pvcalls-back.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * (c) 2017 Stefano Stabellini <stefano@aporeto.com>
  4. */
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/list.h>
  8. #include <linux/radix-tree.h>
  9. #include <linux/module.h>
  10. #include <linux/semaphore.h>
  11. #include <linux/wait.h>
  12. #include <net/sock.h>
  13. #include <net/inet_common.h>
  14. #include <net/inet_connection_sock.h>
  15. #include <net/request_sock.h>
  16. #include <trace/events/sock.h>
  17. #include <xen/events.h>
  18. #include <xen/grant_table.h>
  19. #include <xen/xen.h>
  20. #include <xen/xenbus.h>
  21. #include <xen/interface/io/pvcalls.h>
  22. #define PVCALLS_VERSIONS "1"
  23. #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
  24. static struct pvcalls_back_global {
  25. struct list_head frontends;
  26. struct semaphore frontends_lock;
  27. } pvcalls_back_global;
  28. /*
  29. * Per-frontend data structure. It contains pointers to the command
  30. * ring, its event channel, a list of active sockets and a tree of
  31. * passive sockets.
  32. */
  33. struct pvcalls_fedata {
  34. struct list_head list;
  35. struct xenbus_device *dev;
  36. struct xen_pvcalls_sring *sring;
  37. struct xen_pvcalls_back_ring ring;
  38. int irq;
  39. struct list_head socket_mappings;
  40. struct radix_tree_root socketpass_mappings;
  41. struct semaphore socket_lock;
  42. };
  43. struct pvcalls_ioworker {
  44. struct work_struct register_work;
  45. struct workqueue_struct *wq;
  46. };
  47. struct sock_mapping {
  48. struct list_head list;
  49. struct pvcalls_fedata *fedata;
  50. struct sockpass_mapping *sockpass;
  51. struct socket *sock;
  52. uint64_t id;
  53. grant_ref_t ref;
  54. struct pvcalls_data_intf *ring;
  55. void *bytes;
  56. struct pvcalls_data data;
  57. uint32_t ring_order;
  58. int irq;
  59. atomic_t read;
  60. atomic_t write;
  61. atomic_t io;
  62. atomic_t release;
  63. atomic_t eoi;
  64. void (*saved_data_ready)(struct sock *sk);
  65. struct pvcalls_ioworker ioworker;
  66. };
  67. struct sockpass_mapping {
  68. struct list_head list;
  69. struct pvcalls_fedata *fedata;
  70. struct socket *sock;
  71. uint64_t id;
  72. struct xen_pvcalls_request reqcopy;
  73. spinlock_t copy_lock;
  74. struct workqueue_struct *wq;
  75. struct work_struct register_work;
  76. void (*saved_data_ready)(struct sock *sk);
  77. };
  78. static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
  79. static int pvcalls_back_release_active(struct xenbus_device *dev,
  80. struct pvcalls_fedata *fedata,
  81. struct sock_mapping *map);
  82. static bool pvcalls_conn_back_read(void *opaque)
  83. {
  84. struct sock_mapping *map = (struct sock_mapping *)opaque;
  85. struct msghdr msg;
  86. struct kvec vec[2];
  87. RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
  88. int32_t error;
  89. struct pvcalls_data_intf *intf = map->ring;
  90. struct pvcalls_data *data = &map->data;
  91. unsigned long flags;
  92. int ret;
  93. array_size = XEN_FLEX_RING_SIZE(map->ring_order);
  94. cons = intf->in_cons;
  95. prod = intf->in_prod;
  96. error = intf->in_error;
  97. /* read the indexes first, then deal with the data */
  98. virt_mb();
  99. if (error)
  100. return false;
  101. size = pvcalls_queued(prod, cons, array_size);
  102. if (size >= array_size)
  103. return false;
  104. spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
  105. if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
  106. atomic_set(&map->read, 0);
  107. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
  108. flags);
  109. return true;
  110. }
  111. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
  112. wanted = array_size - size;
  113. masked_prod = pvcalls_mask(prod, array_size);
  114. masked_cons = pvcalls_mask(cons, array_size);
  115. memset(&msg, 0, sizeof(msg));
  116. if (masked_prod < masked_cons) {
  117. vec[0].iov_base = data->in + masked_prod;
  118. vec[0].iov_len = wanted;
  119. iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 1, wanted);
  120. } else {
  121. vec[0].iov_base = data->in + masked_prod;
  122. vec[0].iov_len = array_size - masked_prod;
  123. vec[1].iov_base = data->in;
  124. vec[1].iov_len = wanted - vec[0].iov_len;
  125. iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 2, wanted);
  126. }
  127. atomic_set(&map->read, 0);
  128. ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
  129. WARN_ON(ret > wanted);
  130. if (ret == -EAGAIN) /* shouldn't happen */
  131. return true;
  132. if (!ret)
  133. ret = -ENOTCONN;
  134. spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
