| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * kernel/sched/core.c
- *
- * Core kernel CPU scheduler code
- *
- * Copyright (C) 1991-2002 Linus Torvalds
- * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
- */
- #include <linux/highmem.h>
- #include <linux/hrtimer_api.h>
- #include <linux/ktime_api.h>
- #include <linux/sched/signal.h>
- #include <linux/syscalls_api.h>
- #include <linux/debug_locks.h>
- #include <linux/prefetch.h>
- #include <linux/capability.h>
- #include <linux/pgtable_api.h>
- #include <linux/wait_bit.h>
- #include <linux/jiffies.h>
- #include <linux/spinlock_api.h>
- #include <linux/cpumask_api.h>
- #include <linux/lockdep_api.h>
- #include <linux/hardirq.h>
- #include <linux/softirq.h>
- #include <linux/refcount_api.h>
- #include <linux/topology.h>
- #include <linux/sched/clock.h>
- #include <linux/sched/cond_resched.h>
- #include <linux/sched/cputime.h>
- #include <linux/sched/debug.h>
- #include <linux/sched/hotplug.h>
- #include <linux/sched/init.h>
- #include <linux/sched/isolation.h>
- #include <linux/sched/loadavg.h>
- #include <linux/sched/mm.h>
- #include <linux/sched/nohz.h>
- #include <linux/sched/rseq_api.h>
- #include <linux/sched/rt.h>
- #include <linux/blkdev.h>
- #include <linux/context_tracking.h>
- #include <linux/cpuset.h>
- #include <linux/delayacct.h>
- #include <linux/init_task.h>
- #include <linux/interrupt.h>
- #include <linux/ioprio.h>
- #include <linux/kallsyms.h>
- #include <linux/kcov.h>
- #include <linux/kprobes.h>
- #include <linux/llist_api.h>
- #include <linux/mmu_context.h>
- #include <linux/mmzone.h>
- #include <linux/mutex_api.h>
- #include <linux/nmi.h>
- #include <linux/nospec.h>
- #include <linux/perf_event_api.h>
- #include <linux/profile.h>
- #include <linux/psi.h>
- #include <linux/rcuwait_api.h>
- #include <linux/rseq.h>
- #include <linux/sched/wake_q.h>
- #include <linux/scs.h>
- #include <linux/slab.h>
- #include <linux/syscalls.h>
- #include <linux/vtime.h>
- #include <linux/wait_api.h>
- #include <linux/workqueue_api.h>
- #ifdef CONFIG_PREEMPT_DYNAMIC
- # ifdef CONFIG_GENERIC_ENTRY
- # include <linux/entry-common.h>
- # endif
- #endif
- #include <uapi/linux/sched/types.h>
- #include <asm/irq_regs.h>
- #include <asm/switch_to.h>
- #include <asm/tlb.h>
- #define CREATE_TRACE_POINTS
- #include <linux/sched/rseq_api.h>
- #include <trace/events/sched.h>
- #include <trace/events/ipi.h>
- #undef CREATE_TRACE_POINTS
- #include "sched.h"
- #include "stats.h"
- #include "autogroup.h"
- #include "pelt.h"
- #include "smp.h"
- #include "stats.h"
- #include "../workqueue_internal.h"
- #include "../../io_uring/io-wq.h"
- #include "../smpboot.h"
- EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
- EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
- /*
- * Export tracepoints that act as a bare tracehook (ie: have no trace event
- * associated with them) to allow external modules to probe them.
- */
- EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
- EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
- DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
- #ifdef CONFIG_SCHED_DEBUG
- /*
- * Debugging: various feature bits
- *
- * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
- * sysctl_sched_features, defined in sched.h, to allow constants propagation
- * at compile time and compiler optimization based on features default.
- */
- #define SCHED_FEAT(name, enabled) \
- (1UL << __SCHED_FEAT_##name) * enabled |
- const_debug unsigned int sysctl_sched_features =
- #include "features.h"
- 0;
- #undef SCHED_FEAT
- /*
- * Print a warning if need_resched is set for the given duration (if
- * LATENCY_WARN is enabled).
- *
- * If sysctl_resched_latency_warn_once is set, only one warning will be shown
- * per boot.
- */
- __read_mostly int sysctl_resched_latency_warn_ms = 100;
- __read_mostly int sysctl_resched_latency_warn_once = 1;
- #endif /* CONFIG_SCHED_DEBUG */
- /*
- * Number of tasks to iterate in a single balance run.
- * Limited because this is done with IRQs disabled.
- */
- const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
- __read_mostly int scheduler_running;
- #ifdef CONFIG_SCHED_CORE
- DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
- /* kernel prio, less is more */
- static inline int __task_prio(const struct task_struct *p)
- {
- if (p->sched_class == &stop_sched_class) /* trumps deadline */
- return -2;
- if (p->dl_server)
- return -1; /* deadline */
- if (rt_or_dl_prio(p->prio))
- return p->prio; /* [-1, 99] */
- if (p->sched_class == &idle_sched_class)
- return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
- if (task_on_scx(p))
- return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
- return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
- }
- /*
- * l(a,b)
- * le(a,b) := !l(b,a)
- * g(a,b) := l(b,a)
- * ge(a,b) := !l(a,b)
- */
- /* real prio, less is less */
- static inline bool prio_less(const struct task_struct *a,
- const struct task_struct *b, bool in_fi)
- {
- int pa = __task_prio(a), pb = __task_prio(b);
- if (-pa < -pb)
- return true;
- if (-pb < -pa)
- return false;
- if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
- const struct sched_dl_entity *a_dl, *b_dl;
- a_dl = &a->dl;
- /*
- * Since,'a' and 'b' can be CFS tasks served by DL server,
- * __task_prio() can return -1 (for DL) even for those. In that
- * case, get to the dl_server's DL entity.
- */
- if (a->dl_server)
- a_dl = a->dl_server;
- b_dl = &b->dl;
- if (b->dl_server)
- b_dl = b->dl_server;
- return !dl_time_before(a_dl->deadline, b_dl->deadline);
- }
- if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
- return cfs_prio_less(a, b, in_fi);
- #ifdef CONFIG_SCHED_CLASS_EXT
- if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */
- return scx_prio_less(a, b, in_fi);
- #endif
- return false;
- }
- static inline bool __sched_core_less(const struct task_struct *a,
- const struct task_struct *b)
- {
- if (a->core_cookie < b->core_cookie)
- return true;
- if (a->core_cookie > b->core_cookie)
- return false;
- /* flip prio, so high prio is leftmost */
- if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
- return true;
- return false;
- }
- #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
- static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
- {
- return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
- }
- static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
- {
- const struct task_struct *p = __node_2_sc(node);
- unsigned long cookie = (unsigned long)key;
- if (cookie < p->core_cookie)
- return -1;
- if (cookie > p->core_cookie)
- return 1;
- return 0;
- }
- void sched_core_enqueue(struct rq *rq, struct task_struct *p)
- {
- if (p->se.sched_delayed)
- return;
- rq->core->core_task_seq++;
- if (!p->core_cookie)
- return;
- rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
- }
- void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
- {
- if (p->se.sched_delayed)
- return;
- rq->core->core_task_seq++;
- if (sched_core_enqueued(p)) {
- rb_erase(&p->core_node, &rq->core_tree);
- RB_CLEAR_NODE(&p->core_node);
- }
- /*
- * Migrating the last task off the cpu, with the cpu in forced idle
- * state. Reschedule to create an accounting edge for forced idle,
- * and re-examine whether the core is still in forced idle state.
- */
- if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
- rq->core->core_forceidle_count && rq->curr == rq->idle)
- resched_curr(rq);
- }
- static int sched_task_is_throttled(struct task_struct *p, int cpu)
- {
- if (p->sched_class->task_is_throttled)
- return p->sched_class->task_is_throttled(p, cpu);
- return 0;
- }
- static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
- {
- struct rb_node *node = &p->core_node;
- int cpu = task_cpu(p);
- do {
- node = rb_next(node);
- if (!node)
- return NULL;
- p = __node_2_sc(node);
- if (p->core_cookie != cookie)
- return NULL;
- } while (sched_task_is_throttled(p, cpu));
- return p;
- }
- /*
- * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
- * If no suitable task is found, NULL will be returned.
- */
- static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
- {
- struct task_struct *p;
- struct rb_node *node;
- node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
- if (!node)
- return NULL;
- p = __node_2_sc(node);
- if (!sched_task_is_throttled(p, rq->cpu))
- return p;
- return sched_core_next(p, cookie);
- }
- /*
- * Magic required such that:
- *
- * raw_spin_rq_lock(rq);
- * ...
- * raw_spin_rq_unlock(rq);
- *
- * ends up locking and unlocking the _same_ lock, and all CPUs
- * always agree on what rq has what lock.
- *
- * XXX entirely possible to selectively enable cores, don't bother for now.
- */
- static DEFINE_MUTEX(sched_core_mutex);
- static atomic_t sched_core_count;
- static struct cpumask sched_core_mask;
- static void sched_core_lock(int cpu, unsigned long *flags)
- {
- const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- int t, i = 0;
- local_irq_save(*flags);
- for_each_cpu(t, smt_mask)
- raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
- }
- static void sched_core_unlock(int cpu, unsigned long *flags)
- {
- const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- int t;
- for_each_cpu(t, smt_mask)
- raw_spin_unlock(&cpu_rq(t)->__lock);
- local_irq_restore(*flags);
- }
- static void __sched_core_flip(bool enabled)
- {
- unsigned long flags;
- int cpu, t;
- cpus_read_lock();
- /*
- * Toggle the online cores, one by one.
- */
- cpumask_copy(&sched_core_mask, cpu_online_mask);
- for_each_cpu(cpu, &sched_core_mask) {
- const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- sched_core_lock(cpu, &flags);
- for_each_cpu(t, smt_mask)
- cpu_rq(t)->core_enabled = enabled;
- cpu_rq(cpu)->core->core_forceidle_start = 0;
- sched_core_unlock(cpu, &flags);
- cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
- }
- /*
- * Toggle the offline CPUs.
- */
- for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
- cpu_rq(cpu)->core_enabled = enabled;
- cpus_read_unlock();
- }
- static void sched_core_assert_empty(void)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
- }
- static void __sched_core_enable(void)
- {
- static_branch_enable(&__sched_core_enabled);
- /*
- * Ensure all previous instances of raw_spin_rq_*lock() have finished
- * and future ones will observe !sched_core_disabled().
- */
- synchronize_rcu();
- __sched_core_flip(true);
- sched_core_assert_empty();
- }
- static void __sched_core_disable(void)
- {
- sched_core_assert_empty();
- __sched_core_flip(false);
- static_branch_disable(&__sched_core_enabled);
- }
- void sched_core_get(void)
- {
- if (atomic_inc_not_zero(&sched_core_count))
- return;
- mutex_lock(&sched_core_mutex);
- if (!atomic_read(&sched_core_count))
- __sched_core_enable();
- smp_mb__before_atomic();
- atomic_inc(&sched_core_count);
- mutex_unlock(&sched_core_mutex);
- }
- static void __sched_core_put(struct work_struct *work)
- {
- if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
- __sched_core_disable();
- mutex_unlock(&sched_core_mutex);
- }
- }
- void sched_core_put(void)
- {
- static DECLARE_WORK(_work, __sched_core_put);
- /*
- * "There can be only one"
- *
- * Either this is the last one, or we don't actually need to do any
- * 'work'. If it is the last *again*, we rely on
- * WORK_STRUCT_PENDING_BIT.
- */
- if (!atomic_add_unless(&sched_core_count, -1, 1))
- schedule_work(&_work);
- }
- #else /* !CONFIG_SCHED_CORE */
- static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
- static inline void
- sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
- #endif /* CONFIG_SCHED_CORE */
- /*
- * Serialization rules:
- *
- * Lock order:
- *
- * p->pi_lock
- * rq->lock
- * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
- *
- * rq1->lock
- * rq2->lock where: rq1 < rq2
- *
- * Regular state:
- *
- * Normal scheduling state is serialized by rq->lock. __schedule() takes the
- * local CPU's rq->lock, it optionally removes the task from the runqueue and
- * always looks at the local rq data structures to find the most eligible task
- * to run next.
- *
- * Task enqueue is also under rq->lock, possibly taken from another CPU.
- * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
- * the local CPU to avoid bouncing the runqueue state around [ see
- * ttwu_queue_wakelist() ]
- *
- * Task wakeup, specifically wakeups that involve migration, are horribly
- * complicated to avoid having to take two rq->locks.
- *
- * Special state:
- *
- * System-calls and anything external will use task_rq_lock() which acquires
- * both p->pi_lock and rq->lock. As a consequence the state they change is
- * stable while holding either lock:
- *
- * - sched_setaffinity()/
- * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
- * - set_user_nice(): p->se.load, p->*prio
- * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
- * p->se.load, p->rt_priority,
- * p->dl.dl_{runtime, deadline, period, flags, bw, density}
- * - sched_setnuma(): p->numa_preferred_nid
- * - sched_move_task(): p->sched_task_group
- * - uclamp_update_active() p->uclamp*
- *
- * p->state <- TASK_*:
- *
- * is changed locklessly using set_current_state(), __set_current_state() or
- * set_special_state(), see their respective comments, or by
- * try_to_wake_up(). This latter uses p->pi_lock to serialize against
- * concurrent self.
- *
- * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
- *
- * is set by activate_task() and cleared by deactivate_task(), under
- * rq->lock. Non-zero indicates the task is runnable, the special
- * ON_RQ_MIGRATING state is used for migration without holding both
- * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
- *
- * Additionally it is possible to be ->on_rq but still be considered not
- * runnable when p->se.sched_delayed is true. These tasks are on the runqueue
- * but will be dequeued as soon as they get picked again. See the
- * task_is_runnable() helper.
- *
- * p->on_cpu <- { 0, 1 }:
- *
- * is set by prepare_task() and cleared by finish_task() such that it will be
- * set before p is scheduled-in and cleared after p is scheduled-out, both
- * under rq->lock. Non-zero indicates the task is running on its CPU.
- *
- * [ The astute reader will observe that it is possible for two tasks on one
- * CPU to have ->on_cpu = 1 at the same time. ]
- *
- * task_cpu(p): is changed by set_task_cpu(), the rules are:
- *
- * - Don't call set_task_cpu() on a blocked task:
- *
- * We don't care what CPU we're not running on, this simplifies hotplug,
- * the CPU assignment of blocked tasks isn't required to be valid.
- *
- * - for try_to_wake_up(), called under p->pi_lock:
- *
- * This allows try_to_wake_up() to only take one rq->lock, see its comment.
- *
- * - for migration called under rq->lock:
- * [ see task_on_rq_migrating() in task_rq_lock() ]
- *
- * o move_queued_task()
- * o detach_task()
- *
- * - for migration called under double_rq_lock():
- *
- * o __migrate_swap_task()
- * o push_rt_task() / pull_rt_task()
- * o push_dl_task() / pull_dl_task()
- * o dl_task_offline_migration()
- *
- */
- void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
- {
- raw_spinlock_t *lock;
- /* Matches synchronize_rcu() in __sched_core_enable() */
- preempt_disable();
- if (sched_core_disabled()) {
- raw_spin_lock_nested(&rq->__lock, subclass);
- /* preempt_count *MUST* be > 1 */
- preempt_enable_no_resched();
- return;
- }
- for (;;) {
- lock = __rq_lockp(rq);
- raw_spin_lock_nested(lock, subclass);
- if (likely(lock == __rq_lockp(rq))) {
- /* preempt_count *MUST* be > 1 */
- preempt_enable_no_resched();
- return;
- }
- raw_spin_unlock(lock);
- }
- }
- bool raw_spin_rq_trylock(struct rq *rq)
- {
- raw_spinlock_t *lock;
- bool ret;
- /* Matches synchronize_rcu() in __sched_core_enable() */
- preempt_disable();
- if (sched_core_disabled()) {
- ret = raw_spin_trylock(&rq->__lock);
- preempt_enable();
- return ret;
- }
- for (;;) {
- lock = __rq_lockp(rq);
- ret = raw_spin_trylock(lock);
- if (!ret || (likely(lock == __rq_lockp(rq)))) {
- preempt_enable();
- return ret;
- }
- raw_spin_unlock(lock);
- }
- }
- void raw_spin_rq_unlock(struct rq *rq)
- {
- raw_spin_unlock(rq_lockp(rq));
- }
- #ifdef CONFIG_SMP
- /*
- * double_rq_lock - safely lock two runqueues
- */
- void double_rq_lock(struct rq *rq1, struct rq *rq2)
- {
- lockdep_assert_irqs_disabled();
- if (rq_order_less(rq2, rq1))
- swap(rq1, rq2);
- raw_spin_rq_lock(rq1);
- if (__rq_lockp(rq1) != __rq_lockp(rq2))
- raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
- double_rq_clock_clear_update(rq1, rq2);
- }
- #endif
- /*
- * __task_rq_lock - lock the rq @p resides on.
- */
- struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
- __acquires(rq->lock)
- {
- struct rq *rq;
- lockdep_assert_held(&p->pi_lock);
- for (;;) {
- rq = task_rq(p);
- raw_spin_rq_lock(rq);
- if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- rq_pin_lock(rq, rf);
- return rq;
- }
- raw_spin_rq_unlock(rq);
- while (unlikely(task_on_rq_migrating(p)))
- cpu_relax();
- }
- }
- /*
- * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
- */
- struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
- __acquires(p->pi_lock)
- __acquires(rq->lock)
- {
- struct rq *rq;
- for (;;) {
- raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
- rq = task_rq(p);
- raw_spin_rq_lock(rq);
- /*
- * move_queued_task() task_rq_lock()
- *
- * ACQUIRE (rq->lock)
- * [S] ->on_rq = MIGRATING [L] rq = task_rq()
- * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
- * [S] ->cpu = new_cpu [L] task_rq()
- * [L] ->on_rq
- * RELEASE (rq->lock)
- *
- * If we observe the old CPU in task_rq_lock(), the acquire of
- * the old rq->lock will fully serialize against the stores.
- *
- * If we observe the new CPU in task_rq_lock(), the address
- * dependency headed by '[L] rq = task_rq()' and the acquire
- * will pair with the WMB to ensure we then also see migrating.
- */
- if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- rq_pin_lock(rq, rf);
- return rq;
- }
- raw_spin_rq_unlock(rq);
- raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
- while (unlikely(task_on_rq_migrating(p)))
- cpu_relax();
- }
- }
- /*
- * RQ-clock updating methods:
- */
- static void update_rq_clock_task(struct rq *rq, s64 delta)
- {
- /*
- * In theory, the compile should just see 0 here, and optimize out the call
- * to sched_rt_avg_update. But I don't trust it...
- */
- s64 __maybe_unused steal = 0, irq_delta = 0;
- #ifdef CONFIG_IRQ_TIME_ACCOUNTING
- irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
- /*
- * Since irq_time is only updated on {soft,}irq_exit, we might run into
- * this case when a previous update_rq_clock() happened inside a
- * {soft,}IRQ region.
- *
- * When this happens, we stop ->clock_task and only update the
- * prev_irq_time stamp to account for the part that fit, so that a next
- * update will consume the rest. This ensures ->clock_task is
- * monotonic.
- *
- * It does however cause some slight miss-attribution of {soft,}IRQ
- * time, a more accurate solution would be to update the irq_time using
- * the current rq->clock timestamp, except that would require using
- * atomic ops.
- */
- if (irq_delta > delta)
- irq_delta = delta;
- rq->prev_irq_time += irq_delta;
- delta -= irq_delta;
- delayacct_irq(rq->curr, irq_delta);
- #endif
- #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
- if (static_key_false((¶virt_steal_rq_enabled))) {
- u64 prev_steal;
- steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
- steal -= rq->prev_steal_time_rq;
- if (unlikely(steal > delta))
- steal = delta;
- rq->prev_steal_time_rq = prev_steal;
- delta -= steal;
- }
- #endif
- rq->clock_task += delta;
- #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
- if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
- update_irq_load_avg(rq, irq_delta + steal);
- #endif
- update_rq_clock_pelt(rq, delta);
- }
- void update_rq_clock(struct rq *rq)
- {
- s64 delta;
- lockdep_assert_rq_held(rq);
- if (rq->clock_update_flags & RQCF_ACT_SKIP)
- return;
- #ifdef CONFIG_SCHED_DEBUG
- if (sched_feat(WARN_DOUBLE_CLOCK))
- SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
- rq->clock_update_flags |= RQCF_UPDATED;
- #endif
- delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
- if (delta < 0)
- return;
- rq->clock += delta;
- update_rq_clock_task(rq, delta);
- }
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * Use HR-timers to deliver accurate preemption points.
- */
- static void hrtick_clear(struct rq *rq)
- {
- if (hrtimer_active(&rq->hrtick_timer))
- hrtimer_cancel(&rq->hrtick_timer);
- }
- /*
- * High-resolution timer tick.
- * Runs from hardirq context with interrupts disabled.
- */
- static enum hrtimer_restart hrtick(struct hrtimer *timer)
- {
- struct rq *rq = container_of(timer, struct rq, hrtick_timer);
- struct rq_flags rf;
- WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
- rq_lock(rq, &rf);
- update_rq_clock(rq);
- rq->curr->sched_class->task_tick(rq, rq->curr, 1);
- rq_unlock(rq, &rf);
- return HRTIMER_NORESTART;
- }
- #ifdef CONFIG_SMP
- static void __hrtick_restart(struct rq *rq)
- {
- struct hrtimer *timer = &rq->hrtick_timer;
- ktime_t time = rq->hrtick_time;
- hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
- }
- /*
- * called from hardirq (IPI) context
- */
- static void __hrtick_start(void *arg)
- {
- struct rq *rq = arg;
- struct rq_flags rf;
- rq_lock(rq, &rf);
- __hrtick_restart(rq);
- rq_unlock(rq, &rf);
- }
- /*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and IRQs disabled
- */
- void hrtick_start(struct rq *rq, u64 delay)
- {
- struct hrtimer *timer = &rq->hrtick_timer;
- s64 delta;
- /*
- * Don't schedule slices shorter than 10000ns, that just
- * doesn't make sense and can cause timer DoS.
- */
- delta = max_t(s64, delay, 10000LL);
- rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
- if (rq == this_rq())
- __hrtick_restart(rq);
- else
- smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
- }
- #else
- /*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and IRQs disabled
- */
- void hrtick_start(struct rq *rq, u64 delay)
- {
- /*
- * Don't schedule slices shorter than 10000ns, that just
- * doesn't make sense. Rely on vruntime for fairness.
- */
- delay = max_t(u64, delay, 10000LL);
- hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
- HRTIMER_MODE_REL_PINNED_HARD);
- }
- #endif /* CONFIG_SMP */
- static void hrtick_rq_init(struct rq *rq)
- {
- #ifdef CONFIG_SMP
- INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
- #endif
- hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- rq->hrtick_timer.function = hrtick;
- }
- #else /* CONFIG_SCHED_HRTICK */
- static inline void hrtick_clear(struct rq *rq)
- {
- }
- static inline void hrtick_rq_init(struct rq *rq)
- {
- }
- #endif /* CONFIG_SCHED_HRTICK */
- /*
- * try_cmpxchg based fetch_or() macro so it works for different integer types:
- */
- #define fetch_or(ptr, mask) \
- ({ \
- typeof(ptr) _ptr = (ptr); \
- typeof(mask) _mask = (mask); \
- typeof(*_ptr) _val = *_ptr; \
- \
- do { \
- } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
- _val; \
- })
- #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
- /*
- * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
- * this avoids any races wrt polling state changes and thereby avoids
- * spurious IPIs.
- */
- static inline bool set_nr_and_not_polling(struct task_struct *p)
- {
- struct thread_info *ti = task_thread_info(p);
- return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
- }
- /*
- * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
- *
- * If this returns true, then the idle task promises to call
- * sched_ttwu_pending() and reschedule soon.
- */
- static bool set_nr_if_polling(struct task_struct *p)
- {
- struct thread_info *ti = task_thread_info(p);
- typeof(ti->flags) val = READ_ONCE(ti->flags);
- do {
- if (!(val & _TIF_POLLING_NRFLAG))
- return false;
- if (val & _TIF_NEED_RESCHED)
- return true;
- } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
- return true;
- }
- #else
- static inline bool set_nr_and_not_polling(struct task_struct *p)
- {
- set_tsk_need_resched(p);
- return true;
- }
- #ifdef CONFIG_SMP
- static inline bool set_nr_if_polling(struct task_struct *p)
- {
- return false;
- }
- #endif
- #endif
- static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
- {
- struct wake_q_node *node = &task->wake_q;
- /*
- * Atomically grab the task, if ->wake_q is !nil already it means
- * it's already queued (either by us or someone else) and will get the
- * wakeup due to that.
- *
- * In order to ensure that a pending wakeup will observe our pending
- * state, even in the failed case, an explicit smp_mb() must be used.
- */
- smp_mb__before_atomic();
- if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
- return false;
- /*
- * The head is context local, there can be no concurrency.
- */
- *head->lastp = node;
- head->lastp = &node->next;
- return true;
- }
- /**
- * wake_q_add() - queue a wakeup for 'later' waking.
- * @head: the wake_q_head to add @task to
- * @task: the task to queue for 'later' wakeup
- *
- * Queue a task for later wakeup, most likely by the wake_up_q() call in the
- * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
- * instantly.
- *
- * This function must be used as-if it were wake_up_process(); IOW the task
- * must be ready to be woken at this location.
