin2bcd(tm->tm_min);
  112. regs[2] = bin2bcd(tm->tm_hour);
  113. /* Day of month, 1 - 31 */
  114. regs[3] = bin2bcd(tm->tm_mday);
  115. /* Day, 0 - 6 */
  116. regs[4] = tm->tm_wday & 0x07;
  117. /* month, 1 - 12 */
  118. regs[5] = bin2bcd(tm->tm_mon + 1);
  119. /* year and century */
  120. regs[6] = bin2bcd(tm->tm_year - 100);
  121. /* write all registers at once */
  122. rc = regmap_bulk_write(pcf85063->regmap, PCF85063_REG_SC,
  123. regs, sizeof(regs));
  124. if (rc)
  125. return rc;
  126. /*
  127. * Write the control register as a separate action since the size of
  128. * the register space is different between the PCF85063TP and
  129. * PCF85063A devices. The rollover point can not be used.
  130. */
  131. return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1,
  132. PCF85063_REG_CTRL1_STOP, 0);
  133. }
  134. static int pcf85063_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  135. {
  136. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  137. u8 buf[4];
  138. unsigned int val;
  139. int ret;
  140. ret = regmap_bulk_read(pcf85063->regmap, PCF85063_REG_ALM_S,
  141. buf, sizeof(buf));
  142. if (ret)
  143. return ret;
  144. alrm->time.tm_sec = bcd2bin(buf[0] & 0x7f);
  145. alrm->time.tm_min = bcd2bin(buf[1] & 0x7f);
  146. alrm->time.tm_hour = bcd2bin(buf[2] & 0x3f);
  147. alrm->time.tm_mday = bcd2bin(buf[3] & 0x3f);
  148. ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &val);
  149. if (ret)
  150. return ret;
  151. alrm->enabled = !!(val & PCF85063_CTRL2_AIE);
  152. return 0;
  153. }
  154. static int pcf85063_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  155. {
  156. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  157. u8 buf[5];
  158. int ret;
  159. buf[0] = bin2bcd(alrm->time.tm_sec);
  160. buf[1] = bin2bcd(alrm->time.tm_min);
  161. buf[2] = bin2bcd(alrm->time.tm_hour);
  162. buf[3] = bin2bcd(alrm->time.tm_mday);
  163. buf[4] = PCF85063_AEN; /* Do not match on week day */
  164. ret = regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
  165. PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF, 0);
  166. if (ret)
  167. return ret;
  168. ret = regmap_bulk_write(pcf85063->regmap, PCF85063_REG_ALM_S,
  169. buf, sizeof(buf));
  170. if (ret)
  171. return ret;
  172. return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
  173. PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF,
  174. alrm->enabled ? PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF : PCF85063_CTRL2_AF);
  175. }
  176. static int pcf85063_rtc_alarm_irq_enable(struct device *dev,
  177. unsigned int enabled)
  178. {
  179. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  180. return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
  181. PCF85063_CTRL2_AIE,
  182. enabled ? PCF85063_CTRL2_AIE : 0);
  183. }
  184. static irqreturn_t pcf85063_rtc_handle_irq(int irq, void *dev_id)
  185. {
  186. struct pcf85063 *pcf85063 = dev_id;
  187. unsigned int val;
  188. int err;
  189. err = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &val);
  190. if (err)
  191. return IRQ_NONE;
  192. if (val & PCF85063_CTRL2_AF) {
  193. rtc_update_irq(pcf85063->rtc, 1, RTC_IRQF | RTC_AF);
  194. regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
  195. PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF,
  196. 0);
  197. return IRQ_HANDLED;
  198. }
  199. return IRQ_NONE;
  200. }
  201. static int pcf85063_read_offset(struct device *dev, long *offset)
  202. {
  203. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  204. long val;