  135. if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
  136. atomic_inc(&map->read);
  137. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
  138. /* write the data, then modify the indexes */
  139. virt_wmb();
  140. if (ret < 0) {
  141. atomic_set(&map->read, 0);
  142. intf->in_error = ret;
  143. } else
  144. intf->in_prod = prod + ret;
  145. /* update the indexes, then notify the other end */
  146. virt_wmb();
  147. notify_remote_via_irq(map->irq);
  148. return true;
  149. }
  150. static bool pvcalls_conn_back_write(struct sock_mapping *map)
  151. {
  152. struct pvcalls_data_intf *intf = map->ring;
  153. struct pvcalls_data *data = &map->data;
  154. struct msghdr msg;
  155. struct kvec vec[2];
  156. RING_IDX cons, prod, size, array_size;
  157. int ret;
  158. atomic_set(&map->write, 0);
  159. cons = intf->out_cons;
  160. prod = intf->out_prod;
  161. /* read the indexes before dealing with the data */
  162. virt_mb();
  163. array_size = XEN_FLEX_RING_SIZE(map->ring_order);
  164. size = pvcalls_queued(prod, cons, array_size);
  165. if (size == 0)
  166. return false;
  167. memset(&msg, 0, sizeof(msg));
  168. msg.msg_flags |= MSG_DONTWAIT;
  169. if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
  170. vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
  171. vec[0].iov_len = size;
  172. iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 1, size);
  173. } else {
  174. vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
  175. vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
  176. vec[1].iov_base = data->out;
  177. vec[1].iov_len = size - vec[0].iov_len;
  178. iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 2, size);
  179. }
  180. ret = inet_sendmsg(map->sock, &msg, size);
  181. if (ret == -EAGAIN) {
  182. atomic_inc(&map->write);
  183. atomic_inc(&map->io);
  184. return true;
  185. }
  186. /* write the data, then update the indexes */
  187. virt_wmb();
  188. if (ret < 0) {
  189. intf->out_error = ret;
  190. } else {
  191. intf->out_error = 0;
  192. intf->out_cons = cons + ret;
  193. prod = intf->out_prod;
  194. }
  195. /* update the indexes, then notify the other end */
  196. virt_wmb();
  197. if (prod != cons + ret) {
  198. atomic_inc(&map->write);
  199. atomic_inc(&map->io);
  200. }
  201. notify_remote_via_irq(map->irq);
  202. return true;
  203. }
  204. static void pvcalls_back_ioworker(struct work_struct *work)
  205. {
  206. struct pvcalls_ioworker *ioworker = container_of(work,
  207. struct pvcalls_ioworker, register_work);
  208. struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
  209. ioworker);
  210. unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
  211. while (atomic_read(&map->io) > 0) {
  212. if (atomic_read(&map->release) > 0) {
  213. atomic_set(&map->release, 0);
  214. return;
  215. }
  216. if (atomic_read(&map->read) > 0 &&
  217. pvcalls_conn_back_read(map))
  218. eoi_flags = 0;
  219. if (atomic_read(&map->write) > 0 &&
  220. pvcalls_conn_back_write(map))
  221. eoi_flags = 0;
  222. if (atomic_read(&map->eoi) > 0 && !atomic_read(&map->write)) {
  223. atomic_set(&map->eoi, 0);
  224. xen_irq_lateeoi(map->irq, eoi_flags);
  225. eoi_flags = XEN_EOI_FLAG_SPURIOUS;
  226. }
  227. atomic_dec(&map->io);
  228. }
  229. }
  230. static int pvcalls_back_socket(struct xenbus_device *dev,
  231. struct xen_pvcalls_request *req)
  232. {
  233. struct pvcalls_fedata *fedata;
  234. int ret;
  235. struct xen_pvcalls_response *rsp;
  236. fedata = dev_get_drvdata(&dev->dev);
  237. if (req->u.socket.domain != AF_INET ||
  238. req->u.socket.type != SOCK_STREAM ||
  239. (req->u.socket.protocol != IPPROTO_IP &&
  240. req->u.socket.protocol != AF_INET))
  241. ret = -EAFNOSUPPORT;
  242. else
  243. ret = 0;
  244. /* leave the actual socket allocation for later */
  245. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  246. rsp->req_id = req->req_id;
  247. rsp->cmd = req->cmd;
  248. rsp->u.socket.id = req->u.socket.id;
  249. rsp->ret = ret;
  250. return 0;
  251. }
  252. static void pvcalls_sk_state_change(struct sock *sock)
  253. {
  254. struct sock_mapping *map = sock->sk_user_data;
  255. if (map == NULL)
  256. return;
  257. atomic_inc(&map->read);
  258. notify_remote_via_irq(map->irq);
  259. }
  260. static void pvcalls_sk_data_ready(struct sock *sock)
  261. {
  262. struct sock_mapping *map = sock->sk_user_data;
  263. struct pvcalls_ioworker *iow;
  264. trace_sk_data_ready(sock);
  265. if (map == NULL)
  266. return;
  267. iow = &map->ioworker;
  268. atomic_inc(&map->read);
  269. atomic_inc(&map->io);
