rtc-pcf85363.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * drivers/rtc/rtc-pcf85363.c
  4. *
  5. * Driver for NXP PCF85363 real-time clock.
  6. *
  7. * Copyright (C) 2017 Eric Nelson
  8. */
  9. #include <linux/module.h>
  10. #include <linux/i2c.h>
  11. #include <linux/slab.h>
  12. #include <linux/rtc.h>
  13. #include <linux/init.h>
  14. #include <linux/err.h>
  15. #include <linux/errno.h>
  16. #include <linux/bcd.h>
  17. #include <linux/of.h>
  18. #include <linux/regmap.h>
  19. /*
  20. * Date/Time registers
  21. */
  22. #define DT_100THS 0x00
  23. #define DT_SECS 0x01
  24. #define DT_MINUTES 0x02
  25. #define DT_HOURS 0x03
  26. #define DT_DAYS 0x04
  27. #define DT_WEEKDAYS 0x05
  28. #define DT_MONTHS 0x06
  29. #define DT_YEARS 0x07
  30. /*
  31. * Alarm registers
  32. */
  33. #define DT_SECOND_ALM1 0x08
  34. #define DT_MINUTE_ALM1 0x09
  35. #define DT_HOUR_ALM1 0x0a
  36. #define DT_DAY_ALM1 0x0b
  37. #define DT_MONTH_ALM1 0x0c
  38. #define DT_MINUTE_ALM2 0x0d
  39. #define DT_HOUR_ALM2 0x0e
  40. #define DT_WEEKDAY_ALM2 0x0f
  41. #define DT_ALARM_EN 0x10
  42. /*
  43. * Time stamp registers
  44. */
  45. #define DT_TIMESTAMP1 0x11
  46. #define DT_TIMESTAMP2 0x17
  47. #define DT_TIMESTAMP3 0x1d
  48. #define DT_TS_MODE 0x23
  49. /*
  50. * control registers
  51. */
  52. #define CTRL_OFFSET 0x24
  53. #define CTRL_OSCILLATOR 0x25
  54. #define CTRL_BATTERY 0x26
  55. #define CTRL_PIN_IO 0x27
  56. #define CTRL_FUNCTION 0x28
  57. #define CTRL_INTA_EN 0x29
  58. #define CTRL_INTB_EN 0x2a
  59. #define CTRL_FLAGS 0x2b
  60. #define CTRL_RAMBYTE 0x2c
  61. #define CTRL_WDOG 0x2d
  62. #define CTRL_STOP_EN 0x2e
  63. #define CTRL_RESETS 0x2f
  64. #define CTRL_RAM 0x40
  65. #define ALRM_SEC_A1E BIT(0)
  66. #define ALRM_MIN_A1E BIT(1)
  67. #define ALRM_HR_A1E BIT(2)
  68. #define ALRM_DAY_A1E BIT(3)
  69. #define ALRM_MON_A1E BIT(4)
  70. #define ALRM_MIN_A2E BIT(5)
  71. #define ALRM_HR_A2E BIT(6)
  72. #define ALRM_DAY_A2E BIT(7)
  73. #define INT_WDIE BIT(0)
  74. #define INT_BSIE BIT(1)
  75. #define INT_TSRIE BIT(2)
  76. #define INT_A2IE BIT(3)
  77. #define INT_A1IE BIT(4)
  78. #define INT_OIE BIT(5)
  79. #define INT_PIE BIT(6)
  80. #define INT_ILP BIT(7)
  81. #define FLAGS_TSR1F BIT(0)
  82. #define FLAGS_TSR2F BIT(1)
  83. #define FLAGS_TSR3F BIT(2)
  84. #define FLAGS_BSF BIT(3)
  85. #define FLAGS_WDF BIT(4)
  86. #define FLAGS_A1F BIT(5)
  87. #define FLAGS_A2F BIT(6)
  88. #define FLAGS_PIF BIT(7)
  89. #define PIN_IO_INTAPM GENMASK(1, 0)
  90. #define PIN_IO_INTA_CLK 0
  91. #define PIN_IO_INTA_BAT 1
  92. #define PIN_IO_INTA_OUT 2
  93. #define PIN_IO_INTA_HIZ 3
  94. #define OSC_CAP_SEL GENMASK(1, 0)
  95. #define OSC_CAP_6000 0x01
  96. #define OSC_CAP_12500 0x02
  97. #define STOP_EN_STOP BIT(0)
