rtc-pxa.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Real Time Clock interface for XScale PXA27x and PXA3xx
  4. *
  5. * Copyright (C) 2008 Robert Jarzmik
  6. */
  7. #include <linux/init.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/module.h>
  10. #include <linux/rtc.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/io.h>
  14. #include <linux/slab.h>
  15. #include <linux/of.h>
  16. #include "rtc-sa1100.h"
  17. #define RTC_DEF_DIVIDER (32768 - 1)
  18. #define RTC_DEF_TRIM 0
  19. #define MAXFREQ_PERIODIC 1000
  20. /*
  21. * PXA Registers and bits definitions
  22. */
  23. #define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
  24. #define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
  25. #define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
  26. #define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
  27. #define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
  28. #define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
  29. #define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
  30. #define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
  31. #define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
  32. #define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
  33. #define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
  34. #define RTSR_HZE (1 << 3) /* HZ interrupt enable */
  35. #define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
  36. #define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
  37. #define RTSR_AL (1 << 0) /* RTC alarm detected */
  38. #define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
  39. | RTSR_SWAL1 | RTSR_SWAL2)
  40. #define RYxR_YEAR_S 9
  41. #define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
  42. #define RYxR_MONTH_S 5
  43. #define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
  44. #define RYxR_DAY_MASK 0x1f
  45. #define RDxR_WOM_S 20
  46. #define RDxR_WOM_MASK (0x7 << RDxR_WOM_S)
  47. #define RDxR_DOW_S 17
  48. #define RDxR_DOW_MASK (0x7 << RDxR_DOW_S)
  49. #define RDxR_HOUR_S 12
  50. #define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
  51. #define RDxR_MIN_S 6
  52. #define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
  53. #define RDxR_SEC_MASK 0x3f
  54. #define RTSR 0x08
  55. #define RTTR 0x0c
  56. #define RDCR 0x10
  57. #define RYCR 0x14
  58. #define RDAR1 0x18
  59. #define RYAR1 0x1c
  60. #define RTCPICR 0x34
  61. #define PIAR 0x38
  62. #define rtc_readl(pxa_rtc, reg) \
  63. __raw_readl((pxa_rtc)->base + (reg))
  64. #define rtc_writel(pxa_rtc, reg, value) \
  65. __raw_writel((value), (pxa_rtc)->base + (reg))
  66. struct pxa_rtc {
  67. struct sa1100_rtc sa1100_rtc;
  68. struct resource *ress;
  69. void __iomem *base;
  70. struct rtc_device *rtc;
  71. spinlock_t lock; /* Protects this structure */
  72. };
  73. static u32 ryxr_calc(struct rtc_time *tm)
  74. {
  75. return ((tm->tm_year + 1900) << RYxR_YEAR_S)
  76. | ((tm->tm_mon + 1) << RYxR_MONTH_S)
  77. | tm->tm_mday;
  78. }
  79. static u32 rdxr_calc(struct rtc_time *tm)
  80. {
  81. return ((((tm->tm_mday + 6) / 7) << RDxR_WOM_S) & RDxR_WOM_MASK)
  82. | (((tm->tm_wday + 1) << RDxR_DOW_S) & RDxR_DOW_MASK)
  83. | (tm->tm_hour << RDxR_HOUR_S)
  84. | (tm->tm_min << RDxR_MIN_S)
  85. | tm->tm_sec;
  86. }
  87. static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
  88. {
  89. tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
  90. tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
  91. tm->tm_mday = (rycr & RYxR_DAY_MASK);
  92. tm->tm_wday = ((rycr & RDxR_DOW_MASK) >> RDxR_DOW_S) - 1;
  93. tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
  94. tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
  95. tm->tm_sec = rdcr & RDxR_SEC_MASK;
  96. }
  97. static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
  98. {
  99. u32 rtsr;
  100. rtsr = rtc_readl(pxa_rtc, RTSR);
  101. rtsr &= ~RTSR_TRIG_MASK;
  102. rtsr &= ~mask;
  103. rtc_writel(pxa_rtc, RTSR, rtsr);
  104. }
  105. static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
  106. {
  107. u32 rtsr;
  108. rtsr = rtc_readl(pxa_rtc, RTSR);
  109. rtsr &= ~RTSR_TRIG_MASK;
  110. rtsr |= mask;
  111. rtc_writel(pxa_rtc, RTSR, rtsr);
  112. }
  113. static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
  114. {