  270. queue_work(iow->wq, &iow->register_work);
  271. }
  272. static struct sock_mapping *pvcalls_new_active_socket(
  273. struct pvcalls_fedata *fedata,
  274. uint64_t id,
  275. grant_ref_t ref,
  276. evtchn_port_t evtchn,
  277. struct socket *sock)
  278. {
  279. int ret;
  280. struct sock_mapping *map;
  281. void *page;
  282. map = kzalloc(sizeof(*map), GFP_KERNEL);
  283. if (map == NULL) {
  284. sock_release(sock);
  285. return NULL;
  286. }
  287. map->fedata = fedata;
  288. map->sock = sock;
  289. map->id = id;
  290. map->ref = ref;
  291. ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
  292. if (ret < 0)
  293. goto out;
  294. map->ring = page;
  295. map->ring_order = map->ring->ring_order;
  296. /* first read the order, then map the data ring */
  297. virt_rmb();
  298. if (map->ring_order > MAX_RING_ORDER) {
  299. pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
  300. __func__, map->ring_order, MAX_RING_ORDER);
  301. goto out;
  302. }
  303. ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
  304. (1 << map->ring_order), &page);
  305. if (ret < 0)
  306. goto out;
  307. map->bytes = page;
  308. ret = bind_interdomain_evtchn_to_irqhandler_lateeoi(
  309. fedata->dev, evtchn,
  310. pvcalls_back_conn_event, 0, "pvcalls-backend", map);
  311. if (ret < 0)
  312. goto out;
  313. map->irq = ret;
  314. map->data.in = map->bytes;
  315. map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
  316. map->ioworker.wq = alloc_ordered_workqueue("pvcalls_io", 0);
  317. if (!map->ioworker.wq)
  318. goto out;
  319. atomic_set(&map->io, 1);
  320. INIT_WORK(&map->ioworker.register_work, pvcalls_back_ioworker);
  321. down(&fedata->socket_lock);
  322. list_add_tail(&map->list, &fedata->socket_mappings);
  323. up(&fedata->socket_lock);
  324. write_lock_bh(&map->sock->sk->sk_callback_lock);
  325. map->saved_data_ready = map->sock->sk->sk_data_ready;
  326. map->sock->sk->sk_user_data = map;
  327. map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
  328. map->sock->sk->sk_state_change = pvcalls_sk_state_change;
  329. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  330. return map;
  331. out:
  332. down(&fedata->socket_lock);
  333. list_del(&map->list);
  334. pvcalls_back_release_active(fedata->dev, fedata, map);
  335. up(&fedata->socket_lock);
  336. return NULL;
  337. }
  338. static int pvcalls_back_connect(struct xenbus_device *dev,
  339. struct xen_pvcalls_request *req)
  340. {
  341. struct pvcalls_fedata *fedata;
  342. int ret = -EINVAL;
  343. struct socket *sock;
  344. struct sock_mapping *map;
  345. struct xen_pvcalls_response *rsp;
  346. struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
  347. fedata = dev_get_drvdata(&dev->dev);
  348. if (req->u.connect.len < sizeof(sa->sa_family) ||
  349. req->u.connect.len > sizeof(req->u.connect.addr) ||
  350. sa->sa_family != AF_INET)
  351. goto out;
  352. ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
  353. if (ret < 0)
  354. goto out;
  355. ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
  356. if (ret < 0) {
  357. sock_release(sock);
  358. goto out;
  359. }
  360. map = pvcalls_new_active_socket(fedata,
  361. req->u.connect.id,
  362. req->u.connect.ref,
  363. req->u.connect.evtchn,
  364. sock);
  365. if (!map)
  366. ret = -EFAULT;
  367. out:
  368. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  369. rsp->req_id = req->req_id;
  370. rsp->cmd = req->cmd;
  371. rsp->u.connect.id = req->u.connect.id;
  372. rsp->ret = ret;
  373. return 0;
  374. }
  375. static int pvcalls_back_release_active(struct xenbus_device *dev,
  376. struct pvcalls_fedata *fedata,
  377. struct sock_mapping *map)
  378. {
  379. disable_irq(map->irq);
  380. if (map->sock->sk != NULL) {
  381. write_lock_bh(&map->sock->sk->sk_callback_lock);
  382. map->sock->sk->sk_user_data = NULL;
  383. map->sock->sk->sk_data_ready = map->saved_data_ready;
  384. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  385. }
  386. atomic_set(&map->release, 1);
  387. flush_work(&map->ioworker.register_work);
  388. xenbus_unmap_ring_vfree(dev, map->bytes);
  389. xenbus_unmap_ring_vfree(dev, (void *)map->ring);
  390. unbind_from_irqhandler(map->irq, map);
  391. sock_release(map->sock);
  392. kfree(map);
  393. return 0;
  394. }
  395. static int pvcalls_back_release_passive(struct xenbus_device *dev,
  396. struct pvcalls_fedata *fedata,
  397. struct sockpass_mapping *mappass)
  398. {
  399. if (mappass->sock->sk != NULL) {
  400. write_lock_bh(&mappass->sock->sk->sk_callback_lock);
  401. mappass->sock->sk->sk_user_data = NULL;
  402. mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