  205. u32 reg;
  206. int ret;
  207. ret = regmap_read(pcf85063->regmap, PCF85063_REG_OFFSET, &reg);
  208. if (ret < 0)
  209. return ret;
  210. val = sign_extend32(reg & ~PCF85063_OFFSET_MODE,
  211. PCF85063_OFFSET_SIGN_BIT);
  212. if (reg & PCF85063_OFFSET_MODE)
  213. *offset = val * PCF85063_OFFSET_STEP1;
  214. else
  215. *offset = val * PCF85063_OFFSET_STEP0;
  216. return 0;
  217. }
  218. static int pcf85063_set_offset(struct device *dev, long offset)
  219. {
  220. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  221. s8 mode0, mode1, reg;
  222. unsigned int error0, error1;
  223. if (offset > PCF85063_OFFSET_STEP0 * 63)
  224. return -ERANGE;
  225. if (offset < PCF85063_OFFSET_STEP0 * -64)
  226. return -ERANGE;
  227. mode0 = DIV_ROUND_CLOSEST(offset, PCF85063_OFFSET_STEP0);
  228. mode1 = DIV_ROUND_CLOSEST(offset, PCF85063_OFFSET_STEP1);
  229. error0 = abs(offset - (mode0 * PCF85063_OFFSET_STEP0));
  230. error1 = abs(offset - (mode1 * PCF85063_OFFSET_STEP1));
  231. if (mode1 > 63 || mode1 < -64 || error0 < error1)
  232. reg = mode0 & ~PCF85063_OFFSET_MODE;
  233. else
  234. reg = mode1 | PCF85063_OFFSET_MODE;
  235. return regmap_write(pcf85063->regmap, PCF85063_REG_OFFSET, reg);
  236. }
  237. static int pcf85063_ioctl(struct device *dev, unsigned int cmd,
  238. unsigned long arg)
  239. {
  240. struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
  241. int status, ret = 0;
  242. switch (cmd) {
  243. case RTC_VL_READ:
  244. ret = regmap_read(pcf85063->regmap, PCF85063_REG_SC, &status);
  245. if (ret < 0)
  246. return ret;
  247. status = (status & PCF85063_REG_SC_OS) ? RTC_VL_DATA_INVALID : 0;
  248. return put_user(status, (unsigned int __user *)arg);
  249. default:
  250. return -ENOIOCTLCMD;
  251. }
  252. }
  253. static const struct rtc_class_ops pcf85063_rtc_ops = {
  254. .read_time = pcf85063_rtc_read_time,
  255. .set_time = pcf85063_rtc_set_time,
  256. .read_offset = pcf85063_read_offset,
  257. .set_offset = pcf85063_set_offset,
  258. .read_alarm = pcf85063_rtc_read_alarm,
  259. .set_alarm = pcf85063_rtc_set_alarm,
  260. .alarm_irq_enable = pcf85063_rtc_alarm_irq_enable,
  261. .ioctl = pcf85063_ioctl,
  262. };
  263. static int pcf85063_nvmem_read(void *priv, unsigned int offset,
  264. void *val, size_t bytes)
  265. {
  266. unsigned int tmp;
  267. int ret;
  268. ret = regmap_read(priv, PCF85063_REG_RAM, &tmp);
  269. if (ret < 0)
  270. return ret;
  271. *(u8 *)val = tmp;
  272. return 0;
  273. }
  274. static int pcf85063_nvmem_write(void *priv, unsigned int offset,
  275. void *val, size_t bytes)
  276. {
  277. return regmap_write(priv, PCF85063_REG_RAM, *(u8 *)val);
  278. }
  279. static int pcf85063_load_capacitance(struct pcf85063 *pcf85063,
  280. const struct device_node *np,
  281. unsigned int force_cap)
  282. {
  283. u32 load = 7000;
  284. u8 reg = 0;
  285. if (force_cap)
  286. load = force_cap;
  287. else
  288. of_property_read_u32(np, "quartz-load-femtofarads", &load);
  289. switch (load) {
  290. default:
  291. dev_warn(&pcf85063->rtc->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 7000",
  292. load);
  293. fallthrough;
  294. case 7000:
  295. break;
  296. case 12500:
  297. reg = PCF85063_REG_CTRL1_CAP_SEL;
  298. break;
  299. }
  300. return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1,
  301. PCF85063_REG_CTRL1_CAP_SEL, reg);
  302. }
  303. #ifdef CONFIG_COMMON_CLK
  304. /*
  305. * Handling of the clkout
  306. */
