spmi-mtk-pmif.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // Copyright (c) 2021 MediaTek Inc.
  4. #include <linux/clk.h>
  5. #include <linux/iopoll.h>
  6. #include <linux/module.h>
  7. #include <linux/of.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/property.h>
  10. #include <linux/spmi.h>
  11. #define SWINF_IDLE 0x00
  12. #define SWINF_WFVLDCLR 0x06
  13. #define GET_SWINF(x) (((x) >> 1) & 0x7)
  14. #define PMIF_CMD_REG_0 0
  15. #define PMIF_CMD_REG 1
  16. #define PMIF_CMD_EXT_REG 2
  17. #define PMIF_CMD_EXT_REG_LONG 3
  18. #define PMIF_DELAY_US 10
  19. #define PMIF_TIMEOUT_US (10 * 1000)
  20. #define PMIF_CHAN_OFFSET 0x5
  21. #define PMIF_MAX_CLKS 3
  22. #define SPMI_OP_ST_BUSY 1
  23. struct ch_reg {
  24. u32 ch_sta;
  25. u32 wdata;
  26. u32 rdata;
  27. u32 ch_send;
  28. u32 ch_rdy;
  29. };
  30. struct pmif_data {
  31. const u32 *regs;
  32. const u32 *spmimst_regs;
  33. u32 soc_chan;
  34. };
  35. struct pmif {
  36. void __iomem *base;
  37. void __iomem *spmimst_base;
  38. struct ch_reg chan;
  39. struct clk_bulk_data clks[PMIF_MAX_CLKS];
  40. size_t nclks;
  41. const struct pmif_data *data;
  42. raw_spinlock_t lock;
  43. };
  44. static const char * const pmif_clock_names[] = {
  45. "pmif_sys_ck", "pmif_tmr_ck", "spmimst_clk_mux",
  46. };
  47. enum pmif_regs {
  48. PMIF_INIT_DONE,
  49. PMIF_INF_EN,
  50. PMIF_ARB_EN,
  51. PMIF_CMDISSUE_EN,
  52. PMIF_TIMER_CTRL,
  53. PMIF_SPI_MODE_CTRL,
  54. PMIF_IRQ_EVENT_EN_0,
  55. PMIF_IRQ_FLAG_0,
  56. PMIF_IRQ_CLR_0,
  57. PMIF_IRQ_EVENT_EN_1,
  58. PMIF_IRQ_FLAG_1,
  59. PMIF_IRQ_CLR_1,
  60. PMIF_IRQ_EVENT_EN_2,
  61. PMIF_IRQ_FLAG_2,
  62. PMIF_IRQ_CLR_2,
  63. PMIF_IRQ_EVENT_EN_3,
  64. PMIF_IRQ_FLAG_3,
  65. PMIF_IRQ_CLR_3,
  66. PMIF_IRQ_EVENT_EN_4,
  67. PMIF_IRQ_FLAG_4,
  68. PMIF_IRQ_CLR_4,
  69. PMIF_WDT_EVENT_EN_0,
  70. PMIF_WDT_FLAG_0,
  71. PMIF_WDT_EVENT_EN_1,
  72. PMIF_WDT_FLAG_1,
  73. PMIF_SWINF_0_STA,
  74. PMIF_SWINF_0_WDATA_31_0,
  75. PMIF_SWINF_0_RDATA_31_0,
  76. PMIF_SWINF_0_ACC,
  77. PMIF_SWINF_0_VLD_CLR,
  78. PMIF_SWINF_1_STA,
  79. PMIF_SWINF_1_WDATA_31_0,
  80. PMIF_SWINF_1_RDATA_31_0,
  81. PMIF_SWINF_1_ACC,
  82. PMIF_SWINF_1_VLD_CLR,
  83. PMIF_SWINF_2_STA,
  84. PMIF_SWINF_2_WDATA_31_0,
  85. PMIF_SWINF_2_RDATA_31_0,
  86. PMIF_SWINF_2_ACC,
  87. PMIF_SWINF_2_VLD_CLR,
  88. PMIF_SWINF_3_STA,
  89. PMIF_SWINF_3_WDATA_31_0,
  90. PMIF_SWINF_3_RDATA_31_0,
  91. PMIF_SWINF_3_ACC,
  92. PMIF_SWINF_3_VLD_CLR,
  93. };
  94. static const u32 mt6873_regs[] = {
  95. [PMIF_INIT_DONE] = 0x0000,
  96. [PMIF_INF_EN] = 0x0024,
  97. [PMIF_ARB_EN] = 0x0150,
  98. [PMIF_CMDISSUE_EN] = 0x03B4,