  403. write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
  404. }
  405. sock_release(mappass->sock);
  406. destroy_workqueue(mappass->wq);
  407. kfree(mappass);
  408. return 0;
  409. }
  410. static int pvcalls_back_release(struct xenbus_device *dev,
  411. struct xen_pvcalls_request *req)
  412. {
  413. struct pvcalls_fedata *fedata;
  414. struct sock_mapping *map, *n;
  415. struct sockpass_mapping *mappass;
  416. int ret = 0;
  417. struct xen_pvcalls_response *rsp;
  418. fedata = dev_get_drvdata(&dev->dev);
  419. down(&fedata->socket_lock);
  420. list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
  421. if (map->id == req->u.release.id) {
  422. list_del(&map->list);
  423. up(&fedata->socket_lock);
  424. ret = pvcalls_back_release_active(dev, fedata, map);
  425. goto out;
  426. }
  427. }
  428. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  429. req->u.release.id);
  430. if (mappass != NULL) {
  431. radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
  432. up(&fedata->socket_lock);
  433. ret = pvcalls_back_release_passive(dev, fedata, mappass);
  434. } else
  435. up(&fedata->socket_lock);
  436. out:
  437. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  438. rsp->req_id = req->req_id;
  439. rsp->u.release.id = req->u.release.id;
  440. rsp->cmd = req->cmd;
  441. rsp->ret = ret;
  442. return 0;
  443. }
  444. static void __pvcalls_back_accept(struct work_struct *work)
  445. {
  446. struct sockpass_mapping *mappass = container_of(
  447. work, struct sockpass_mapping, register_work);
  448. struct proto_accept_arg arg = {
  449. .flags = O_NONBLOCK,
  450. .kern = true,
  451. };
  452. struct sock_mapping *map;
  453. struct pvcalls_ioworker *iow;
  454. struct pvcalls_fedata *fedata;
  455. struct socket *sock;
  456. struct xen_pvcalls_response *rsp;
  457. struct xen_pvcalls_request *req;
  458. int notify;
  459. int ret = -EINVAL;
  460. unsigned long flags;
  461. fedata = mappass->fedata;
  462. /*
  463. * __pvcalls_back_accept can race against pvcalls_back_accept.
  464. * We only need to check the value of "cmd" on read. It could be
  465. * done atomically, but to simplify the code on the write side, we
  466. * use a spinlock.
  467. */
  468. spin_lock_irqsave(&mappass->copy_lock, flags);
  469. req = &mappass->reqcopy;
  470. if (req->cmd != PVCALLS_ACCEPT) {
  471. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  472. return;
  473. }
  474. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  475. sock = sock_alloc();
  476. if (sock == NULL)
  477. goto out_error;
  478. sock->type = mappass->sock->type;
  479. sock->ops = mappass->sock->ops;
  480. ret = inet_accept(mappass->sock, sock, &arg);
  481. if (ret == -EAGAIN) {
  482. sock_release(sock);
  483. return;
  484. }
  485. map = pvcalls_new_active_socket(fedata,
  486. req->u.accept.id_new,
  487. req->u.accept.ref,
  488. req->u.accept.evtchn,
  489. sock);
  490. if (!map) {
  491. ret = -EFAULT;
  492. goto out_error;
  493. }
  494. map->sockpass = mappass;
  495. iow = &map->ioworker;
  496. atomic_inc(&map->read);
  497. atomic_inc(&map->io);
  498. queue_work(iow->wq, &iow->register_work);
  499. out_error:
  500. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  501. rsp->req_id = req->req_id;
  502. rsp->cmd = req->cmd;
  503. rsp->u.accept.id = req->u.accept.id;
  504. rsp->ret = ret;
  505. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
  506. if (notify)
  507. notify_remote_via_irq(fedata->irq);
  508. mappass->reqcopy.cmd = 0;
  509. }
  510. static void pvcalls_pass_sk_data_ready(struct sock *sock)
  511. {
  512. struct sockpass_mapping *mappass = sock->sk_user_data;
  513. struct pvcalls_fedata *fedata;
  514. struct xen_pvcalls_response *rsp;
  515. unsigned long flags;
  516. int notify;
  517. trace_sk_data_ready(sock);
  518. if (mappass == NULL)
  519. return;
  520. fedata = mappass->fedata;
  521. spin_lock_irqsave(&mappass->copy_lock, flags);
  522. if (mappass->reqcopy.cmd == PVCALLS_POLL) {
  523. rsp = RING_GET_RESPONSE(&fedata->ring,
  524. fedata->ring.rsp_prod_pvt++);
  525. rsp->req_id = mappass->reqcopy.req_id;
  526. rsp->u.poll.id = mappass->reqcopy.u.poll.id;
  527. rsp->cmd = mappass->reqcopy.cmd;
  528. rsp->ret = 0;
  529. mappass->reqcopy.cmd = 0;
  530. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  531. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
  532. if (notify)
  533. notify_remote_via_irq(mappass->fedata->irq);
  534. } else {
  535. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  536. queue_work(mappass->wq, &mappass->register_work);