  307. #define clkout_hw_to_pcf85063(_hw) container_of(_hw, struct pcf85063, clkout_hw)
  308. static int clkout_rates[] = {
  309. 32768,
  310. 16384,
  311. 8192,
  312. 4096,
  313. 2048,
  314. 1024,
  315. 1,
  316. 0
  317. };
  318. static unsigned long pcf85063_clkout_recalc_rate(struct clk_hw *hw,
  319. unsigned long parent_rate)
  320. {
  321. struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
  322. unsigned int buf;
  323. int ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf);
  324. if (ret < 0)
  325. return 0;
  326. buf &= PCF85063_REG_CLKO_F_MASK;
  327. return clkout_rates[buf];
  328. }
  329. static long pcf85063_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
  330. unsigned long *prate)
  331. {
  332. int i;
  333. for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
  334. if (clkout_rates[i] <= rate)
  335. return clkout_rates[i];
  336. return 0;
  337. }
  338. static int pcf85063_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
  339. unsigned long parent_rate)
  340. {
  341. struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
  342. int i;
  343. for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
  344. if (clkout_rates[i] == rate)
  345. return regmap_update_bits(pcf85063->regmap,
  346. PCF85063_REG_CTRL2,
  347. PCF85063_REG_CLKO_F_MASK, i);
  348. return -EINVAL;
  349. }
  350. static int pcf85063_clkout_control(struct clk_hw *hw, bool enable)
  351. {
  352. struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
  353. unsigned int buf;
  354. int ret;
  355. ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf);
  356. if (ret < 0)
  357. return ret;
  358. buf &= PCF85063_REG_CLKO_F_MASK;
  359. if (enable) {
  360. if (buf == PCF85063_REG_CLKO_F_OFF)
  361. buf = PCF85063_REG_CLKO_F_32768HZ;
  362. else
  363. return 0;
  364. } else {
  365. if (buf != PCF85063_REG_CLKO_F_OFF)
  366. buf = PCF85063_REG_CLKO_F_OFF;
  367. else
  368. return 0;
  369. }
  370. return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
  371. PCF85063_REG_CLKO_F_MASK, buf);
  372. }
  373. static int pcf85063_clkout_prepare(struct clk_hw *hw)
  374. {
  375. return pcf85063_clkout_control(hw, 1);
  376. }
  377. static void pcf85063_clkout_unprepare(struct clk_hw *hw)
  378. {
  379. pcf85063_clkout_control(hw, 0);
  380. }
  381. static int pcf85063_clkout_is_prepared(struct clk_hw *hw)
  382. {
  383. struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
  384. unsigned int buf;
  385. int ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf);
  386. if (ret < 0)
  387. return 0;
  388. return (buf & PCF85063_REG_CLKO_F_MASK) != PCF85063_REG_CLKO_F_OFF;
  389. }
  390. static const struct clk_ops pcf85063_clkout_ops = {
  391. .prepare = pcf85063_clkout_prepare,
  392. .unprepare = pcf85063_clkout_unprepare,
  393. .is_prepared = pcf85063_clkout_is_prepared,
  394. .recalc_rate = pcf85063_clkout_recalc_rate,
  395. .round_rate = pcf85063_clkout_round_rate,
  396. .set_rate = pcf85063_clkout_set_rate,
  397. };
  398. static struct clk *pcf85063_clkout_register_clk(struct pcf85063 *pcf85063)
  399. {
  400. struct clk *clk;
  401. struct clk_init_data init;
  402. struct device_node *node = pcf85063->rtc->dev.parent->of_node;
  403. struct device_node *fixed_clock;
  404. fixed_clock = of_get_child_by_name(node, "clock");
  405. if (fixed_clock) {
  406. /*
  407. * skip registering square wave clock when a fixed
  408. * clock has been registered. The fixed clock is
  409. * registered automatically when being referenced.