- */
- void wake_q_add(struct wake_q_head *head, struct task_struct *task)
- {
- if (__wake_q_add(head, task))
- get_task_struct(task);
- }
- /**
- * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
- * @head: the wake_q_head to add @task to
- * @task: the task to queue for 'later' wakeup
- *
- * Queue a task for later wakeup, most likely by the wake_up_q() call in the
- * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
- * instantly.
- *
- * This function must be used as-if it were wake_up_process(); IOW the task
- * must be ready to be woken at this location.
- *
- * This function is essentially a task-safe equivalent to wake_q_add(). Callers
- * that already hold reference to @task can call the 'safe' version and trust
- * wake_q to do the right thing depending whether or not the @task is already
- * queued for wakeup.
- */
- void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
- {
- if (!__wake_q_add(head, task))
- put_task_struct(task);
- }
- void wake_up_q(struct wake_q_head *head)
- {
- struct wake_q_node *node = head->first;
- while (node != WAKE_Q_TAIL) {
- struct task_struct *task;
- task = container_of(node, struct task_struct, wake_q);
- /* Task can safely be re-inserted now: */
- node = node->next;
- task->wake_q.next = NULL;
- /*
- * wake_up_process() executes a full barrier, which pairs with
- * the queueing in wake_q_add() so as not to miss wakeups.
- */
- wake_up_process(task);
- put_task_struct(task);
- }
- }
- /*
- * resched_curr - mark rq's current task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
- void resched_curr(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- int cpu;
- lockdep_assert_rq_held(rq);
- if (test_tsk_need_resched(curr))
- return;
- cpu = cpu_of(rq);
- if (cpu == smp_processor_id()) {
- set_tsk_need_resched(curr);
- set_preempt_need_resched();
- return;
- }
- if (set_nr_and_not_polling(curr))
- smp_send_reschedule(cpu);
- else
- trace_sched_wake_idle_without_ipi(cpu);
- }
- void resched_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- raw_spin_rq_lock_irqsave(rq, flags);
- if (cpu_online(cpu) || cpu == smp_processor_id())
- resched_curr(rq);
- raw_spin_rq_unlock_irqrestore(rq, flags);
- }
- #ifdef CONFIG_SMP
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * In the semi idle case, use the nearest busy CPU for migrating timers
- * from an idle CPU. This is good for power-savings.
- *
- * We don't do similar optimization for completely idle system, as
- * selecting an idle CPU will add more delays to the timers than intended
- * (as that CPU's timer base may not be up to date wrt jiffies etc).
- */
- int get_nohz_timer_target(void)
- {
- int i, cpu = smp_processor_id(), default_cpu = -1;
- struct sched_domain *sd;
- const struct cpumask *hk_mask;
- if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
- if (!idle_cpu(cpu))
- return cpu;
- default_cpu = cpu;
- }
- hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
- guard(rcu)();
- for_each_domain(cpu, sd) {
- for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
- if (cpu == i)
- continue;
- if (!idle_cpu(i))
- return i;
- }
- }
- if (default_cpu == -1)
- default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
- return default_cpu;
- }
- /*
- * When add_timer_on() enqueues a timer into the timer wheel of an
- * idle CPU then this timer might expire before the next timer event
- * which is scheduled to wake up that CPU. In case of a completely
- * idle system the next event might even be infinite time into the
- * future. wake_up_idle_cpu() ensures that the CPU is woken up and
- * leaves the inner idle loop so the newly added timer is taken into
- * account when the CPU goes back to idle and evaluates the timer
- * wheel for the next timer event.
- */
- static void wake_up_idle_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- if (cpu == smp_processor_id())
- return;
- /*
- * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
- * part of the idle loop. This forces an exit from the idle loop
- * and a round trip to schedule(). Now this could be optimized
- * because a simple new idle loop iteration is enough to
- * re-evaluate the next tick. Provided some re-ordering of tick
- * nohz functions that would need to follow TIF_NR_POLLING
- * clearing:
- *
- * - On most architectures, a simple fetch_or on ti::flags with a
- * "0" value would be enough to know if an IPI needs to be sent.
- *
- * - x86 needs to perform a last need_resched() check between
- * monitor and mwait which doesn't take timers into account.
- * There a dedicated TIF_TIMER flag would be required to
- * fetch_or here and be checked along with TIF_NEED_RESCHED
- * before mwait().
- *
- * However, remote timer enqueue is not such a frequent event
- * and testing of the above solutions didn't appear to report
- * much benefits.
- */
- if (set_nr_and_not_polling(rq->idle))
- smp_send_reschedule(cpu);
- else
- trace_sched_wake_idle_without_ipi(cpu);
- }
- static bool wake_up_full_nohz_cpu(int cpu)
- {
- /*
- * We just need the target to call irq_exit() and re-evaluate
- * the next tick. The nohz full kick at least implies that.
- * If needed we can still optimize that later with an
- * empty IRQ.
- */
- if (cpu_is_offline(cpu))
- return true; /* Don't try to wake offline CPUs. */
- if (tick_nohz_full_cpu(cpu)) {
- if (cpu != smp_processor_id() ||
- tick_nohz_tick_stopped())
- tick_nohz_full_kick_cpu(cpu);
- return true;
- }
- return false;
- }
- /*
- * Wake up the specified CPU. If the CPU is going offline, it is the
- * caller's responsibility to deal with the lost wakeup, for example,
- * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
- */
- void wake_up_nohz_cpu(int cpu)
- {
- if (!wake_up_full_nohz_cpu(cpu))
- wake_up_idle_cpu(cpu);
- }
- static void nohz_csd_func(void *info)
- {
- struct rq *rq = info;
- int cpu = cpu_of(rq);
- unsigned int flags;
- /*
- * Release the rq::nohz_csd.
- */
- flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
- WARN_ON(!(flags & NOHZ_KICK_MASK));
- rq->idle_balance = idle_cpu(cpu);
- if (rq->idle_balance) {
- rq->nohz_idle_balance = flags;
- __raise_softirq_irqoff(SCHED_SOFTIRQ);
- }
- }
- #endif /* CONFIG_NO_HZ_COMMON */
- #ifdef CONFIG_NO_HZ_FULL
- static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
- {
- if (rq->nr_running != 1)
- return false;
- if (p->sched_class != &fair_sched_class)
- return false;
- if (!task_on_rq_queued(p))
- return false;
- return true;
- }
- bool sched_can_stop_tick(struct rq *rq)
- {
- int fifo_nr_running;
- /* Deadline tasks, even if single, need the tick */
- if (rq->dl.dl_nr_running)
- return false;
- /*
- * If there are more than one RR tasks, we need the tick to affect the
- * actual RR behaviour.
- */
- if (rq->rt.rr_nr_running) {
- if (rq->rt.rr_nr_running == 1)
- return true;
- else
- return false;
- }
- /*
- * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
- * forced preemption between FIFO tasks.
- */
- fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
- if (fifo_nr_running)
- return true;
- /*
- * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
- * left. For CFS, if there's more than one we need the tick for
- * involuntary preemption. For SCX, ask.
- */
- if (scx_enabled() && !scx_can_stop_tick(rq))
- return false;
- if (rq->cfs.h_nr_running > 1)
- return false;
- /*
- * If there is one task and it has CFS runtime bandwidth constraints
- * and it's on the cpu now we don't want to stop the tick.
- * This check prevents clearing the bit if a newly enqueued task here is
- * dequeued by migrating while the constrained task continues to run.
- * E.g. going from 2->1 without going through pick_next_task().
- */
- if (__need_bw_check(rq, rq->curr)) {
- if (cfs_task_bw_constrained(rq->curr))
- return false;
- }
- return true;
- }
- #endif /* CONFIG_NO_HZ_FULL */
- #endif /* CONFIG_SMP */
- #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
- (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
- /*
- * Iterate task_group tree rooted at *from, calling @down when first entering a
- * node and @up when leaving it for the final time.
- *
- * Caller must hold rcu_lock or sufficient equivalent.
- */
- int walk_tg_tree_from(struct task_group *from,
- tg_visitor down, tg_visitor up, void *data)
- {
- struct task_group *parent, *child;
- int ret;
- parent = from;
- down:
- ret = (*down)(parent, data);
- if (ret)
- goto out;
- list_for_each_entry_rcu(child, &parent->children, siblings) {
- parent = child;
- goto down;
- up:
- continue;
- }
- ret = (*up)(parent, data);
- if (ret || parent == from)
- goto out;
- child = parent;
- parent = parent->parent;
- if (parent)
- goto up;
- out:
- return ret;
- }
- int tg_nop(struct task_group *tg, void *data)
- {
- return 0;
- }
- #endif
- void set_load_weight(struct task_struct *p, bool update_load)
- {
- int prio = p->static_prio - MAX_RT_PRIO;
- struct load_weight lw;
- if (task_has_idle_policy(p)) {
- lw.weight = scale_load(WEIGHT_IDLEPRIO);
- lw.inv_weight = WMULT_IDLEPRIO;
- } else {
- lw.weight = scale_load(sched_prio_to_weight[prio]);
- lw.inv_weight = sched_prio_to_wmult[prio];
- }
- /*
- * SCHED_OTHER tasks have to update their load when changing their
- * weight
- */
- if (update_load && p->sched_class->reweight_task)
- p->sched_class->reweight_task(task_rq(p), p, &lw);
- else
- p->se.load = lw;
- }
- #ifdef CONFIG_UCLAMP_TASK
- /*
- * Serializes updates of utilization clamp values
- *
- * The (slow-path) user-space triggers utilization clamp value updates which
- * can require updates on (fast-path) scheduler's data structures used to
- * support enqueue/dequeue operations.
- * While the per-CPU rq lock protects fast-path update operations, user-space
- * requests are serialized using a mutex to reduce the risk of conflicting
- * updates or API abuses.
- */
- static DEFINE_MUTEX(uclamp_mutex);
- /* Max allowed minimum utilization */
- static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
- /* Max allowed maximum utilization */
- static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
- /*
- * By default RT tasks run at the maximum performance point/capacity of the
- * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
- * SCHED_CAPACITY_SCALE.
- *
- * This knob allows admins to change the default behavior when uclamp is being
- * used. In battery powered devices, particularly, running at the maximum
- * capacity and frequency will increase energy consumption and shorten the
- * battery life.
- *
- * This knob only affects RT tasks that their uclamp_se->user_defined == false.
- *
- * This knob will not override the system default sched_util_clamp_min defined
- * above.
- */
- unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
- /* All clamps are required to be less or equal than these values */
- static struct uclamp_se uclamp_default[UCLAMP_CNT];
- /*
- * This static key is used to reduce the uclamp overhead in the fast path. It
- * primarily disables the call to uclamp_rq_{inc, dec}() in
- * enqueue/dequeue_task().
- *
- * This allows users to continue to enable uclamp in their kernel config with
- * minimum uclamp overhead in the fast path.
- *
- * As soon as userspace modifies any of the uclamp knobs, the static key is
- * enabled, since we have an actual users that make use of uclamp
- * functionality.
- *
- * The knobs that would enable this static key are:
- *
- * * A task modifying its uclamp value with sched_setattr().
- * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
- * * An admin modifying the cgroup cpu.uclamp.{min, max}
- */
- DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
- static inline unsigned int
- uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
- unsigned int clamp_value)
- {
- /*
- * Avoid blocked utilization pushing up the frequency when we go
- * idle (which drops the max-clamp) by retaining the last known
- * max-clamp.
- */
- if (clamp_id == UCLAMP_MAX) {
- rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
- return clamp_value;
- }
- return uclamp_none(UCLAMP_MIN);
- }
- static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
- unsigned int clamp_value)
- {
- /* Reset max-clamp retention only on idle exit */
- if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
- return;
- uclamp_rq_set(rq, clamp_id, clamp_value);
- }
- static inline
- unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
- unsigned int clamp_value)
- {
- struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
- int bucket_id = UCLAMP_BUCKETS - 1;
- /*
- * Since both min and max clamps are max aggregated, find the
- * top most bucket with tasks in.
- */
- for ( ; bucket_id >= 0; bucket_id--) {
- if (!bucket[bucket_id].tasks)
- continue;
- return bucket[bucket_id].value;
- }
- /* No tasks -- default clamp values */
- return uclamp_idle_value(rq, clamp_id, clamp_value);
- }
- static void __uclamp_update_util_min_rt_default(struct task_struct *p)
- {
- unsigned int default_util_min;
- struct uclamp_se *uc_se;
- lockdep_assert_held(&p->pi_lock);
- uc_se = &p->uclamp_req[UCLAMP_MIN];
- /* Only sync if user didn't override the default */
- if (uc_se->user_defined)
- return;
- default_util_min = sysctl_sched_uclamp_util_min_rt_default;
- uclamp_se_set(uc_se, default_util_min, false);
- }
- static void uclamp_update_util_min_rt_default(struct task_struct *p)
- {
- if (!rt_task(p))
- return;
- /* Protect updates to p->uclamp_* */
- guard(task_rq_lock)(p);
- __uclamp_update_util_min_rt_default(p);
- }
- static inline struct uclamp_se
- uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
- {
- /* Copy by value as we could modify it */
- struct uclamp_se uc_req = p->uclamp_req[clamp_id];
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- unsigned int tg_min, tg_max, value;
- /*
- * Tasks in autogroups or root task group will be
- * restricted by system defaults.
- */
- if (task_group_is_autogroup(task_group(p)))
- return uc_req;
- if (task_group(p) == &root_task_group)
- return uc_req;
- tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
- tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
- value = uc_req.value;
- value = clamp(value, tg_min, tg_max);
- uclamp_se_set(&uc_req, value, false);
- #endif
- return uc_req;
- }
- /*
- * The effective clamp bucket index of a task depends on, by increasing
- * priority:
- * - the task specific clamp value, when explicitly requested from userspace
- * - the task group effective clamp value, for tasks not either in the root
- * group or in an autogroup
- * - the system default clamp value, defined by the sysadmin
- */
- static inline struct uclamp_se
- uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
- {
- struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
- struct uclamp_se uc_max = uclamp_default[clamp_id];
- /* System default restrictions always apply */
- if (unlikely(uc_req.value > uc_max.value))
- return uc_max;
- return uc_req;
- }
- unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
- {
- struct uclamp_se uc_eff;
- /* Task currently refcounted: use back-annotated (effective) value */
- if (p->uclamp[clamp_id].active)
- return (unsigned long)p->uclamp[clamp_id].value;
- uc_eff = uclamp_eff_get(p, clamp_id);
- return (unsigned long)uc_eff.value;
- }
- /*
- * When a task is enqueued on a rq, the clamp bucket currently defined by the
- * task's uclamp::bucket_id is refcounted on that rq. This also immediately
- * updates the rq's clamp value if required.
- *
- * Tasks can have a task-specific value requested from user-space, track
- * within each bucket the maximum value for tasks refcounted in it.
- * This "local max aggregation" allows to track the exact "requested" value
- * for each bucket when all its RUNNABLE tasks require the same clamp.
- */
- static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
- enum uclamp_id clamp_id)
- {
- struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
- struct uclamp_se *uc_se = &p->uclamp[clamp_id];
- struct uclamp_bucket *bucket;
- lockdep_assert_rq_held(rq);
- /* Update task effective clamp */
- p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
- bucket = &uc_rq->bucket[uc_se->bucket_id];
- bucket->tasks++;
- uc_se->active = true;
- uclamp_idle_reset(rq, clamp_id, uc_se->value);
- /*
- * Local max aggregation: rq buckets always track the max
- * "requested" clamp value of its RUNNABLE tasks.
- */
- if (bucket->tasks == 1 || uc_se->value > bucket->value)
- bucket->value = uc_se->value;
- if (uc_se->value > uclamp_rq_get(rq, clamp_id))
- uclamp_rq_set(rq, clamp_id, uc_se->value);
- }
- /*
- * When a task is dequeued from a rq, the clamp bucket refcounted by the task
- * is released. If this is the last task reference counting the rq's max
- * active clamp value, then the rq's clamp value is updated.
- *
- * Both refcounted tasks and rq's cached clamp values are expected to be
- * always valid. If it's detected they are not, as defensive programming,
- * enforce the expected state and warn.
- */
- static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
- enum uclamp_id clamp_id)
- {
- struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
- struct uclamp_se *uc_se = &p->uclamp[clamp_id];
- struct uclamp_bucket *bucket;
- unsigned int bkt_clamp;
- unsigned int rq_clamp;
- lockdep_assert_rq_held(rq);
- /*
- * If sched_uclamp_used was enabled after task @p was enqueued,
- * we could end up with unbalanced call to uclamp_rq_dec_id().
- *
- * In this case the uc_se->active flag should be false since no uclamp
- * accounting was performed at enqueue time and we can just return
- * here.
- *
- * Need to be careful of the following enqueue/dequeue ordering
- * problem too
- *
- * enqueue(taskA)
- * // sched_uclamp_used gets enabled
- * enqueue(taskB)
- * dequeue(taskA)
- * // Must not decrement bucket->tasks here
- * dequeue(taskB)
- *
- * where we could end up with stale data in uc_se and
- * bucket[uc_se->bucket_id].
- *
- * The following check here eliminates the possibility of such race.
- */
- if (unlikely(!uc_se->active))
- return;
- bucket = &uc_rq->bucket[uc_se->bucket_id];
- SCHED_WARN_ON(!bucket->tasks);
- if (likely(bucket->tasks))
- bucket->tasks--;
- uc_se->active = false;
- /*
- * Keep "local max aggregation" simple and accept to (possibly)
- * overboost some RUNNABLE tasks in the same bucket.
- * The rq clamp bucket value is reset to its base value whenever
- * there are no more RUNNABLE tasks refcounting it.
- */
- if (likely(bucket->tasks))
- return;
- rq_clamp = uclamp_rq_get(rq, clamp_id);
- /*
- * Defensive programming: this should never happen. If it happens,
- * e.g. due to future modification, warn and fix up the expected value.
- */
- SCHED_WARN_ON(bucket->value > rq_clamp);
- if (bucket->value >= rq_clamp) {
- bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
- uclamp_rq_set(rq, clamp_id, bkt_clamp);
- }
- }
- static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
- {
- enum uclamp_id clamp_id;
- /*
- * Avoid any overhead until uclamp is actually used by the userspace.
- *
- * The condition is constructed such that a NOP is generated when
- * sched_uclamp_used is disabled.
- */
- if (!static_branch_unlikely(&sched_uclamp_used))
- return;
- if (unlikely(!p->sched_class->uclamp_enabled))
- return;
- if (p->se.sched_delayed)
- return;
- for_each_clamp_id(clamp_id)
- uclamp_rq_inc_id(rq, p, clamp_id);
- /* Reset clamp idle holding when there is one RUNNABLE task */
- if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
- rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
- }
- static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
- {
- enum uclamp_id clamp_id;
- /*
- * Avoid any overhead until uclamp is actually used by the userspace.
- *
- * The condition is constructed such that a NOP is generated when
- * sched_uclamp_used is disabled.
- */
- if (!static_branch_unlikely(&sched_uclamp_used))
- return;
- if (unlikely(!p->sched_class->uclamp_enabled))
- return;
- if (p->se.sched_delayed)
- return;
- for_each_clamp_id(clamp_id)
- uclamp_rq_dec_id(rq, p, clamp_id);
- }
- static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
- enum uclamp_id clamp_id)
- {
- if (!p->uclamp[clamp_id].active)
- return;
- uclamp_rq_dec_id(rq, p, clamp_id);
- uclamp_rq_inc_id(rq, p, clamp_id);
- /*
- * Make sure to clear the idle flag if we've transiently reached 0
- * active tasks on rq.
- */
- if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
- rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
- }
- static inline void
- uclamp_update_active(struct task_struct *p)
- {
- enum uclamp_id clamp_id;
- struct rq_flags rf;
- struct rq *rq;
- /*
- * Lock the task and the rq where the task is (or was) queued.
- *
- * We might lock the (previous) rq of a !RUNNABLE task, but that's the
- * price to pay to safely serialize util_{min,max} updates with
- * enqueues, dequeues and migration operations.
- * This is the same locking schema used by __set_cpus_allowed_ptr().
- */
- rq = task_rq_lock(p, &rf);
- /*
- * Setting the clamp bucket is serialized by task_rq_lock().
- * If the task is not yet RUNNABLE and its task_struct is not
- * affecting a valid clamp bucket, the next time it's enqueued,
- * it will already see the updated clamp bucket value.
- */
- for_each_clamp_id(clamp_id)
- uclamp_rq_reinc_id(rq, p, clamp_id);
- task_rq_unlock(rq, p, &rf);
- }
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- static inline void
- uclamp_update_active_tasks(struct cgroup_subsys_state *css)
- {
- struct css_task_iter it;
- struct task_struct *p;
- css_task_iter_start(css, 0, &it);
- while ((p = css_task_iter_next(&it)))
- uclamp_update_active(p);
- css_task_iter_end(&it);
- }
- static void cpu_util_update_eff(struct cgroup_subsys_state *css);
- #endif
- #ifdef CONFIG_SYSCTL
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- static void uclamp_update_root_tg(void)
- {
- struct task_group *tg = &root_task_group;
- uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
- sysctl_sched_uclamp_util_min, false);
- uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
- sysctl_sched_uclamp_util_max, false);
- guard(rcu)();
- cpu_util_update_eff(&root_task_group.css);
- }
- #else
- static void uclamp_update_root_tg(void) { }
- #endif
- static void uclamp_sync_util_min_rt_default(void)
- {
- struct task_struct *g, *p;
- /*
- * copy_process() sysctl_uclamp
- * uclamp_min_rt = X;
- * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
- * // link thread smp_mb__after_spinlock()
- * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
- * sched_post_fork() for_each_process_thread()
- * __uclamp_sync_rt() __uclamp_sync_rt()
- *
- * Ensures that either sched_post_fork() will observe the new
- * uclamp_min_rt or for_each_process_thread() will observe the new
- * task.
- */
- read_lock(&tasklist_lock);
- smp_mb__after_spinlock();
- read_unlock(&tasklist_lock);
- guard(rcu)();
- for_each_process_thread(g, p)
- uclamp_update_util_min_rt_default(p);
- }
- static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
- void *buffer, size_t *lenp, loff_t *ppos)
- {
- bool update_root_tg = false;
- int old_min, old_max, old_min_rt;
- int result;
- guard(mutex)(&uclamp_mutex);
- old_min = sysctl_sched_uclamp_util_min;
- old_max = sysctl_sched_uclamp_util_max;
- old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
- result = proc_dointvec(table, write, buffer, lenp, ppos);
- if (result)
- goto undo;
- if (!write)
- return 0;
- if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
- sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
- sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
- result = -EINVAL;
- goto undo;
- }
- if (old_min != sysctl_sched_uclamp_util_min) {
- uclamp_se_set(&uclamp_default[UCLAMP_MIN],
- sysctl_sched_uclamp_util_min, false);
- update_root_tg = true;
- }
- if (old_max != sysctl_sched_uclamp_util_max) {
- uclamp_se_set(&uclamp_default[UCLAMP_MAX],
- sysctl_sched_uclamp_util_max, false);
- update_root_tg = true;
- }
- if (update_root_tg) {
- static_branch_enable(&sched_uclamp_used);
- uclamp_update_root_tg();
- }
- if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
- static_branch_enable(&sched_uclamp_used);
- uclamp_sync_util_min_rt_default();
- }
- /*
- * We update all RUNNABLE tasks only when task groups are in use.
- * Otherwise, keep it simple and do just a lazy update at each next
- * task enqueue time.
- */
- return 0;
- undo:
- sysctl_sched_uclamp_util_min = old_min;
- sysctl_sched_uclamp_util_max = old_max;
- sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
- return result;
- }
- #endif
- static void uclamp_fork(struct task_struct *p)
- {
- enum uclamp_id clamp_id;
- /*
- * We don't need to hold task_rq_lock() when updating p->uclamp_* here
- * as the task is still at its early fork stages.
- */
- for_each_clamp_id(clamp_id)
- p->uclamp[clamp_id].active = false;
- if (likely(!p->sched_reset_on_fork))
- return;
- for_each_clamp_id(clamp_id) {
- uclamp_se_set(&p->uclamp_req[clamp_id],
- uclamp_none(clamp_id), false);
- }
- }
- static void uclamp_post_fork(struct task_struct *p)
- {
- uclamp_update_util_min_rt_default(p);
- }
- static void __init init_uclamp_rq(struct rq *rq)
- {
- enum uclamp_id clamp_id;
- struct uclamp_rq *uc_rq = rq->uclamp;
- for_each_clamp_id(clamp_id) {
- uc_rq[clamp_id] = (struct uclamp_rq) {
- .value = uclamp_none(clamp_id)
- };
- }
- rq->uclamp_flags = UCLAMP_FLAG_IDLE;
- }
- static void __init init_uclamp(void)
- {
- struct uclamp_se uc_max = {};
- enum uclamp_id clamp_id;
- int cpu;
- for_each_possible_cpu(cpu)
- init_uclamp_rq(cpu_rq(cpu));
- for_each_clamp_id(clamp_id) {
- uclamp_se_set(&init_task.uclamp_req[clamp_id],
- uclamp_none(clamp_id), false);
- }
- /* System defaults allow max clamp values for both indexes */
- uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
- for_each_clamp_id(clamp_id) {
- uclamp_default[clamp_id] = uc_max;
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- root_task_group.uclamp_req[clamp_id] = uc_max;
- root_task_group.uclamp[clamp_id] = uc_max;
- #endif
- }
- }
- #else /* !CONFIG_UCLAMP_TASK */
- static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
- static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
- static inline void uclamp_fork(struct task_struct *p) { }
- static inline void uclamp_post_fork(struct task_struct *p) { }
- static inline void init_uclamp(void) { }
- #endif /* CONFIG_UCLAMP_TASK */
- bool sched_task_on_rq(struct task_struct *p)
- {
- return task_on_rq_queued(p);
- }
- unsigned long get_wchan(struct task_struct *p)
- {
- unsigned long ip = 0;
- unsigned int state;
- if (!p || p == current)
- return 0;
- /* Only get wchan if task is blocked and we can keep it that way. */
- raw_spin_lock_irq(&p->pi_lock);
- state = READ_ONCE(p->__state);
- smp_rmb(); /* see try_to_wake_up() */
- if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
- ip = __get_wchan(p);
- raw_spin_unlock_irq(&p->pi_lock);
- return ip;
- }
- void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
- {
- if (!(flags & ENQUEUE_NOCLOCK))
- update_rq_clock(rq);
- p->sched_class->enqueue_task(rq, p, flags);
- /*
- * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
- * ->sched_delayed.