  537. }
  538. }
  539. static int pvcalls_back_bind(struct xenbus_device *dev,
  540. struct xen_pvcalls_request *req)
  541. {
  542. struct pvcalls_fedata *fedata;
  543. int ret;
  544. struct sockpass_mapping *map;
  545. struct xen_pvcalls_response *rsp;
  546. fedata = dev_get_drvdata(&dev->dev);
  547. map = kzalloc(sizeof(*map), GFP_KERNEL);
  548. if (map == NULL) {
  549. ret = -ENOMEM;
  550. goto out;
  551. }
  552. INIT_WORK(&map->register_work, __pvcalls_back_accept);
  553. spin_lock_init(&map->copy_lock);
  554. map->wq = alloc_ordered_workqueue("pvcalls_wq", 0);
  555. if (!map->wq) {
  556. ret = -ENOMEM;
  557. goto out;
  558. }
  559. ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
  560. if (ret < 0)
  561. goto out;
  562. ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
  563. req->u.bind.len);
  564. if (ret < 0)
  565. goto out;
  566. map->fedata = fedata;
  567. map->id = req->u.bind.id;
  568. down(&fedata->socket_lock);
  569. ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
  570. map);
  571. up(&fedata->socket_lock);
  572. if (ret)
  573. goto out;
  574. write_lock_bh(&map->sock->sk->sk_callback_lock);
  575. map->saved_data_ready = map->sock->sk->sk_data_ready;
  576. map->sock->sk->sk_user_data = map;
  577. map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
  578. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  579. out:
  580. if (ret) {
  581. if (map && map->sock)
  582. sock_release(map->sock);
  583. if (map && map->wq)
  584. destroy_workqueue(map->wq);
  585. kfree(map);
  586. }
  587. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  588. rsp->req_id = req->req_id;
  589. rsp->cmd = req->cmd;
  590. rsp->u.bind.id = req->u.bind.id;
  591. rsp->ret = ret;
  592. return 0;
  593. }
  594. static int pvcalls_back_listen(struct xenbus_device *dev,
  595. struct xen_pvcalls_request *req)
  596. {
  597. struct pvcalls_fedata *fedata;
  598. int ret = -EINVAL;
  599. struct sockpass_mapping *map;
  600. struct xen_pvcalls_response *rsp;
  601. fedata = dev_get_drvdata(&dev->dev);
  602. down(&fedata->socket_lock);
  603. map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
  604. up(&fedata->socket_lock);
  605. if (map == NULL)
  606. goto out;
  607. ret = inet_listen(map->sock, req->u.listen.backlog);
  608. out:
  609. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  610. rsp->req_id = req->req_id;
  611. rsp->cmd = req->cmd;
  612. rsp->u.listen.id = req->u.listen.id;
  613. rsp->ret = ret;
  614. return 0;
  615. }
  616. static int pvcalls_back_accept(struct xenbus_device *dev,
  617. struct xen_pvcalls_request *req)
  618. {
  619. struct pvcalls_fedata *fedata;
  620. struct sockpass_mapping *mappass;
  621. int ret = -EINVAL;
  622. struct xen_pvcalls_response *rsp;
  623. unsigned long flags;
  624. fedata = dev_get_drvdata(&dev->dev);
  625. down(&fedata->socket_lock);
  626. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  627. req->u.accept.id);
  628. up(&fedata->socket_lock);
  629. if (mappass == NULL)
  630. goto out_error;
  631. /*
  632. * Limitation of the current implementation: only support one
  633. * concurrent accept or poll call on one socket.
  634. */
  635. spin_lock_irqsave(&mappass->copy_lock, flags);
  636. if (mappass->reqcopy.cmd != 0) {
  637. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  638. ret = -EINTR;
  639. goto out_error;
  640. }
  641. mappass->reqcopy = *req;
  642. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  643. queue_work(mappass->wq, &mappass->register_work);
  644. /* Tell the caller we don't need to send back a notification yet */
  645. return -1;
  646. out_error:
  647. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  648. rsp->req_id = req->req_id;
  649. rsp->cmd = req->cmd;
  650. rsp->u.accept.id = req->u.accept.id;
  651. rsp->ret = ret;
  652. return 0;
  653. }
  654. static int pvcalls_back_poll(struct xenbus_device *dev,
  655. struct xen_pvcalls_request *req)
  656. {
  657. struct pvcalls_fedata *fedata;
  658. struct sockpass_mapping *mappass;
  659. struct xen_pvcalls_response *rsp;
  660. struct inet_connection_sock *icsk;
  661. struct request_sock_queue *queue;
  662. unsigned long flags;
  663. int ret;
  664. bool data;
  665. fedata = dev_get_drvdata(&dev->dev);
  666. down(&fedata->socket_lock);
  667. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  668. req->u.poll.id);
  669. up(&fedata->socket_lock);
  670. if (mappass == NULL)
  671. return -EINVAL;
  672. /*
  673. * Limitation of the current implementation: only support one
  674. * concurrent accept or poll call on one socket.