  115. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev_id);
  116. u32 rtsr;
  117. unsigned long events = 0;
  118. spin_lock(&pxa_rtc->lock);
  119. /* clear interrupt sources */
  120. rtsr = rtc_readl(pxa_rtc, RTSR);
  121. rtc_writel(pxa_rtc, RTSR, rtsr);
  122. /* temporary disable rtc interrupts */
  123. rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
  124. /* clear alarm interrupt if it has occurred */
  125. if (rtsr & RTSR_RDAL1)
  126. rtsr &= ~RTSR_RDALE1;
  127. /* update irq data & counter */
  128. if (rtsr & RTSR_RDAL1)
  129. events |= RTC_AF | RTC_IRQF;
  130. if (rtsr & RTSR_HZ)
  131. events |= RTC_UF | RTC_IRQF;
  132. if (rtsr & RTSR_PIAL)
  133. events |= RTC_PF | RTC_IRQF;
  134. rtc_update_irq(pxa_rtc->rtc, 1, events);
  135. /* enable back rtc interrupts */
  136. rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
  137. spin_unlock(&pxa_rtc->lock);
  138. return IRQ_HANDLED;
  139. }
  140. static int pxa_rtc_open(struct device *dev)
  141. {
  142. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  143. int ret;
  144. ret = request_irq(pxa_rtc->sa1100_rtc.irq_1hz, pxa_rtc_irq, 0,
  145. "rtc 1Hz", dev);
  146. if (ret < 0) {
  147. dev_err(dev, "can't get irq %i, err %d\n",
  148. pxa_rtc->sa1100_rtc.irq_1hz, ret);
  149. goto err_irq_1Hz;
  150. }
  151. ret = request_irq(pxa_rtc->sa1100_rtc.irq_alarm, pxa_rtc_irq, 0,
  152. "rtc Alrm", dev);
  153. if (ret < 0) {
  154. dev_err(dev, "can't get irq %i, err %d\n",
  155. pxa_rtc->sa1100_rtc.irq_alarm, ret);
  156. goto err_irq_Alrm;
  157. }
  158. return 0;
  159. err_irq_Alrm:
  160. free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
  161. err_irq_1Hz:
  162. return ret;
  163. }
  164. static void pxa_rtc_release(struct device *dev)
  165. {
  166. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  167. spin_lock_irq(&pxa_rtc->lock);
  168. rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
  169. spin_unlock_irq(&pxa_rtc->lock);
  170. free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
  171. free_irq(pxa_rtc->sa1100_rtc.irq_alarm, dev);
  172. }
  173. static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
  174. {
  175. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  176. spin_lock_irq(&pxa_rtc->lock);
  177. if (enabled)
  178. rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
  179. else
  180. rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
  181. spin_unlock_irq(&pxa_rtc->lock);
  182. return 0;
  183. }
  184. static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
  185. {
  186. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  187. u32 rycr, rdcr;
  188. rycr = rtc_readl(pxa_rtc, RYCR);
  189. rdcr = rtc_readl(pxa_rtc, RDCR);
  190. tm_calc(rycr, rdcr, tm);
  191. return 0;
  192. }
  193. static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
  194. {
  195. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  196. rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
  197. rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
  198. return 0;
  199. }
  200. static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  201. {
  202. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  203. u32 rtsr, ryar, rdar;
  204. ryar = rtc_readl(pxa_rtc, RYAR1);
  205. rdar = rtc_readl(pxa_rtc, RDAR1);
  206. tm_calc(ryar, rdar, &alrm->time);
  207. rtsr = rtc_readl(pxa_rtc, RTSR);
  208. alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
  209. alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
  210. return 0;
  211. }
  212. static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  213. {
  214. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  215. u32 rtsr;
  216. spin_lock_irq(&pxa_rtc->lock);
  217. rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
  218. rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
  219. rtsr = rtc_readl(pxa_rtc, RTSR);
  220. if (alrm->enabled)
  221. rtsr |= RTSR_RDALE1;
  222. else
  223. rtsr &= ~RTSR_RDALE1;
  224. rtc_writel(pxa_rtc, RTSR, rtsr);
  225. spin_unlock_irq(&pxa_rtc->lock);
  226. return 0;
  227. }
  228. static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
  229. {
  230. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  231. seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
  232. seq_printf(seq, "update_IRQ\t: %s\n",