- */
- uclamp_rq_inc(rq, p);
- psi_enqueue(p, flags);
- if (!(flags & ENQUEUE_RESTORE))
- sched_info_enqueue(rq, p);
- if (sched_core_enabled(rq))
- sched_core_enqueue(rq, p);
- }
- /*
- * Must only return false when DEQUEUE_SLEEP.
- */
- inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
- {
- if (sched_core_enabled(rq))
- sched_core_dequeue(rq, p, flags);
- if (!(flags & DEQUEUE_NOCLOCK))
- update_rq_clock(rq);
- if (!(flags & DEQUEUE_SAVE))
- sched_info_dequeue(rq, p);
- psi_dequeue(p, flags);
- /*
- * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
- * and mark the task ->sched_delayed.
- */
- uclamp_rq_dec(rq, p);
- return p->sched_class->dequeue_task(rq, p, flags);
- }
- void activate_task(struct rq *rq, struct task_struct *p, int flags)
- {
- if (task_on_rq_migrating(p))
- flags |= ENQUEUE_MIGRATED;
- if (flags & ENQUEUE_MIGRATED)
- sched_mm_cid_migrate_to(rq, p);
- enqueue_task(rq, p, flags);
- WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
- ASSERT_EXCLUSIVE_WRITER(p->on_rq);
- }
- void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
- {
- SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
- WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
- ASSERT_EXCLUSIVE_WRITER(p->on_rq);
- /*
- * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
- * dequeue_task() and cleared *after* enqueue_task().
- */
- dequeue_task(rq, p, flags);
- }
- static void block_task(struct rq *rq, struct task_struct *p, int flags)
- {
- if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
- __block_task(rq, p);
- }
- /**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- *
- * Return: 1 if the task is currently executing. 0 otherwise.
- */
- inline int task_curr(const struct task_struct *p)
- {
- return cpu_curr(task_cpu(p)) == p;
- }
- /*
- * ->switching_to() is called with the pi_lock and rq_lock held and must not
- * mess with locking.
- */
- void check_class_changing(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class)
- {
- if (prev_class != p->sched_class && p->sched_class->switching_to)
- p->sched_class->switching_to(rq, p);
- }
- /*
- * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
- * use the balance_callback list if you want balancing.
- *
- * this means any call to check_class_changed() must be followed by a call to
- * balance_callback().
- */
- void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio)
- {
- if (prev_class != p->sched_class) {
- if (prev_class->switched_from)
- prev_class->switched_from(rq, p);
- p->sched_class->switched_to(rq, p);
- } else if (oldprio != p->prio || dl_task(p))
- p->sched_class->prio_changed(rq, p, oldprio);
- }
- void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
- {
- if (p->sched_class == rq->curr->sched_class)
- rq->curr->sched_class->wakeup_preempt(rq, p, flags);
- else if (sched_class_above(p->sched_class, rq->curr->sched_class))
- resched_curr(rq);
- /*
- * A queue event has occurred, and we're going to schedule. In
- * this case, we can save a useless back to back clock update.
- */
- if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
- rq_clock_skip_update(rq);
- }
- static __always_inline
- int __task_state_match(struct task_struct *p, unsigned int state)
- {
- if (READ_ONCE(p->__state) & state)
- return 1;
- if (READ_ONCE(p->saved_state) & state)
- return -1;
- return 0;
- }
- static __always_inline
- int task_state_match(struct task_struct *p, unsigned int state)
- {
- /*
- * Serialize against current_save_and_set_rtlock_wait_state(),
- * current_restore_rtlock_saved_state(), and __refrigerator().
- */
- guard(raw_spinlock_irq)(&p->pi_lock);
- return __task_state_match(p, state);
- }
- /*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * Wait for the thread to block in any of the states set in @match_state.
- * If it changes, i.e. @p might have woken up, then return zero. When we
- * succeed in waiting for @p to be off its CPU, we return a positive number
- * (its total switch count). If a second call a short while later returns the
- * same number, the caller can be sure that @p has remained unscheduled the
- * whole time.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
- unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
- {
- int running, queued, match;
- struct rq_flags rf;
- unsigned long ncsw;
- struct rq *rq;
- for (;;) {
- /*
- * We do the initial early heuristics without holding
- * any task-queue locks at all. We'll only try to get
- * the runqueue lock when things look like they will
- * work out!
- */
- rq = task_rq(p);
- /*
- * If the task is actively running on another CPU
- * still, just relax and busy-wait without holding
- * any locks.
- *
- * NOTE! Since we don't hold any locks, it's not
- * even sure that "rq" stays as the right runqueue!
- * But we don't care, since "task_on_cpu()" will
- * return false if the runqueue has changed and p
- * is actually now running somewhere else!
- */
- while (task_on_cpu(rq, p)) {
- if (!task_state_match(p, match_state))
- return 0;
- cpu_relax();
- }
- /*
- * Ok, time to look more closely! We need the rq
- * lock now, to be *sure*. If we're wrong, we'll
- * just go back and repeat.
- */
- rq = task_rq_lock(p, &rf);
- trace_sched_wait_task(p);
- running = task_on_cpu(rq, p);
- queued = task_on_rq_queued(p);
- ncsw = 0;
- if ((match = __task_state_match(p, match_state))) {
- /*
- * When matching on p->saved_state, consider this task
- * still queued so it will wait.
- */
- if (match < 0)
- queued = 1;
- ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
- }
- task_rq_unlock(rq, p, &rf);
- /*
- * If it changed from the expected state, bail out now.
- */
- if (unlikely(!ncsw))
- break;
- /*
- * Was it really running after all now that we
- * checked with the proper locks actually held?
- *
- * Oops. Go back and try again..
- */
- if (unlikely(running)) {
- cpu_relax();
- continue;
- }
- /*
- * It's not enough that it's not actively running,
- * it must be off the runqueue _entirely_, and not
- * preempted!
- *
- * So if it was still runnable (but just not actively
- * running right now), it's preempted, and we should
- * yield - it could be a while.
- */
- if (unlikely(queued)) {
- ktime_t to = NSEC_PER_SEC / HZ;
- set_current_state(TASK_UNINTERRUPTIBLE);
- schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
- continue;
- }
- /*
- * Ahh, all good. It wasn't running, and it wasn't
- * runnable, which means that it will never become
- * running in the future either. We're all done!
- */
- break;
- }
- return ncsw;
- }
- #ifdef CONFIG_SMP
- static void
- __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
- static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
- {
- struct affinity_context ac = {
- .new_mask = cpumask_of(rq->cpu),
- .flags = SCA_MIGRATE_DISABLE,
- };
- if (likely(!p->migration_disabled))
- return;
- if (p->cpus_ptr != &p->cpus_mask)
- return;
- /*
- * Violates locking rules! See comment in __do_set_cpus_allowed().
- */
- __do_set_cpus_allowed(p, &ac);
- }
- void migrate_disable(void)
- {
- struct task_struct *p = current;
- if (p->migration_disabled) {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- *Warn about overflow half-way through the range.
- */
- WARN_ON_ONCE((s16)p->migration_disabled < 0);
- #endif
- p->migration_disabled++;
- return;
- }
- guard(preempt)();
- this_rq()->nr_pinned++;
- p->migration_disabled = 1;
- }
- EXPORT_SYMBOL_GPL(migrate_disable);
- void migrate_enable(void)
- {
- struct task_struct *p = current;
- struct affinity_context ac = {
- .new_mask = &p->cpus_mask,
- .flags = SCA_MIGRATE_ENABLE,
- };
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Check both overflow from migrate_disable() and superfluous
- * migrate_enable().
- */
- if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
- return;
- #endif
- if (p->migration_disabled > 1) {
- p->migration_disabled--;
- return;
- }
- /*
- * Ensure stop_task runs either before or after this, and that
- * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
- */
- guard(preempt)();
- if (p->cpus_ptr != &p->cpus_mask)
- __set_cpus_allowed_ptr(p, &ac);
- /*
- * Mustn't clear migration_disabled() until cpus_ptr points back at the
- * regular cpus_mask, otherwise things that race (eg.
- * select_fallback_rq) get confused.
- */
- barrier();
- p->migration_disabled = 0;
- this_rq()->nr_pinned--;
- }
- EXPORT_SYMBOL_GPL(migrate_enable);
- static inline bool rq_has_pinned_tasks(struct rq *rq)
- {
- return rq->nr_pinned;
- }
- /*
- * Per-CPU kthreads are allowed to run on !active && online CPUs, see
- * __set_cpus_allowed_ptr() and select_fallback_rq().
- */
- static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
- {
- /* When not in the task's cpumask, no point in looking further. */
- if (!task_allowed_on_cpu(p, cpu))
- return false;
- /* migrate_disabled() must be allowed to finish. */
- if (is_migration_disabled(p))
- return cpu_online(cpu);
- /* Non kernel threads are not allowed during either online or offline. */
- if (!(p->flags & PF_KTHREAD))
- return cpu_active(cpu);
- /* KTHREAD_IS_PER_CPU is always allowed. */
- if (kthread_is_per_cpu(p))
- return cpu_online(cpu);
- /* Regular kernel threads don't get to stay during offline. */
- if (cpu_dying(cpu))
- return false;
- /* But are allowed during online. */
- return cpu_online(cpu);
- }
- /*
- * This is how migration works:
- *
- * 1) we invoke migration_cpu_stop() on the target CPU using
- * stop_one_cpu().
- * 2) stopper starts to run (implicitly forcing the migrated thread
- * off the CPU)
- * 3) it checks whether the migrated task is still in the wrong runqueue.
- * 4) if it's in the wrong runqueue then the migration thread removes
- * it and puts it into the right queue.
- * 5) stopper completes and stop_one_cpu() returns and the migration
- * is done.
- */
- /*
- * move_queued_task - move a queued task to new rq.
- *
- * Returns (locked) new rq. Old rq's lock is released.
- */
- static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
- struct task_struct *p, int new_cpu)
- {
- lockdep_assert_rq_held(rq);
- deactivate_task(rq, p, DEQUEUE_NOCLOCK);
- set_task_cpu(p, new_cpu);
- rq_unlock(rq, rf);
- rq = cpu_rq(new_cpu);
- rq_lock(rq, rf);
- WARN_ON_ONCE(task_cpu(p) != new_cpu);
- activate_task(rq, p, 0);
- wakeup_preempt(rq, p, 0);
- return rq;
- }
- struct migration_arg {
- struct task_struct *task;
- int dest_cpu;
- struct set_affinity_pending *pending;
- };
- /*
- * @refs: number of wait_for_completion()
- * @stop_pending: is @stop_work in use
- */
- struct set_affinity_pending {
- refcount_t refs;
- unsigned int stop_pending;
- struct completion done;
- struct cpu_stop_work stop_work;
- struct migration_arg arg;
- };
- /*
- * Move (not current) task off this CPU, onto the destination CPU. We're doing
- * this because either it can't run here any more (set_cpus_allowed()
- * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_exec).
- *
- * So we race with normal scheduler movements, but that's OK, as long
- * as the task is no longer on this CPU.
- */
- static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
- struct task_struct *p, int dest_cpu)
- {
- /* Affinity changed (again). */
- if (!is_cpu_allowed(p, dest_cpu))
- return rq;
- rq = move_queued_task(rq, rf, p, dest_cpu);
- return rq;
- }
- /*
- * migration_cpu_stop - this will be executed by a high-prio stopper thread
- * and performs thread migration by bumping thread off CPU then
- * 'pushing' onto another runqueue.
- */
- static int migration_cpu_stop(void *data)
- {
- struct migration_arg *arg = data;
- struct set_affinity_pending *pending = arg->pending;
- struct task_struct *p = arg->task;
- struct rq *rq = this_rq();
- bool complete = false;
- struct rq_flags rf;
- /*
- * The original target CPU might have gone down and we might
- * be on another CPU but it doesn't matter.
- */
- local_irq_save(rf.flags);
- /*
- * We need to explicitly wake pending tasks before running
- * __migrate_task() such that we will not miss enforcing cpus_ptr
- * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
- */
- flush_smp_call_function_queue();
- raw_spin_lock(&p->pi_lock);
- rq_lock(rq, &rf);
- /*
- * If we were passed a pending, then ->stop_pending was set, thus
- * p->migration_pending must have remained stable.
- */
- WARN_ON_ONCE(pending && pending != p->migration_pending);
- /*
- * If task_rq(p) != rq, it cannot be migrated here, because we're
- * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
- * we're holding p->pi_lock.
- */
- if (task_rq(p) == rq) {
- if (is_migration_disabled(p))
- goto out;
- if (pending) {
- p->migration_pending = NULL;
- complete = true;
- if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
- goto out;
- }
- if (task_on_rq_queued(p)) {
- update_rq_clock(rq);
- rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
- } else {
- p->wake_cpu = arg->dest_cpu;
- }
- /*
- * XXX __migrate_task() can fail, at which point we might end
- * up running on a dodgy CPU, AFAICT this can only happen
- * during CPU hotplug, at which point we'll get pushed out
- * anyway, so it's probably not a big deal.
- */
- } else if (pending) {
- /*
- * This happens when we get migrated between migrate_enable()'s
- * preempt_enable() and scheduling the stopper task. At that
- * point we're a regular task again and not current anymore.
- *
- * A !PREEMPT kernel has a giant hole here, which makes it far
- * more likely.
- */
- /*
- * The task moved before the stopper got to run. We're holding
- * ->pi_lock, so the allowed mask is stable - if it got
- * somewhere allowed, we're done.
- */
- if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
- p->migration_pending = NULL;
- complete = true;
- goto out;
- }
- /*
- * When migrate_enable() hits a rq mis-match we can't reliably
- * determine is_migration_disabled() and so have to chase after
- * it.
- */
- WARN_ON_ONCE(!pending->stop_pending);
- preempt_disable();
- task_rq_unlock(rq, p, &rf);
- stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
- &pending->arg, &pending->stop_work);
- preempt_enable();
- return 0;
- }
- out:
- if (pending)
- pending->stop_pending = false;
- task_rq_unlock(rq, p, &rf);
- if (complete)
- complete_all(&pending->done);
- return 0;
- }
- int push_cpu_stop(void *arg)
- {
- struct rq *lowest_rq = NULL, *rq = this_rq();
- struct task_struct *p = arg;
- raw_spin_lock_irq(&p->pi_lock);
- raw_spin_rq_lock(rq);
- if (task_rq(p) != rq)
- goto out_unlock;
- if (is_migration_disabled(p)) {
- p->migration_flags |= MDF_PUSH;
- goto out_unlock;
- }
- p->migration_flags &= ~MDF_PUSH;
- if (p->sched_class->find_lock_rq)
- lowest_rq = p->sched_class->find_lock_rq(p, rq);
- if (!lowest_rq)
- goto out_unlock;
- // XXX validate p is still the highest prio task
- if (task_rq(p) == rq) {
- deactivate_task(rq, p, 0);
- set_task_cpu(p, lowest_rq->cpu);
- activate_task(lowest_rq, p, 0);
- resched_curr(lowest_rq);
- }
- double_unlock_balance(rq, lowest_rq);
- out_unlock:
- rq->push_busy = false;
- raw_spin_rq_unlock(rq);
- raw_spin_unlock_irq(&p->pi_lock);
- put_task_struct(p);
- return 0;
- }
- /*
- * sched_class::set_cpus_allowed must do the below, but is not required to
- * actually call this function.
- */
- void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
- {
- if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
- p->cpus_ptr = ctx->new_mask;
- return;
- }
- cpumask_copy(&p->cpus_mask, ctx->new_mask);
- p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
- /*
- * Swap in a new user_cpus_ptr if SCA_USER flag set
- */
- if (ctx->flags & SCA_USER)
- swap(p->user_cpus_ptr, ctx->user_mask);
- }
- static void
- __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
- {
- struct rq *rq = task_rq(p);
- bool queued, running;
- /*
- * This here violates the locking rules for affinity, since we're only
- * supposed to change these variables while holding both rq->lock and
- * p->pi_lock.
- *
- * HOWEVER, it magically works, because ttwu() is the only code that
- * accesses these variables under p->pi_lock and only does so after
- * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
- * before finish_task().
- *
- * XXX do further audits, this smells like something putrid.
- */
- if (ctx->flags & SCA_MIGRATE_DISABLE)
- SCHED_WARN_ON(!p->on_cpu);
- else
- lockdep_assert_held(&p->pi_lock);
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued) {
- /*
- * Because __kthread_bind() calls this on blocked tasks without
- * holding rq->lock.
- */
- lockdep_assert_rq_held(rq);
- dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
- }
- if (running)
- put_prev_task(rq, p);
- p->sched_class->set_cpus_allowed(p, ctx);
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
- }
- /*
- * Used for kthread_bind() and select_fallback_rq(), in both cases the user
- * affinity (if any) should be destroyed too.
- */
- void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
- {
- struct affinity_context ac = {
- .new_mask = new_mask,
- .user_mask = NULL,
- .flags = SCA_USER, /* clear the user requested mask */
- };
- union cpumask_rcuhead {
- cpumask_t cpumask;
- struct rcu_head rcu;
- };
- __do_set_cpus_allowed(p, &ac);
- /*
- * Because this is called with p->pi_lock held, it is not possible
- * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
- * kfree_rcu().
- */
- kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
- }
- int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
- int node)
- {
- cpumask_t *user_mask;
- unsigned long flags;
- /*
- * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
- * may differ by now due to racing.
- */
- dst->user_cpus_ptr = NULL;
- /*
- * This check is racy and losing the race is a valid situation.
- * It is not worth the extra overhead of taking the pi_lock on
- * every fork/clone.
- */
- if (data_race(!src->user_cpus_ptr))
- return 0;
- user_mask = alloc_user_cpus_ptr(node);
- if (!user_mask)
- return -ENOMEM;
- /*
- * Use pi_lock to protect content of user_cpus_ptr
- *
- * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
- * do_set_cpus_allowed().
- */
- raw_spin_lock_irqsave(&src->pi_lock, flags);
- if (src->user_cpus_ptr) {
- swap(dst->user_cpus_ptr, user_mask);
- cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
- }
- raw_spin_unlock_irqrestore(&src->pi_lock, flags);
- if (unlikely(user_mask))
- kfree(user_mask);
- return 0;
- }
- static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
- {
- struct cpumask *user_mask = NULL;
- swap(p->user_cpus_ptr, user_mask);
- return user_mask;
- }
- void release_user_cpus_ptr(struct task_struct *p)
- {
- kfree(clear_user_cpus_ptr(p));
- }
- /*
- * This function is wildly self concurrent; here be dragons.
- *
- *
- * When given a valid mask, __set_cpus_allowed_ptr() must block until the
- * designated task is enqueued on an allowed CPU. If that task is currently
- * running, we have to kick it out using the CPU stopper.
- *
- * Migrate-Disable comes along and tramples all over our nice sandcastle.
- * Consider:
- *
- * Initial conditions: P0->cpus_mask = [0, 1]
- *
- * P0@CPU0 P1
- *
- * migrate_disable();
- * <preempted>
- * set_cpus_allowed_ptr(P0, [1]);
- *
- * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
- * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
- * This means we need the following scheme:
- *
- * P0@CPU0 P1
- *
- * migrate_disable();
- * <preempted>
- * set_cpus_allowed_ptr(P0, [1]);
- * <blocks>
- * <resumes>
- * migrate_enable();
- * __set_cpus_allowed_ptr();
- * <wakes local stopper>
- * `--> <woken on migration completion>
- *
- * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
- * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
- * task p are serialized by p->pi_lock, which we can leverage: the one that
- * should come into effect at the end of the Migrate-Disable region is the last
- * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
- * but we still need to properly signal those waiting tasks at the appropriate
- * moment.
- *
- * This is implemented using struct set_affinity_pending. The first
- * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
- * setup an instance of that struct and install it on the targeted task_struct.
- * Any and all further callers will reuse that instance. Those then wait for
- * a completion signaled at the tail of the CPU stopper callback (1), triggered
- * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
- *
- *
- * (1) In the cases covered above. There is one more where the completion is
- * signaled within affine_move_task() itself: when a subsequent affinity request
- * occurs after the stopper bailed out due to the targeted task still being
- * Migrate-Disable. Consider:
- *
- * Initial conditions: P0->cpus_mask = [0, 1]
- *
- * CPU0 P1 P2
- * <P0>
- * migrate_disable();
- * <preempted>
- * set_cpus_allowed_ptr(P0, [1]);
- * <blocks>
- * <migration/0>
- * migration_cpu_stop()
- * is_migration_disabled()
- * <bails>
- * set_cpus_allowed_ptr(P0, [0, 1]);
- * <signal completion>
- * <awakes>
- *
- * Note that the above is safe vs a concurrent migrate_enable(), as any
- * pending affinity completion is preceded by an uninstallation of
- * p->migration_pending done with p->pi_lock held.
- */
- static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
- int dest_cpu, unsigned int flags)
- __releases(rq->lock)
- __releases(p->pi_lock)
- {
- struct set_affinity_pending my_pending = { }, *pending = NULL;
- bool stop_pending, complete = false;
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
- struct task_struct *push_task = NULL;
- if ((flags & SCA_MIGRATE_ENABLE) &&
- (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
- rq->push_busy = true;
- push_task = get_task_struct(p);
- }
- /*
- * If there are pending waiters, but no pending stop_work,
- * then complete now.
- */
- pending = p->migration_pending;
- if (pending && !pending->stop_pending) {
- p->migration_pending = NULL;
- complete = true;
- }
- preempt_disable();
- task_rq_unlock(rq, p, rf);
- if (push_task) {
- stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
- p, &rq->push_work);
- }
- preempt_enable();
- if (complete)
- complete_all(&pending->done);
- return 0;
- }
- if (!(flags & SCA_MIGRATE_ENABLE)) {
- /* serialized by p->pi_lock */
- if (!p->migration_pending) {
- /* Install the request */
- refcount_set(&my_pending.refs, 1);
- init_completion(&my_pending.done);
- my_pending.arg = (struct migration_arg) {
- .task = p,
- .dest_cpu = dest_cpu,
- .pending = &my_pending,
- };
- p->migration_pending = &my_pending;
- } else {
- pending = p->migration_pending;
- refcount_inc(&pending->refs);
- /*
- * Affinity has changed, but we've already installed a
- * pending. migration_cpu_stop() *must* see this, else
- * we risk a completion of the pending despite having a
- * task on a disallowed CPU.
- *
- * Serialized by p->pi_lock, so this is safe.
- */
- pending->arg.dest_cpu = dest_cpu;
- }
- }
- pending = p->migration_pending;
- /*
- * - !MIGRATE_ENABLE:
- * we'll have installed a pending if there wasn't one already.
- *
- * - MIGRATE_ENABLE:
- * we're here because the current CPU isn't matching anymore,
- * the only way that can happen is because of a concurrent
- * set_cpus_allowed_ptr() call, which should then still be
- * pending completion.
- *
- * Either way, we really should have a @pending here.
- */
- if (WARN_ON_ONCE(!pending)) {
- task_rq_unlock(rq, p, rf);
- return -EINVAL;
- }
- if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
- /*
- * MIGRATE_ENABLE gets here because 'p == current', but for
- * anything else we cannot do is_migration_disabled(), punt
- * and have the stopper function handle it all race-free.
- */
- stop_pending = pending->stop_pending;
- if (!stop_pending)
- pending->stop_pending = true;
- if (flags & SCA_MIGRATE_ENABLE)
- p->migration_flags &= ~MDF_PUSH;
- preempt_disable();
- task_rq_unlock(rq, p, rf);
- if (!stop_pending) {
- stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
- &pending->arg, &pending->stop_work);
- }
- preempt_enable();
- if (flags & SCA_MIGRATE_ENABLE)
- return 0;
- } else {
- if (!is_migration_disabled(p)) {
- if (task_on_rq_queued(p))
- rq = move_queued_task(rq, rf, p, dest_cpu);
- if (!pending->stop_pending) {
- p->migration_pending = NULL;
- complete = true;
- }
- }
- task_rq_unlock(rq, p, rf);
- if (complete)
- complete_all(&pending->done);
- }
- wait_for_completion(&pending->done);
- if (refcount_dec_and_test(&pending->refs))
- wake_up_var(&pending->refs); /* No UaF, just an address */
- /*
- * Block the original owner of &pending until all subsequent callers
- * have seen the completion and decremented the refcount
- */
- wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
- /* ARGH */
- WARN_ON_ONCE(my_pending.stop_pending);
- return 0;
- }
- /*
- * Called with both p->pi_lock and rq->lock held; drops both before returning.