  675. */
  676. spin_lock_irqsave(&mappass->copy_lock, flags);
  677. if (mappass->reqcopy.cmd != 0) {
  678. ret = -EINTR;
  679. goto out;
  680. }
  681. mappass->reqcopy = *req;
  682. icsk = inet_csk(mappass->sock->sk);
  683. queue = &icsk->icsk_accept_queue;
  684. data = READ_ONCE(queue->rskq_accept_head) != NULL;
  685. if (data) {
  686. mappass->reqcopy.cmd = 0;
  687. ret = 0;
  688. goto out;
  689. }
  690. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  691. /* Tell the caller we don't need to send back a notification yet */
  692. return -1;
  693. out:
  694. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  695. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  696. rsp->req_id = req->req_id;
  697. rsp->cmd = req->cmd;
  698. rsp->u.poll.id = req->u.poll.id;
  699. rsp->ret = ret;
  700. return 0;
  701. }
  702. static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
  703. struct xen_pvcalls_request *req)
  704. {
  705. int ret = 0;
  706. switch (req->cmd) {
  707. case PVCALLS_SOCKET:
  708. ret = pvcalls_back_socket(dev, req);
  709. break;
  710. case PVCALLS_CONNECT:
  711. ret = pvcalls_back_connect(dev, req);
  712. break;
  713. case PVCALLS_RELEASE:
  714. ret = pvcalls_back_release(dev, req);
  715. break;
  716. case PVCALLS_BIND:
  717. ret = pvcalls_back_bind(dev, req);
  718. break;
  719. case PVCALLS_LISTEN:
  720. ret = pvcalls_back_listen(dev, req);
  721. break;
  722. case PVCALLS_ACCEPT:
  723. ret = pvcalls_back_accept(dev, req);
  724. break;
  725. case PVCALLS_POLL:
  726. ret = pvcalls_back_poll(dev, req);
  727. break;
  728. default:
  729. {
  730. struct pvcalls_fedata *fedata;
  731. struct xen_pvcalls_response *rsp;
  732. fedata = dev_get_drvdata(&dev->dev);
  733. rsp = RING_GET_RESPONSE(
  734. &fedata->ring, fedata->ring.rsp_prod_pvt++);
  735. rsp->req_id = req->req_id;
  736. rsp->cmd = req->cmd;
  737. rsp->ret = -ENOTSUPP;
  738. break;
  739. }
  740. }
  741. return ret;
  742. }
  743. static void pvcalls_back_work(struct pvcalls_fedata *fedata)
  744. {
  745. int notify, notify_all = 0, more = 1;
  746. struct xen_pvcalls_request req;
  747. struct xenbus_device *dev = fedata->dev;
  748. while (more) {
  749. while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
  750. RING_COPY_REQUEST(&fedata->ring,
  751. fedata->ring.req_cons++,
  752. &req);
  753. if (!pvcalls_back_handle_cmd(dev, &req)) {
  754. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
  755. &fedata->ring, notify);
  756. notify_all += notify;
  757. }
  758. }
  759. if (notify_all) {
  760. notify_remote_via_irq(fedata->irq);
  761. notify_all = 0;
  762. }
  763. RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
  764. }
  765. }
  766. static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
  767. {
  768. struct xenbus_device *dev = dev_id;
  769. struct pvcalls_fedata *fedata = NULL;
  770. unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
  771. if (dev) {
  772. fedata = dev_get_drvdata(&dev->dev);
  773. if (fedata) {
  774. pvcalls_back_work(fedata);
  775. eoi_flags = 0;
  776. }
  777. }
  778. xen_irq_lateeoi(irq, eoi_flags);
  779. return IRQ_HANDLED;
  780. }
  781. static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
  782. {
  783. struct sock_mapping *map = sock_map;
  784. struct pvcalls_ioworker *iow;
  785. if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
  786. map->sock->sk->sk_user_data != map) {
  787. xen_irq_lateeoi(irq, 0);
  788. return IRQ_HANDLED;
  789. }
  790. iow = &map->ioworker;
  791. atomic_inc(&map->write);
  792. atomic_inc(&map->eoi);
  793. atomic_inc(&map->io);
  794. queue_work(iow->wq, &iow->register_work);
  795. return IRQ_HANDLED;
  796. }
  797. static int backend_connect(struct xenbus_device *dev)
  798. {
  799. int err;
  800. evtchn_port_t evtchn;
  801. grant_ref_t ring_ref;
  802. struct pvcalls_fedata *fedata = NULL;
  803. fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
  804. if (!fedata)
  805. return -ENOMEM;
  806. fedata->irq = -1;
  807. err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
  808. &evtchn);
  809. if (err != 1) {