  99. [PMIF_TIMER_CTRL] = 0x03E0,
  100. [PMIF_SPI_MODE_CTRL] = 0x0400,
  101. [PMIF_IRQ_EVENT_EN_0] = 0x0418,
  102. [PMIF_IRQ_FLAG_0] = 0x0420,
  103. [PMIF_IRQ_CLR_0] = 0x0424,
  104. [PMIF_IRQ_EVENT_EN_1] = 0x0428,
  105. [PMIF_IRQ_FLAG_1] = 0x0430,
  106. [PMIF_IRQ_CLR_1] = 0x0434,
  107. [PMIF_IRQ_EVENT_EN_2] = 0x0438,
  108. [PMIF_IRQ_FLAG_2] = 0x0440,
  109. [PMIF_IRQ_CLR_2] = 0x0444,
  110. [PMIF_IRQ_EVENT_EN_3] = 0x0448,
  111. [PMIF_IRQ_FLAG_3] = 0x0450,
  112. [PMIF_IRQ_CLR_3] = 0x0454,
  113. [PMIF_IRQ_EVENT_EN_4] = 0x0458,
  114. [PMIF_IRQ_FLAG_4] = 0x0460,
  115. [PMIF_IRQ_CLR_4] = 0x0464,
  116. [PMIF_WDT_EVENT_EN_0] = 0x046C,
  117. [PMIF_WDT_FLAG_0] = 0x0470,
  118. [PMIF_WDT_EVENT_EN_1] = 0x0474,
  119. [PMIF_WDT_FLAG_1] = 0x0478,
  120. [PMIF_SWINF_0_ACC] = 0x0C00,
  121. [PMIF_SWINF_0_WDATA_31_0] = 0x0C04,
  122. [PMIF_SWINF_0_RDATA_31_0] = 0x0C14,
  123. [PMIF_SWINF_0_VLD_CLR] = 0x0C24,
  124. [PMIF_SWINF_0_STA] = 0x0C28,
  125. [PMIF_SWINF_1_ACC] = 0x0C40,
  126. [PMIF_SWINF_1_WDATA_31_0] = 0x0C44,
  127. [PMIF_SWINF_1_RDATA_31_0] = 0x0C54,
  128. [PMIF_SWINF_1_VLD_CLR] = 0x0C64,
  129. [PMIF_SWINF_1_STA] = 0x0C68,
  130. [PMIF_SWINF_2_ACC] = 0x0C80,
  131. [PMIF_SWINF_2_WDATA_31_0] = 0x0C84,
  132. [PMIF_SWINF_2_RDATA_31_0] = 0x0C94,
  133. [PMIF_SWINF_2_VLD_CLR] = 0x0CA4,
  134. [PMIF_SWINF_2_STA] = 0x0CA8,
  135. [PMIF_SWINF_3_ACC] = 0x0CC0,
  136. [PMIF_SWINF_3_WDATA_31_0] = 0x0CC4,
  137. [PMIF_SWINF_3_RDATA_31_0] = 0x0CD4,
  138. [PMIF_SWINF_3_VLD_CLR] = 0x0CE4,
  139. [PMIF_SWINF_3_STA] = 0x0CE8,
  140. };
  141. static const u32 mt8195_regs[] = {
  142. [PMIF_INIT_DONE] = 0x0000,
  143. [PMIF_INF_EN] = 0x0024,
  144. [PMIF_ARB_EN] = 0x0150,
  145. [PMIF_CMDISSUE_EN] = 0x03B8,
  146. [PMIF_TIMER_CTRL] = 0x03E4,
  147. [PMIF_SPI_MODE_CTRL] = 0x0408,
  148. [PMIF_IRQ_EVENT_EN_0] = 0x0420,
  149. [PMIF_IRQ_FLAG_0] = 0x0428,
  150. [PMIF_IRQ_CLR_0] = 0x042C,
  151. [PMIF_IRQ_EVENT_EN_1] = 0x0430,
  152. [PMIF_IRQ_FLAG_1] = 0x0438,
  153. [PMIF_IRQ_CLR_1] = 0x043C,
  154. [PMIF_IRQ_EVENT_EN_2] = 0x0440,
  155. [PMIF_IRQ_FLAG_2] = 0x0448,
  156. [PMIF_IRQ_CLR_2] = 0x044C,
  157. [PMIF_IRQ_EVENT_EN_3] = 0x0450,
  158. [PMIF_IRQ_FLAG_3] = 0x0458,
  159. [PMIF_IRQ_CLR_3] = 0x045C,
  160. [PMIF_IRQ_EVENT_EN_4] = 0x0460,
  161. [PMIF_IRQ_FLAG_4] = 0x0468,
  162. [PMIF_IRQ_CLR_4] = 0x046C,
  163. [PMIF_WDT_EVENT_EN_0] = 0x0474,
  164. [PMIF_WDT_FLAG_0] = 0x0478,
  165. [PMIF_WDT_EVENT_EN_1] = 0x047C,
  166. [PMIF_WDT_FLAG_1] = 0x0480,
  167. [PMIF_SWINF_0_ACC] = 0x0800,
  168. [PMIF_SWINF_0_WDATA_31_0] = 0x0804,
  169. [PMIF_SWINF_0_RDATA_31_0] = 0x0814,
  170. [PMIF_SWINF_0_VLD_CLR] = 0x0824,
  171. [PMIF_SWINF_0_STA] = 0x0828,
