| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * crash.c - kernel crash support code.
- * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/buildid.h>
- #include <linux/init.h>
- #include <linux/utsname.h>
- #include <linux/vmalloc.h>
- #include <linux/sizes.h>
- #include <linux/kexec.h>
- #include <linux/memory.h>
- #include <linux/mm.h>
- #include <linux/cpuhotplug.h>
- #include <linux/memblock.h>
- #include <linux/kmemleak.h>
- #include <linux/crash_core.h>
- #include <linux/reboot.h>
- #include <linux/btf.h>
- #include <linux/objtool.h>
- #include <asm/page.h>
- #include <asm/sections.h>
- #include <crypto/sha1.h>
- #include "kallsyms_internal.h"
- #include "kexec_internal.h"
- /* Per cpu memory for storing cpu states in case of system crash. */
- note_buf_t __percpu *crash_notes;
- #ifdef CONFIG_CRASH_DUMP
- int kimage_crash_copy_vmcoreinfo(struct kimage *image)
- {
- struct page *vmcoreinfo_page;
- void *safecopy;
- if (!IS_ENABLED(CONFIG_CRASH_DUMP))
- return 0;
- if (image->type != KEXEC_TYPE_CRASH)
- return 0;
- /*
- * For kdump, allocate one vmcoreinfo safe copy from the
- * crash memory. as we have arch_kexec_protect_crashkres()
- * after kexec syscall, we naturally protect it from write
- * (even read) access under kernel direct mapping. But on
- * the other hand, we still need to operate it when crash
- * happens to generate vmcoreinfo note, hereby we rely on
- * vmap for this purpose.
- */
- vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
- if (!vmcoreinfo_page) {
- pr_warn("Could not allocate vmcoreinfo buffer\n");
- return -ENOMEM;
- }
- safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
- if (!safecopy) {
- pr_warn("Could not vmap vmcoreinfo buffer\n");
- return -ENOMEM;
- }
- image->vmcoreinfo_data_copy = safecopy;
- crash_update_vmcoreinfo_safecopy(safecopy);
- return 0;
- }
- int kexec_should_crash(struct task_struct *p)
- {
- /*
- * If crash_kexec_post_notifiers is enabled, don't run
- * crash_kexec() here yet, which must be run after panic
- * notifiers in panic().
- */
- if (crash_kexec_post_notifiers)
- return 0;
- /*
- * There are 4 panic() calls in make_task_dead() path, each of which
- * corresponds to each of these 4 conditions.
- */
- if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
- return 1;
- return 0;
- }
- int kexec_crash_loaded(void)
- {
- return !!kexec_crash_image;
- }
- EXPORT_SYMBOL_GPL(kexec_crash_loaded);
- /*
- * No panic_cpu check version of crash_kexec(). This function is called
- * only when panic_cpu holds the current CPU number; this is the only CPU
- * which processes crash_kexec routines.
- */
- void __noclone __crash_kexec(struct pt_regs *regs)
- {
- /* Take the kexec_lock here to prevent sys_kexec_load
- * running on one cpu from replacing the crash kernel
- * we are using after a panic on a different cpu.
- *
- * If the crash kernel was not located in a fixed area
- * of memory the xchg(&kexec_crash_image) would be
- * sufficient. But since I reuse the memory...
- */
- if (kexec_trylock()) {
- if (kexec_crash_image) {
- struct pt_regs fixed_regs;
- crash_setup_regs(&fixed_regs, regs);
- crash_save_vmcoreinfo();
- machine_crash_shutdown(&fixed_regs);
- machine_kexec(kexec_crash_image);
- }
- kexec_unlock();
- }
- }
- STACK_FRAME_NON_STANDARD(__crash_kexec);
- __bpf_kfunc void crash_kexec(struct pt_regs *regs)
- {
- int old_cpu, this_cpu;
- /*
- * Only one CPU is allowed to execute the crash_kexec() code as with
- * panic(). Otherwise parallel calls of panic() and crash_kexec()
- * may stop each other. To exclude them, we use panic_cpu here too.
- */
- old_cpu = PANIC_CPU_INVALID;
- this_cpu = raw_smp_processor_id();
- if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
- /* This is the 1st CPU which comes here, so go ahead. */
- __crash_kexec(regs);
- /*
- * Reset panic_cpu to allow another panic()/crash_kexec()
- * call.