- */
- static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
- struct affinity_context *ctx,
- struct rq *rq,
- struct rq_flags *rf)
- __releases(rq->lock)
- __releases(p->pi_lock)
- {
- const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
- const struct cpumask *cpu_valid_mask = cpu_active_mask;
- bool kthread = p->flags & PF_KTHREAD;
- unsigned int dest_cpu;
- int ret = 0;
- update_rq_clock(rq);
- if (kthread || is_migration_disabled(p)) {
- /*
- * Kernel threads are allowed on online && !active CPUs,
- * however, during cpu-hot-unplug, even these might get pushed
- * away if not KTHREAD_IS_PER_CPU.
- *
- * Specifically, migration_disabled() tasks must not fail the
- * cpumask_any_and_distribute() pick below, esp. so on
- * SCA_MIGRATE_ENABLE, otherwise we'll not call
- * set_cpus_allowed_common() and actually reset p->cpus_ptr.
- */
- cpu_valid_mask = cpu_online_mask;
- }
- if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
- ret = -EINVAL;
- goto out;
- }
- /*
- * Must re-check here, to close a race against __kthread_bind(),
- * sched_setaffinity() is not guaranteed to observe the flag.
- */
- if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
- ret = -EINVAL;
- goto out;
- }
- if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
- if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
- if (ctx->flags & SCA_USER)
- swap(p->user_cpus_ptr, ctx->user_mask);
- goto out;
- }
- if (WARN_ON_ONCE(p == current &&
- is_migration_disabled(p) &&
- !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
- ret = -EBUSY;
- goto out;
- }
- }
- /*
- * Picking a ~random cpu helps in cases where we are changing affinity
- * for groups of tasks (ie. cpuset), so that load balancing is not
- * immediately required to distribute the tasks within their new mask.
- */
- dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
- if (dest_cpu >= nr_cpu_ids) {
- ret = -EINVAL;
- goto out;
- }
- __do_set_cpus_allowed(p, ctx);
- return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
- out:
- task_rq_unlock(rq, p, rf);
- return ret;
- }
- /*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
- int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
- {
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(p, &rf);
- /*
- * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
- * flags are set.
- */
- if (p->user_cpus_ptr &&
- !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
- cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
- ctx->new_mask = rq->scratch_mask;
- return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
- }
- int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
- {
- struct affinity_context ac = {
- .new_mask = new_mask,
- .flags = 0,
- };
- return __set_cpus_allowed_ptr(p, &ac);
- }
- EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
- /*
- * Change a given task's CPU affinity to the intersection of its current
- * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
- * If user_cpus_ptr is defined, use it as the basis for restricting CPU
- * affinity or use cpu_online_mask instead.
- *
- * If the resulting mask is empty, leave the affinity unchanged and return
- * -EINVAL.
- */
- static int restrict_cpus_allowed_ptr(struct task_struct *p,
- struct cpumask *new_mask,
- const struct cpumask *subset_mask)
- {
- struct affinity_context ac = {
- .new_mask = new_mask,
- .flags = 0,
- };
- struct rq_flags rf;
- struct rq *rq;
- int err;
- rq = task_rq_lock(p, &rf);
- /*
- * Forcefully restricting the affinity of a deadline task is
- * likely to cause problems, so fail and noisily override the
- * mask entirely.
- */
- if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
- err = -EPERM;
- goto err_unlock;
- }
- if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
- err = -EINVAL;
- goto err_unlock;
- }
- return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
- err_unlock:
- task_rq_unlock(rq, p, &rf);
- return err;
- }
- /*
- * Restrict the CPU affinity of task @p so that it is a subset of
- * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
- * old affinity mask. If the resulting mask is empty, we warn and walk
- * up the cpuset hierarchy until we find a suitable mask.
- */
- void force_compatible_cpus_allowed_ptr(struct task_struct *p)
- {
- cpumask_var_t new_mask;
- const struct cpumask *override_mask = task_cpu_possible_mask(p);
- alloc_cpumask_var(&new_mask, GFP_KERNEL);
- /*
- * __migrate_task() can fail silently in the face of concurrent
- * offlining of the chosen destination CPU, so take the hotplug
- * lock to ensure that the migration succeeds.
- */
- cpus_read_lock();
- if (!cpumask_available(new_mask))
- goto out_set_mask;
- if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
- goto out_free_mask;
- /*
- * We failed to find a valid subset of the affinity mask for the
- * task, so override it based on its cpuset hierarchy.
- */
- cpuset_cpus_allowed(p, new_mask);
- override_mask = new_mask;
- out_set_mask:
- if (printk_ratelimit()) {
- printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
- task_pid_nr(p), p->comm,
- cpumask_pr_args(override_mask));
- }
- WARN_ON(set_cpus_allowed_ptr(p, override_mask));
- out_free_mask:
- cpus_read_unlock();
- free_cpumask_var(new_mask);
- }
- /*
- * Restore the affinity of a task @p which was previously restricted by a
- * call to force_compatible_cpus_allowed_ptr().
- *
- * It is the caller's responsibility to serialise this with any calls to
- * force_compatible_cpus_allowed_ptr(@p).
- */
- void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
- {
- struct affinity_context ac = {
- .new_mask = task_user_cpus(p),
- .flags = 0,
- };
- int ret;
- /*
- * Try to restore the old affinity mask with __sched_setaffinity().
- * Cpuset masking will be done there too.
- */
- ret = __sched_setaffinity(p, &ac);
- WARN_ON_ONCE(ret);
- }
- void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
- {
- #ifdef CONFIG_SCHED_DEBUG
- unsigned int state = READ_ONCE(p->__state);
- /*
- * We should never call set_task_cpu() on a blocked task,
- * ttwu() will sort out the placement.
- */
- WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
- /*
- * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
- * because schedstat_wait_{start,end} rebase migrating task's wait_start
- * time relying on p->on_rq.
- */
- WARN_ON_ONCE(state == TASK_RUNNING &&
- p->sched_class == &fair_sched_class &&
- (p->on_rq && !task_on_rq_migrating(p)));
- #ifdef CONFIG_LOCKDEP
- /*
- * The caller should hold either p->pi_lock or rq->lock, when changing
- * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
- *
- * sched_move_task() holds both and thus holding either pins the cgroup,
- * see task_group().
- *
- * Furthermore, all task_rq users should acquire both locks, see
- * task_rq_lock().
- */
- WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
- lockdep_is_held(__rq_lockp(task_rq(p)))));
- #endif
- /*
- * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
- */
- WARN_ON_ONCE(!cpu_online(new_cpu));
- WARN_ON_ONCE(is_migration_disabled(p));
- #endif
- trace_sched_migrate_task(p, new_cpu);
- if (task_cpu(p) != new_cpu) {
- if (p->sched_class->migrate_task_rq)
- p->sched_class->migrate_task_rq(p, new_cpu);
- p->se.nr_migrations++;
- rseq_migrate(p);
- sched_mm_cid_migrate_from(p);
- perf_event_task_migrate(p);
- }
- __set_task_cpu(p, new_cpu);
- }
- #ifdef CONFIG_NUMA_BALANCING
- static void __migrate_swap_task(struct task_struct *p, int cpu)
- {
- if (task_on_rq_queued(p)) {
- struct rq *src_rq, *dst_rq;
- struct rq_flags srf, drf;
- src_rq = task_rq(p);
- dst_rq = cpu_rq(cpu);
- rq_pin_lock(src_rq, &srf);
- rq_pin_lock(dst_rq, &drf);
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, cpu);
- activate_task(dst_rq, p, 0);
- wakeup_preempt(dst_rq, p, 0);
- rq_unpin_lock(dst_rq, &drf);
- rq_unpin_lock(src_rq, &srf);
- } else {
- /*
- * Task isn't running anymore; make it appear like we migrated
- * it before it went to sleep. This means on wakeup we make the
- * previous CPU our target instead of where it really is.
- */
- p->wake_cpu = cpu;
- }
- }
- struct migration_swap_arg {
- struct task_struct *src_task, *dst_task;
- int src_cpu, dst_cpu;
- };
- static int migrate_swap_stop(void *data)
- {
- struct migration_swap_arg *arg = data;
- struct rq *src_rq, *dst_rq;
- if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
- return -EAGAIN;
- src_rq = cpu_rq(arg->src_cpu);
- dst_rq = cpu_rq(arg->dst_cpu);
- guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
- guard(double_rq_lock)(src_rq, dst_rq);
- if (task_cpu(arg->dst_task) != arg->dst_cpu)
- return -EAGAIN;
- if (task_cpu(arg->src_task) != arg->src_cpu)
- return -EAGAIN;
- if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
- return -EAGAIN;
- if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
- return -EAGAIN;
- __migrate_swap_task(arg->src_task, arg->dst_cpu);
- __migrate_swap_task(arg->dst_task, arg->src_cpu);
- return 0;
- }
- /*
- * Cross migrate two tasks
- */
- int migrate_swap(struct task_struct *cur, struct task_struct *p,
- int target_cpu, int curr_cpu)
- {
- struct migration_swap_arg arg;
- int ret = -EINVAL;
- arg = (struct migration_swap_arg){
- .src_task = cur,
- .src_cpu = curr_cpu,
- .dst_task = p,
- .dst_cpu = target_cpu,
- };
- if (arg.src_cpu == arg.dst_cpu)
- goto out;
- /*
- * These three tests are all lockless; this is OK since all of them
- * will be re-checked with proper locks held further down the line.
- */
- if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
- goto out;
- if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
- goto out;
- if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
- goto out;
- trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
- ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
- out:
- return ret;
- }
- #endif /* CONFIG_NUMA_BALANCING */
- /***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesn't have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
- void kick_process(struct task_struct *p)
- {
- guard(preempt)();
- int cpu = task_cpu(p);
- if ((cpu != smp_processor_id()) && task_curr(p))
- smp_send_reschedule(cpu);
- }
- EXPORT_SYMBOL_GPL(kick_process);
- /*
- * ->cpus_ptr is protected by both rq->lock and p->pi_lock
- *
- * A few notes on cpu_active vs cpu_online:
- *
- * - cpu_active must be a subset of cpu_online
- *
- * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
- * see __set_cpus_allowed_ptr(). At this point the newly online
- * CPU isn't yet part of the sched domains, and balancing will not
- * see it.
- *
- * - on CPU-down we clear cpu_active() to mask the sched domains and
- * avoid the load balancer to place new tasks on the to be removed
- * CPU. Existing tasks will remain running there and will be taken
- * off.
- *
- * This means that fallback selection must not select !active CPUs.
- * And can assume that any active CPU must be online. Conversely
- * select_task_rq() below may allow selection of !active CPUs in order
- * to satisfy the above rules.
- */
- static int select_fallback_rq(int cpu, struct task_struct *p)
- {
- int nid = cpu_to_node(cpu);
- const struct cpumask *nodemask = NULL;
- enum { cpuset, possible, fail } state = cpuset;
- int dest_cpu;
- /*
- * If the node that the CPU is on has been offlined, cpu_to_node()
- * will return -1. There is no CPU on the node, and we should
- * select the CPU on the other node.
- */
- if (nid != -1) {
- nodemask = cpumask_of_node(nid);
- /* Look for allowed, online CPU in same node. */
- for_each_cpu(dest_cpu, nodemask) {
- if (is_cpu_allowed(p, dest_cpu))
- return dest_cpu;
- }
- }
- for (;;) {
- /* Any allowed, online CPU? */
- for_each_cpu(dest_cpu, p->cpus_ptr) {
- if (!is_cpu_allowed(p, dest_cpu))
- continue;
- goto out;
- }
- /* No more Mr. Nice Guy. */
- switch (state) {
- case cpuset:
- if (cpuset_cpus_allowed_fallback(p)) {
- state = possible;
- break;
- }
- fallthrough;
- case possible:
- /*
- * XXX When called from select_task_rq() we only
- * hold p->pi_lock and again violate locking order.
- *
- * More yuck to audit.
- */
- do_set_cpus_allowed(p, task_cpu_possible_mask(p));
- state = fail;
- break;
- case fail:
- BUG();
- break;
- }
- }
- out:
- if (state != cpuset) {
- /*
- * Don't tell them about moving exiting tasks or
- * kernel threads (both mm NULL), since they never
- * leave kernel.
- */
- if (p->mm && printk_ratelimit()) {
- printk_deferred("process %d (%s) no longer affine to cpu%d\n",
- task_pid_nr(p), p->comm, cpu);
- }
- }
- return dest_cpu;
- }
- /*
- * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
- */
- static inline
- int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
- {
- lockdep_assert_held(&p->pi_lock);
- if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
- cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
- *wake_flags |= WF_RQ_SELECTED;
- } else {
- cpu = cpumask_any(p->cpus_ptr);
- }
- /*
- * In order not to call set_task_cpu() on a blocking task we need
- * to rely on ttwu() to place the task on a valid ->cpus_ptr
- * CPU.
- *
- * Since this is common to all placement strategies, this lives here.
- *
- * [ this allows ->select_task() to simply return task_cpu(p) and
- * not worry about this generic constraint ]
- */
- if (unlikely(!is_cpu_allowed(p, cpu)))
- cpu = select_fallback_rq(task_cpu(p), p);
- return cpu;
- }
- void sched_set_stop_task(int cpu, struct task_struct *stop)
- {
- static struct lock_class_key stop_pi_lock;
- struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
- struct task_struct *old_stop = cpu_rq(cpu)->stop;
- if (stop) {
- /*
- * Make it appear like a SCHED_FIFO task, its something
- * userspace knows about and won't get confused about.
- *
- * Also, it will make PI more or less work without too
- * much confusion -- but then, stop work should not
- * rely on PI working anyway.
- */
- sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
- stop->sched_class = &stop_sched_class;
- /*
- * The PI code calls rt_mutex_setprio() with ->pi_lock held to
- * adjust the effective priority of a task. As a result,
- * rt_mutex_setprio() can trigger (RT) balancing operations,
- * which can then trigger wakeups of the stop thread to push
- * around the current task.
- *
- * The stop task itself will never be part of the PI-chain, it
- * never blocks, therefore that ->pi_lock recursion is safe.
- * Tell lockdep about this by placing the stop->pi_lock in its
- * own class.
- */
- lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
- }
- cpu_rq(cpu)->stop = stop;
- if (old_stop) {
- /*
- * Reset it back to a normal scheduling class so that
- * it can die in pieces.
- */
- old_stop->sched_class = &rt_sched_class;
- }
- }
- #else /* CONFIG_SMP */
- static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
- static inline bool rq_has_pinned_tasks(struct rq *rq)
- {
- return false;
- }
- #endif /* !CONFIG_SMP */
- static void
- ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
- {
- struct rq *rq;
- if (!schedstat_enabled())
- return;
- rq = this_rq();
- #ifdef CONFIG_SMP
- if (cpu == rq->cpu) {
- __schedstat_inc(rq->ttwu_local);
- __schedstat_inc(p->stats.nr_wakeups_local);
- } else {
- struct sched_domain *sd;
- __schedstat_inc(p->stats.nr_wakeups_remote);
- guard(rcu)();
- for_each_domain(rq->cpu, sd) {
- if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- __schedstat_inc(sd->ttwu_wake_remote);
- break;
- }
- }
- }
- if (wake_flags & WF_MIGRATED)
- __schedstat_inc(p->stats.nr_wakeups_migrate);
- #endif /* CONFIG_SMP */
- __schedstat_inc(rq->ttwu_count);
- __schedstat_inc(p->stats.nr_wakeups);
- if (wake_flags & WF_SYNC)
- __schedstat_inc(p->stats.nr_wakeups_sync);
- }
- /*
- * Mark the task runnable.
- */
- static inline void ttwu_do_wakeup(struct task_struct *p)
- {
- WRITE_ONCE(p->__state, TASK_RUNNING);
- trace_sched_wakeup(p);
- }
- static void
- ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
- struct rq_flags *rf)
- {
- int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
- lockdep_assert_rq_held(rq);
- if (p->sched_contributes_to_load)
- rq->nr_uninterruptible--;
- #ifdef CONFIG_SMP
- if (wake_flags & WF_RQ_SELECTED)
- en_flags |= ENQUEUE_RQ_SELECTED;
- if (wake_flags & WF_MIGRATED)
- en_flags |= ENQUEUE_MIGRATED;
- else
- #endif
- if (p->in_iowait) {
- delayacct_blkio_end(p);
- atomic_dec(&task_rq(p)->nr_iowait);
- }
- activate_task(rq, p, en_flags);
- wakeup_preempt(rq, p, wake_flags);
- ttwu_do_wakeup(p);
- #ifdef CONFIG_SMP
- if (p->sched_class->task_woken) {
- /*
- * Our task @p is fully woken up and running; so it's safe to
- * drop the rq->lock, hereafter rq is only used for statistics.
- */
- rq_unpin_lock(rq, rf);
- p->sched_class->task_woken(rq, p);
- rq_repin_lock(rq, rf);
- }
- if (rq->idle_stamp) {
- u64 delta = rq_clock(rq) - rq->idle_stamp;
- u64 max = 2*rq->max_idle_balance_cost;
- update_avg(&rq->avg_idle, delta);
- if (rq->avg_idle > max)
- rq->avg_idle = max;
- rq->idle_stamp = 0;
- }
- #endif
- }
- /*
- * Consider @p being inside a wait loop:
- *
- * for (;;) {
- * set_current_state(TASK_UNINTERRUPTIBLE);
- *
- * if (CONDITION)
- * break;
- *
- * schedule();
- * }
- * __set_current_state(TASK_RUNNING);
- *
- * between set_current_state() and schedule(). In this case @p is still
- * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
- * an atomic manner.
- *
- * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
- * then schedule() must still happen and p->state can be changed to
- * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
- * need to do a full wakeup with enqueue.
- *
- * Returns: %true when the wakeup is done,
- * %false otherwise.
- */
- static int ttwu_runnable(struct task_struct *p, int wake_flags)
- {
- struct rq_flags rf;
- struct rq *rq;
- int ret = 0;
- rq = __task_rq_lock(p, &rf);
- if (task_on_rq_queued(p)) {
- update_rq_clock(rq);
- if (p->se.sched_delayed)
- enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
- if (!task_on_cpu(rq, p)) {
- /*
- * When on_rq && !on_cpu the task is preempted, see if
- * it should preempt the task that is current now.
- */
- wakeup_preempt(rq, p, wake_flags);
- }
- ttwu_do_wakeup(p);
- ret = 1;
- }
- __task_rq_unlock(rq, &rf);
- return ret;
- }
- #ifdef CONFIG_SMP
- void sched_ttwu_pending(void *arg)
- {
- struct llist_node *llist = arg;
- struct rq *rq = this_rq();
- struct task_struct *p, *t;
- struct rq_flags rf;
- if (!llist)
- return;
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
- llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
- if (WARN_ON_ONCE(p->on_cpu))
- smp_cond_load_acquire(&p->on_cpu, !VAL);
- if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
- set_task_cpu(p, cpu_of(rq));
- ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
- }
- /*
- * Must be after enqueueing at least once task such that
- * idle_cpu() does not observe a false-negative -- if it does,
- * it is possible for select_idle_siblings() to stack a number
- * of tasks on this CPU during that window.
- *
- * It is OK to clear ttwu_pending when another task pending.
- * We will receive IPI after local IRQ enabled and then enqueue it.
- * Since now nr_running > 0, idle_cpu() will always get correct result.
- */
- WRITE_ONCE(rq->ttwu_pending, 0);
- rq_unlock_irqrestore(rq, &rf);
- }
- /*
- * Prepare the scene for sending an IPI for a remote smp_call
- *
- * Returns true if the caller can proceed with sending the IPI.
- * Returns false otherwise.
- */
- bool call_function_single_prep_ipi(int cpu)
- {
- if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
- trace_sched_wake_idle_without_ipi(cpu);
- return false;
- }
- return true;
- }
- /*
- * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
- * necessary. The wakee CPU on receipt of the IPI will queue the task
- * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
- * of the wakeup instead of the waker.
- */
- static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
- {
- struct rq *rq = cpu_rq(cpu);
- p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
- WRITE_ONCE(rq->ttwu_pending, 1);
- __smp_call_single_queue(cpu, &p->wake_entry.llist);
- }
- void wake_up_if_idle(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- guard(rcu)();
- if (is_idle_task(rcu_dereference(rq->curr))) {
- guard(rq_lock_irqsave)(rq);
- if (is_idle_task(rq->curr))
- resched_curr(rq);
- }
- }
- bool cpus_equal_capacity(int this_cpu, int that_cpu)
- {
- if (!sched_asym_cpucap_active())
- return true;
- if (this_cpu == that_cpu)
- return true;
- return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
- }
- bool cpus_share_cache(int this_cpu, int that_cpu)
- {
- if (this_cpu == that_cpu)
- return true;
- return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
- }
- /*
- * Whether CPUs are share cache resources, which means LLC on non-cluster
- * machines and LLC tag or L2 on machines with clusters.
- */
- bool cpus_share_resources(int this_cpu, int that_cpu)
- {
- if (this_cpu == that_cpu)
- return true;
- return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
- }
- static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
- {
- /*
- * The BPF scheduler may depend on select_task_rq() being invoked during
- * wakeups. In addition, @p may end up executing on a different CPU
- * regardless of what happens in the wakeup path making the ttwu_queue
- * optimization less meaningful. Skip if on SCX.
- */
- if (task_on_scx(p))
- return false;
- /*
- * Do not complicate things with the async wake_list while the CPU is
- * in hotplug state.
- */
- if (!cpu_active(cpu))
- return false;
- /* Ensure the task will still be allowed to run on the CPU. */
- if (!cpumask_test_cpu(cpu, p->cpus_ptr))
- return false;
- /*
- * If the CPU does not share cache, then queue the task on the
- * remote rqs wakelist to avoid accessing remote data.
- */
- if (!cpus_share_cache(smp_processor_id(), cpu))
- return true;
- if (cpu == smp_processor_id())
- return false;
- /*
- * If the wakee cpu is idle, or the task is descheduling and the
- * only running task on the CPU, then use the wakelist to offload
- * the task activation to the idle (or soon-to-be-idle) CPU as
- * the current CPU is likely busy. nr_running is checked to
- * avoid unnecessary task stacking.
- *
- * Note that we can only get here with (wakee) p->on_rq=0,
- * p->on_cpu can be whatever, we've done the dequeue, so
- * the wakee has been accounted out of ->nr_running.
- */
- if (!cpu_rq(cpu)->nr_running)
- return true;
- return false;
- }
- static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
- {
- if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
- sched_clock_cpu(cpu); /* Sync clocks across CPUs */
- __ttwu_queue_wakelist(p, cpu, wake_flags);
- return true;
- }
- return false;
- }
- #else /* !CONFIG_SMP */
- static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
- {
- return false;
- }
- #endif /* CONFIG_SMP */
- static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
- {
- struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
- if (ttwu_queue_wakelist(p, cpu, wake_flags))
- return;
- rq_lock(rq, &rf);
- update_rq_clock(rq);
- ttwu_do_activate(rq, p, wake_flags, &rf);
- rq_unlock(rq, &rf);
- }
- /*
- * Invoked from try_to_wake_up() to check whether the task can be woken up.
- *
- * The caller holds p::pi_lock if p != current or has preemption
- * disabled when p == current.
- *
- * The rules of saved_state:
- *
- * The related locking code always holds p::pi_lock when updating
- * p::saved_state, which means the code is fully serialized in both cases.
- *
- * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
- * No other bits set. This allows to distinguish all wakeup scenarios.
- *
- * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
- * allows us to prevent early wakeup of tasks before they can be run on
- * asymmetric ISA architectures (eg ARMv9).
- */
- static __always_inline
- bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
- {
- int match;
- if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
- WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
- state != TASK_RTLOCK_WAIT);
- }
- *success = !!(match = __task_state_match(p, state));
- /*
- * Saved state preserves the task state across blocking on
- * an RT lock or TASK_FREEZABLE tasks. If the state matches,
- * set p::saved_state to TASK_RUNNING, but do not wake the task
- * because it waits for a lock wakeup or __thaw_task(). Also
- * indicate success because from the regular waker's point of
- * view this has succeeded.
- *
- * After acquiring the lock the task will restore p::__state
- * from p::saved_state which ensures that the regular
- * wakeup is not lost. The restore will also set
- * p::saved_state to TASK_RUNNING so any further tests will
- * not result in false positives vs. @success
- */
- if (match < 0)
- p->saved_state = TASK_RUNNING;
- return match > 0;
- }
- /*
- * Notes on Program-Order guarantees on SMP systems.
- *
- * MIGRATION
- *
- * The basic program-order guarantee on SMP systems is that when a task [t]
- * migrates, all its activity on its old CPU [c0] happens-before any subsequent
- * execution on its new CPU [c1].
- *
- * For migration (of runnable tasks) this is provided by the following means:
- *
- * A) UNLOCK of the rq(c0)->lock scheduling out task t
- * B) migration for t is required to synchronize *both* rq(c0)->lock and
- * rq(c1)->lock (if not at the same time, then in that order).
- * C) LOCK of the rq(c1)->lock scheduling in task
- *
- * Release/acquire chaining guarantees that B happens after A and C after B.