  810. err = -EINVAL;
  811. xenbus_dev_fatal(dev, err, "reading %s/event-channel",
  812. dev->otherend);
  813. goto error;
  814. }
  815. err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
  816. if (err != 1) {
  817. err = -EINVAL;
  818. xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
  819. dev->otherend);
  820. goto error;
  821. }
  822. err = bind_interdomain_evtchn_to_irq_lateeoi(dev, evtchn);
  823. if (err < 0)
  824. goto error;
  825. fedata->irq = err;
  826. err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
  827. IRQF_ONESHOT, "pvcalls-back", dev);
  828. if (err < 0)
  829. goto error;
  830. err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
  831. (void **)&fedata->sring);
  832. if (err < 0)
  833. goto error;
  834. BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
  835. fedata->dev = dev;
  836. INIT_LIST_HEAD(&fedata->socket_mappings);
  837. INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
  838. sema_init(&fedata->socket_lock, 1);
  839. dev_set_drvdata(&dev->dev, fedata);
  840. down(&pvcalls_back_global.frontends_lock);
  841. list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
  842. up(&pvcalls_back_global.frontends_lock);
  843. return 0;
  844. error:
  845. if (fedata->irq >= 0)
  846. unbind_from_irqhandler(fedata->irq, dev);
  847. if (fedata->sring != NULL)
  848. xenbus_unmap_ring_vfree(dev, fedata->sring);
  849. kfree(fedata);
  850. return err;
  851. }
  852. static int backend_disconnect(struct xenbus_device *dev)
  853. {
  854. struct pvcalls_fedata *fedata;
  855. struct sock_mapping *map, *n;
  856. struct sockpass_mapping *mappass;
  857. struct radix_tree_iter iter;
  858. void **slot;
  859. fedata = dev_get_drvdata(&dev->dev);
  860. down(&fedata->socket_lock);
  861. list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
  862. list_del(&map->list);
  863. pvcalls_back_release_active(dev, fedata, map);
  864. }
  865. radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
  866. mappass = radix_tree_deref_slot(slot);
  867. if (!mappass)
  868. continue;
  869. if (radix_tree_exception(mappass)) {
  870. if (radix_tree_deref_retry(mappass))
  871. slot = radix_tree_iter_retry(&iter);
  872. } else {
  873. radix_tree_delete(&fedata->socketpass_mappings,
  874. mappass->id);
  875. pvcalls_back_release_passive(dev, fedata, mappass);
  876. }
  877. }
  878. up(&fedata->socket_lock);
  879. unbind_from_irqhandler(fedata->irq, dev);
  880. xenbus_unmap_ring_vfree(dev, fedata->sring);
  881. list_del(&fedata->list);
  882. kfree(fedata);
  883. dev_set_drvdata(&dev->dev, NULL);
  884. return 0;
  885. }
  886. static int pvcalls_back_probe(struct xenbus_device *dev,
  887. const struct xenbus_device_id *id)
  888. {
  889. int err, abort;
  890. struct xenbus_transaction xbt;
  891. again:
  892. abort = 1;
  893. err = xenbus_transaction_start(&xbt);
  894. if (err) {
  895. pr_warn("%s cannot create xenstore transaction\n", __func__);
  896. return err;
  897. }
  898. err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
  899. PVCALLS_VERSIONS);
  900. if (err) {
  901. pr_warn("%s write out 'versions' failed\n", __func__);
  902. goto abort;
  903. }
  904. err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
  905. MAX_RING_ORDER);
  906. if (err) {
  907. pr_warn("%s write out 'max-page-order' failed\n", __func__);
  908. goto abort;
  909. }
  910. err = xenbus_printf(xbt, dev->nodename, "function-calls",
  911. XENBUS_FUNCTIONS_CALLS);
  912. if (err) {
  913. pr_warn("%s write out 'function-calls' failed\n", __func__);
  914. goto abort;
  915. }
  916. abort = 0;
  917. abort:
  918. err = xenbus_transaction_end(xbt, abort);
  919. if (err) {
  920. if (err == -EAGAIN && !abort)
  921. goto again;
  922. pr_warn("%s cannot complete xenstore transaction\n", __func__);
  923. return err;
  924. }
  925. if (abort)
  926. return -EFAULT;
  927. xenbus_switch_state(dev, XenbusStateInitWait);
  928. return 0;
  929. }
  930. static void set_backend_state(struct xenbus_device *dev,
  931. enum xenbus_state state)
  932. {
  933. while (dev->state != state) {
