rtc-s5m.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. // SPDX-License-Identifier: GPL-2.0+
  2. //
  3. // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  4. // http://www.samsung.com
  5. //
  6. // Copyright (C) 2013 Google, Inc
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/module.h>
  9. #include <linux/i2c.h>
  10. #include <linux/bcd.h>
  11. #include <linux/regmap.h>
  12. #include <linux/rtc.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/mfd/samsung/core.h>
  15. #include <linux/mfd/samsung/irq.h>
  16. #include <linux/mfd/samsung/rtc.h>
  17. #include <linux/mfd/samsung/s2mps14.h>
  18. /*
  19. * Maximum number of retries for checking changes in UDR field
  20. * of S5M_RTC_UDR_CON register (to limit possible endless loop).
  21. *
  22. * After writing to RTC registers (setting time or alarm) read the UDR field
  23. * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
  24. * been transferred.
  25. */
  26. #define UDR_READ_RETRY_CNT 5
  27. enum {
  28. RTC_SEC = 0,
  29. RTC_MIN,
  30. RTC_HOUR,
  31. RTC_WEEKDAY,
  32. RTC_DATE,
  33. RTC_MONTH,
  34. RTC_YEAR1,
  35. RTC_YEAR2,
  36. /* Make sure this is always the last enum name. */
  37. RTC_MAX_NUM_TIME_REGS
  38. };
  39. /*
  40. * Registers used by the driver which are different between chipsets.
  41. *
  42. * Operations like read time and write alarm/time require updating
  43. * specific fields in UDR register. These fields usually are auto-cleared
  44. * (with some exceptions).
  45. *
  46. * Table of operations per device:
  47. *
  48. * Device | Write time | Read time | Write alarm
  49. * =================================================
  50. * S5M8767 | UDR + TIME | | UDR
  51. * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
  52. * S2MPS13 | WUDR | RUDR | WUDR + AUDR
  53. * S2MPS15 | WUDR | RUDR | AUDR
  54. */
  55. struct s5m_rtc_reg_config {
  56. /* Number of registers used for setting time/alarm0/alarm1 */
  57. unsigned int regs_count;
  58. /* First register for time, seconds */
  59. unsigned int time;
  60. /* RTC control register */
  61. unsigned int ctrl;
  62. /* First register for alarm 0, seconds */
  63. unsigned int alarm0;
  64. /* First register for alarm 1, seconds */
  65. unsigned int alarm1;
  66. /*
  67. * Register for update flag (UDR). Typically setting UDR field to 1
  68. * will enable update of time or alarm register. Then it will be
  69. * auto-cleared after successful update.
  70. */
  71. unsigned int udr_update;
  72. /* Auto-cleared mask in UDR field for writing time and alarm */
  73. unsigned int autoclear_udr_mask;
  74. /*
  75. * Masks in UDR field for time and alarm operations.
  76. * The read time mask can be 0. Rest should not.
  77. */
  78. unsigned int read_time_udr_mask;
  79. unsigned int write_time_udr_mask;
  80. unsigned int write_alarm_udr_mask;
  81. };
  82. /* Register map for S5M8767 */
  83. static const struct s5m_rtc_reg_config s5m_rtc_regs = {
  84. .regs_count = 8,
  85. .time = S5M_RTC_SEC,
  86. .ctrl = S5M_ALARM1_CONF,
  87. .alarm0 = S5M_ALARM0_SEC,
  88. .alarm1 = S5M_ALARM1_SEC,
  89. .udr_update = S5M_RTC_UDR_CON,
  90. .autoclear_udr_mask = S5M_RTC_UDR_MASK,
  91. .read_time_udr_mask = 0, /* Not needed */
  92. .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
  93. .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
  94. };
  95. /* Register map for S2MPS13 */
  96. static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
  97. .regs_count = 7,
  98. .time = S2MPS_RTC_SEC,
  99. .ctrl = S2MPS_RTC_CTRL,
  100. .alarm0 = S2MPS_ALARM0_SEC,
  101. .alarm1 = S2MPS_ALARM1_SEC,
  102. .udr_update = S2MPS_RTC_UDR_CON,
  103. .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
  104. .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
  105. .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
  106. .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
  107. };
  108. /* Register map for S2MPS11/14 */
  109. static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
  110. .regs_count = 7,
  111. .time = S2MPS_RTC_SEC,
  112. .ctrl = S2MPS_RTC_CTRL,
  113. .alarm0 = S2MPS_ALARM0_SEC,
  114. .alarm1 = S2MPS_ALARM1_SEC,
  115. .udr_update = S2MPS_RTC_UDR_CON,
  116. .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
  117. .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
  118. .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
  119. .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
  120. };
  121. /*
  122. * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
  123. * are swapped.