- * Note: the CPU doing B need not be c0 or c1
- *
- * Example:
- *
- * CPU0 CPU1 CPU2
- *
- * LOCK rq(0)->lock
- * sched-out X
- * sched-in Y
- * UNLOCK rq(0)->lock
- *
- * LOCK rq(0)->lock // orders against CPU0
- * dequeue X
- * UNLOCK rq(0)->lock
- *
- * LOCK rq(1)->lock
- * enqueue X
- * UNLOCK rq(1)->lock
- *
- * LOCK rq(1)->lock // orders against CPU2
- * sched-out Z
- * sched-in X
- * UNLOCK rq(1)->lock
- *
- *
- * BLOCKING -- aka. SLEEP + WAKEUP
- *
- * For blocking we (obviously) need to provide the same guarantee as for
- * migration. However the means are completely different as there is no lock
- * chain to provide order. Instead we do:
- *
- * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
- * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
- *
- * Example:
- *
- * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
- *
- * LOCK rq(0)->lock LOCK X->pi_lock
- * dequeue X
- * sched-out X
- * smp_store_release(X->on_cpu, 0);
- *
- * smp_cond_load_acquire(&X->on_cpu, !VAL);
- * X->state = WAKING
- * set_task_cpu(X,2)
- *
- * LOCK rq(2)->lock
- * enqueue X
- * X->state = RUNNING
- * UNLOCK rq(2)->lock
- *
- * LOCK rq(2)->lock // orders against CPU1
- * sched-out Z
- * sched-in X
- * UNLOCK rq(2)->lock
- *
- * UNLOCK X->pi_lock
- * UNLOCK rq(0)->lock
- *
- *
- * However, for wakeups there is a second guarantee we must provide, namely we
- * must ensure that CONDITION=1 done by the caller can not be reordered with
- * accesses to the task state; see try_to_wake_up() and set_current_state().
- */
- /**
- * try_to_wake_up - wake up a thread
- * @p: the thread to be awakened
- * @state: the mask of task states that can be woken
- * @wake_flags: wake modifier flags (WF_*)
- *
- * Conceptually does:
- *
- * If (@state & @p->state) @p->state = TASK_RUNNING.
- *
- * If the task was not queued/runnable, also place it back on a runqueue.
- *
- * This function is atomic against schedule() which would dequeue the task.
- *
- * It issues a full memory barrier before accessing @p->state, see the comment
- * with set_current_state().
- *
- * Uses p->pi_lock to serialize against concurrent wake-ups.
- *
- * Relies on p->pi_lock stabilizing:
- * - p->sched_class
- * - p->cpus_ptr
- * - p->sched_task_group
- * in order to do migration, see its use of select_task_rq()/set_task_cpu().
- *
- * Tries really hard to only take one task_rq(p)->lock for performance.
- * Takes rq->lock in:
- * - ttwu_runnable() -- old rq, unavoidable, see comment there;
- * - ttwu_queue() -- new rq, for enqueue of the task;
- * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
- *
- * As a consequence we race really badly with just about everything. See the
- * many memory barriers and their comments for details.
- *
- * Return: %true if @p->state changes (an actual wakeup was done),
- * %false otherwise.
- */
- int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
- {
- guard(preempt)();
- int cpu, success = 0;
- wake_flags |= WF_TTWU;
- if (p == current) {
- /*
- * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
- * == smp_processor_id()'. Together this means we can special
- * case the whole 'p->on_rq && ttwu_runnable()' case below
- * without taking any locks.
- *
- * Specifically, given current runs ttwu() we must be before
- * schedule()'s block_task(), as such this must not observe
- * sched_delayed.
- *
- * In particular:
- * - we rely on Program-Order guarantees for all the ordering,
- * - we're serialized against set_special_state() by virtue of
- * it disabling IRQs (this allows not taking ->pi_lock).
- */
- SCHED_WARN_ON(p->se.sched_delayed);
- if (!ttwu_state_match(p, state, &success))
- goto out;
- trace_sched_waking(p);
- ttwu_do_wakeup(p);
- goto out;
- }
- /*
- * If we are going to wake up a thread waiting for CONDITION we
- * need to ensure that CONDITION=1 done by the caller can not be
- * reordered with p->state check below. This pairs with smp_store_mb()
- * in set_current_state() that the waiting thread does.
- */
- scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
- smp_mb__after_spinlock();
- if (!ttwu_state_match(p, state, &success))
- break;
- trace_sched_waking(p);
- /*
- * Ensure we load p->on_rq _after_ p->state, otherwise it would
- * be possible to, falsely, observe p->on_rq == 0 and get stuck
- * in smp_cond_load_acquire() below.
- *
- * sched_ttwu_pending() try_to_wake_up()
- * STORE p->on_rq = 1 LOAD p->state
- * UNLOCK rq->lock
- *
- * __schedule() (switch to task 'p')
- * LOCK rq->lock smp_rmb();
- * smp_mb__after_spinlock();
- * UNLOCK rq->lock
- *
- * [task p]
- * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
- *
- * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
- * __schedule(). See the comment for smp_mb__after_spinlock().
- *
- * A similar smp_rmb() lives in __task_needs_rq_lock().
- */
- smp_rmb();
- if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
- break;
- #ifdef CONFIG_SMP
- /*
- * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
- * possible to, falsely, observe p->on_cpu == 0.
- *
- * One must be running (->on_cpu == 1) in order to remove oneself
- * from the runqueue.
- *
- * __schedule() (switch to task 'p') try_to_wake_up()
- * STORE p->on_cpu = 1 LOAD p->on_rq
- * UNLOCK rq->lock
- *
- * __schedule() (put 'p' to sleep)
- * LOCK rq->lock smp_rmb();
- * smp_mb__after_spinlock();
- * STORE p->on_rq = 0 LOAD p->on_cpu
- *
- * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
- * __schedule(). See the comment for smp_mb__after_spinlock().
- *
- * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
- * schedule()'s deactivate_task() has 'happened' and p will no longer
- * care about it's own p->state. See the comment in __schedule().
- */
- smp_acquire__after_ctrl_dep();
- /*
- * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
- * == 0), which means we need to do an enqueue, change p->state to
- * TASK_WAKING such that we can unlock p->pi_lock before doing the
- * enqueue, such as ttwu_queue_wakelist().
- */
- WRITE_ONCE(p->__state, TASK_WAKING);
- /*
- * If the owning (remote) CPU is still in the middle of schedule() with
- * this task as prev, considering queueing p on the remote CPUs wake_list
- * which potentially sends an IPI instead of spinning on p->on_cpu to
- * let the waker make forward progress. This is safe because IRQs are
- * disabled and the IPI will deliver after on_cpu is cleared.
- *
- * Ensure we load task_cpu(p) after p->on_cpu:
- *
- * set_task_cpu(p, cpu);
- * STORE p->cpu = @cpu
- * __schedule() (switch to task 'p')
- * LOCK rq->lock
- * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
- * STORE p->on_cpu = 1 LOAD p->cpu
- *
- * to ensure we observe the correct CPU on which the task is currently
- * scheduling.
- */
- if (smp_load_acquire(&p->on_cpu) &&
- ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
- break;
- /*
- * If the owning (remote) CPU is still in the middle of schedule() with
- * this task as prev, wait until it's done referencing the task.
- *
- * Pairs with the smp_store_release() in finish_task().
- *
- * This ensures that tasks getting woken will be fully ordered against
- * their previous state and preserve Program Order.
- */
- smp_cond_load_acquire(&p->on_cpu, !VAL);
- cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
- if (task_cpu(p) != cpu) {
- if (p->in_iowait) {
- delayacct_blkio_end(p);
- atomic_dec(&task_rq(p)->nr_iowait);
- }
- wake_flags |= WF_MIGRATED;
- psi_ttwu_dequeue(p);
- set_task_cpu(p, cpu);
- }
- #else
- cpu = task_cpu(p);
- #endif /* CONFIG_SMP */
- ttwu_queue(p, cpu, wake_flags);
- }
- out:
- if (success)
- ttwu_stat(p, task_cpu(p), wake_flags);
- return success;
- }
- static bool __task_needs_rq_lock(struct task_struct *p)
- {
- unsigned int state = READ_ONCE(p->__state);
- /*
- * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
- * the task is blocked. Make sure to check @state since ttwu() can drop
- * locks at the end, see ttwu_queue_wakelist().
- */
- if (state == TASK_RUNNING || state == TASK_WAKING)
- return true;
- /*
- * Ensure we load p->on_rq after p->__state, otherwise it would be
- * possible to, falsely, observe p->on_rq == 0.
- *
- * See try_to_wake_up() for a longer comment.
- */
- smp_rmb();
- if (p->on_rq)
- return true;
- #ifdef CONFIG_SMP
- /*
- * Ensure the task has finished __schedule() and will not be referenced
- * anymore. Again, see try_to_wake_up() for a longer comment.
- */
- smp_rmb();
- smp_cond_load_acquire(&p->on_cpu, !VAL);
- #endif
- return false;
- }
- /**
- * task_call_func - Invoke a function on task in fixed state
- * @p: Process for which the function is to be invoked, can be @current.
- * @func: Function to invoke.
- * @arg: Argument to function.
- *
- * Fix the task in it's current state by avoiding wakeups and or rq operations
- * and call @func(@arg) on it. This function can use task_is_runnable() and
- * task_curr() to work out what the state is, if required. Given that @func
- * can be invoked with a runqueue lock held, it had better be quite
- * lightweight.
- *
- * Returns:
- * Whatever @func returns
- */
- int task_call_func(struct task_struct *p, task_call_f func, void *arg)
- {
- struct rq *rq = NULL;
- struct rq_flags rf;
- int ret;
- raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
- if (__task_needs_rq_lock(p))
- rq = __task_rq_lock(p, &rf);
- /*
- * At this point the task is pinned; either:
- * - blocked and we're holding off wakeups (pi->lock)
- * - woken, and we're holding off enqueue (rq->lock)
- * - queued, and we're holding off schedule (rq->lock)
- * - running, and we're holding off de-schedule (rq->lock)
- *
- * The called function (@func) can use: task_curr(), p->on_rq and
- * p->__state to differentiate between these states.
- */
- ret = func(p, arg);
- if (rq)
- rq_unlock(rq, &rf);
- raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
- return ret;
- }
- /**
- * cpu_curr_snapshot - Return a snapshot of the currently running task
- * @cpu: The CPU on which to snapshot the task.
- *
- * Returns the task_struct pointer of the task "currently" running on
- * the specified CPU.
- *
- * If the specified CPU was offline, the return value is whatever it
- * is, perhaps a pointer to the task_struct structure of that CPU's idle
- * task, but there is no guarantee. Callers wishing a useful return
- * value must take some action to ensure that the specified CPU remains
- * online throughout.
- *
- * This function executes full memory barriers before and after fetching
- * the pointer, which permits the caller to confine this function's fetch
- * with respect to the caller's accesses to other shared variables.
- */
- struct task_struct *cpu_curr_snapshot(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct task_struct *t;
- struct rq_flags rf;
- rq_lock_irqsave(rq, &rf);
- smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
- t = rcu_dereference(cpu_curr(cpu));
- rq_unlock_irqrestore(rq, &rf);
- smp_mb(); /* Pairing determined by caller's synchronization design. */
- return t;
- }
- /**
- * wake_up_process - Wake up a specific process
- * @p: The process to be woken up.
- *
- * Attempt to wake up the nominated process and move it to the set of runnable
- * processes.
- *
- * Return: 1 if the process was woken up, 0 if it was already running.
- *
- * This function executes a full memory barrier before accessing the task state.
- */
- int wake_up_process(struct task_struct *p)
- {
- return try_to_wake_up(p, TASK_NORMAL, 0);
- }
- EXPORT_SYMBOL(wake_up_process);
- int wake_up_state(struct task_struct *p, unsigned int state)
- {
- return try_to_wake_up(p, state, 0);
- }
- /*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- *
- * __sched_fork() is basic setup which is also used by sched_init() to
- * initialize the boot CPU's idle task.
- */
- static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
- {
- p->on_rq = 0;
- p->se.on_rq = 0;
- p->se.exec_start = 0;
- p->se.sum_exec_runtime = 0;
- p->se.prev_sum_exec_runtime = 0;
- p->se.nr_migrations = 0;
- p->se.vruntime = 0;
- p->se.vlag = 0;
- INIT_LIST_HEAD(&p->se.group_node);
- /* A delayed task cannot be in clone(). */
- SCHED_WARN_ON(p->se.sched_delayed);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- p->se.cfs_rq = NULL;
- #endif
- #ifdef CONFIG_SCHEDSTATS
- /* Even if schedstat is disabled, there should not be garbage */
- memset(&p->stats, 0, sizeof(p->stats));
- #endif
- init_dl_entity(&p->dl);
- INIT_LIST_HEAD(&p->rt.run_list);
- p->rt.timeout = 0;
- p->rt.time_slice = sched_rr_timeslice;
- p->rt.on_rq = 0;
- p->rt.on_list = 0;
- #ifdef CONFIG_SCHED_CLASS_EXT
- init_scx_entity(&p->scx);
- #endif
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- INIT_HLIST_HEAD(&p->preempt_notifiers);
- #endif
- #ifdef CONFIG_COMPACTION
- p->capture_control = NULL;
- #endif
- init_numa_balancing(clone_flags, p);
- #ifdef CONFIG_SMP
- p->wake_entry.u_flags = CSD_TYPE_TTWU;
- p->migration_pending = NULL;
- #endif
- init_sched_mm_cid(p);
- }
- DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
- #ifdef CONFIG_NUMA_BALANCING
- int sysctl_numa_balancing_mode;
- static void __set_numabalancing_state(bool enabled)
- {
- if (enabled)
- static_branch_enable(&sched_numa_balancing);
- else
- static_branch_disable(&sched_numa_balancing);
- }
- void set_numabalancing_state(bool enabled)
- {
- if (enabled)
- sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
- else
- sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
- __set_numabalancing_state(enabled);
- }
- #ifdef CONFIG_PROC_SYSCTL
- static void reset_memory_tiering(void)
- {
- struct pglist_data *pgdat;
- for_each_online_pgdat(pgdat) {
- pgdat->nbp_threshold = 0;
- pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
- pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
- }
- }
- static int sysctl_numa_balancing(const struct ctl_table *table, int write,
- void *buffer, size_t *lenp, loff_t *ppos)
- {
- struct ctl_table t;
- int err;
- int state = sysctl_numa_balancing_mode;
- if (write && !capable(CAP_SYS_ADMIN))
- return -EPERM;
- t = *table;
- t.data = &state;
- err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
- if (err < 0)
- return err;
- if (write) {
- if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
- (state & NUMA_BALANCING_MEMORY_TIERING))
- reset_memory_tiering();
- sysctl_numa_balancing_mode = state;
- __set_numabalancing_state(state);
- }
- return err;
- }
- #endif
- #endif
- #ifdef CONFIG_SCHEDSTATS
- DEFINE_STATIC_KEY_FALSE(sched_schedstats);
- static void set_schedstats(bool enabled)
- {
- if (enabled)
- static_branch_enable(&sched_schedstats);
- else
- static_branch_disable(&sched_schedstats);
- }
- void force_schedstat_enabled(void)
- {
- if (!schedstat_enabled()) {
- pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
- static_branch_enable(&sched_schedstats);
- }
- }
- static int __init setup_schedstats(char *str)
- {
- int ret = 0;
- if (!str)
- goto out;
- if (!strcmp(str, "enable")) {
- set_schedstats(true);
- ret = 1;
- } else if (!strcmp(str, "disable")) {
- set_schedstats(false);
- ret = 1;
- }
- out:
- if (!ret)
- pr_warn("Unable to parse schedstats=\n");
- return ret;
- }
- __setup("schedstats=", setup_schedstats);
- #ifdef CONFIG_PROC_SYSCTL
- static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
- size_t *lenp, loff_t *ppos)
- {
- struct ctl_table t;
- int err;
- int state = static_branch_likely(&sched_schedstats);
- if (write && !capable(CAP_SYS_ADMIN))
- return -EPERM;
- t = *table;
- t.data = &state;
- err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
- if (err < 0)
- return err;
- if (write)
- set_schedstats(state);
- return err;
- }
- #endif /* CONFIG_PROC_SYSCTL */
- #endif /* CONFIG_SCHEDSTATS */
- #ifdef CONFIG_SYSCTL
- static struct ctl_table sched_core_sysctls[] = {
- #ifdef CONFIG_SCHEDSTATS
- {
- .procname = "sched_schedstats",
- .data = NULL,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sysctl_schedstats,
- .extra1 = SYSCTL_ZERO,
- .extra2 = SYSCTL_ONE,
- },
- #endif /* CONFIG_SCHEDSTATS */
- #ifdef CONFIG_UCLAMP_TASK
- {
- .procname = "sched_util_clamp_min",
- .data = &sysctl_sched_uclamp_util_min,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sysctl_sched_uclamp_handler,
- },
- {
- .procname = "sched_util_clamp_max",
- .data = &sysctl_sched_uclamp_util_max,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sysctl_sched_uclamp_handler,
- },
- {
- .procname = "sched_util_clamp_min_rt_default",
- .data = &sysctl_sched_uclamp_util_min_rt_default,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sysctl_sched_uclamp_handler,
- },
- #endif /* CONFIG_UCLAMP_TASK */
- #ifdef CONFIG_NUMA_BALANCING
- {
- .procname = "numa_balancing",
- .data = NULL, /* filled in by handler */
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = sysctl_numa_balancing,
- .extra1 = SYSCTL_ZERO,
- .extra2 = SYSCTL_FOUR,
- },
- #endif /* CONFIG_NUMA_BALANCING */
- };
- static int __init sched_core_sysctl_init(void)
- {
- register_sysctl_init("kernel", sched_core_sysctls);
- return 0;
- }
- late_initcall(sched_core_sysctl_init);
- #endif /* CONFIG_SYSCTL */
- /*
- * fork()/clone()-time setup:
- */
- int sched_fork(unsigned long clone_flags, struct task_struct *p)
- {
- __sched_fork(clone_flags, p);
- /*
- * We mark the process as NEW here. This guarantees that
- * nobody will actually run it, and a signal or other external
- * event cannot wake it up and insert it on the runqueue either.
- */
- p->__state = TASK_NEW;
- /*
- * Make sure we do not leak PI boosting priority to the child.
- */
- p->prio = current->normal_prio;
- uclamp_fork(p);
- /*
- * Revert to default priority/policy on fork if requested.
- */
- if (unlikely(p->sched_reset_on_fork)) {
- if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
- p->policy = SCHED_NORMAL;
- p->static_prio = NICE_TO_PRIO(0);
- p->rt_priority = 0;
- } else if (PRIO_TO_NICE(p->static_prio) < 0)
- p->static_prio = NICE_TO_PRIO(0);
- p->prio = p->normal_prio = p->static_prio;
- set_load_weight(p, false);
- p->se.custom_slice = 0;
- p->se.slice = sysctl_sched_base_slice;
- /*
- * We don't need the reset flag anymore after the fork. It has
- * fulfilled its duty:
- */
- p->sched_reset_on_fork = 0;
- }
- if (dl_prio(p->prio))
- return -EAGAIN;
- scx_pre_fork(p);
- if (rt_prio(p->prio)) {
- p->sched_class = &rt_sched_class;
- #ifdef CONFIG_SCHED_CLASS_EXT
- } else if (task_should_scx(p->policy)) {
- p->sched_class = &ext_sched_class;
- #endif
- } else {
- p->sched_class = &fair_sched_class;
- }
- init_entity_runnable_average(&p->se);
- #ifdef CONFIG_SCHED_INFO
- if (likely(sched_info_on()))
- memset(&p->sched_info, 0, sizeof(p->sched_info));
- #endif
- #if defined(CONFIG_SMP)
- p->on_cpu = 0;
- #endif
- init_task_preempt_count(p);
- #ifdef CONFIG_SMP
- plist_node_init(&p->pushable_tasks, MAX_PRIO);
- RB_CLEAR_NODE(&p->pushable_dl_tasks);
- #endif
- return 0;
- }
- int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
- {
- unsigned long flags;
- /*
- * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
- * required yet, but lockdep gets upset if rules are violated.
- */
- raw_spin_lock_irqsave(&p->pi_lock, flags);
- #ifdef CONFIG_CGROUP_SCHED
- if (1) {
- struct task_group *tg;
- tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
- struct task_group, css);
- tg = autogroup_task_group(p, tg);
- p->sched_task_group = tg;
- }
- #endif
- rseq_migrate(p);
- /*
- * We're setting the CPU for the first time, we don't migrate,
- * so use __set_task_cpu().
- */
- __set_task_cpu(p, smp_processor_id());
- if (p->sched_class->task_fork)
- p->sched_class->task_fork(p);
- raw_spin_unlock_irqrestore(&p->pi_lock, flags);
- return scx_fork(p);
- }
- void sched_cancel_fork(struct task_struct *p)
- {
- scx_cancel_fork(p);
- }
- void sched_post_fork(struct task_struct *p)
- {
- uclamp_post_fork(p);
- scx_post_fork(p);
- }
- unsigned long to_ratio(u64 period, u64 runtime)
- {
- if (runtime == RUNTIME_INF)
- return BW_UNIT;
- /*
- * Doing this here saves a lot of checks in all
- * the calling paths, and returning zero seems
- * safe for them anyway.
- */
- if (period == 0)
- return 0;
- return div64_u64(runtime << BW_SHIFT, period);
- }
- /*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
- void wake_up_new_task(struct task_struct *p)
- {
- struct rq_flags rf;
- struct rq *rq;
- int wake_flags = WF_FORK;
- raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
- WRITE_ONCE(p->__state, TASK_RUNNING);
- #ifdef CONFIG_SMP
- /*
- * Fork balancing, do it here and not earlier because:
- * - cpus_ptr can change in the fork path
- * - any previously selected CPU might disappear through hotplug
- *
- * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
- * as we're not fully set-up yet.
- */
- p->recent_used_cpu = task_cpu(p);
- rseq_migrate(p);
- __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
- #endif
- rq = __task_rq_lock(p, &rf);
- update_rq_clock(rq);
- post_init_entity_util_avg(p);
- activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
- trace_sched_wakeup_new(p);
- wakeup_preempt(rq, p, wake_flags);
- #ifdef CONFIG_SMP
- if (p->sched_class->task_woken) {
- /*
- * Nothing relies on rq->lock after this, so it's fine to
- * drop it.
- */
- rq_unpin_lock(rq, &rf);
- p->sched_class->task_woken(rq, p);
- rq_repin_lock(rq, &rf);
- }
- #endif
- task_rq_unlock(rq, p, &rf);
- }
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
- void preempt_notifier_inc(void)
- {
- static_branch_inc(&preempt_notifier_key);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_inc);
- void preempt_notifier_dec(void)
- {
- static_branch_dec(&preempt_notifier_key);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_dec);
- /**
- * preempt_notifier_register - tell me when current is being preempted & rescheduled
- * @notifier: notifier struct to register
- */
- void preempt_notifier_register(struct preempt_notifier *notifier)
- {
- if (!static_branch_unlikely(&preempt_notifier_key))
- WARN(1, "registering preempt_notifier while notifiers disabled\n");
- hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_register);
- /**
- * preempt_notifier_unregister - no longer interested in preemption notifications
- * @notifier: notifier struct to unregister
- *
- * This is *not* safe to call from within a preemption notifier.
- */
- void preempt_notifier_unregister(struct preempt_notifier *notifier)
- {
- hlist_del(¬ifier->link);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
- static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- struct preempt_notifier *notifier;
- hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
- notifier->ops->sched_in(notifier, raw_smp_processor_id());
- }
- static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- if (static_branch_unlikely(&preempt_notifier_key))
- __fire_sched_in_preempt_notifiers(curr);
- }
- static void
- __fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- struct preempt_notifier *notifier;
- hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
- notifier->ops->sched_out(notifier, next);
- }
- static __always_inline void
- fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- if (static_branch_unlikely(&preempt_notifier_key))
- __fire_sched_out_preempt_notifiers(curr, next);
- }
- #else /* !CONFIG_PREEMPT_NOTIFIERS */
- static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- }
- static inline void
- fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- }
- #endif /* CONFIG_PREEMPT_NOTIFIERS */
- static inline void prepare_task(struct task_struct *next)
- {
- #ifdef CONFIG_SMP
- /*
- * Claim the task as running, we do this before switching to it
- * such that any running task will have this set.
- *
- * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
- * its ordering comment.
- */
- WRITE_ONCE(next->on_cpu, 1);
- #endif
- }
- static inline void finish_task(struct task_struct *prev)
- {
- #ifdef CONFIG_SMP
- /*
- * This must be the very last reference to @prev from this CPU. After
- * p->on_cpu is cleared, the task can be moved to a different CPU. We
- * must ensure this doesn't happen until the switch is completely
- * finished.
- *
- * In particular, the load of prev->state in finish_task_switch() must
- * happen before this.
- *
- * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
- */
- smp_store_release(&prev->on_cpu, 0);
- #endif
- }
- #ifdef CONFIG_SMP
- static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
- {
- void (*func)(struct rq *rq);
- struct balance_callback *next;
- lockdep_assert_rq_held(rq);
- while (head) {
- func = (void (*)(struct rq *))head->func;
- next = head->next;
- head->next = NULL;
- head = next;
- func(rq);
- }
- }
- static void balance_push(struct rq *rq);
- /*
- * balance_push_callback is a right abuse of the callback interface and plays
- * by significantly different rules.
- *
- * Where the normal balance_callback's purpose is to be ran in the same context
- * that queued it (only later, when it's safe to drop rq->lock again),
- * balance_push_callback is specifically targeted at __schedule().
- *
- * This abuse is tolerated because it places all the unlikely/odd cases behind
- * a single test, namely: rq->balance_callback == NULL.
- */
- struct balance_callback balance_push_callback = {
- .next = NULL,
- .func = balance_push,
- };
- static inline struct balance_callback *
- __splice_balance_callbacks(struct rq *rq, bool split)
- {
- struct balance_callback *head = rq->balance_callback;
- if (likely(!head))
- return NULL;
- lockdep_assert_rq_held(rq);
- /*
- * Must not take balance_push_callback off the list when
- * splice_balance_callbacks() and balance_callbacks() are not
- * in the same rq->lock section.