  172. [PMIF_SWINF_1_ACC] = 0x0840,
  173. [PMIF_SWINF_1_WDATA_31_0] = 0x0844,
  174. [PMIF_SWINF_1_RDATA_31_0] = 0x0854,
  175. [PMIF_SWINF_1_VLD_CLR] = 0x0864,
  176. [PMIF_SWINF_1_STA] = 0x0868,
  177. [PMIF_SWINF_2_ACC] = 0x0880,
  178. [PMIF_SWINF_2_WDATA_31_0] = 0x0884,
  179. [PMIF_SWINF_2_RDATA_31_0] = 0x0894,
  180. [PMIF_SWINF_2_VLD_CLR] = 0x08A4,
  181. [PMIF_SWINF_2_STA] = 0x08A8,
  182. [PMIF_SWINF_3_ACC] = 0x08C0,
  183. [PMIF_SWINF_3_WDATA_31_0] = 0x08C4,
  184. [PMIF_SWINF_3_RDATA_31_0] = 0x08D4,
  185. [PMIF_SWINF_3_VLD_CLR] = 0x08E4,
  186. [PMIF_SWINF_3_STA] = 0x08E8,
  187. };
  188. enum spmi_regs {
  189. SPMI_OP_ST_CTRL,
  190. SPMI_GRP_ID_EN,
  191. SPMI_OP_ST_STA,
  192. SPMI_MST_SAMPL,
  193. SPMI_MST_REQ_EN,
  194. SPMI_REC_CTRL,
  195. SPMI_REC0,
  196. SPMI_REC1,
  197. SPMI_REC2,
  198. SPMI_REC3,
  199. SPMI_REC4,
  200. SPMI_MST_DBG,
  201. /* MT8195 spmi regs */
  202. SPMI_MST_RCS_CTRL,
  203. SPMI_SLV_3_0_EINT,
  204. SPMI_SLV_7_4_EINT,
  205. SPMI_SLV_B_8_EINT,
  206. SPMI_SLV_F_C_EINT,
  207. SPMI_REC_CMD_DEC,
  208. SPMI_DEC_DBG,
  209. };
  210. static const u32 mt6873_spmi_regs[] = {
  211. [SPMI_OP_ST_CTRL] = 0x0000,
  212. [SPMI_GRP_ID_EN] = 0x0004,
  213. [SPMI_OP_ST_STA] = 0x0008,
  214. [SPMI_MST_SAMPL] = 0x000c,
  215. [SPMI_MST_REQ_EN] = 0x0010,
  216. [SPMI_REC_CTRL] = 0x0040,
  217. [SPMI_REC0] = 0x0044,
  218. [SPMI_REC1] = 0x0048,
  219. [SPMI_REC2] = 0x004c,
  220. [SPMI_REC3] = 0x0050,
  221. [SPMI_REC4] = 0x0054,
  222. [SPMI_MST_DBG] = 0x00fc,
  223. };
  224. static const u32 mt8195_spmi_regs[] = {
  225. [SPMI_OP_ST_CTRL] = 0x0000,
  226. [SPMI_GRP_ID_EN] = 0x0004,
  227. [SPMI_OP_ST_STA] = 0x0008,
  228. [SPMI_MST_SAMPL] = 0x000C,
  229. [SPMI_MST_REQ_EN] = 0x0010,
  230. [SPMI_MST_RCS_CTRL] = 0x0014,
  231. [SPMI_SLV_3_0_EINT] = 0x0020,
  232. [SPMI_SLV_7_4_EINT] = 0x0024,
  233. [SPMI_SLV_B_8_EINT] = 0x0028,
  234. [SPMI_SLV_F_C_EINT] = 0x002C,
  235. [SPMI_REC_CTRL] = 0x0040,
  236. [SPMI_REC0] = 0x0044,
  237. [SPMI_REC1] = 0x0048,
  238. [SPMI_REC2] = 0x004C,
  239. [SPMI_REC3] = 0x0050,
  240. [SPMI_REC4] = 0x0054,
  241. [SPMI_REC_CMD_DEC] = 0x005C,
  242. [SPMI_DEC_DBG] = 0x00F8,
  243. [SPMI_MST_DBG] = 0x00FC,
  244. };
  245. static u32 pmif_readl(struct pmif *arb, enum pmif_regs reg)
  246. {
  247. return readl(arb->base + arb->data->regs[reg]);
  248. }
  249. static void pmif_writel(struct pmif *arb, u32 val, enum pmif_regs reg)
  250. {
  251. writel(val, arb->base + arb->data->regs[reg]);
  252. }
  253. static void mtk_spmi_writel(struct pmif *arb, u32 val, enum spmi_regs reg)
  254. {
  255. writel(val, arb->spmimst_base + arb->data->spmimst_regs[reg]);