  98. #define RESET_CPR 0xa4
  99. #define NVRAM_SIZE 0x40
  100. struct pcf85363 {
  101. struct rtc_device *rtc;
  102. struct regmap *regmap;
  103. };
  104. struct pcf85x63_config {
  105. struct regmap_config regmap;
  106. unsigned int num_nvram;
  107. };
  108. static int pcf85363_load_capacitance(struct pcf85363 *pcf85363, struct device_node *node)
  109. {
  110. u32 load = 7000;
  111. u8 value = 0;
  112. of_property_read_u32(node, "quartz-load-femtofarads", &load);
  113. switch (load) {
  114. default:
  115. dev_warn(&pcf85363->rtc->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 7000",
  116. load);
  117. fallthrough;
  118. case 7000:
  119. break;
  120. case 6000:
  121. value = OSC_CAP_6000;
  122. break;
  123. case 12500:
  124. value = OSC_CAP_12500;
  125. break;
  126. }
  127. return regmap_update_bits(pcf85363->regmap, CTRL_OSCILLATOR,
  128. OSC_CAP_SEL, value);
  129. }
  130. static int pcf85363_rtc_read_time(struct device *dev, struct rtc_time *tm)
  131. {
  132. struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
  133. unsigned char buf[DT_YEARS + 1];
  134. int ret, len = sizeof(buf);
  135. /* read the RTC date and time registers all at once */
  136. ret = regmap_bulk_read(pcf85363->regmap, DT_100THS, buf, len);
  137. if (ret) {
  138. dev_err(dev, "%s: error %d\n", __func__, ret);
  139. return ret;
  140. }
  141. tm->tm_year = bcd2bin(buf[DT_YEARS]);
  142. /* adjust for 1900 base of rtc_time */
  143. tm->tm_year += 100;
  144. tm->tm_wday = buf[DT_WEEKDAYS] & 7;
  145. buf[DT_SECS] &= 0x7F;
  146. tm->tm_sec = bcd2bin(buf[DT_SECS]);
  147. buf[DT_MINUTES] &= 0x7F;
  148. tm->tm_min = bcd2bin(buf[DT_MINUTES]);
  149. tm->tm_hour = bcd2bin(buf[DT_HOURS]);
  150. tm->tm_mday = bcd2bin(buf[DT_DAYS]);
  151. tm->tm_mon = bcd2bin(buf[DT_MONTHS]) - 1;
  152. return 0;
  153. }
  154. static int pcf85363_rtc_set_time(struct device *dev, struct rtc_time *tm)
  155. {
  156. struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
  157. unsigned char tmp[11];
  158. unsigned char *buf = &tmp[2];
  159. int ret;
  160. tmp[0] = STOP_EN_STOP;
  161. tmp[1] = RESET_CPR;
  162. buf[DT_100THS] = 0;
  163. buf[DT_SECS] = bin2bcd(tm->tm_sec);
  164. buf[DT_MINUTES] = bin2bcd(tm->tm_min);
  165. buf[DT_HOURS] = bin2bcd(tm->tm_hour);
  166. buf[DT_DAYS] = bin2bcd(tm->tm_mday);
  167. buf[DT_WEEKDAYS] = tm->tm_wday;
  168. buf[DT_MONTHS] = bin2bcd(tm->tm_mon + 1);
  169. buf[DT_YEARS] = bin2bcd(tm->tm_year % 100);
  170. ret = regmap_bulk_write(pcf85363->regmap, CTRL_STOP_EN,
  171. tmp, 2);
  172. if (ret)
  173. return ret;
  174. ret = regmap_bulk_write(pcf85363->regmap, DT_100THS,
  175. buf, sizeof(tmp) - 2);
  176. if (ret)
  177. return ret;
  178. return regmap_write(pcf85363->regmap, CTRL_STOP_EN, 0);
  179. }