- *
- * In that case it would be possible for __schedule() to interleave
- * and observe the list empty.
- */
- if (split && head == &balance_push_callback)
- head = NULL;
- else
- rq->balance_callback = NULL;
- return head;
- }
- struct balance_callback *splice_balance_callbacks(struct rq *rq)
- {
- return __splice_balance_callbacks(rq, true);
- }
- static void __balance_callbacks(struct rq *rq)
- {
- do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
- }
- void balance_callbacks(struct rq *rq, struct balance_callback *head)
- {
- unsigned long flags;
- if (unlikely(head)) {
- raw_spin_rq_lock_irqsave(rq, flags);
- do_balance_callbacks(rq, head);
- raw_spin_rq_unlock_irqrestore(rq, flags);
- }
- }
- #else
- static inline void __balance_callbacks(struct rq *rq)
- {
- }
- #endif
- static inline void
- prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
- {
- /*
- * Since the runqueue lock will be released by the next
- * task (which is an invalid locking op but in the case
- * of the scheduler it's an obvious special-case), so we
- * do an early lockdep release here:
- */
- rq_unpin_lock(rq, rf);
- spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
- #ifdef CONFIG_DEBUG_SPINLOCK
- /* this is a valid case when another task releases the spinlock */
- rq_lockp(rq)->owner = next;
- #endif
- }
- static inline void finish_lock_switch(struct rq *rq)
- {
- /*
- * If we are tracking spinlock dependencies then we have to
- * fix up the runqueue lock - which gets 'carried over' from
- * prev into current:
- */
- spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
- __balance_callbacks(rq);
- raw_spin_rq_unlock_irq(rq);
- }
- /*
- * NOP if the arch has not defined these:
- */
- #ifndef prepare_arch_switch
- # define prepare_arch_switch(next) do { } while (0)
- #endif
- #ifndef finish_arch_post_lock_switch
- # define finish_arch_post_lock_switch() do { } while (0)
- #endif
- static inline void kmap_local_sched_out(void)
- {
- #ifdef CONFIG_KMAP_LOCAL
- if (unlikely(current->kmap_ctrl.idx))
- __kmap_local_sched_out();
- #endif
- }
- static inline void kmap_local_sched_in(void)
- {
- #ifdef CONFIG_KMAP_LOCAL
- if (unlikely(current->kmap_ctrl.idx))
- __kmap_local_sched_in();
- #endif
- }
- /**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @prev: the current task that is being switched out
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
- static inline void
- prepare_task_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
- {
- kcov_prepare_switch(prev);
- sched_info_switch(rq, prev, next);
- perf_event_task_sched_out(prev, next);
- rseq_preempt(prev);
- fire_sched_out_preempt_notifiers(prev, next);
- kmap_local_sched_out();
- prepare_task(next);
- prepare_arch_switch(next);
- }
- /**
- * finish_task_switch - clean up after a task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- *
- * The context switch have flipped the stack from under us and restored the
- * local variables which were saved when this task called schedule() in the
- * past. 'prev == current' is still correct but we need to recalculate this_rq
- * because prev may have moved to another CPU.
- */
- static struct rq *finish_task_switch(struct task_struct *prev)
- __releases(rq->lock)
- {
- struct rq *rq = this_rq();
- struct mm_struct *mm = rq->prev_mm;
- unsigned int prev_state;
- /*
- * The previous task will have left us with a preempt_count of 2
- * because it left us after:
- *
- * schedule()
- * preempt_disable(); // 1
- * __schedule()
- * raw_spin_lock_irq(&rq->lock) // 2
- *
- * Also, see FORK_PREEMPT_COUNT.
- */
- if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
- "corrupted preempt_count: %s/%d/0x%x\n",
- current->comm, current->pid, preempt_count()))
- preempt_count_set(FORK_PREEMPT_COUNT);
- rq->prev_mm = NULL;
- /*
- * A task struct has one reference for the use as "current".
- * If a task dies, then it sets TASK_DEAD in tsk->state and calls
- * schedule one last time. The schedule call will never return, and
- * the scheduled task must drop that reference.
- *
- * We must observe prev->state before clearing prev->on_cpu (in
- * finish_task), otherwise a concurrent wakeup can get prev
- * running on another CPU and we could rave with its RUNNING -> DEAD
- * transition, resulting in a double drop.
- */
- prev_state = READ_ONCE(prev->__state);
- vtime_task_switch(prev);
- perf_event_task_sched_in(prev, current);
- finish_task(prev);
- tick_nohz_task_switch();
- finish_lock_switch(rq);
- finish_arch_post_lock_switch();
- kcov_finish_switch(current);
- /*
- * kmap_local_sched_out() is invoked with rq::lock held and
- * interrupts disabled. There is no requirement for that, but the
- * sched out code does not have an interrupt enabled section.
- * Restoring the maps on sched in does not require interrupts being
- * disabled either.
- */
- kmap_local_sched_in();
- fire_sched_in_preempt_notifiers(current);
- /*
- * When switching through a kernel thread, the loop in
- * membarrier_{private,global}_expedited() may have observed that
- * kernel thread and not issued an IPI. It is therefore possible to
- * schedule between user->kernel->user threads without passing though
- * switch_mm(). Membarrier requires a barrier after storing to
- * rq->curr, before returning to userspace, so provide them here:
- *
- * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
- * provided by mmdrop_lazy_tlb(),
- * - a sync_core for SYNC_CORE.
- */
- if (mm) {
- membarrier_mm_sync_core_before_usermode(mm);
- mmdrop_lazy_tlb_sched(mm);
- }
- if (unlikely(prev_state == TASK_DEAD)) {
- if (prev->sched_class->task_dead)
- prev->sched_class->task_dead(prev);
- /* Task is done with its stack. */
- put_task_stack(prev);
- put_task_struct_rcu_user(prev);
- }
- return rq;
- }
- /**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
- asmlinkage __visible void schedule_tail(struct task_struct *prev)
- __releases(rq->lock)
- {
- /*
- * New tasks start with FORK_PREEMPT_COUNT, see there and
- * finish_task_switch() for details.
- *
- * finish_task_switch() will drop rq->lock() and lower preempt_count
- * and the preempt_enable() will end up enabling preemption (on
- * PREEMPT_COUNT kernels).
- */
- finish_task_switch(prev);
- preempt_enable();
- if (current->set_child_tid)
- put_user(task_pid_vnr(current), current->set_child_tid);
- calculate_sigpending();
- }
- /*
- * context_switch - switch to the new MM and the new thread's register state.
- */
- static __always_inline struct rq *
- context_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next, struct rq_flags *rf)
- {
- prepare_task_switch(rq, prev, next);
- /*
- * For paravirt, this is coupled with an exit in switch_to to
- * combine the page table reload and the switch backend into
- * one hypercall.
- */
- arch_start_context_switch(prev);
- /*
- * kernel -> kernel lazy + transfer active
- * user -> kernel lazy + mmgrab_lazy_tlb() active
- *
- * kernel -> user switch + mmdrop_lazy_tlb() active
- * user -> user switch
- *
- * switch_mm_cid() needs to be updated if the barriers provided
- * by context_switch() are modified.
- */
- if (!next->mm) { // to kernel
- enter_lazy_tlb(prev->active_mm, next);
- next->active_mm = prev->active_mm;
- if (prev->mm) // from user
- mmgrab_lazy_tlb(prev->active_mm);
- else
- prev->active_mm = NULL;
- } else { // to user
- membarrier_switch_mm(rq, prev->active_mm, next->mm);
- /*
- * sys_membarrier() requires an smp_mb() between setting
- * rq->curr / membarrier_switch_mm() and returning to userspace.
- *
- * The below provides this either through switch_mm(), or in
- * case 'prev->active_mm == next->mm' through
- * finish_task_switch()'s mmdrop().
- */
- switch_mm_irqs_off(prev->active_mm, next->mm, next);
- lru_gen_use_mm(next->mm);
- if (!prev->mm) { // from kernel
- /* will mmdrop_lazy_tlb() in finish_task_switch(). */
- rq->prev_mm = prev->active_mm;
- prev->active_mm = NULL;
- }
- }
- /* switch_mm_cid() requires the memory barriers above. */
- switch_mm_cid(rq, prev, next);
- prepare_lock_switch(rq, next, rf);
- /* Here we just switch the register state and the stack. */
- switch_to(prev, next, prev);
- barrier();
- return finish_task_switch(prev);
- }
- /*
- * nr_running and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, total number of context switches performed since bootup.
- */
- unsigned int nr_running(void)
- {
- unsigned int i, sum = 0;
- for_each_online_cpu(i)
- sum += cpu_rq(i)->nr_running;
- return sum;
- }
- /*
- * Check if only the current task is running on the CPU.
- *
- * Caution: this function does not check that the caller has disabled
- * preemption, thus the result might have a time-of-check-to-time-of-use
- * race. The caller is responsible to use it correctly, for example:
- *
- * - from a non-preemptible section (of course)
- *
- * - from a thread that is bound to a single CPU
- *
- * - in a loop with very short iterations (e.g. a polling loop)
- */
- bool single_task_running(void)
- {
- return raw_rq()->nr_running == 1;
- }
- EXPORT_SYMBOL(single_task_running);
- unsigned long long nr_context_switches_cpu(int cpu)
- {
- return cpu_rq(cpu)->nr_switches;
- }
- unsigned long long nr_context_switches(void)
- {
- int i;
- unsigned long long sum = 0;
- for_each_possible_cpu(i)
- sum += cpu_rq(i)->nr_switches;
- return sum;
- }
- /*
- * Consumers of these two interfaces, like for example the cpuidle menu
- * governor, are using nonsensical data. Preferring shallow idle state selection
- * for a CPU that has IO-wait which might not even end up running the task when
- * it does become runnable.
- */
- unsigned int nr_iowait_cpu(int cpu)
- {
- return atomic_read(&cpu_rq(cpu)->nr_iowait);
- }
- /*
- * IO-wait accounting, and how it's mostly bollocks (on SMP).
- *
- * The idea behind IO-wait account is to account the idle time that we could
- * have spend running if it were not for IO. That is, if we were to improve the
- * storage performance, we'd have a proportional reduction in IO-wait time.
- *
- * This all works nicely on UP, where, when a task blocks on IO, we account
- * idle time as IO-wait, because if the storage were faster, it could've been
- * running and we'd not be idle.
- *
- * This has been extended to SMP, by doing the same for each CPU. This however
- * is broken.
- *
- * Imagine for instance the case where two tasks block on one CPU, only the one
- * CPU will have IO-wait accounted, while the other has regular idle. Even
- * though, if the storage were faster, both could've ran at the same time,
- * utilising both CPUs.
- *
- * This means, that when looking globally, the current IO-wait accounting on
- * SMP is a lower bound, by reason of under accounting.
- *
- * Worse, since the numbers are provided per CPU, they are sometimes
- * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
- * associated with any one particular CPU, it can wake to another CPU than it
- * blocked on. This means the per CPU IO-wait number is meaningless.
- *
- * Task CPU affinities can make all that even more 'interesting'.
- */
- unsigned int nr_iowait(void)
- {
- unsigned int i, sum = 0;
- for_each_possible_cpu(i)
- sum += nr_iowait_cpu(i);
- return sum;
- }
- #ifdef CONFIG_SMP
- /*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
- void sched_exec(void)
- {
- struct task_struct *p = current;
- struct migration_arg arg;
- int dest_cpu;
- scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
- dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
- if (dest_cpu == smp_processor_id())
- return;
- if (unlikely(!cpu_active(dest_cpu)))
- return;
- arg = (struct migration_arg){ p, dest_cpu };
- }
- stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
- }
- #endif
- DEFINE_PER_CPU(struct kernel_stat, kstat);
- DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
- EXPORT_PER_CPU_SYMBOL(kstat);
- EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
- /*
- * The function fair_sched_class.update_curr accesses the struct curr
- * and its field curr->exec_start; when called from task_sched_runtime(),
- * we observe a high rate of cache misses in practice.
- * Prefetching this data results in improved performance.
- */
- static inline void prefetch_curr_exec_start(struct task_struct *p)
- {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct sched_entity *curr = p->se.cfs_rq->curr;
- #else
- struct sched_entity *curr = task_rq(p)->cfs.curr;
- #endif
- prefetch(curr);
- prefetch(&curr->exec_start);
- }
- /*
- * Return accounted runtime for the task.
- * In case the task is currently running, return the runtime plus current's
- * pending runtime that have not been accounted yet.
- */
- unsigned long long task_sched_runtime(struct task_struct *p)
- {
- struct rq_flags rf;
- struct rq *rq;
- u64 ns;
- #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
- /*
- * 64-bit doesn't need locks to atomically read a 64-bit value.
- * So we have a optimization chance when the task's delta_exec is 0.
- * Reading ->on_cpu is racy, but this is OK.
- *
- * If we race with it leaving CPU, we'll take a lock. So we're correct.
- * If we race with it entering CPU, unaccounted time is 0. This is
- * indistinguishable from the read occurring a few cycles earlier.
- * If we see ->on_cpu without ->on_rq, the task is leaving, and has
- * been accounted, so we're correct here as well.
- */
- if (!p->on_cpu || !task_on_rq_queued(p))
- return p->se.sum_exec_runtime;
- #endif
- rq = task_rq_lock(p, &rf);
- /*
- * Must be ->curr _and_ ->on_rq. If dequeued, we would
- * project cycles that may never be accounted to this
- * thread, breaking clock_gettime().
- */
- if (task_current(rq, p) && task_on_rq_queued(p)) {
- prefetch_curr_exec_start(p);
- update_rq_clock(rq);
- p->sched_class->update_curr(rq);
- }
- ns = p->se.sum_exec_runtime;
- task_rq_unlock(rq, p, &rf);
- return ns;
- }
- #ifdef CONFIG_SCHED_DEBUG
- static u64 cpu_resched_latency(struct rq *rq)
- {
- int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
- u64 resched_latency, now = rq_clock(rq);
- static bool warned_once;
- if (sysctl_resched_latency_warn_once && warned_once)
- return 0;
- if (!need_resched() || !latency_warn_ms)
- return 0;
- if (system_state == SYSTEM_BOOTING)
- return 0;
- if (!rq->last_seen_need_resched_ns) {
- rq->last_seen_need_resched_ns = now;
- rq->ticks_without_resched = 0;
- return 0;
- }
- rq->ticks_without_resched++;
- resched_latency = now - rq->last_seen_need_resched_ns;
- if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
- return 0;
- warned_once = true;
- return resched_latency;
- }
- static int __init setup_resched_latency_warn_ms(char *str)
- {
- long val;
- if ((kstrtol(str, 0, &val))) {
- pr_warn("Unable to set resched_latency_warn_ms\n");
- return 1;
- }
- sysctl_resched_latency_warn_ms = val;
- return 1;
- }
- __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
- #else
- static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
- #endif /* CONFIG_SCHED_DEBUG */
- /*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
- */
- void sched_tick(void)
- {
- int cpu = smp_processor_id();
- struct rq *rq = cpu_rq(cpu);
- struct task_struct *curr;
- struct rq_flags rf;
- unsigned long hw_pressure;
- u64 resched_latency;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
- arch_scale_freq_tick();
- sched_clock_tick();
- rq_lock(rq, &rf);
- curr = rq->curr;
- psi_account_irqtime(rq, curr, NULL);
- update_rq_clock(rq);
- hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
- update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
- curr->sched_class->task_tick(rq, curr, 0);
- if (sched_feat(LATENCY_WARN))
- resched_latency = cpu_resched_latency(rq);
- calc_global_load_tick(rq);
- sched_core_tick(rq);
- task_tick_mm_cid(rq, curr);
- scx_tick(rq);
- rq_unlock(rq, &rf);
- if (sched_feat(LATENCY_WARN) && resched_latency)
- resched_latency_warn(cpu, resched_latency);
- perf_event_task_tick();
- if (curr->flags & PF_WQ_WORKER)
- wq_worker_tick(curr);
- #ifdef CONFIG_SMP
- if (!scx_switched_all()) {
- rq->idle_balance = idle_cpu(cpu);
- sched_balance_trigger(rq);
- }
- #endif
- }
- #ifdef CONFIG_NO_HZ_FULL
- struct tick_work {
- int cpu;
- atomic_t state;
- struct delayed_work work;
- };
- /* Values for ->state, see diagram below. */
- #define TICK_SCHED_REMOTE_OFFLINE 0
- #define TICK_SCHED_REMOTE_OFFLINING 1
- #define TICK_SCHED_REMOTE_RUNNING 2
- /*
- * State diagram for ->state:
- *
- *
- * TICK_SCHED_REMOTE_OFFLINE
- * | ^
- * | |
- * | | sched_tick_remote()
- * | |
- * | |
- * +--TICK_SCHED_REMOTE_OFFLINING
- * | ^
- * | |
- * sched_tick_start() | | sched_tick_stop()
- * | |
- * V |
- * TICK_SCHED_REMOTE_RUNNING
- *
- *
- * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
- * and sched_tick_start() are happy to leave the state in RUNNING.
- */
- static struct tick_work __percpu *tick_work_cpu;
- static void sched_tick_remote(struct work_struct *work)
- {
- struct delayed_work *dwork = to_delayed_work(work);
- struct tick_work *twork = container_of(dwork, struct tick_work, work);
- int cpu = twork->cpu;
- struct rq *rq = cpu_rq(cpu);
- int os;
- /*
- * Handle the tick only if it appears the remote CPU is running in full
- * dynticks mode. The check is racy by nature, but missing a tick or
- * having one too much is no big deal because the scheduler tick updates
- * statistics and checks timeslices in a time-independent way, regardless
- * of when exactly it is running.
- */
- if (tick_nohz_tick_stopped_cpu(cpu)) {
- guard(rq_lock_irq)(rq);
- struct task_struct *curr = rq->curr;
- if (cpu_online(cpu)) {
- update_rq_clock(rq);
- if (!is_idle_task(curr)) {
- /*
- * Make sure the next tick runs within a
- * reasonable amount of time.
- */
- u64 delta = rq_clock_task(rq) - curr->se.exec_start;
- WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
- }
- curr->sched_class->task_tick(rq, curr, 0);
- calc_load_nohz_remote(rq);
- }
- }
- /*
- * Run the remote tick once per second (1Hz). This arbitrary
- * frequency is large enough to avoid overload but short enough
- * to keep scheduler internal stats reasonably up to date. But
- * first update state to reflect hotplug activity if required.
- */
- os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
- WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
- if (os == TICK_SCHED_REMOTE_RUNNING)
- queue_delayed_work(system_unbound_wq, dwork, HZ);
- }
- static void sched_tick_start(int cpu)
- {
- int os;
- struct tick_work *twork;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
- return;
- WARN_ON_ONCE(!tick_work_cpu);
- twork = per_cpu_ptr(tick_work_cpu, cpu);
- os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
- WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
- if (os == TICK_SCHED_REMOTE_OFFLINE) {
- twork->cpu = cpu;
- INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
- queue_delayed_work(system_unbound_wq, &twork->work, HZ);
- }
- }
- #ifdef CONFIG_HOTPLUG_CPU
- static void sched_tick_stop(int cpu)
- {
- struct tick_work *twork;
- int os;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
- return;
- WARN_ON_ONCE(!tick_work_cpu);
- twork = per_cpu_ptr(tick_work_cpu, cpu);
- /* There cannot be competing actions, but don't rely on stop-machine. */
- os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
- WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
- /* Don't cancel, as this would mess up the state machine. */
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- int __init sched_tick_offload_init(void)
- {
- tick_work_cpu = alloc_percpu(struct tick_work);
- BUG_ON(!tick_work_cpu);
- return 0;
- }
- #else /* !CONFIG_NO_HZ_FULL */
- static inline void sched_tick_start(int cpu) { }
- static inline void sched_tick_stop(int cpu) { }
- #endif
- #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
- defined(CONFIG_TRACE_PREEMPT_TOGGLE))
- /*
- * If the value passed in is equal to the current preempt count
- * then we just disabled preemption. Start timing the latency.
- */
- static inline void preempt_latency_start(int val)
- {
- if (preempt_count() == val) {
- unsigned long ip = get_lock_parent_ip();
- #ifdef CONFIG_DEBUG_PREEMPT
- current->preempt_disable_ip = ip;
- #endif
- trace_preempt_off(CALLER_ADDR0, ip);
- }
- }
- void preempt_count_add(int val)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
- return;
- #endif
- __preempt_count_add(val);
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Spinlock count overflowing soon?
- */
- DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
- PREEMPT_MASK - 10);
- #endif
- preempt_latency_start(val);
- }
- EXPORT_SYMBOL(preempt_count_add);
- NOKPROBE_SYMBOL(preempt_count_add);
- /*
- * If the value passed in equals to the current preempt count
- * then we just enabled preemption. Stop timing the latency.
- */
- static inline void preempt_latency_stop(int val)
- {
- if (preempt_count() == val)
- trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
- }
- void preempt_count_sub(int val)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
- return;
- /*
- * Is the spinlock portion underflowing?
- */
- if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
- !(preempt_count() & PREEMPT_MASK)))
- return;
- #endif
- preempt_latency_stop(val);
- __preempt_count_sub(val);
- }
- EXPORT_SYMBOL(preempt_count_sub);
- NOKPROBE_SYMBOL(preempt_count_sub);
- #else
- static inline void preempt_latency_start(int val) { }
- static inline void preempt_latency_stop(int val) { }
- #endif
- static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- return p->preempt_disable_ip;
- #else
- return 0;
- #endif
- }
- /*
- * Print scheduling while atomic bug:
- */
- static noinline void __schedule_bug(struct task_struct *prev)
- {
- /* Save this before calling printk(), since that will clobber it */
- unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
- if (oops_in_progress)
- return;
- printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
- prev->comm, prev->pid, preempt_count());
- debug_show_held_locks(prev);
- print_modules();
- if (irqs_disabled())
- print_irqtrace_events(prev);
- if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
- pr_err("Preemption disabled at:");
- print_ip_sym(KERN_ERR, preempt_disable_ip);
- }
- check_panic_on_warn("scheduling while atomic");
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- /*
- * Various schedule()-time debugging checks and statistics:
- */
- static inline void schedule_debug(struct task_struct *prev, bool preempt)
- {
- #ifdef CONFIG_SCHED_STACK_END_CHECK
- if (task_stack_end_corrupted(prev))
- panic("corrupted stack end detected inside scheduler\n");
- if (task_scs_end_corrupted(prev))
- panic("corrupted shadow stack detected inside scheduler\n");
- #endif
- #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
- if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
- printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
- prev->comm, prev->pid, prev->non_block_count);
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- #endif
- if (unlikely(in_atomic_preempt_off())) {
- __schedule_bug(prev);
- preempt_count_set(PREEMPT_DISABLED);
- }
- rcu_sleep_check();
- SCHED_WARN_ON(ct_state() == CT_STATE_USER);
- profile_hit(SCHED_PROFILING, __builtin_return_address(0));
- schedstat_inc(this_rq()->sched_count);
- }
- static void prev_balance(struct rq *rq, struct task_struct *prev,
- struct rq_flags *rf)
- {
- const struct sched_class *start_class = prev->sched_class;
- const struct sched_class *class;
- #ifdef CONFIG_SCHED_CLASS_EXT
- /*
- * SCX requires a balance() call before every pick_task() including when
- * waking up from SCHED_IDLE. If @start_class is below SCX, start from
- * SCX instead. Also, set a flag to detect missing balance() call.
- */
- if (scx_enabled()) {
- rq->scx.flags |= SCX_RQ_BAL_PENDING;
- if (sched_class_above(&ext_sched_class, start_class))
- start_class = &ext_sched_class;
- }
- #endif
- /*
- * We must do the balancing pass before put_prev_task(), such
- * that when we release the rq->lock the task is in the same
- * state as before we took rq->lock.
- *
- * We can terminate the balance pass as soon as we know there is
- * a runnable task of @class priority or higher.
- */
- for_active_class_range(class, start_class, &idle_sched_class) {
- if (class->balance && class->balance(rq, prev, rf))
- break;
- }
- }
- /*
- * Pick up the highest-prio task:
- */
- static inline struct task_struct *
- __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
- {
- const struct sched_class *class;
- struct task_struct *p;
- rq->dl_server = NULL;
- if (scx_enabled())
- goto restart;
- /*
- * Optimization: we know that if all tasks are in the fair class we can
- * call that function directly, but only if the @prev task wasn't of a
- * higher scheduling class, because otherwise those lose the
- * opportunity to pull in more work from other CPUs.