  256. }
  257. static bool pmif_is_fsm_vldclr(struct pmif *arb)
  258. {
  259. u32 reg_rdata;
  260. reg_rdata = pmif_readl(arb, arb->chan.ch_sta);
  261. return GET_SWINF(reg_rdata) == SWINF_WFVLDCLR;
  262. }
  263. static int pmif_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid)
  264. {
  265. struct pmif *arb = spmi_controller_get_drvdata(ctrl);
  266. u32 rdata, cmd;
  267. int ret;
  268. /* Check the opcode */
  269. if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP)
  270. return -EINVAL;
  271. cmd = opc - SPMI_CMD_RESET;
  272. mtk_spmi_writel(arb, (cmd << 0x4) | sid, SPMI_OP_ST_CTRL);
  273. ret = readl_poll_timeout_atomic(arb->spmimst_base + arb->data->spmimst_regs[SPMI_OP_ST_STA],
  274. rdata, (rdata & SPMI_OP_ST_BUSY) == SPMI_OP_ST_BUSY,
  275. PMIF_DELAY_US, PMIF_TIMEOUT_US);
  276. if (ret < 0)
  277. dev_err(&ctrl->dev, "timeout, err = %d\n", ret);
  278. return ret;
  279. }
  280. static int pmif_spmi_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
  281. u16 addr, u8 *buf, size_t len)
  282. {
  283. struct pmif *arb = spmi_controller_get_drvdata(ctrl);
  284. struct ch_reg *inf_reg;
  285. int ret;
  286. u32 data, cmd;
  287. unsigned long flags;
  288. /* Check for argument validation. */
  289. if (sid & ~0xf) {
  290. dev_err(&ctrl->dev, "exceed the max slv id\n");
  291. return -EINVAL;
  292. }
  293. if (len > 4) {
  294. dev_err(&ctrl->dev, "pmif supports 1..4 bytes per trans, but:%zu requested", len);
  295. return -EINVAL;
  296. }
  297. if (opc >= 0x60 && opc <= 0x7f)
  298. opc = PMIF_CMD_REG;
  299. else if ((opc >= 0x20 && opc <= 0x2f) || (opc >= 0x38 && opc <= 0x3f))
  300. opc = PMIF_CMD_EXT_REG_LONG;
  301. else
  302. return -EINVAL;
  303. raw_spin_lock_irqsave(&arb->lock, flags);
  304. /* Wait for Software Interface FSM state to be IDLE. */
  305. inf_reg = &arb->chan;
  306. ret = readl_poll_timeout_atomic(arb->base + arb->data->regs[inf_reg->ch_sta],
  307. data, GET_SWINF(data) == SWINF_IDLE,
  308. PMIF_DELAY_US, PMIF_TIMEOUT_US);
  309. if (ret < 0) {
  310. /* set channel ready if the data has transferred */
  311. if (pmif_is_fsm_vldclr(arb))
  312. pmif_writel(arb, 1, inf_reg->ch_rdy);
  313. raw_spin_unlock_irqrestore(&arb->lock, flags);
  314. dev_err(&ctrl->dev, "failed to wait for SWINF_IDLE\n");
  315. return ret;
  316. }
  317. /* Send the command. */
  318. cmd = (opc << 30) | (sid << 24) | ((len - 1) << 16) | addr;
  319. pmif_writel(arb, cmd, inf_reg->ch_send);
  320. raw_spin_unlock_irqrestore(&arb->lock, flags);
  321. /*
  322. * Wait for Software Interface FSM state to be WFVLDCLR,
  323. * read the data and clear the valid flag.