  410. */
  411. of_node_put(fixed_clock);
  412. return NULL;
  413. }
  414. init.name = "pcf85063-clkout";
  415. init.ops = &pcf85063_clkout_ops;
  416. init.flags = 0;
  417. init.parent_names = NULL;
  418. init.num_parents = 0;
  419. pcf85063->clkout_hw.init = &init;
  420. /* optional override of the clockname */
  421. of_property_read_string(node, "clock-output-names", &init.name);
  422. /* register the clock */
  423. clk = devm_clk_register(&pcf85063->rtc->dev, &pcf85063->clkout_hw);
  424. if (!IS_ERR(clk))
  425. of_clk_add_provider(node, of_clk_src_simple_get, clk);
  426. return clk;
  427. }
  428. #endif
  429. static const struct pcf85063_config config_pcf85063 = {
  430. .regmap = {
  431. .reg_bits = 8,
  432. .val_bits = 8,
  433. .max_register = 0x0a,
  434. },
  435. };
  436. static const struct pcf85063_config config_pcf85063tp = {
  437. .regmap = {
  438. .reg_bits = 8,
  439. .val_bits = 8,
  440. .max_register = 0x0a,
  441. },
  442. };
  443. static const struct pcf85063_config config_pcf85063a = {
  444. .regmap = {
  445. .reg_bits = 8,
  446. .val_bits = 8,
  447. .max_register = 0x11,
  448. },
  449. .has_alarms = 1,
  450. };
  451. static const struct pcf85063_config config_rv8263 = {
  452. .regmap = {
  453. .reg_bits = 8,
  454. .val_bits = 8,
  455. .max_register = 0x11,
  456. },
  457. .has_alarms = 1,
  458. .force_cap_7000 = 1,
  459. };
  460. static int pcf85063_probe(struct i2c_client *client)
  461. {
  462. struct pcf85063 *pcf85063;
  463. unsigned int tmp;
  464. int err;
  465. const struct pcf85063_config *config;
  466. struct nvmem_config nvmem_cfg = {
  467. .name = "pcf85063_nvram",
  468. .reg_read = pcf85063_nvmem_read,
  469. .reg_write = pcf85063_nvmem_write,
  470. .type = NVMEM_TYPE_BATTERY_BACKED,
  471. .size = 1,
  472. };
  473. dev_dbg(&client->dev, "%s\n", __func__);
  474. pcf85063 = devm_kzalloc(&client->dev, sizeof(struct pcf85063),
  475. GFP_KERNEL);
  476. if (!pcf85063)
  477. return -ENOMEM;
  478. config = i2c_get_match_data(client);
  479. if (!config)
  480. return -ENODEV;
  481. pcf85063->regmap = devm_regmap_init_i2c(client, &config->regmap);
  482. if (IS_ERR(pcf85063->regmap))
  483. return PTR_ERR(pcf85063->regmap);
  484. i2c_set_clientdata(client, pcf85063);
  485. err = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL1, &tmp);
  486. if (err) {
  487. dev_err(&client->dev, "RTC chip is not present\n");
  488. return err;
  489. }
  490. pcf85063->rtc = devm_rtc_allocate_device(&client->dev);
  491. if (IS_ERR(pcf85063->rtc))
  492. return PTR_ERR(pcf85063->rtc);
  493. err = pcf85063_load_capacitance(pcf85063, client->dev.of_node,
  494. config->force_cap_7000 ? 7000 : 0);
  495. if (err < 0)
  496. dev_warn(&client->dev, "failed to set xtal load capacitance: %d",
  497. err);