- */
- if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
- rq->nr_running == rq->cfs.h_nr_running)) {
- p = pick_next_task_fair(rq, prev, rf);
- if (unlikely(p == RETRY_TASK))
- goto restart;
- /* Assume the next prioritized class is idle_sched_class */
- if (!p) {
- p = pick_task_idle(rq);
- put_prev_set_next_task(rq, prev, p);
- }
- return p;
- }
- restart:
- prev_balance(rq, prev, rf);
- for_each_active_class(class) {
- if (class->pick_next_task) {
- p = class->pick_next_task(rq, prev);
- if (p)
- return p;
- } else {
- p = class->pick_task(rq);
- if (p) {
- put_prev_set_next_task(rq, prev, p);
- return p;
- }
- }
- }
- BUG(); /* The idle class should always have a runnable task. */
- }
- #ifdef CONFIG_SCHED_CORE
- static inline bool is_task_rq_idle(struct task_struct *t)
- {
- return (task_rq(t)->idle == t);
- }
- static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
- {
- return is_task_rq_idle(a) || (a->core_cookie == cookie);
- }
- static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
- {
- if (is_task_rq_idle(a) || is_task_rq_idle(b))
- return true;
- return a->core_cookie == b->core_cookie;
- }
- static inline struct task_struct *pick_task(struct rq *rq)
- {
- const struct sched_class *class;
- struct task_struct *p;
- rq->dl_server = NULL;
- for_each_active_class(class) {
- p = class->pick_task(rq);
- if (p)
- return p;
- }
- BUG(); /* The idle class should always have a runnable task. */
- }
- extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
- static void queue_core_balance(struct rq *rq);
- static struct task_struct *
- pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
- {
- struct task_struct *next, *p, *max = NULL;
- const struct cpumask *smt_mask;
- bool fi_before = false;
- bool core_clock_updated = (rq == rq->core);
- unsigned long cookie;
- int i, cpu, occ = 0;
- struct rq *rq_i;
- bool need_sync;
- if (!sched_core_enabled(rq))
- return __pick_next_task(rq, prev, rf);
- cpu = cpu_of(rq);
- /* Stopper task is switching into idle, no need core-wide selection. */
- if (cpu_is_offline(cpu)) {
- /*
- * Reset core_pick so that we don't enter the fastpath when
- * coming online. core_pick would already be migrated to
- * another cpu during offline.
- */
- rq->core_pick = NULL;
- rq->core_dl_server = NULL;
- return __pick_next_task(rq, prev, rf);
- }
- /*
- * If there were no {en,de}queues since we picked (IOW, the task
- * pointers are all still valid), and we haven't scheduled the last
- * pick yet, do so now.
- *
- * rq->core_pick can be NULL if no selection was made for a CPU because
- * it was either offline or went offline during a sibling's core-wide
- * selection. In this case, do a core-wide selection.
- */
- if (rq->core->core_pick_seq == rq->core->core_task_seq &&
- rq->core->core_pick_seq != rq->core_sched_seq &&
- rq->core_pick) {
- WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
- next = rq->core_pick;
- rq->dl_server = rq->core_dl_server;
- rq->core_pick = NULL;
- rq->core_dl_server = NULL;
- goto out_set_next;
- }
- prev_balance(rq, prev, rf);
- smt_mask = cpu_smt_mask(cpu);
- need_sync = !!rq->core->core_cookie;
- /* reset state */
- rq->core->core_cookie = 0UL;
- if (rq->core->core_forceidle_count) {
- if (!core_clock_updated) {
- update_rq_clock(rq->core);
- core_clock_updated = true;
- }
- sched_core_account_forceidle(rq);
- /* reset after accounting force idle */
- rq->core->core_forceidle_start = 0;
- rq->core->core_forceidle_count = 0;
- rq->core->core_forceidle_occupation = 0;
- need_sync = true;
- fi_before = true;
- }
- /*
- * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
- *
- * @task_seq guards the task state ({en,de}queues)
- * @pick_seq is the @task_seq we did a selection on
- * @sched_seq is the @pick_seq we scheduled
- *
- * However, preemptions can cause multiple picks on the same task set.
- * 'Fix' this by also increasing @task_seq for every pick.
- */
- rq->core->core_task_seq++;
- /*
- * Optimize for common case where this CPU has no cookies
- * and there are no cookied tasks running on siblings.
- */
- if (!need_sync) {
- next = pick_task(rq);
- if (!next->core_cookie) {
- rq->core_pick = NULL;
- rq->core_dl_server = NULL;
- /*
- * For robustness, update the min_vruntime_fi for
- * unconstrained picks as well.
- */
- WARN_ON_ONCE(fi_before);
- task_vruntime_update(rq, next, false);
- goto out_set_next;
- }
- }
- /*
- * For each thread: do the regular task pick and find the max prio task
- * amongst them.
- *
- * Tie-break prio towards the current CPU
- */
- for_each_cpu_wrap(i, smt_mask, cpu) {
- rq_i = cpu_rq(i);
- /*
- * Current cpu always has its clock updated on entrance to
- * pick_next_task(). If the current cpu is not the core,
- * the core may also have been updated above.
- */
- if (i != cpu && (rq_i != rq->core || !core_clock_updated))
- update_rq_clock(rq_i);
- rq_i->core_pick = p = pick_task(rq_i);
- rq_i->core_dl_server = rq_i->dl_server;
- if (!max || prio_less(max, p, fi_before))
- max = p;
- }
- cookie = rq->core->core_cookie = max->core_cookie;
- /*
- * For each thread: try and find a runnable task that matches @max or
- * force idle.
- */
- for_each_cpu(i, smt_mask) {
- rq_i = cpu_rq(i);
- p = rq_i->core_pick;
- if (!cookie_equals(p, cookie)) {
- p = NULL;
- if (cookie)
- p = sched_core_find(rq_i, cookie);
- if (!p)
- p = idle_sched_class.pick_task(rq_i);
- }
- rq_i->core_pick = p;
- rq_i->core_dl_server = NULL;
- if (p == rq_i->idle) {
- if (rq_i->nr_running) {
- rq->core->core_forceidle_count++;
- if (!fi_before)
- rq->core->core_forceidle_seq++;
- }
- } else {
- occ++;
- }
- }
- if (schedstat_enabled() && rq->core->core_forceidle_count) {
- rq->core->core_forceidle_start = rq_clock(rq->core);
- rq->core->core_forceidle_occupation = occ;
- }
- rq->core->core_pick_seq = rq->core->core_task_seq;
- next = rq->core_pick;
- rq->core_sched_seq = rq->core->core_pick_seq;
- /* Something should have been selected for current CPU */
- WARN_ON_ONCE(!next);
- /*
- * Reschedule siblings
- *
- * NOTE: L1TF -- at this point we're no longer running the old task and
- * sending an IPI (below) ensures the sibling will no longer be running
- * their task. This ensures there is no inter-sibling overlap between
- * non-matching user state.
- */
- for_each_cpu(i, smt_mask) {
- rq_i = cpu_rq(i);
- /*
- * An online sibling might have gone offline before a task
- * could be picked for it, or it might be offline but later
- * happen to come online, but its too late and nothing was
- * picked for it. That's Ok - it will pick tasks for itself,
- * so ignore it.
- */
- if (!rq_i->core_pick)
- continue;
- /*
- * Update for new !FI->FI transitions, or if continuing to be in !FI:
- * fi_before fi update?
- * 0 0 1
- * 0 1 1
- * 1 0 1
- * 1 1 0
- */
- if (!(fi_before && rq->core->core_forceidle_count))
- task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
- rq_i->core_pick->core_occupation = occ;
- if (i == cpu) {
- rq_i->core_pick = NULL;
- rq_i->core_dl_server = NULL;
- continue;
- }
- /* Did we break L1TF mitigation requirements? */
- WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
- if (rq_i->curr == rq_i->core_pick) {
- rq_i->core_pick = NULL;
- rq_i->core_dl_server = NULL;
- continue;
- }
- resched_curr(rq_i);
- }
- out_set_next:
- put_prev_set_next_task(rq, prev, next);
- if (rq->core->core_forceidle_count && next == rq->idle)
- queue_core_balance(rq);
- return next;
- }
- static bool try_steal_cookie(int this, int that)
- {
- struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
- struct task_struct *p;
- unsigned long cookie;
- bool success = false;
- guard(irq)();
- guard(double_rq_lock)(dst, src);
- cookie = dst->core->core_cookie;
- if (!cookie)
- return false;
- if (dst->curr != dst->idle)
- return false;
- p = sched_core_find(src, cookie);
- if (!p)
- return false;
- do {
- if (p == src->core_pick || p == src->curr)
- goto next;
- if (!is_cpu_allowed(p, this))
- goto next;
- if (p->core_occupation > dst->idle->core_occupation)
- goto next;
- /*
- * sched_core_find() and sched_core_next() will ensure
- * that task @p is not throttled now, we also need to
- * check whether the runqueue of the destination CPU is
- * being throttled.
- */
- if (sched_task_is_throttled(p, this))
- goto next;
- deactivate_task(src, p, 0);
- set_task_cpu(p, this);
- activate_task(dst, p, 0);
- resched_curr(dst);
- success = true;
- break;
- next:
- p = sched_core_next(p, cookie);
- } while (p);
- return success;
- }
- static bool steal_cookie_task(int cpu, struct sched_domain *sd)
- {
- int i;
- for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
- if (i == cpu)
- continue;
- if (need_resched())
- break;
- if (try_steal_cookie(cpu, i))
- return true;
- }
- return false;
- }
- static void sched_core_balance(struct rq *rq)
- {
- struct sched_domain *sd;
- int cpu = cpu_of(rq);
- guard(preempt)();
- guard(rcu)();
- raw_spin_rq_unlock_irq(rq);
- for_each_domain(cpu, sd) {
- if (need_resched())
- break;
- if (steal_cookie_task(cpu, sd))
- break;
- }
- raw_spin_rq_lock_irq(rq);
- }
- static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
- static void queue_core_balance(struct rq *rq)
- {
- if (!sched_core_enabled(rq))
- return;
- if (!rq->core->core_cookie)
- return;
- if (!rq->nr_running) /* not forced idle */
- return;
- queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
- }
- DEFINE_LOCK_GUARD_1(core_lock, int,
- sched_core_lock(*_T->lock, &_T->flags),
- sched_core_unlock(*_T->lock, &_T->flags),
- unsigned long flags)
- static void sched_core_cpu_starting(unsigned int cpu)
- {
- const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
- int t;
- guard(core_lock)(&cpu);
- WARN_ON_ONCE(rq->core != rq);
- /* if we're the first, we'll be our own leader */
- if (cpumask_weight(smt_mask) == 1)
- return;
- /* find the leader */
- for_each_cpu(t, smt_mask) {
- if (t == cpu)
- continue;
- rq = cpu_rq(t);
- if (rq->core == rq) {
- core_rq = rq;
- break;
- }
- }
- if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
- return;
- /* install and validate core_rq */
- for_each_cpu(t, smt_mask) {
- rq = cpu_rq(t);
- if (t == cpu)
- rq->core = core_rq;
- WARN_ON_ONCE(rq->core != core_rq);
- }
- }
- static void sched_core_cpu_deactivate(unsigned int cpu)
- {
- const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
- int t;
- guard(core_lock)(&cpu);
- /* if we're the last man standing, nothing to do */
- if (cpumask_weight(smt_mask) == 1) {
- WARN_ON_ONCE(rq->core != rq);
- return;
- }
- /* if we're not the leader, nothing to do */
- if (rq->core != rq)
- return;
- /* find a new leader */
- for_each_cpu(t, smt_mask) {
- if (t == cpu)
- continue;
- core_rq = cpu_rq(t);
- break;
- }
- if (WARN_ON_ONCE(!core_rq)) /* impossible */
- return;
- /* copy the shared state to the new leader */
- core_rq->core_task_seq = rq->core_task_seq;
- core_rq->core_pick_seq = rq->core_pick_seq;
- core_rq->core_cookie = rq->core_cookie;
- core_rq->core_forceidle_count = rq->core_forceidle_count;
- core_rq->core_forceidle_seq = rq->core_forceidle_seq;
- core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
- /*
- * Accounting edge for forced idle is handled in pick_next_task().
- * Don't need another one here, since the hotplug thread shouldn't
- * have a cookie.
- */
- core_rq->core_forceidle_start = 0;
- /* install new leader */
- for_each_cpu(t, smt_mask) {
- rq = cpu_rq(t);
- rq->core = core_rq;
- }
- }
- static inline void sched_core_cpu_dying(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- if (rq->core != rq)
- rq->core = rq;
- }
- #else /* !CONFIG_SCHED_CORE */
- static inline void sched_core_cpu_starting(unsigned int cpu) {}
- static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
- static inline void sched_core_cpu_dying(unsigned int cpu) {}
- static struct task_struct *
- pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
- {
- return __pick_next_task(rq, prev, rf);
- }
- #endif /* CONFIG_SCHED_CORE */
- /*
- * Constants for the sched_mode argument of __schedule().
- *
- * The mode argument allows RT enabled kernels to differentiate a
- * preemption from blocking on an 'sleeping' spin/rwlock.
- */
- #define SM_IDLE (-1)
- #define SM_NONE 0
- #define SM_PREEMPT 1
- #define SM_RTLOCK_WAIT 2
- /*
- * Helper function for __schedule()
- *
- * If a task does not have signals pending, deactivate it
- * Otherwise marks the task's __state as RUNNING
- */
- static bool try_to_block_task(struct rq *rq, struct task_struct *p,
- unsigned long task_state)
- {
- int flags = DEQUEUE_NOCLOCK;
- if (signal_pending_state(task_state, p)) {
- WRITE_ONCE(p->__state, TASK_RUNNING);
- return false;
- }
- p->sched_contributes_to_load =
- (task_state & TASK_UNINTERRUPTIBLE) &&
- !(task_state & TASK_NOLOAD) &&
- !(task_state & TASK_FROZEN);
- if (unlikely(is_special_task_state(task_state)))
- flags |= DEQUEUE_SPECIAL;
- /*
- * __schedule() ttwu()
- * prev_state = prev->state; if (p->on_rq && ...)
- * if (prev_state) goto out;
- * p->on_rq = 0; smp_acquire__after_ctrl_dep();
- * p->state = TASK_WAKING
- *
- * Where __schedule() and ttwu() have matching control dependencies.
- *
- * After this, schedule() must not care about p->state any more.
- */
- block_task(rq, p, flags);
- return true;
- }
- /*
- * __schedule() is the main scheduler function.
- *
- * The main means of driving the scheduler and thus entering this function are:
- *
- * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
- *
- * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
- * paths. For example, see arch/x86/entry_64.S.
- *
- * To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler sched_tick().
- *
- * 3. Wakeups don't really cause entry into schedule(). They add a
- * task to the run-queue and that's it.
- *
- * Now, if the new task added to the run-queue preempts the current
- * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
- * called on the nearest possible occasion:
- *
- * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
- *
- * - in syscall or exception context, at the next outmost
- * preempt_enable(). (this might be as soon as the wake_up()'s
- * spin_unlock()!)
- *
- * - in IRQ context, return from interrupt-handler to
- * preemptible context
- *
- * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
- * then at the next:
- *
- * - cond_resched() call
- * - explicit schedule() call
- * - return from syscall or exception to user-space
- * - return from interrupt-handler to user-space
- *
- * WARNING: must be called with preemption disabled!
- */
- static void __sched notrace __schedule(int sched_mode)
- {
- struct task_struct *prev, *next;
- /*
- * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
- * as a preemption by schedule_debug() and RCU.
- */
- bool preempt = sched_mode > SM_NONE;
- unsigned long *switch_count;
- unsigned long prev_state;
- struct rq_flags rf;
- struct rq *rq;
- int cpu;
- cpu = smp_processor_id();
- rq = cpu_rq(cpu);
- prev = rq->curr;
- schedule_debug(prev, preempt);
- if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
- hrtick_clear(rq);
- local_irq_disable();
- rcu_note_context_switch(preempt);
- /*
- * Make sure that signal_pending_state()->signal_pending() below
- * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
- * done by the caller to avoid the race with signal_wake_up():
- *
- * __set_current_state(@state) signal_wake_up()
- * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
- * wake_up_state(p, state)
- * LOCK rq->lock LOCK p->pi_state
- * smp_mb__after_spinlock() smp_mb__after_spinlock()
- * if (signal_pending_state()) if (p->state & @state)
- *
- * Also, the membarrier system call requires a full memory barrier
- * after coming from user-space, before storing to rq->curr; this
- * barrier matches a full barrier in the proximity of the membarrier
- * system call exit.
- */
- rq_lock(rq, &rf);
- smp_mb__after_spinlock();
- /* Promote REQ to ACT */
- rq->clock_update_flags <<= 1;
- update_rq_clock(rq);
- rq->clock_update_flags = RQCF_UPDATED;
- switch_count = &prev->nivcsw;
- /* Task state changes only considers SM_PREEMPT as preemption */
- preempt = sched_mode == SM_PREEMPT;
- /*
- * We must load prev->state once (task_struct::state is volatile), such
- * that we form a control dependency vs deactivate_task() below.
- */
- prev_state = READ_ONCE(prev->__state);
- if (sched_mode == SM_IDLE) {
- /* SCX must consult the BPF scheduler to tell if rq is empty */
- if (!rq->nr_running && !scx_enabled()) {
- next = prev;
- goto picked;
- }
- } else if (!preempt && prev_state) {
- try_to_block_task(rq, prev, prev_state);
- switch_count = &prev->nvcsw;
- }
- next = pick_next_task(rq, prev, &rf);
- picked:
- clear_tsk_need_resched(prev);
- clear_preempt_need_resched();
- #ifdef CONFIG_SCHED_DEBUG
- rq->last_seen_need_resched_ns = 0;
- #endif
- if (likely(prev != next)) {
- rq->nr_switches++;
- /*
- * RCU users of rcu_dereference(rq->curr) may not see
- * changes to task_struct made by pick_next_task().
- */
- RCU_INIT_POINTER(rq->curr, next);
- /*
- * The membarrier system call requires each architecture
- * to have a full memory barrier after updating
- * rq->curr, before returning to user-space.
- *
- * Here are the schemes providing that barrier on the
- * various architectures:
- * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
- * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
- * on PowerPC and on RISC-V.
- * - finish_lock_switch() for weakly-ordered
- * architectures where spin_unlock is a full barrier,
- * - switch_to() for arm64 (weakly-ordered, spin_unlock
- * is a RELEASE barrier),
- *
- * The barrier matches a full barrier in the proximity of
- * the membarrier system call entry.
- *
- * On RISC-V, this barrier pairing is also needed for the
- * SYNC_CORE command when switching between processes, cf.
- * the inline comments in membarrier_arch_switch_mm().
- */
- ++*switch_count;
- migrate_disable_switch(rq, prev);
- psi_account_irqtime(rq, prev, next);
- psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
- prev->se.sched_delayed);
- trace_sched_switch(preempt, prev, next, prev_state);
- /* Also unlocks the rq: */
- rq = context_switch(rq, prev, next, &rf);
- } else {
- rq_unpin_lock(rq, &rf);
- __balance_callbacks(rq);
- raw_spin_rq_unlock_irq(rq);
- }
- }
- void __noreturn do_task_dead(void)
- {
- /* Causes final put_task_struct in finish_task_switch(): */
- set_special_state(TASK_DEAD);
- /* Tell freezer to ignore us: */
- current->flags |= PF_NOFREEZE;
- __schedule(SM_NONE);
- BUG();
- /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
- for (;;)
- cpu_relax();
- }
- static inline void sched_submit_work(struct task_struct *tsk)
- {
- static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
- unsigned int task_flags;
- /*
- * Establish LD_WAIT_CONFIG context to ensure none of the code called
- * will use a blocking primitive -- which would lead to recursion.
- */
- lock_map_acquire_try(&sched_map);
- task_flags = tsk->flags;
- /*
- * If a worker goes to sleep, notify and ask workqueue whether it
- * wants to wake up a task to maintain concurrency.
- */
- if (task_flags & PF_WQ_WORKER)
- wq_worker_sleeping(tsk);
- else if (task_flags & PF_IO_WORKER)
- io_wq_worker_sleeping(tsk);
- /*
- * spinlock and rwlock must not flush block requests. This will
- * deadlock if the callback attempts to acquire a lock which is
- * already acquired.
- */
- SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
- /*
- * If we are going to sleep and we have plugged IO queued,
- * make sure to submit it to avoid deadlocks.
- */
- blk_flush_plug(tsk->plug, true);
- lock_map_release(&sched_map);
- }
- static void sched_update_worker(struct task_struct *tsk)
- {
- if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
- if (tsk->flags & PF_BLOCK_TS)
- blk_plug_invalidate_ts(tsk);
- if (tsk->flags & PF_WQ_WORKER)
- wq_worker_running(tsk);
- else if (tsk->flags & PF_IO_WORKER)
- io_wq_worker_running(tsk);
- }
- }
- static __always_inline void __schedule_loop(int sched_mode)
- {
- do {
- preempt_disable();
- __schedule(sched_mode);
- sched_preempt_enable_no_resched();
- } while (need_resched());
- }
- asmlinkage __visible void __sched schedule(void)
- {
- struct task_struct *tsk = current;
- #ifdef CONFIG_RT_MUTEXES
- lockdep_assert(!tsk->sched_rt_mutex);
- #endif
- if (!task_is_running(tsk))
- sched_submit_work(tsk);
- __schedule_loop(SM_NONE);
- sched_update_worker(tsk);
- }
- EXPORT_SYMBOL(schedule);
- /*
- * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
- * state (have scheduled out non-voluntarily) by making sure that all
- * tasks have either left the run queue or have gone into user space.
- * As idle tasks do not do either, they must not ever be preempted
- * (schedule out non-voluntarily).
- *
- * schedule_idle() is similar to schedule_preempt_disable() except that it
- * never enables preemption because it does not call sched_submit_work().
- */
- void __sched schedule_idle(void)
- {
- /*
- * As this skips calling sched_submit_work(), which the idle task does
- * regardless because that function is a NOP when the task is in a
- * TASK_RUNNING state, make sure this isn't used someplace that the
- * current task can be in any other state. Note, idle is always in the
- * TASK_RUNNING state.
- */
- WARN_ON_ONCE(current->__state);
- do {
- __schedule(SM_IDLE);
- } while (need_resched());
- }
- #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
- asmlinkage __visible void __sched schedule_user(void)
- {
- /*
- * If we come here after a random call to set_need_resched(),
- * or we have been woken up remotely but the IPI has not yet arrived,
- * we haven't yet exited the RCU idle mode. Do it here manually until
- * we find a better solution.
- *
- * NB: There are buggy callers of this function. Ideally we
- * should warn if prev_state != CT_STATE_USER, but that will trigger
- * too frequently to make sense yet.
- */
- enum ctx_state prev_state = exception_enter();
- schedule();
- exception_exit(prev_state);
- }
- #endif
- /**
- * schedule_preempt_disabled - called with preemption disabled
- *
- * Returns with preemption disabled. Note: preempt_count must be 1
- */
- void __sched schedule_preempt_disabled(void)
- {
- sched_preempt_enable_no_resched();
- schedule();
- preempt_disable();
- }
- #ifdef CONFIG_PREEMPT_RT
- void __sched notrace schedule_rtlock(void)
- {
- __schedule_loop(SM_RTLOCK_WAIT);
- }
- NOKPROBE_SYMBOL(schedule_rtlock);
- #endif
- static void __sched notrace preempt_schedule_common(void)
- {
- do {
- /*
- * Because the function tracer can trace preempt_count_sub()
- * and it also uses preempt_enable/disable_notrace(), if
- * NEED_RESCHED is set, the preempt_enable_notrace() called
- * by the function tracer will call this function again and
- * cause infinite recursion.
- *
- * Preemption must be disabled here before the function
- * tracer can trace. Break up preempt_disable() into two
- * calls. One to disable preemption without fear of being
- * traced. The other to still record the preemption latency,
- * which can also be traced by the function tracer.
- */
- preempt_disable_notrace();
- preempt_latency_start(1);
- __schedule(SM_PREEMPT);
- preempt_latency_stop(1);
- preempt_enable_no_resched_notrace();
- /*
- * Check again in case we missed a preemption opportunity
- * between schedule and now.
- */
- } while (need_resched());
- }
- #ifdef CONFIG_PREEMPTION
- /*
- * This is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable.
- */
- asmlinkage __visible void __sched notrace preempt_schedule(void)
- {
- /*
- * If there is a non-zero preempt_count or interrupts are disabled,
- * we do not want to preempt the current task. Just return..
- */
- if (likely(!preemptible()))
- return;
- preempt_schedule_common();
- }
- NOKPROBE_SYMBOL(preempt_schedule);
- EXPORT_SYMBOL(preempt_schedule);
- #ifdef CONFIG_PREEMPT_DYNAMIC
- #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
- #ifndef preempt_schedule_dynamic_enabled
- #define preempt_schedule_dynamic_enabled preempt_schedule
- #define preempt_schedule_dynamic_disabled NULL
- #endif
- DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
- EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
- #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
- static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
- void __sched notrace dynamic_preempt_schedule(void)
- {
- if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
- return;
- preempt_schedule();
- }
- NOKPROBE_SYMBOL(dynamic_preempt_schedule);
- EXPORT_SYMBOL(dynamic_preempt_schedule);
- #endif
- #endif
- /**
- * preempt_schedule_notrace - preempt_schedule called by tracing
- *
- * The tracing infrastructure uses preempt_enable_notrace to prevent
- * recursion and tracing preempt enabling caused by the tracing
- * infrastructure itself. But as tracing can happen in areas coming
- * from userspace or just about to enter userspace, a preempt enable
- * can occur before user_exit() is called. This will cause the scheduler
- * to be called when the system is still in usermode.
- *
- * To prevent this, the preempt_enable_notrace will use this function
- * instead of preempt_schedule() to exit user context if needed before
- * calling the scheduler.
- */
- asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
- {
- enum ctx_state prev_ctx;
- if (likely(!preemptible()))
- return;
- do {
- /*
- * Because the function tracer can trace preempt_count_sub()
- * and it also uses preempt_enable/disable_notrace(), if
- * NEED_RESCHED is set, the preempt_enable_notrace() called
- * by the function tracer will call this function again and
- * cause infinite recursion.
- *
- * Preemption must be disabled here before the function
- * tracer can trace. Break up preempt_disable() into two
- * calls. One to disable preemption without fear of being
- * traced. The other to still record the preemption latency,
- * which can also be traced by the function tracer.
- */
- preempt_disable_notrace();
- preempt_latency_start(1);
- /*
- * Needs preempt disabled in case user_exit() is traced
- * and the tracer calls preempt_enable_notrace() causing
- * an infinite recursion.