  324. */
  325. ret = readl_poll_timeout_atomic(arb->base + arb->data->regs[inf_reg->ch_sta],
  326. data, GET_SWINF(data) == SWINF_WFVLDCLR,
  327. PMIF_DELAY_US, PMIF_TIMEOUT_US);
  328. if (ret < 0) {
  329. dev_err(&ctrl->dev, "failed to wait for SWINF_WFVLDCLR\n");
  330. return ret;
  331. }
  332. data = pmif_readl(arb, inf_reg->rdata);
  333. memcpy(buf, &data, len);
  334. pmif_writel(arb, 1, inf_reg->ch_rdy);
  335. return 0;
  336. }
  337. static int pmif_spmi_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
  338. u16 addr, const u8 *buf, size_t len)
  339. {
  340. struct pmif *arb = spmi_controller_get_drvdata(ctrl);
  341. struct ch_reg *inf_reg;
  342. int ret;
  343. u32 data, wdata, cmd;
  344. unsigned long flags;
  345. /* Check for argument validation. */
  346. if (unlikely(sid & ~0xf)) {
  347. dev_err(&ctrl->dev, "exceed the max slv id\n");
  348. return -EINVAL;
  349. }
  350. if (len > 4) {
  351. dev_err(&ctrl->dev, "pmif supports 1..4 bytes per trans, but:%zu requested", len);
  352. return -EINVAL;
  353. }
  354. /* Check the opcode */
  355. if (opc >= 0x40 && opc <= 0x5F)
  356. opc = PMIF_CMD_REG;
  357. else if ((opc <= 0xF) || (opc >= 0x30 && opc <= 0x37))
  358. opc = PMIF_CMD_EXT_REG_LONG;
  359. else if (opc >= 0x80)
  360. opc = PMIF_CMD_REG_0;
  361. else
  362. return -EINVAL;
  363. /* Set the write data. */
  364. memcpy(&wdata, buf, len);
  365. raw_spin_lock_irqsave(&arb->lock, flags);
  366. /* Wait for Software Interface FSM state to be IDLE. */
  367. inf_reg = &arb->chan;
  368. ret = readl_poll_timeout_atomic(arb->base + arb->data->regs[inf_reg->ch_sta],
  369. data, GET_SWINF(data) == SWINF_IDLE,
  370. PMIF_DELAY_US, PMIF_TIMEOUT_US);
  371. if (ret < 0) {
  372. /* set channel ready if the data has transferred */
  373. if (pmif_is_fsm_vldclr(arb))
  374. pmif_writel(arb, 1, inf_reg->ch_rdy);
  375. raw_spin_unlock_irqrestore(&arb->lock, flags);
  376. dev_err(&ctrl->dev, "failed to wait for SWINF_IDLE\n");
  377. return ret;
  378. }
  379. pmif_writel(arb, wdata, inf_reg->wdata);
  380. /* Send the command. */
  381. cmd = (opc << 30) | BIT(29) | (sid << 24) | ((len - 1) << 16) | addr;
  382. pmif_writel(arb, cmd, inf_reg->ch_send);
  383. raw_spin_unlock_irqrestore(&arb->lock, flags);
  384. return 0;
  385. }
  386. static const struct pmif_data mt6873_pmif_arb = {
  387. .regs = mt6873_regs,
  388. .spmimst_regs = mt6873_spmi_regs,
  389. .soc_chan = 2,
  390. };
  391. static const struct pmif_data mt8195_pmif_arb = {
  392. .regs = mt8195_regs,
  393. .spmimst_regs = mt8195_spmi_regs,
  394. .soc_chan = 2,
  395. };
  396. static int mtk_spmi_probe(struct platform_device *pdev)
  397. {
  398. struct pmif *arb;
  399. struct spmi_controller *ctrl;
  400. int err, i;
  401. u32 chan_offset;
  402. ctrl = devm_spmi_controller_alloc(&pdev->dev, sizeof(*arb));
  403. if (IS_ERR(ctrl))
  404. return PTR_ERR(ctrl);
  405. arb = spmi_controller_get_drvdata(ctrl);