  498. pcf85063->rtc->ops = &pcf85063_rtc_ops;
  499. pcf85063->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
  500. pcf85063->rtc->range_max = RTC_TIMESTAMP_END_2099;
  501. set_bit(RTC_FEATURE_ALARM_RES_2S, pcf85063->rtc->features);
  502. clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, pcf85063->rtc->features);
  503. clear_bit(RTC_FEATURE_ALARM, pcf85063->rtc->features);
  504. if (config->has_alarms && client->irq > 0) {
  505. unsigned long irqflags = IRQF_TRIGGER_LOW;
  506. if (dev_fwnode(&client->dev))
  507. irqflags = 0;
  508. err = devm_request_threaded_irq(&client->dev, client->irq,
  509. NULL, pcf85063_rtc_handle_irq,
  510. irqflags | IRQF_ONESHOT,
  511. "pcf85063", pcf85063);
  512. if (err) {
  513. dev_warn(&pcf85063->rtc->dev,
  514. "unable to request IRQ, alarms disabled\n");
  515. } else {
  516. set_bit(RTC_FEATURE_ALARM, pcf85063->rtc->features);
  517. device_init_wakeup(&client->dev, true);
  518. err = dev_pm_set_wake_irq(&client->dev, client->irq);
  519. if (err)
  520. dev_err(&pcf85063->rtc->dev,
  521. "failed to enable irq wake\n");
  522. }
  523. }
  524. nvmem_cfg.priv = pcf85063->regmap;
  525. devm_rtc_nvmem_register(pcf85063->rtc, &nvmem_cfg);
  526. #ifdef CONFIG_COMMON_CLK
  527. /* register clk in common clk framework */
  528. pcf85063_clkout_register_clk(pcf85063);
  529. #endif
  530. return devm_rtc_register_device(pcf85063->rtc);
  531. }
  532. static const struct i2c_device_id pcf85063_ids[] = {
  533. { "pca85073a", .driver_data = (kernel_ulong_t)&config_pcf85063a },
  534. { "pcf85063", .driver_data = (kernel_ulong_t)&config_pcf85063 },
  535. { "pcf85063tp", .driver_data = (kernel_ulong_t)&config_pcf85063tp },
  536. { "pcf85063a", .driver_data = (kernel_ulong_t)&config_pcf85063a },
  537. { "rv8263", .driver_data = (kernel_ulong_t)&config_rv8263 },
  538. {}
  539. };
  540. MODULE_DEVICE_TABLE(i2c, pcf85063_ids);
  541. #ifdef CONFIG_OF
  542. static const struct of_device_id pcf85063_of_match[] = {
  543. { .compatible = "nxp,pca85073a", .data = &config_pcf85063a },
  544. { .compatible = "nxp,pcf85063", .data = &config_pcf85063 },
  545. { .compatible = "nxp,pcf85063tp", .data = &config_pcf85063tp },
  546. { .compatible = "nxp,pcf85063a", .data = &config_pcf85063a },
  547. { .compatible = "microcrystal,rv8263", .data = &config_rv8263 },
  548. {}
  549. };
  550. MODULE_DEVICE_TABLE(of, pcf85063_of_match);
  551. #endif
  552. static struct i2c_driver pcf85063_driver = {
  553. .driver = {
  554. .name = "rtc-pcf85063",
  555. .of_match_table = of_match_ptr(pcf85063_of_match),
  556. },
  557. .probe = pcf85063_probe,
  558. .id_table = pcf85063_ids,
  559. };
  560. module_i2c_driver(pcf85063_driver);
  561. MODULE_AUTHOR("Søren Andersen <san@rosetechnology.dk>");
  562. MODULE_DESCRIPTION("PCF85063 RTC driver");
  563. MODULE_LICENSE("GPL");