- */
- atomic_set(&panic_cpu, PANIC_CPU_INVALID);
- }
- }
- static inline resource_size_t crash_resource_size(const struct resource *res)
- {
- return !res->end ? 0 : resource_size(res);
- }
- int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
- void **addr, unsigned long *sz)
- {
- Elf64_Ehdr *ehdr;
- Elf64_Phdr *phdr;
- unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
- unsigned char *buf;
- unsigned int cpu, i;
- unsigned long long notes_addr;
- unsigned long mstart, mend;
- /* extra phdr for vmcoreinfo ELF note */
- nr_phdr = nr_cpus + 1;
- nr_phdr += mem->nr_ranges;
- /*
- * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
- * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
- * I think this is required by tools like gdb. So same physical
- * memory will be mapped in two ELF headers. One will contain kernel
- * text virtual addresses and other will have __va(physical) addresses.
- */
- nr_phdr++;
- elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
- elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
- buf = vzalloc(elf_sz);
- if (!buf)
- return -ENOMEM;
- ehdr = (Elf64_Ehdr *)buf;
- phdr = (Elf64_Phdr *)(ehdr + 1);
- memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
- ehdr->e_ident[EI_CLASS] = ELFCLASS64;
- ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
- ehdr->e_ident[EI_VERSION] = EV_CURRENT;
- ehdr->e_ident[EI_OSABI] = ELF_OSABI;
- memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
- ehdr->e_type = ET_CORE;
- ehdr->e_machine = ELF_ARCH;
- ehdr->e_version = EV_CURRENT;
- ehdr->e_phoff = sizeof(Elf64_Ehdr);
- ehdr->e_ehsize = sizeof(Elf64_Ehdr);
- ehdr->e_phentsize = sizeof(Elf64_Phdr);
- /* Prepare one phdr of type PT_NOTE for each possible CPU */
- for_each_possible_cpu(cpu) {
- phdr->p_type = PT_NOTE;
- notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
- phdr->p_offset = phdr->p_paddr = notes_addr;
- phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
- (ehdr->e_phnum)++;
- phdr++;
- }
- /* Prepare one PT_NOTE header for vmcoreinfo */
- phdr->p_type = PT_NOTE;
- phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
- phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
- (ehdr->e_phnum)++;
- phdr++;
- /* Prepare PT_LOAD type program header for kernel text region */
- if (need_kernel_map) {
- phdr->p_type = PT_LOAD;
- phdr->p_flags = PF_R|PF_W|PF_X;
- phdr->p_vaddr = (unsigned long) _text;
- phdr->p_filesz = phdr->p_memsz = _end - _text;
- phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
- ehdr->e_phnum++;
- phdr++;
- }
- /* Go through all the ranges in mem->ranges[] and prepare phdr */
- for (i = 0; i < mem->nr_ranges; i++) {
- mstart = mem->ranges[i].start;
- mend = mem->ranges[i].end;
- phdr->p_type = PT_LOAD;
- phdr->p_flags = PF_R|PF_W|PF_X;
- phdr->p_offset = mstart;
- phdr->p_paddr = mstart;
- phdr->p_vaddr = (unsigned long) __va(mstart);
- phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
- phdr->p_align = 0;
- ehdr->e_phnum++;
- #ifdef CONFIG_KEXEC_FILE
- kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
- phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
- ehdr->e_phnum, phdr->p_offset);
- #endif
- phdr++;
- }
- *addr = buf;
- *sz = elf_sz;
- return 0;
- }
- int crash_exclude_mem_range(struct crash_mem *mem,
- unsigned long long mstart, unsigned long long mend)
- {
- int i;
- unsigned long long start, end, p_start, p_end;
- for (i = 0; i < mem->nr_ranges; i++) {
- start = mem->ranges[i].start;
- end = mem->ranges[i].end;
- p_start = mstart;
- p_end = mend;
- if (p_start > end)
- continue;
- /*
- * Because the memory ranges in mem->ranges are stored in
- * ascending order, when we detect `p_end < start`, we can
- * immediately exit the for loop, as the subsequent memory
- * ranges will definitely be outside the range we are looking
- * for.