  124. */
  125. static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
  126. .regs_count = 7,
  127. .time = S2MPS_RTC_SEC,
  128. .ctrl = S2MPS_RTC_CTRL,
  129. .alarm0 = S2MPS_ALARM0_SEC,
  130. .alarm1 = S2MPS_ALARM1_SEC,
  131. .udr_update = S2MPS_RTC_UDR_CON,
  132. .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
  133. .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
  134. .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
  135. .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
  136. };
  137. struct s5m_rtc_info {
  138. struct device *dev;
  139. struct i2c_client *i2c;
  140. struct sec_pmic_dev *s5m87xx;
  141. struct regmap *regmap;
  142. struct rtc_device *rtc_dev;
  143. int irq;
  144. enum sec_device_type device_type;
  145. int rtc_24hr_mode;
  146. const struct s5m_rtc_reg_config *regs;
  147. };
  148. static const struct regmap_config s5m_rtc_regmap_config = {
  149. .reg_bits = 8,
  150. .val_bits = 8,
  151. .max_register = S5M_RTC_REG_MAX,
  152. };
  153. static const struct regmap_config s2mps14_rtc_regmap_config = {
  154. .reg_bits = 8,
  155. .val_bits = 8,
  156. .max_register = S2MPS_RTC_REG_MAX,
  157. };
  158. static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
  159. int rtc_24hr_mode)
  160. {
  161. tm->tm_sec = data[RTC_SEC] & 0x7f;
  162. tm->tm_min = data[RTC_MIN] & 0x7f;
  163. if (rtc_24hr_mode) {
  164. tm->tm_hour = data[RTC_HOUR] & 0x1f;
  165. } else {
  166. tm->tm_hour = data[RTC_HOUR] & 0x0f;
  167. if (data[RTC_HOUR] & HOUR_PM_MASK)
  168. tm->tm_hour += 12;
  169. }
  170. tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
  171. tm->tm_mday = data[RTC_DATE] & 0x1f;
  172. tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
  173. tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
  174. tm->tm_yday = 0;
  175. tm->tm_isdst = 0;
  176. }
  177. static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
  178. {
  179. data[RTC_SEC] = tm->tm_sec;
  180. data[RTC_MIN] = tm->tm_min;
  181. if (tm->tm_hour >= 12)
  182. data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
  183. else
  184. data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
  185. data[RTC_WEEKDAY] = 1 << tm->tm_wday;
  186. data[RTC_DATE] = tm->tm_mday;
  187. data[RTC_MONTH] = tm->tm_mon + 1;
  188. data[RTC_YEAR1] = tm->tm_year - 100;
  189. return 0;
  190. }
  191. /*
  192. * Read RTC_UDR_CON register and wait till UDR field is cleared.
  193. * This indicates that time/alarm update ended.
  194. */
  195. static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
  196. {
  197. int ret, retry = UDR_READ_RETRY_CNT;
  198. unsigned int data;
  199. do {
  200. ret = regmap_read(info->regmap, info->regs->udr_update, &data);
  201. } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
  202. if (!retry)
  203. dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
  204. return ret;
  205. }
  206. static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
  207. struct rtc_wkalrm *alarm)
  208. {
  209. int ret;
  210. unsigned int val;
  211. switch (info->device_type) {
  212. case S5M8767X:
  213. ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
  214. val &= S5M_ALARM0_STATUS;
  215. break;
  216. case S2MPS15X:
  217. case S2MPS14X:
  218. case S2MPS13X:
  219. ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
  220. &val);
  221. val &= S2MPS_ALARM0_STATUS;
  222. break;
  223. default:
  224. return -EINVAL;
  225. }
  226. if (ret < 0)
  227. return ret;
  228. if (val)
  229. alarm->pending = 1;
  230. else
  231. alarm->pending = 0;
  232. return 0;
  233. }
  234. static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
  235. {
  236. int ret;
  237. unsigned int data;
  238. ret = regmap_read(info->regmap, info->regs->udr_update, &data);
  239. if (ret < 0) {
  240. dev_err(info->dev, "failed to read update reg(%d)\n", ret);
  241. return ret;
  242. }
  243. data |= info->regs->write_time_udr_mask;
  244. ret = regmap_write(info->regmap, info->regs->udr_update, data);
  245. if (ret < 0) {
  246. dev_err(info->dev, "failed to write update reg(%d)\n", ret);
  247. return ret;
  248. }
  249. ret = s5m8767_wait_for_udr_update(info);
  250. return ret;
  251. }
  252. static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
  253. {
  254. int ret;