  406. arb->data = device_get_match_data(&pdev->dev);
  407. if (!arb->data) {
  408. dev_err(&pdev->dev, "Cannot get drv_data\n");
  409. return -EINVAL;
  410. }
  411. arb->base = devm_platform_ioremap_resource_byname(pdev, "pmif");
  412. if (IS_ERR(arb->base))
  413. return PTR_ERR(arb->base);
  414. arb->spmimst_base = devm_platform_ioremap_resource_byname(pdev, "spmimst");
  415. if (IS_ERR(arb->spmimst_base))
  416. return PTR_ERR(arb->spmimst_base);
  417. arb->nclks = ARRAY_SIZE(pmif_clock_names);
  418. for (i = 0; i < arb->nclks; i++)
  419. arb->clks[i].id = pmif_clock_names[i];
  420. err = clk_bulk_get(&pdev->dev, arb->nclks, arb->clks);
  421. if (err) {
  422. dev_err(&pdev->dev, "Failed to get clocks: %d\n", err);
  423. return err;
  424. }
  425. err = clk_bulk_prepare_enable(arb->nclks, arb->clks);
  426. if (err) {
  427. dev_err(&pdev->dev, "Failed to enable clocks: %d\n", err);
  428. goto err_put_clks;
  429. }
  430. ctrl->cmd = pmif_arb_cmd;
  431. ctrl->read_cmd = pmif_spmi_read_cmd;
  432. ctrl->write_cmd = pmif_spmi_write_cmd;
  433. chan_offset = PMIF_CHAN_OFFSET * arb->data->soc_chan;
  434. arb->chan.ch_sta = PMIF_SWINF_0_STA + chan_offset;
  435. arb->chan.wdata = PMIF_SWINF_0_WDATA_31_0 + chan_offset;
  436. arb->chan.rdata = PMIF_SWINF_0_RDATA_31_0 + chan_offset;
  437. arb->chan.ch_send = PMIF_SWINF_0_ACC + chan_offset;
  438. arb->chan.ch_rdy = PMIF_SWINF_0_VLD_CLR + chan_offset;
  439. raw_spin_lock_init(&arb->lock);
  440. platform_set_drvdata(pdev, ctrl);
  441. err = spmi_controller_add(ctrl);
  442. if (err)
  443. goto err_domain_remove;
  444. return 0;
  445. err_domain_remove:
  446. clk_bulk_disable_unprepare(arb->nclks, arb->clks);
  447. err_put_clks:
  448. clk_bulk_put(arb->nclks, arb->clks);
  449. return err;
  450. }
  451. static void mtk_spmi_remove(struct platform_device *pdev)
  452. {
  453. struct spmi_controller *ctrl = platform_get_drvdata(pdev);
  454. struct pmif *arb = spmi_controller_get_drvdata(ctrl);
  455. spmi_controller_remove(ctrl);
  456. clk_bulk_disable_unprepare(arb->nclks, arb->clks);
  457. clk_bulk_put(arb->nclks, arb->clks);
  458. }
  459. static const struct of_device_id mtk_spmi_match_table[] = {
  460. {
  461. .compatible = "mediatek,mt6873-spmi",
  462. .data = &mt6873_pmif_arb,
  463. }, {
  464. .compatible = "mediatek,mt8195-spmi",
  465. .data = &mt8195_pmif_arb,
  466. }, {
  467. /* sentinel */
  468. },
  469. };
  470. MODULE_DEVICE_TABLE(of, mtk_spmi_match_table);
  471. static struct platform_driver mtk_spmi_driver = {
  472. .driver = {
  473. .name = "spmi-mtk",
  474. .of_match_table = mtk_spmi_match_table,
  475. },
  476. .probe = mtk_spmi_probe,
  477. .remove_new = mtk_spmi_remove,
  478. };
  479. module_platform_driver(mtk_spmi_driver);
  480. MODULE_AUTHOR("Hsin-Hsiung Wang <hsin-hsiung.wang@mediatek.com>");
  481. MODULE_DESCRIPTION("MediaTek SPMI Driver");
  482. MODULE_LICENSE("GPL");