  233. (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
  234. seq_printf(seq, "periodic_IRQ\t: %s\n",
  235. (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
  236. seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
  237. return 0;
  238. }
  239. static const struct rtc_class_ops pxa_rtc_ops = {
  240. .read_time = pxa_rtc_read_time,
  241. .set_time = pxa_rtc_set_time,
  242. .read_alarm = pxa_rtc_read_alarm,
  243. .set_alarm = pxa_rtc_set_alarm,
  244. .alarm_irq_enable = pxa_alarm_irq_enable,
  245. .proc = pxa_rtc_proc,
  246. };
  247. static int __init pxa_rtc_probe(struct platform_device *pdev)
  248. {
  249. struct device *dev = &pdev->dev;
  250. struct pxa_rtc *pxa_rtc;
  251. struct sa1100_rtc *sa1100_rtc;
  252. int ret;
  253. pxa_rtc = devm_kzalloc(dev, sizeof(*pxa_rtc), GFP_KERNEL);
  254. if (!pxa_rtc)
  255. return -ENOMEM;
  256. sa1100_rtc = &pxa_rtc->sa1100_rtc;
  257. spin_lock_init(&pxa_rtc->lock);
  258. platform_set_drvdata(pdev, pxa_rtc);
  259. pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  260. if (!pxa_rtc->ress) {
  261. dev_err(dev, "No I/O memory resource defined\n");
  262. return -ENXIO;
  263. }
  264. sa1100_rtc->irq_1hz = platform_get_irq(pdev, 0);
  265. if (sa1100_rtc->irq_1hz < 0)
  266. return -ENXIO;
  267. sa1100_rtc->irq_alarm = platform_get_irq(pdev, 1);
  268. if (sa1100_rtc->irq_alarm < 0)
  269. return -ENXIO;
  270. sa1100_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
  271. if (IS_ERR(sa1100_rtc->rtc))
  272. return PTR_ERR(sa1100_rtc->rtc);
  273. pxa_rtc->base = devm_ioremap(dev, pxa_rtc->ress->start,
  274. resource_size(pxa_rtc->ress));
  275. if (!pxa_rtc->base) {
  276. dev_err(dev, "Unable to map pxa RTC I/O memory\n");
  277. return -ENOMEM;
  278. }
  279. pxa_rtc_open(dev);
  280. sa1100_rtc->rcnr = pxa_rtc->base + 0x0;
  281. sa1100_rtc->rtsr = pxa_rtc->base + 0x8;
  282. sa1100_rtc->rtar = pxa_rtc->base + 0x4;
  283. sa1100_rtc->rttr = pxa_rtc->base + 0xc;
  284. ret = sa1100_rtc_init(pdev, sa1100_rtc);
  285. if (ret) {
  286. dev_err(dev, "Unable to init SA1100 RTC sub-device\n");
  287. return ret;
  288. }
  289. rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
  290. pxa_rtc->rtc = devm_rtc_device_register(&pdev->dev, "pxa-rtc",
  291. &pxa_rtc_ops, THIS_MODULE);
  292. if (IS_ERR(pxa_rtc->rtc)) {
  293. ret = PTR_ERR(pxa_rtc->rtc);
  294. dev_err(dev, "Failed to register RTC device -> %d\n", ret);
  295. return ret;
  296. }
  297. device_init_wakeup(dev, 1);
  298. return 0;
  299. }
  300. static void __exit pxa_rtc_remove(struct platform_device *pdev)
  301. {
  302. struct device *dev = &pdev->dev;
  303. pxa_rtc_release(dev);
  304. }
  305. #ifdef CONFIG_OF
  306. static const struct of_device_id pxa_rtc_dt_ids[] = {
  307. { .compatible = "marvell,pxa-rtc" },
  308. {}
  309. };
  310. MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids);
  311. #endif
  312. #ifdef CONFIG_PM_SLEEP
  313. static int pxa_rtc_suspend(struct device *dev)
  314. {
  315. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  316. if (device_may_wakeup(dev))
  317. enable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
  318. return 0;
  319. }
  320. static int pxa_rtc_resume(struct device *dev)
  321. {
  322. struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
  323. if (device_may_wakeup(dev))
  324. disable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
  325. return 0;
  326. }
  327. #endif
  328. static SIMPLE_DEV_PM_OPS(pxa_rtc_pm_ops, pxa_rtc_suspend, pxa_rtc_resume);
  329. /*
  330. * pxa_rtc_remove() lives in .exit.text. For drivers registered via
  331. * module_platform_driver_probe() this is ok because they cannot get unbound at
  332. * runtime. So mark the driver struct with __refdata to prevent modpost
  333. * triggering a section mismatch warning.
  334. */
  335. static struct platform_driver pxa_rtc_driver __refdata = {
  336. .remove_new = __exit_p(pxa_rtc_remove),
  337. .driver = {
  338. .name = "pxa-rtc",
  339. .of_match_table = of_match_ptr(pxa_rtc_dt_ids),
  340. .pm = &pxa_rtc_pm_ops,
  341. },
  342. };
  343. module_platform_driver_probe(pxa_rtc_driver, pxa_rtc_probe);
  344. MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
  345. MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
  346. MODULE_LICENSE("GPL");
  347. MODULE_ALIAS("platform:pxa-rtc");