  255. unsigned int data;
  256. ret = regmap_read(info->regmap, info->regs->udr_update, &data);
  257. if (ret < 0) {
  258. dev_err(info->dev, "%s: fail to read update reg(%d)\n",
  259. __func__, ret);
  260. return ret;
  261. }
  262. data |= info->regs->write_alarm_udr_mask;
  263. switch (info->device_type) {
  264. case S5M8767X:
  265. data &= ~S5M_RTC_TIME_EN_MASK;
  266. break;
  267. case S2MPS15X:
  268. case S2MPS14X:
  269. case S2MPS13X:
  270. /* No exceptions needed */
  271. break;
  272. default:
  273. return -EINVAL;
  274. }
  275. ret = regmap_write(info->regmap, info->regs->udr_update, data);
  276. if (ret < 0) {
  277. dev_err(info->dev, "%s: fail to write update reg(%d)\n",
  278. __func__, ret);
  279. return ret;
  280. }
  281. ret = s5m8767_wait_for_udr_update(info);
  282. /* On S2MPS13 the AUDR is not auto-cleared */
  283. if (info->device_type == S2MPS13X)
  284. regmap_update_bits(info->regmap, info->regs->udr_update,
  285. S2MPS13_RTC_AUDR_MASK, 0);
  286. return ret;
  287. }
  288. static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
  289. {
  290. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  291. u8 data[RTC_MAX_NUM_TIME_REGS];
  292. int ret;
  293. if (info->regs->read_time_udr_mask) {
  294. ret = regmap_update_bits(info->regmap,
  295. info->regs->udr_update,
  296. info->regs->read_time_udr_mask,
  297. info->regs->read_time_udr_mask);
  298. if (ret) {
  299. dev_err(dev,
  300. "Failed to prepare registers for time reading: %d\n",
  301. ret);
  302. return ret;
  303. }
  304. }
  305. ret = regmap_bulk_read(info->regmap, info->regs->time, data,
  306. info->regs->regs_count);
  307. if (ret < 0)
  308. return ret;
  309. switch (info->device_type) {
  310. case S5M8767X:
  311. case S2MPS15X:
  312. case S2MPS14X:
  313. case S2MPS13X:
  314. s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
  315. break;
  316. default:
  317. return -EINVAL;
  318. }
  319. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
  320. return 0;
  321. }
  322. static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
  323. {
  324. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  325. u8 data[RTC_MAX_NUM_TIME_REGS];
  326. int ret = 0;
  327. switch (info->device_type) {
  328. case S5M8767X:
  329. case S2MPS15X:
  330. case S2MPS14X:
  331. case S2MPS13X:
  332. ret = s5m8767_tm_to_data(tm, data);
  333. break;
  334. default:
  335. return -EINVAL;
  336. }
  337. if (ret < 0)
  338. return ret;
  339. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
  340. ret = regmap_raw_write(info->regmap, info->regs->time, data,
  341. info->regs->regs_count);
  342. if (ret < 0)
  343. return ret;
  344. ret = s5m8767_rtc_set_time_reg(info);
  345. return ret;
  346. }
  347. static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  348. {
  349. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  350. u8 data[RTC_MAX_NUM_TIME_REGS];
  351. int ret, i;
  352. ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
  353. info->regs->regs_count);
  354. if (ret < 0)
  355. return ret;
  356. switch (info->device_type) {
  357. case S5M8767X:
  358. case S2MPS15X:
  359. case S2MPS14X:
  360. case S2MPS13X:
  361. s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
  362. alrm->enabled = 0;
  363. for (i = 0; i < info->regs->regs_count; i++) {
  364. if (data[i] & ALARM_ENABLE_MASK) {
  365. alrm->enabled = 1;
  366. break;
  367. }
  368. }
  369. break;
  370. default:
  371. return -EINVAL;
  372. }
  373. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
  374. return s5m_check_peding_alarm_interrupt(info, alrm);
  375. }
  376. static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
  377. {
  378. u8 data[RTC_MAX_NUM_TIME_REGS];
  379. int ret, i;
  380. struct rtc_time tm;
  381. ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
  382. info->regs->regs_count);
  383. if (ret < 0)
  384. return ret;
  385. s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
  386. dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
  387. switch (info->device_type) {
  388. case S5M8767X:
  389. case S2MPS15X:
  390. case S2MPS14X:
  391. case S2MPS13X:
  392. for (i = 0; i < info->regs->regs_count; i++)
  393. data[i] &= ~ALARM_ENABLE_MASK;
  394. ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