- */
- if (p_end < start)
- break;
- /* Truncate any area outside of range */
- if (p_start < start)
- p_start = start;
- if (p_end > end)
- p_end = end;
- /* Found completely overlapping range */
- if (p_start == start && p_end == end) {
- memmove(&mem->ranges[i], &mem->ranges[i + 1],
- (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
- i--;
- mem->nr_ranges--;
- } else if (p_start > start && p_end < end) {
- /* Split original range */
- if (mem->nr_ranges >= mem->max_nr_ranges)
- return -ENOMEM;
- memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
- (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
- mem->ranges[i].end = p_start - 1;
- mem->ranges[i + 1].start = p_end + 1;
- mem->ranges[i + 1].end = end;
- i++;
- mem->nr_ranges++;
- } else if (p_start != start)
- mem->ranges[i].end = p_start - 1;
- else
- mem->ranges[i].start = p_end + 1;
- }
- return 0;
- }
- ssize_t crash_get_memory_size(void)
- {
- ssize_t size = 0;
- if (!kexec_trylock())
- return -EBUSY;
- size += crash_resource_size(&crashk_res);
- size += crash_resource_size(&crashk_low_res);
- kexec_unlock();
- return size;
- }
- static int __crash_shrink_memory(struct resource *old_res,
- unsigned long new_size)
- {
- struct resource *ram_res;
- ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
- if (!ram_res)
- return -ENOMEM;
- ram_res->start = old_res->start + new_size;
- ram_res->end = old_res->end;
- ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
- ram_res->name = "System RAM";
- if (!new_size) {
- release_resource(old_res);
- old_res->start = 0;
- old_res->end = 0;
- } else {
- crashk_res.end = ram_res->start - 1;
- }
- crash_free_reserved_phys_range(ram_res->start, ram_res->end);
- insert_resource(&iomem_resource, ram_res);
- return 0;
- }
- int crash_shrink_memory(unsigned long new_size)
- {
- int ret = 0;
- unsigned long old_size, low_size;
- if (!kexec_trylock())
- return -EBUSY;
- if (kexec_crash_image) {
- ret = -ENOENT;
- goto unlock;
- }
- low_size = crash_resource_size(&crashk_low_res);
- old_size = crash_resource_size(&crashk_res) + low_size;
- new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
- if (new_size >= old_size) {
- ret = (new_size == old_size) ? 0 : -EINVAL;
- goto unlock;
- }
- /*
- * (low_size > new_size) implies that low_size is greater than zero.
- * This also means that if low_size is zero, the else branch is taken.
- *
- * If low_size is greater than 0, (low_size > new_size) indicates that
- * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
- * needs to be shrunken.
- */
- if (low_size > new_size) {
- ret = __crash_shrink_memory(&crashk_res, 0);
- if (ret)
- goto unlock;
- ret = __crash_shrink_memory(&crashk_low_res, new_size);
- } else {
- ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
- }
- /* Swap crashk_res and crashk_low_res if needed */
- if (!crashk_res.end && crashk_low_res.end) {
- crashk_res.start = crashk_low_res.start;
- crashk_res.end = crashk_low_res.end;
- release_resource(&crashk_low_res);
- crashk_low_res.start = 0;
- crashk_low_res.end = 0;
- insert_resource(&iomem_resource, &crashk_res);
- }
- unlock:
- kexec_unlock();
- return ret;
- }
- void crash_save_cpu(struct pt_regs *regs, int cpu)
- {
- struct elf_prstatus prstatus;
- u32 *buf;
- if ((cpu < 0) || (cpu >= nr_cpu_ids))
- return;
- /* Using ELF notes here is opportunistic.
- * I need a well defined structure format
- * for the data I pass, and I need tags
- * on the data to indicate what information I have
- * squirrelled away. ELF notes happen to provide
- * all of that, so there is no need to invent something new.
- */
- buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
- if (!buf)
- return;
- memset(&prstatus, 0, sizeof(prstatus));
- prstatus.common.pr_pid = current->pid;
- elf_core_copy_regs(&prstatus.pr_reg, regs);
- buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
- &prstatus, sizeof(prstatus));
- final_note(buf);
- }
- static int __init crash_notes_memory_init(void)
- {
- /* Allocate memory for saving cpu registers. */
- size_t size, align;
- /*
- * crash_notes could be allocated across 2 vmalloc pages when percpu
- * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
- * pages are also on 2 continuous physical pages. In this case the
- * 2nd part of crash_notes in 2nd page could be lost since only the
- * starting address and size of crash_notes are exported through sysfs.
- * Here round up the size of crash_notes to the nearest power of two
- * and pass it to __alloc_percpu as align value. This can make sure
- * crash_notes is allocated inside one physical page.
- */
- size = sizeof(note_buf_t);
- align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
- /*
- * Break compile if size is bigger than PAGE_SIZE since crash_notes
- * definitely will be in 2 pages with that.
- */
- BUILD_BUG_ON(size > PAGE_SIZE);
- crash_notes = __alloc_percpu(size, align);
- if (!crash_notes) {
- pr_warn("Memory allocation for saving cpu register states failed\n");
- return -ENOMEM;
- }
- return 0;
- }
- subsys_initcall(crash_notes_memory_init);
- #endif /*CONFIG_CRASH_DUMP*/
- #ifdef CONFIG_CRASH_HOTPLUG
- #undef pr_fmt
- #define pr_fmt(fmt) "crash hp: " fmt
- /*
- * Different than kexec/kdump loading/unloading/jumping/shrinking which
- * usually rarely happen, there will be many crash hotplug events notified
- * during one short period, e.g one memory board is hot added and memory
- * regions are online. So mutex lock __crash_hotplug_lock is used to
- * serialize the crash hotplug handling specifically.