  180. static int pcf85363_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  181. {
  182. struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
  183. unsigned char buf[DT_MONTH_ALM1 - DT_SECOND_ALM1 + 1];
  184. unsigned int val;
  185. int ret;
  186. ret = regmap_bulk_read(pcf85363->regmap, DT_SECOND_ALM1, buf,
  187. sizeof(buf));
  188. if (ret)
  189. return ret;
  190. alrm->time.tm_sec = bcd2bin(buf[0]);
  191. alrm->time.tm_min = bcd2bin(buf[1]);
  192. alrm->time.tm_hour = bcd2bin(buf[2]);
  193. alrm->time.tm_mday = bcd2bin(buf[3]);
  194. alrm->time.tm_mon = bcd2bin(buf[4]) - 1;
  195. ret = regmap_read(pcf85363->regmap, CTRL_INTA_EN, &val);
  196. if (ret)
  197. return ret;
  198. alrm->enabled = !!(val & INT_A1IE);
  199. return 0;
  200. }
  201. static int _pcf85363_rtc_alarm_irq_enable(struct pcf85363 *pcf85363, unsigned
  202. int enabled)
  203. {
  204. unsigned int alarm_flags = ALRM_SEC_A1E | ALRM_MIN_A1E | ALRM_HR_A1E |
  205. ALRM_DAY_A1E | ALRM_MON_A1E;
  206. int ret;
  207. ret = regmap_update_bits(pcf85363->regmap, DT_ALARM_EN, alarm_flags,
  208. enabled ? alarm_flags : 0);
  209. if (ret)
  210. return ret;
  211. ret = regmap_update_bits(pcf85363->regmap, CTRL_INTA_EN,
  212. INT_A1IE, enabled ? INT_A1IE : 0);
  213. if (ret || enabled)
  214. return ret;
  215. /* clear current flags */
  216. return regmap_update_bits(pcf85363->regmap, CTRL_FLAGS, FLAGS_A1F, 0);
  217. }
  218. static int pcf85363_rtc_alarm_irq_enable(struct device *dev,
  219. unsigned int enabled)
  220. {
  221. struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
  222. return _pcf85363_rtc_alarm_irq_enable(pcf85363, enabled);
  223. }
  224. static int pcf85363_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  225. {
  226. struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
  227. unsigned char buf[DT_MONTH_ALM1 - DT_SECOND_ALM1 + 1];
  228. int ret;
  229. buf[0] = bin2bcd(alrm->time.tm_sec);
  230. buf[1] = bin2bcd(alrm->time.tm_min);
  231. buf[2] = bin2bcd(alrm->time.tm_hour);
  232. buf[3] = bin2bcd(alrm->time.tm_mday);
  233. buf[4] = bin2bcd(alrm->time.tm_mon + 1);
  234. /*
  235. * Disable the alarm interrupt before changing the value to avoid
  236. * spurious interrupts
  237. */
  238. ret = _pcf85363_rtc_alarm_irq_enable(pcf85363, 0);
  239. if (ret)
  240. return ret;
  241. ret = regmap_bulk_write(pcf85363->regmap, DT_SECOND_ALM1, buf,
  242. sizeof(buf));
  243. if (ret)
  244. return ret;
  245. return _pcf85363_rtc_alarm_irq_enable(pcf85363, alrm->enabled);
  246. }
  247. static irqreturn_t pcf85363_rtc_handle_irq(int irq, void *dev_id)
  248. {
  249. struct pcf85363 *pcf85363 = i2c_get_clientdata(dev_id);
  250. unsigned int flags;
  251. int err;
  252. err = regmap_read(pcf85363->regmap, CTRL_FLAGS, &flags);
  253. if (err)