  395. info->regs->regs_count);
  396. if (ret < 0)
  397. return ret;
  398. ret = s5m8767_rtc_set_alarm_reg(info);
  399. break;
  400. default:
  401. return -EINVAL;
  402. }
  403. return ret;
  404. }
  405. static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
  406. {
  407. int ret;
  408. u8 data[RTC_MAX_NUM_TIME_REGS];
  409. struct rtc_time tm;
  410. ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
  411. info->regs->regs_count);
  412. if (ret < 0)
  413. return ret;
  414. s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
  415. dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
  416. switch (info->device_type) {
  417. case S5M8767X:
  418. case S2MPS15X:
  419. case S2MPS14X:
  420. case S2MPS13X:
  421. data[RTC_SEC] |= ALARM_ENABLE_MASK;
  422. data[RTC_MIN] |= ALARM_ENABLE_MASK;
  423. data[RTC_HOUR] |= ALARM_ENABLE_MASK;
  424. data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
  425. if (data[RTC_DATE] & 0x1f)
  426. data[RTC_DATE] |= ALARM_ENABLE_MASK;
  427. if (data[RTC_MONTH] & 0xf)
  428. data[RTC_MONTH] |= ALARM_ENABLE_MASK;
  429. if (data[RTC_YEAR1] & 0x7f)
  430. data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
  431. ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
  432. info->regs->regs_count);
  433. if (ret < 0)
  434. return ret;
  435. ret = s5m8767_rtc_set_alarm_reg(info);
  436. break;
  437. default:
  438. return -EINVAL;
  439. }
  440. return ret;
  441. }
  442. static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  443. {
  444. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  445. u8 data[RTC_MAX_NUM_TIME_REGS];
  446. int ret;
  447. switch (info->device_type) {
  448. case S5M8767X:
  449. case S2MPS15X:
  450. case S2MPS14X:
  451. case S2MPS13X:
  452. s5m8767_tm_to_data(&alrm->time, data);
  453. break;
  454. default:
  455. return -EINVAL;
  456. }
  457. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
  458. ret = s5m_rtc_stop_alarm(info);
  459. if (ret < 0)
  460. return ret;
  461. ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
  462. info->regs->regs_count);
  463. if (ret < 0)
  464. return ret;
  465. ret = s5m8767_rtc_set_alarm_reg(info);
  466. if (ret < 0)
  467. return ret;
  468. if (alrm->enabled)
  469. ret = s5m_rtc_start_alarm(info);
  470. return ret;
  471. }
  472. static int s5m_rtc_alarm_irq_enable(struct device *dev,
  473. unsigned int enabled)
  474. {
  475. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  476. if (enabled)
  477. return s5m_rtc_start_alarm(info);
  478. else
  479. return s5m_rtc_stop_alarm(info);
  480. }
  481. static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
  482. {
  483. struct s5m_rtc_info *info = data;
  484. rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
  485. return IRQ_HANDLED;
  486. }
  487. static const struct rtc_class_ops s5m_rtc_ops = {
  488. .read_time = s5m_rtc_read_time,
  489. .set_time = s5m_rtc_set_time,
  490. .read_alarm = s5m_rtc_read_alarm,
  491. .set_alarm = s5m_rtc_set_alarm,
  492. .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
  493. };
  494. static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
  495. {
  496. u8 data[2];
  497. int ret;
  498. switch (info->device_type) {
  499. case S5M8767X:
  500. /* UDR update time. Default of 7.32 ms is too long. */
  501. ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
  502. S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
  503. if (ret < 0)
  504. dev_err(info->dev, "%s: fail to change UDR time: %d\n",
  505. __func__, ret);
  506. /* Set RTC control register : Binary mode, 24hour mode */
  507. data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
  508. data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
  509. ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
  510. break;
  511. case S2MPS15X:
  512. case S2MPS14X:
  513. case S2MPS13X:
  514. data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
  515. ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
  516. if (ret < 0)
  517. break;
  518. /*
  519. * Should set WUDR & (RUDR or AUDR) bits to high after writing
  520. * RTC_CTRL register like writing Alarm registers. We can't find
  521. * the description from datasheet but vendor code does that
  522. * really.