  934. switch (dev->state) {
  935. case XenbusStateClosed:
  936. switch (state) {
  937. case XenbusStateInitWait:
  938. case XenbusStateConnected:
  939. xenbus_switch_state(dev, XenbusStateInitWait);
  940. break;
  941. case XenbusStateClosing:
  942. xenbus_switch_state(dev, XenbusStateClosing);
  943. break;
  944. default:
  945. WARN_ON(1);
  946. }
  947. break;
  948. case XenbusStateInitWait:
  949. case XenbusStateInitialised:
  950. switch (state) {
  951. case XenbusStateConnected:
  952. if (backend_connect(dev))
  953. return;
  954. xenbus_switch_state(dev, XenbusStateConnected);
  955. break;
  956. case XenbusStateClosing:
  957. case XenbusStateClosed:
  958. xenbus_switch_state(dev, XenbusStateClosing);
  959. break;
  960. default:
  961. WARN_ON(1);
  962. }
  963. break;
  964. case XenbusStateConnected:
  965. switch (state) {
  966. case XenbusStateInitWait:
  967. case XenbusStateClosing:
  968. case XenbusStateClosed:
  969. down(&pvcalls_back_global.frontends_lock);
  970. backend_disconnect(dev);
  971. up(&pvcalls_back_global.frontends_lock);
  972. xenbus_switch_state(dev, XenbusStateClosing);
  973. break;
  974. default:
  975. WARN_ON(1);
  976. }
  977. break;
  978. case XenbusStateClosing:
  979. switch (state) {
  980. case XenbusStateInitWait:
  981. case XenbusStateConnected:
  982. case XenbusStateClosed:
  983. xenbus_switch_state(dev, XenbusStateClosed);
  984. break;
  985. default:
  986. WARN_ON(1);
  987. }
  988. break;
  989. default:
  990. WARN_ON(1);
  991. }
  992. }
  993. }
  994. static void pvcalls_back_changed(struct xenbus_device *dev,
  995. enum xenbus_state frontend_state)
  996. {
  997. switch (frontend_state) {
  998. case XenbusStateInitialising:
  999. set_backend_state(dev, XenbusStateInitWait);
  1000. break;
  1001. case XenbusStateInitialised:
  1002. case XenbusStateConnected:
  1003. set_backend_state(dev, XenbusStateConnected);
  1004. break;
  1005. case XenbusStateClosing:
  1006. set_backend_state(dev, XenbusStateClosing);
  1007. break;
  1008. case XenbusStateClosed:
  1009. set_backend_state(dev, XenbusStateClosed);
  1010. if (xenbus_dev_is_online(dev))
  1011. break;
  1012. device_unregister(&dev->dev);
  1013. break;
  1014. case XenbusStateUnknown:
  1015. set_backend_state(dev, XenbusStateClosed);
  1016. device_unregister(&dev->dev);
  1017. break;
  1018. default:
  1019. xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
  1020. frontend_state);
  1021. break;
  1022. }
  1023. }
  1024. static void pvcalls_back_remove(struct xenbus_device *dev)
  1025. {
  1026. }
  1027. static int pvcalls_back_uevent(const struct xenbus_device *xdev,
  1028. struct kobj_uevent_env *env)
  1029. {
  1030. return 0;
  1031. }
  1032. static const struct xenbus_device_id pvcalls_back_ids[] = {
  1033. { "pvcalls" },
  1034. { "" }
  1035. };
  1036. static struct xenbus_driver pvcalls_back_driver = {
  1037. .ids = pvcalls_back_ids,
  1038. .probe = pvcalls_back_probe,
  1039. .remove = pvcalls_back_remove,
  1040. .uevent = pvcalls_back_uevent,
  1041. .otherend_changed = pvcalls_back_changed,
  1042. };
  1043. static int __init pvcalls_back_init(void)
  1044. {
  1045. int ret;
  1046. if (!xen_domain())
  1047. return -ENODEV;
  1048. ret = xenbus_register_backend(&pvcalls_back_driver);
  1049. if (ret < 0)
  1050. return ret;
  1051. sema_init(&pvcalls_back_global.frontends_lock, 1);
  1052. INIT_LIST_HEAD(&pvcalls_back_global.frontends);
  1053. return 0;
  1054. }
  1055. module_init(pvcalls_back_init);
  1056. static void __exit pvcalls_back_fin(void)
  1057. {
  1058. struct pvcalls_fedata *fedata, *nfedata;
  1059. down(&pvcalls_back_global.frontends_lock);
  1060. list_for_each_entry_safe(fedata, nfedata,
  1061. &pvcalls_back_global.frontends, list) {
  1062. backend_disconnect(fedata->dev);
  1063. }
  1064. up(&pvcalls_back_global.frontends_lock);
  1065. xenbus_unregister_driver(&pvcalls_back_driver);
  1066. }
  1067. module_exit(pvcalls_back_fin);
  1068. MODULE_DESCRIPTION("Xen PV Calls backend driver");
  1069. MODULE_AUTHOR("Stefano Stabellini <sstabellini@kernel.org>");
  1070. MODULE_LICENSE("GPL");