  254. return IRQ_NONE;
  255. if (flags & FLAGS_A1F) {
  256. rtc_update_irq(pcf85363->rtc, 1, RTC_IRQF | RTC_AF);
  257. regmap_update_bits(pcf85363->regmap, CTRL_FLAGS, FLAGS_A1F, 0);
  258. return IRQ_HANDLED;
  259. }
  260. return IRQ_NONE;
  261. }
  262. static const struct rtc_class_ops rtc_ops = {
  263. .read_time = pcf85363_rtc_read_time,
  264. .set_time = pcf85363_rtc_set_time,
  265. .read_alarm = pcf85363_rtc_read_alarm,
  266. .set_alarm = pcf85363_rtc_set_alarm,
  267. .alarm_irq_enable = pcf85363_rtc_alarm_irq_enable,
  268. };
  269. static int pcf85363_nvram_read(void *priv, unsigned int offset, void *val,
  270. size_t bytes)
  271. {
  272. struct pcf85363 *pcf85363 = priv;
  273. return regmap_bulk_read(pcf85363->regmap, CTRL_RAM + offset,
  274. val, bytes);
  275. }
  276. static int pcf85363_nvram_write(void *priv, unsigned int offset, void *val,
  277. size_t bytes)
  278. {
  279. struct pcf85363 *pcf85363 = priv;
  280. return regmap_bulk_write(pcf85363->regmap, CTRL_RAM + offset,
  281. val, bytes);
  282. }
  283. static int pcf85x63_nvram_read(void *priv, unsigned int offset, void *val,
  284. size_t bytes)
  285. {
  286. struct pcf85363 *pcf85363 = priv;
  287. unsigned int tmp_val;
  288. int ret;
  289. ret = regmap_read(pcf85363->regmap, CTRL_RAMBYTE, &tmp_val);
  290. (*(unsigned char *) val) = (unsigned char) tmp_val;
  291. return ret;
  292. }
  293. static int pcf85x63_nvram_write(void *priv, unsigned int offset, void *val,
  294. size_t bytes)
  295. {
  296. struct pcf85363 *pcf85363 = priv;
  297. unsigned char tmp_val;
  298. tmp_val = *((unsigned char *)val);
  299. return regmap_write(pcf85363->regmap, CTRL_RAMBYTE,
  300. (unsigned int)tmp_val);
  301. }
  302. static const struct pcf85x63_config pcf_85263_config = {
  303. .regmap = {
  304. .reg_bits = 8,
  305. .val_bits = 8,
  306. .max_register = 0x2f,
  307. },
  308. .num_nvram = 1
  309. };
  310. static const struct pcf85x63_config pcf_85363_config = {
  311. .regmap = {
  312. .reg_bits = 8,
  313. .val_bits = 8,
  314. .max_register = 0x7f,
  315. },
  316. .num_nvram = 2
  317. };
  318. static int pcf85363_probe(struct i2c_client *client)
  319. {
  320. struct pcf85363 *pcf85363;
  321. const struct pcf85x63_config *config = &pcf_85363_config;
  322. const void *data = of_device_get_match_data(&client->dev);
  323. static struct nvmem_config nvmem_cfg[] = {
  324. {
  325. .name = "pcf85x63-",
  326. .word_size = 1,
  327. .stride = 1,
  328. .size = 1,
  329. .reg_read = pcf85x63_nvram_read,
  330. .reg_write = pcf85x63_nvram_write,
  331. }, {
  332. .name = "pcf85363-",
  333. .word_size = 1,
  334. .stride = 1,
  335. .size = NVRAM_SIZE,
  336. .reg_read = pcf85363_nvram_read,
  337. .reg_write = pcf85363_nvram_write,
  338. },
  339. };
  340. int ret, i, err;