- */
- static DEFINE_MUTEX(__crash_hotplug_lock);
- #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
- #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
- /*
- * This routine utilized when the crash_hotplug sysfs node is read.
- * It reflects the kernel's ability/permission to update the kdump
- * image directly.
- */
- int crash_check_hotplug_support(void)
- {
- int rc = 0;
- crash_hotplug_lock();
- /* Obtain lock while reading crash information */
- if (!kexec_trylock()) {
- pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
- crash_hotplug_unlock();
- return 0;
- }
- if (kexec_crash_image) {
- rc = kexec_crash_image->hotplug_support;
- }
- /* Release lock now that update complete */
- kexec_unlock();
- crash_hotplug_unlock();
- return rc;
- }
- /*
- * To accurately reflect hot un/plug changes of CPU and Memory resources
- * (including onling and offlining of those resources), the relevant
- * kexec segments must be updated with latest CPU and Memory resources.
- *
- * Architectures must ensure two things for all segments that need
- * updating during hotplug events:
- *
- * 1. Segments must be large enough to accommodate a growing number of
- * resources.
- * 2. Exclude the segments from SHA verification.
- *
- * For example, on most architectures, the elfcorehdr (which is passed
- * to the crash kernel via the elfcorehdr= parameter) must include the
- * new list of CPUs and memory. To make changes to the elfcorehdr, it
- * should be large enough to permit a growing number of CPU and Memory
- * resources. One can estimate the elfcorehdr memory size based on
- * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
- * excluded from SHA verification by default if the architecture
- * supports crash hotplug.
- */
- static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
- {
- struct kimage *image;
- crash_hotplug_lock();
- /* Obtain lock while changing crash information */
- if (!kexec_trylock()) {
- pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
- crash_hotplug_unlock();
- return;
- }
- /* Check kdump is not loaded */
- if (!kexec_crash_image)
- goto out;
- image = kexec_crash_image;
- /* Check that kexec segments update is permitted */
- if (!image->hotplug_support)
- goto out;
- if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
- hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
- pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
- else
- pr_debug("hp_action %u\n", hp_action);
- /*
- * The elfcorehdr_index is set to -1 when the struct kimage
- * is allocated. Find the segment containing the elfcorehdr,
- * if not already found.
- */
- if (image->elfcorehdr_index < 0) {
- unsigned long mem;
- unsigned char *ptr;
- unsigned int n;
- for (n = 0; n < image->nr_segments; n++) {
- mem = image->segment[n].mem;
- ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
- if (ptr) {
- /* The segment containing elfcorehdr */
- if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
- image->elfcorehdr_index = (int)n;
- kunmap_local(ptr);
- }
- }
- }
- if (image->elfcorehdr_index < 0) {
- pr_err("unable to locate elfcorehdr segment");
- goto out;
- }
- /* Needed in order for the segments to be updated */
- arch_kexec_unprotect_crashkres();
- /* Differentiate between normal load and hotplug update */
- image->hp_action = hp_action;
- /* Now invoke arch-specific update handler */
- arch_crash_handle_hotplug_event(image, arg);
- /* No longer handling a hotplug event */
- image->hp_action = KEXEC_CRASH_HP_NONE;
- image->elfcorehdr_updated = true;
- /* Change back to read-only */
- arch_kexec_protect_crashkres();
- /* Errors in the callback is not a reason to rollback state */
- out:
- /* Release lock now that update complete */
- kexec_unlock();
- crash_hotplug_unlock();
- }
- static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
- {
- switch (val) {
- case MEM_ONLINE:
- crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
- KEXEC_CRASH_HP_INVALID_CPU, arg);
- break;
- case MEM_OFFLINE:
- crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
- KEXEC_CRASH_HP_INVALID_CPU, arg);
- break;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block crash_memhp_nb = {
- .notifier_call = crash_memhp_notifier,
- .priority = 0
- };
- static int crash_cpuhp_online(unsigned int cpu)
- {
- crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
- return 0;
- }
- static int crash_cpuhp_offline(unsigned int cpu)
- {
- crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
- return 0;
- }
- static int __init crash_hotplug_init(void)
- {
- int result = 0;
- if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
- register_memory_notifier(&crash_memhp_nb);
- if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
- result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
- "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
- }
- return result;
- }
- subsys_initcall(crash_hotplug_init);
- #endif
|