  523. */
  524. ret = s5m8767_rtc_set_alarm_reg(info);
  525. break;
  526. default:
  527. return -EINVAL;
  528. }
  529. info->rtc_24hr_mode = 1;
  530. if (ret < 0) {
  531. dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
  532. __func__, ret);
  533. return ret;
  534. }
  535. return ret;
  536. }
  537. static int s5m_rtc_probe(struct platform_device *pdev)
  538. {
  539. struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
  540. struct s5m_rtc_info *info;
  541. const struct regmap_config *regmap_cfg;
  542. int ret, alarm_irq;
  543. info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
  544. if (!info)
  545. return -ENOMEM;
  546. switch (platform_get_device_id(pdev)->driver_data) {
  547. case S2MPS15X:
  548. regmap_cfg = &s2mps14_rtc_regmap_config;
  549. info->regs = &s2mps15_rtc_regs;
  550. alarm_irq = S2MPS14_IRQ_RTCA0;
  551. break;
  552. case S2MPS14X:
  553. regmap_cfg = &s2mps14_rtc_regmap_config;
  554. info->regs = &s2mps14_rtc_regs;
  555. alarm_irq = S2MPS14_IRQ_RTCA0;
  556. break;
  557. case S2MPS13X:
  558. regmap_cfg = &s2mps14_rtc_regmap_config;
  559. info->regs = &s2mps13_rtc_regs;
  560. alarm_irq = S2MPS14_IRQ_RTCA0;
  561. break;
  562. case S5M8767X:
  563. regmap_cfg = &s5m_rtc_regmap_config;
  564. info->regs = &s5m_rtc_regs;
  565. alarm_irq = S5M8767_IRQ_RTCA1;
  566. break;
  567. default:
  568. dev_err(&pdev->dev,
  569. "Device type %lu is not supported by RTC driver\n",
  570. platform_get_device_id(pdev)->driver_data);
  571. return -ENODEV;
  572. }
  573. info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
  574. RTC_I2C_ADDR);
  575. if (IS_ERR(info->i2c)) {
  576. dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
  577. return PTR_ERR(info->i2c);
  578. }
  579. info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
  580. if (IS_ERR(info->regmap)) {
  581. ret = PTR_ERR(info->regmap);
  582. dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
  583. ret);
  584. return ret;
  585. }
  586. info->dev = &pdev->dev;
  587. info->s5m87xx = s5m87xx;
  588. info->device_type = platform_get_device_id(pdev)->driver_data;
  589. if (s5m87xx->irq_data) {
  590. info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
  591. if (info->irq <= 0) {
  592. dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
  593. alarm_irq);
  594. return -EINVAL;
  595. }
  596. }
  597. platform_set_drvdata(pdev, info);
  598. ret = s5m8767_rtc_init_reg(info);
  599. if (ret)
  600. return ret;
  601. info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
  602. if (IS_ERR(info->rtc_dev))
  603. return PTR_ERR(info->rtc_dev);
  604. info->rtc_dev->ops = &s5m_rtc_ops;
  605. info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
  606. info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
  607. if (!info->irq) {
  608. clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
  609. } else {
  610. ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
  611. s5m_rtc_alarm_irq, 0, "rtc-alarm0",
  612. info);
  613. if (ret < 0) {
  614. dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
  615. info->irq, ret);
  616. return ret;
  617. }
  618. device_init_wakeup(&pdev->dev, 1);
  619. }
  620. return devm_rtc_register_device(info->rtc_dev);
  621. }
  622. #ifdef CONFIG_PM_SLEEP
  623. static int s5m_rtc_resume(struct device *dev)
  624. {
  625. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  626. int ret = 0;
  627. if (info->irq && device_may_wakeup(dev))
  628. ret = disable_irq_wake(info->irq);
  629. return ret;
  630. }
  631. static int s5m_rtc_suspend(struct device *dev)
  632. {
  633. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  634. int ret = 0;
  635. if (info->irq && device_may_wakeup(dev))
  636. ret = enable_irq_wake(info->irq);
  637. return ret;
  638. }
  639. #endif /* CONFIG_PM_SLEEP */
  640. static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
  641. static const struct platform_device_id s5m_rtc_id[] = {
  642. { "s5m-rtc", S5M8767X },
  643. { "s2mps13-rtc", S2MPS13X },
  644. { "s2mps14-rtc", S2MPS14X },
  645. { "s2mps15-rtc", S2MPS15X },
  646. { },
  647. };
  648. MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
  649. static struct platform_driver s5m_rtc_driver = {
  650. .driver = {
  651. .name = "s5m-rtc",
  652. .pm = &s5m_rtc_pm_ops,
  653. },
  654. .probe = s5m_rtc_probe,
  655. .id_table = s5m_rtc_id,
  656. };
  657. module_platform_driver(s5m_rtc_driver);
  658. /* Module information */
  659. MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
  660. MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
  661. MODULE_LICENSE("GPL");