  341. bool wakeup_source;
  342. if (data)
  343. config = data;
  344. pcf85363 = devm_kzalloc(&client->dev, sizeof(struct pcf85363),
  345. GFP_KERNEL);
  346. if (!pcf85363)
  347. return -ENOMEM;
  348. pcf85363->regmap = devm_regmap_init_i2c(client, &config->regmap);
  349. if (IS_ERR(pcf85363->regmap)) {
  350. dev_err(&client->dev, "regmap allocation failed\n");
  351. return PTR_ERR(pcf85363->regmap);
  352. }
  353. i2c_set_clientdata(client, pcf85363);
  354. pcf85363->rtc = devm_rtc_allocate_device(&client->dev);
  355. if (IS_ERR(pcf85363->rtc))
  356. return PTR_ERR(pcf85363->rtc);
  357. err = pcf85363_load_capacitance(pcf85363, client->dev.of_node);
  358. if (err < 0)
  359. dev_warn(&client->dev, "failed to set xtal load capacitance: %d",
  360. err);
  361. pcf85363->rtc->ops = &rtc_ops;
  362. pcf85363->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
  363. pcf85363->rtc->range_max = RTC_TIMESTAMP_END_2099;
  364. wakeup_source = device_property_read_bool(&client->dev,
  365. "wakeup-source");
  366. if (client->irq > 0 || wakeup_source) {
  367. regmap_write(pcf85363->regmap, CTRL_FLAGS, 0);
  368. regmap_update_bits(pcf85363->regmap, CTRL_PIN_IO,
  369. PIN_IO_INTAPM, PIN_IO_INTA_OUT);
  370. }
  371. if (client->irq > 0) {
  372. unsigned long irqflags = IRQF_TRIGGER_LOW;
  373. if (dev_fwnode(&client->dev))
  374. irqflags = 0;
  375. ret = devm_request_threaded_irq(&client->dev, client->irq,
  376. NULL, pcf85363_rtc_handle_irq,
  377. irqflags | IRQF_ONESHOT,
  378. "pcf85363", client);
  379. if (ret) {
  380. dev_warn(&client->dev,
  381. "unable to request IRQ, alarms disabled\n");
  382. client->irq = 0;
  383. }
  384. }
  385. if (client->irq > 0 || wakeup_source) {
  386. device_init_wakeup(&client->dev, true);
  387. set_bit(RTC_FEATURE_ALARM, pcf85363->rtc->features);
  388. } else {
  389. clear_bit(RTC_FEATURE_ALARM, pcf85363->rtc->features);
  390. }
  391. ret = devm_rtc_register_device(pcf85363->rtc);
  392. for (i = 0; i < config->num_nvram; i++) {
  393. nvmem_cfg[i].priv = pcf85363;
  394. devm_rtc_nvmem_register(pcf85363->rtc, &nvmem_cfg[i]);
  395. }
  396. return ret;
  397. }
  398. static const __maybe_unused struct of_device_id dev_ids[] = {
  399. { .compatible = "nxp,pcf85263", .data = &pcf_85263_config },
  400. { .compatible = "nxp,pcf85363", .data = &pcf_85363_config },
  401. { /* sentinel */ }
  402. };
  403. MODULE_DEVICE_TABLE(of, dev_ids);
  404. static struct i2c_driver pcf85363_driver = {
  405. .driver = {
  406. .name = "pcf85363",
  407. .of_match_table = of_match_ptr(dev_ids),
  408. },
  409. .probe = pcf85363_probe,
  410. };
  411. module_i2c_driver(pcf85363_driver);
  412. MODULE_AUTHOR("Eric Nelson");
  413. MODULE_DESCRIPTION("pcf85263/pcf85363 I2C RTC driver");
  414. MODULE_LICENSE("GPL");