- */
- prev_ctx = exception_enter();
- __schedule(SM_PREEMPT);
- exception_exit(prev_ctx);
- preempt_latency_stop(1);
- preempt_enable_no_resched_notrace();
- } while (need_resched());
- }
- EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
- #ifdef CONFIG_PREEMPT_DYNAMIC
- #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
- #ifndef preempt_schedule_notrace_dynamic_enabled
- #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
- #define preempt_schedule_notrace_dynamic_disabled NULL
- #endif
- DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
- EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
- #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
- static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
- void __sched notrace dynamic_preempt_schedule_notrace(void)
- {
- if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
- return;
- preempt_schedule_notrace();
- }
- NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
- EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
- #endif
- #endif
- #endif /* CONFIG_PREEMPTION */
- /*
- * This is the entry point to schedule() from kernel preemption
- * off of IRQ context.
- * Note, that this is called and return with IRQs disabled. This will
- * protect us against recursive calling from IRQ contexts.
- */
- asmlinkage __visible void __sched preempt_schedule_irq(void)
- {
- enum ctx_state prev_state;
- /* Catch callers which need to be fixed */
- BUG_ON(preempt_count() || !irqs_disabled());
- prev_state = exception_enter();
- do {
- preempt_disable();
- local_irq_enable();
- __schedule(SM_PREEMPT);
- local_irq_disable();
- sched_preempt_enable_no_resched();
- } while (need_resched());
- exception_exit(prev_state);
- }
- int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
- void *key)
- {
- WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
- return try_to_wake_up(curr->private, mode, wake_flags);
- }
- EXPORT_SYMBOL(default_wake_function);
- const struct sched_class *__setscheduler_class(int policy, int prio)
- {
- if (dl_prio(prio))
- return &dl_sched_class;
- if (rt_prio(prio))
- return &rt_sched_class;
- #ifdef CONFIG_SCHED_CLASS_EXT
- if (task_should_scx(policy))
- return &ext_sched_class;
- #endif
- return &fair_sched_class;
- }
- #ifdef CONFIG_RT_MUTEXES
- /*
- * Would be more useful with typeof()/auto_type but they don't mix with
- * bit-fields. Since it's a local thing, use int. Keep the generic sounding
- * name such that if someone were to implement this function we get to compare
- * notes.
- */
- #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
- void rt_mutex_pre_schedule(void)
- {
- lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
- sched_submit_work(current);
- }
- void rt_mutex_schedule(void)
- {
- lockdep_assert(current->sched_rt_mutex);
- __schedule_loop(SM_NONE);
- }
- void rt_mutex_post_schedule(void)
- {
- sched_update_worker(current);
- lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
- }
- /*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task to boost
- * @pi_task: donor task
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance
- * logic. Call site only calls if the priority of the task changed.
- */
- void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
- {
- int prio, oldprio, queued, running, queue_flag =
- DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- const struct sched_class *prev_class, *next_class;
- struct rq_flags rf;
- struct rq *rq;
- /* XXX used to be waiter->prio, not waiter->task->prio */
- prio = __rt_effective_prio(pi_task, p->normal_prio);
- /*
- * If nothing changed; bail early.
- */
- if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
- return;
- rq = __task_rq_lock(p, &rf);
- update_rq_clock(rq);
- /*
- * Set under pi_lock && rq->lock, such that the value can be used under
- * either lock.
- *
- * Note that there is loads of tricky to make this pointer cache work
- * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
- * ensure a task is de-boosted (pi_task is set to NULL) before the
- * task is allowed to run again (and can exit). This ensures the pointer
- * points to a blocked task -- which guarantees the task is present.
- */
- p->pi_top_task = pi_task;
- /*
- * For FIFO/RR we only need to set prio, if that matches we're done.
- */
- if (prio == p->prio && !dl_prio(prio))
- goto out_unlock;
- /*
- * Idle task boosting is a no-no in general. There is one
- * exception, when PREEMPT_RT and NOHZ is active:
- *
- * The idle task calls get_next_timer_interrupt() and holds
- * the timer wheel base->lock on the CPU and another CPU wants
- * to access the timer (probably to cancel it). We can safely
- * ignore the boosting request, as the idle CPU runs this code
- * with interrupts disabled and will complete the lock
- * protected section without being interrupted. So there is no
- * real need to boost.
- */
- if (unlikely(p == rq->idle)) {
- WARN_ON(p != rq->curr);
- WARN_ON(p->pi_blocked_on);
- goto out_unlock;
- }
- trace_sched_pi_setprio(p, pi_task);
- oldprio = p->prio;
- if (oldprio == prio)
- queue_flag &= ~DEQUEUE_MOVE;
- prev_class = p->sched_class;
- next_class = __setscheduler_class(p->policy, prio);
- if (prev_class != next_class && p->se.sched_delayed)
- dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flag);
- if (running)
- put_prev_task(rq, p);
- /*
- * Boosting condition are:
- * 1. -rt task is running and holds mutex A
- * --> -dl task blocks on mutex A
- *
- * 2. -dl task is running and holds mutex A
- * --> -dl task blocks on mutex A and could preempt the
- * running task
- */
- if (dl_prio(prio)) {
- if (!dl_prio(p->normal_prio) ||
- (pi_task && dl_prio(pi_task->prio) &&
- dl_entity_preempt(&pi_task->dl, &p->dl))) {
- p->dl.pi_se = pi_task->dl.pi_se;
- queue_flag |= ENQUEUE_REPLENISH;
- } else {
- p->dl.pi_se = &p->dl;
- }
- } else if (rt_prio(prio)) {
- if (dl_prio(oldprio))
- p->dl.pi_se = &p->dl;
- if (oldprio < prio)
- queue_flag |= ENQUEUE_HEAD;
- } else {
- if (dl_prio(oldprio))
- p->dl.pi_se = &p->dl;
- if (rt_prio(oldprio))
- p->rt.timeout = 0;
- }
- p->sched_class = next_class;
- p->prio = prio;
- check_class_changing(rq, p, prev_class);
- if (queued)
- enqueue_task(rq, p, queue_flag);
- if (running)
- set_next_task(rq, p);
- check_class_changed(rq, p, prev_class, oldprio);
- out_unlock:
- /* Avoid rq from going away on us: */
- preempt_disable();
- rq_unpin_lock(rq, &rf);
- __balance_callbacks(rq);
- raw_spin_rq_unlock(rq);
- preempt_enable();
- }
- #endif
- #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
- int __sched __cond_resched(void)
- {
- if (should_resched(0)) {
- preempt_schedule_common();
- return 1;
- }
- /*
- * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
- * whether the current CPU is in an RCU read-side critical section,
- * so the tick can report quiescent states even for CPUs looping
- * in kernel context. In contrast, in non-preemptible kernels,
- * RCU readers leave no in-memory hints, which means that CPU-bound
- * processes executing in kernel context might never report an
- * RCU quiescent state. Therefore, the following code causes
- * cond_resched() to report a quiescent state, but only when RCU
- * is in urgent need of one.
- */
- #ifndef CONFIG_PREEMPT_RCU
- rcu_all_qs();
- #endif
- return 0;
- }
- EXPORT_SYMBOL(__cond_resched);
- #endif
- #ifdef CONFIG_PREEMPT_DYNAMIC
- #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
- #define cond_resched_dynamic_enabled __cond_resched
- #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
- DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
- EXPORT_STATIC_CALL_TRAMP(cond_resched);
- #define might_resched_dynamic_enabled __cond_resched
- #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
- DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
- EXPORT_STATIC_CALL_TRAMP(might_resched);
- #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
- static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
- int __sched dynamic_cond_resched(void)
- {
- klp_sched_try_switch();
- if (!static_branch_unlikely(&sk_dynamic_cond_resched))
- return 0;
- return __cond_resched();
- }
- EXPORT_SYMBOL(dynamic_cond_resched);
- static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
- int __sched dynamic_might_resched(void)
- {
- if (!static_branch_unlikely(&sk_dynamic_might_resched))
- return 0;
- return __cond_resched();
- }
- EXPORT_SYMBOL(dynamic_might_resched);
- #endif
- #endif
- /*
- * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
- int __cond_resched_lock(spinlock_t *lock)
- {
- int resched = should_resched(PREEMPT_LOCK_OFFSET);
- int ret = 0;
- lockdep_assert_held(lock);
- if (spin_needbreak(lock) || resched) {
- spin_unlock(lock);
- if (!_cond_resched())
- cpu_relax();
- ret = 1;
- spin_lock(lock);
- }
- return ret;
- }
- EXPORT_SYMBOL(__cond_resched_lock);
- int __cond_resched_rwlock_read(rwlock_t *lock)
- {
- int resched = should_resched(PREEMPT_LOCK_OFFSET);
- int ret = 0;
- lockdep_assert_held_read(lock);
- if (rwlock_needbreak(lock) || resched) {
- read_unlock(lock);
- if (!_cond_resched())
- cpu_relax();
- ret = 1;
- read_lock(lock);
- }
- return ret;
- }
- EXPORT_SYMBOL(__cond_resched_rwlock_read);
- int __cond_resched_rwlock_write(rwlock_t *lock)
- {
- int resched = should_resched(PREEMPT_LOCK_OFFSET);
- int ret = 0;
- lockdep_assert_held_write(lock);
- if (rwlock_needbreak(lock) || resched) {
- write_unlock(lock);
- if (!_cond_resched())
- cpu_relax();
- ret = 1;
- write_lock(lock);
- }
- return ret;
- }
- EXPORT_SYMBOL(__cond_resched_rwlock_write);
- #ifdef CONFIG_PREEMPT_DYNAMIC
- #ifdef CONFIG_GENERIC_ENTRY
- #include <linux/entry-common.h>
- #endif
- /*
- * SC:cond_resched
- * SC:might_resched
- * SC:preempt_schedule
- * SC:preempt_schedule_notrace
- * SC:irqentry_exit_cond_resched
- *
- *
- * NONE:
- * cond_resched <- __cond_resched
- * might_resched <- RET0
- * preempt_schedule <- NOP
- * preempt_schedule_notrace <- NOP
- * irqentry_exit_cond_resched <- NOP
- *
- * VOLUNTARY:
- * cond_resched <- __cond_resched
- * might_resched <- __cond_resched
- * preempt_schedule <- NOP
- * preempt_schedule_notrace <- NOP
- * irqentry_exit_cond_resched <- NOP
- *
- * FULL:
- * cond_resched <- RET0
- * might_resched <- RET0
- * preempt_schedule <- preempt_schedule
- * preempt_schedule_notrace <- preempt_schedule_notrace
- * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
- */
- enum {
- preempt_dynamic_undefined = -1,
- preempt_dynamic_none,
- preempt_dynamic_voluntary,
- preempt_dynamic_full,
- };
- int preempt_dynamic_mode = preempt_dynamic_undefined;
- int sched_dynamic_mode(const char *str)
- {
- if (!strcmp(str, "none"))
- return preempt_dynamic_none;
- if (!strcmp(str, "voluntary"))
- return preempt_dynamic_voluntary;
- if (!strcmp(str, "full"))
- return preempt_dynamic_full;
- return -EINVAL;
- }
- #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
- #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
- #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
- #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
- #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
- #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
- #else
- #error "Unsupported PREEMPT_DYNAMIC mechanism"
- #endif
- static DEFINE_MUTEX(sched_dynamic_mutex);
- static bool klp_override;
- static void __sched_dynamic_update(int mode)
- {
- /*
- * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
- * the ZERO state, which is invalid.
- */
- if (!klp_override)
- preempt_dynamic_enable(cond_resched);
- preempt_dynamic_enable(might_resched);
- preempt_dynamic_enable(preempt_schedule);
- preempt_dynamic_enable(preempt_schedule_notrace);
- preempt_dynamic_enable(irqentry_exit_cond_resched);
- switch (mode) {
- case preempt_dynamic_none:
- if (!klp_override)
- preempt_dynamic_enable(cond_resched);
- preempt_dynamic_disable(might_resched);
- preempt_dynamic_disable(preempt_schedule);
- preempt_dynamic_disable(preempt_schedule_notrace);
- preempt_dynamic_disable(irqentry_exit_cond_resched);
- if (mode != preempt_dynamic_mode)
- pr_info("Dynamic Preempt: none\n");
- break;
- case preempt_dynamic_voluntary:
- if (!klp_override)
- preempt_dynamic_enable(cond_resched);
- preempt_dynamic_enable(might_resched);
- preempt_dynamic_disable(preempt_schedule);
- preempt_dynamic_disable(preempt_schedule_notrace);
- preempt_dynamic_disable(irqentry_exit_cond_resched);
- if (mode != preempt_dynamic_mode)
- pr_info("Dynamic Preempt: voluntary\n");
- break;
- case preempt_dynamic_full:
- if (!klp_override)
- preempt_dynamic_disable(cond_resched);
- preempt_dynamic_disable(might_resched);
- preempt_dynamic_enable(preempt_schedule);
- preempt_dynamic_enable(preempt_schedule_notrace);
- preempt_dynamic_enable(irqentry_exit_cond_resched);
- if (mode != preempt_dynamic_mode)
- pr_info("Dynamic Preempt: full\n");
- break;
- }
- preempt_dynamic_mode = mode;
- }
- void sched_dynamic_update(int mode)
- {
- mutex_lock(&sched_dynamic_mutex);
- __sched_dynamic_update(mode);
- mutex_unlock(&sched_dynamic_mutex);
- }
- #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
- static int klp_cond_resched(void)
- {
- __klp_sched_try_switch();
- return __cond_resched();
- }
- void sched_dynamic_klp_enable(void)
- {
- mutex_lock(&sched_dynamic_mutex);
- klp_override = true;
- static_call_update(cond_resched, klp_cond_resched);
- mutex_unlock(&sched_dynamic_mutex);
- }
- void sched_dynamic_klp_disable(void)
- {
- mutex_lock(&sched_dynamic_mutex);
- klp_override = false;
- __sched_dynamic_update(preempt_dynamic_mode);
- mutex_unlock(&sched_dynamic_mutex);
- }
- #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
- static int __init setup_preempt_mode(char *str)
- {
- int mode = sched_dynamic_mode(str);
- if (mode < 0) {
- pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
- return 0;
- }
- sched_dynamic_update(mode);
- return 1;
- }
- __setup("preempt=", setup_preempt_mode);
- static void __init preempt_dynamic_init(void)
- {
- if (preempt_dynamic_mode == preempt_dynamic_undefined) {
- if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
- sched_dynamic_update(preempt_dynamic_none);
- } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
- sched_dynamic_update(preempt_dynamic_voluntary);
- } else {
- /* Default static call setting, nothing to do */
- WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
- preempt_dynamic_mode = preempt_dynamic_full;
- pr_info("Dynamic Preempt: full\n");
- }
- }
- }
- #define PREEMPT_MODEL_ACCESSOR(mode) \
- bool preempt_model_##mode(void) \
- { \
- WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
- return preempt_dynamic_mode == preempt_dynamic_##mode; \
- } \
- EXPORT_SYMBOL_GPL(preempt_model_##mode)
- PREEMPT_MODEL_ACCESSOR(none);
- PREEMPT_MODEL_ACCESSOR(voluntary);
- PREEMPT_MODEL_ACCESSOR(full);
- #else /* !CONFIG_PREEMPT_DYNAMIC: */
- static inline void preempt_dynamic_init(void) { }
- #endif /* CONFIG_PREEMPT_DYNAMIC */
- int io_schedule_prepare(void)
- {
- int old_iowait = current->in_iowait;
- current->in_iowait = 1;
- blk_flush_plug(current->plug, true);
- return old_iowait;
- }
- void io_schedule_finish(int token)
- {
- current->in_iowait = token;
- }
- /*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- */
- long __sched io_schedule_timeout(long timeout)
- {
- int token;
- long ret;
- token = io_schedule_prepare();
- ret = schedule_timeout(timeout);
- io_schedule_finish(token);
- return ret;
- }
- EXPORT_SYMBOL(io_schedule_timeout);
- void __sched io_schedule(void)
- {
- int token;
- token = io_schedule_prepare();
- schedule();
- io_schedule_finish(token);
- }
- EXPORT_SYMBOL(io_schedule);
- void sched_show_task(struct task_struct *p)
- {
- unsigned long free;
- int ppid;
- if (!try_get_task_stack(p))
- return;
- pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
- if (task_is_running(p))
- pr_cont(" running task ");
- free = stack_not_used(p);
- ppid = 0;
- rcu_read_lock();
- if (pid_alive(p))
- ppid = task_pid_nr(rcu_dereference(p->real_parent));
- rcu_read_unlock();
- pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
- free, task_pid_nr(p), task_tgid_nr(p),
- ppid, read_task_thread_flags(p));
- print_worker_info(KERN_INFO, p);
- print_stop_info(KERN_INFO, p);
- print_scx_info(KERN_INFO, p);
- show_stack(p, NULL, KERN_INFO);
- put_task_stack(p);
- }
- EXPORT_SYMBOL_GPL(sched_show_task);
- static inline bool
- state_filter_match(unsigned long state_filter, struct task_struct *p)
- {
- unsigned int state = READ_ONCE(p->__state);
- /* no filter, everything matches */
- if (!state_filter)
- return true;
- /* filter, but doesn't match */
- if (!(state & state_filter))
- return false;
- /*
- * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
- * TASK_KILLABLE).
- */
- if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
- return false;
- return true;
- }
- void show_state_filter(unsigned int state_filter)
- {
- struct task_struct *g, *p;
- rcu_read_lock();
- for_each_process_thread(g, p) {
- /*
- * reset the NMI-timeout, listing all files on a slow
- * console might take a lot of time:
- * Also, reset softlockup watchdogs on all CPUs, because
- * another CPU might be blocked waiting for us to process
- * an IPI.
- */
- touch_nmi_watchdog();
- touch_all_softlockup_watchdogs();
- if (state_filter_match(state_filter, p))
- sched_show_task(p);
- }
- #ifdef CONFIG_SCHED_DEBUG
- if (!state_filter)
- sysrq_sched_debug_show();
- #endif
- rcu_read_unlock();
- /*
- * Only show locks if all tasks are dumped:
- */
- if (!state_filter)
- debug_show_all_locks();
- }
- /**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: CPU the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
- void __init init_idle(struct task_struct *idle, int cpu)
- {
- #ifdef CONFIG_SMP
- struct affinity_context ac = (struct affinity_context) {
- .new_mask = cpumask_of(cpu),
- .flags = 0,
- };
- #endif
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- raw_spin_lock_irqsave(&idle->pi_lock, flags);
- raw_spin_rq_lock(rq);
- idle->__state = TASK_RUNNING;
- idle->se.exec_start = sched_clock();
- /*
- * PF_KTHREAD should already be set at this point; regardless, make it
- * look like a proper per-CPU kthread.
- */
- idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
- kthread_set_per_cpu(idle, cpu);
- #ifdef CONFIG_SMP
- /*
- * No validation and serialization required at boot time and for
- * setting up the idle tasks of not yet online CPUs.
- */
- set_cpus_allowed_common(idle, &ac);
- #endif
- /*
- * We're having a chicken and egg problem, even though we are
- * holding rq->lock, the CPU isn't yet set to this CPU so the
- * lockdep check in task_group() will fail.
- *
- * Similar case to sched_fork(). / Alternatively we could
- * use task_rq_lock() here and obtain the other rq->lock.
- *
- * Silence PROVE_RCU
- */
- rcu_read_lock();
- __set_task_cpu(idle, cpu);
- rcu_read_unlock();
- rq->idle = idle;
- rcu_assign_pointer(rq->curr, idle);
- idle->on_rq = TASK_ON_RQ_QUEUED;
- #ifdef CONFIG_SMP
- idle->on_cpu = 1;
- #endif
- raw_spin_rq_unlock(rq);
- raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
- /* Set the preempt count _outside_ the spinlocks! */
- init_idle_preempt_count(idle, cpu);
- /*
- * The idle tasks have their own, simple scheduling class:
- */
- idle->sched_class = &idle_sched_class;
- ftrace_graph_init_idle_task(idle, cpu);
- vtime_init_idle(idle, cpu);
- #ifdef CONFIG_SMP
- sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
- #endif
- }
- #ifdef CONFIG_SMP
- int cpuset_cpumask_can_shrink(const struct cpumask *cur,
- const struct cpumask *trial)
- {
- int ret = 1;
- if (cpumask_empty(cur))
- return ret;
- ret = dl_cpuset_cpumask_can_shrink(cur, trial);
- return ret;
- }
- int task_can_attach(struct task_struct *p)
- {
- int ret = 0;
- /*
- * Kthreads which disallow setaffinity shouldn't be moved
- * to a new cpuset; we don't want to change their CPU
- * affinity and isolating such threads by their set of
- * allowed nodes is unnecessary. Thus, cpusets are not
- * applicable for such threads. This prevents checking for
- * success of set_cpus_allowed_ptr() on all attached tasks
- * before cpus_mask may be changed.
- */
- if (p->flags & PF_NO_SETAFFINITY)
- ret = -EINVAL;
- return ret;
- }
- bool sched_smp_initialized __read_mostly;
- #ifdef CONFIG_NUMA_BALANCING
- /* Migrate current task p to target_cpu */
- int migrate_task_to(struct task_struct *p, int target_cpu)
- {
- struct migration_arg arg = { p, target_cpu };
- int curr_cpu = task_cpu(p);
- if (curr_cpu == target_cpu)
- return 0;
- if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
- return -EINVAL;
- /* TODO: This is not properly updating schedstats */
- trace_sched_move_numa(p, curr_cpu, target_cpu);
- return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
- }
- /*
- * Requeue a task on a given node and accurately track the number of NUMA
- * tasks on the runqueues
- */
- void sched_setnuma(struct task_struct *p, int nid)
- {
- bool queued, running;
- struct rq_flags rf;
- struct rq *rq;
- rq = task_rq_lock(p, &rf);
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE);
- if (running)
- put_prev_task(rq, p);
- p->numa_preferred_nid = nid;
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
- task_rq_unlock(rq, p, &rf);
- }
- #endif /* CONFIG_NUMA_BALANCING */
- #ifdef CONFIG_HOTPLUG_CPU
- /*
- * Ensure that the idle task is using init_mm right before its CPU goes
- * offline.
- */
- void idle_task_exit(void)
- {
- struct mm_struct *mm = current->active_mm;
- BUG_ON(cpu_online(smp_processor_id()));
- BUG_ON(current != this_rq()->idle);
- if (mm != &init_mm) {
- switch_mm(mm, &init_mm, current);
- finish_arch_post_lock_switch();
- }
- /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
- }
- static int __balance_push_cpu_stop(void *arg)
- {
- struct task_struct *p = arg;
- struct rq *rq = this_rq();
- struct rq_flags rf;
- int cpu;
- raw_spin_lock_irq(&p->pi_lock);
- rq_lock(rq, &rf);
- update_rq_clock(rq);
- if (task_rq(p) == rq && task_on_rq_queued(p)) {
- cpu = select_fallback_rq(rq->cpu, p);
- rq = __migrate_task(rq, &rf, p, cpu);
- }
- rq_unlock(rq, &rf);
- raw_spin_unlock_irq(&p->pi_lock);
- put_task_struct(p);
- return 0;
- }
- static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
- /*
- * Ensure we only run per-cpu kthreads once the CPU goes !active.
- *
- * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
- * effective when the hotplug motion is down.
- */
- static void balance_push(struct rq *rq)
- {
- struct task_struct *push_task = rq->curr;
- lockdep_assert_rq_held(rq);
- /*
- * Ensure the thing is persistent until balance_push_set(.on = false);
- */
- rq->balance_callback = &balance_push_callback;
- /*
- * Only active while going offline and when invoked on the outgoing
- * CPU.
- */
- if (!cpu_dying(rq->cpu) || rq != this_rq())
- return;
- /*
- * Both the cpu-hotplug and stop task are in this case and are
- * required to complete the hotplug process.
- */
- if (kthread_is_per_cpu(push_task) ||
- is_migration_disabled(push_task)) {
- /*
- * If this is the idle task on the outgoing CPU try to wake
- * up the hotplug control thread which might wait for the
- * last task to vanish. The rcuwait_active() check is
- * accurate here because the waiter is pinned on this CPU
- * and can't obviously be running in parallel.
- *
- * On RT kernels this also has to check whether there are
- * pinned and scheduled out tasks on the runqueue. They
- * need to leave the migrate disabled section first.
- */
- if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
- rcuwait_active(&rq->hotplug_wait)) {
- raw_spin_rq_unlock(rq);
- rcuwait_wake_up(&rq->hotplug_wait);
- raw_spin_rq_lock(rq);
- }
- return;
- }
- get_task_struct(push_task);
- /*
- * Temporarily drop rq->lock such that we can wake-up the stop task.
- * Both preemption and IRQs are still disabled.
- */
- preempt_disable();
- raw_spin_rq_unlock(rq);
- stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
- this_cpu_ptr(&push_work));
- preempt_enable();
- /*
- * At this point need_resched() is true and we'll take the loop in
- * schedule(). The next pick is obviously going to be the stop task
- * which kthread_is_per_cpu() and will push this task away.
- */
- raw_spin_rq_lock(rq);
- }
- static void balance_push_set(int cpu, bool on)
- {
- struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
- rq_lock_irqsave(rq, &rf);
- if (on) {
- WARN_ON_ONCE(rq->balance_callback);
- rq->balance_callback = &balance_push_callback;
- } else if (rq->balance_callback == &balance_push_callback) {
- rq->balance_callback = NULL;
- }
- rq_unlock_irqrestore(rq, &rf);
- }
- /*
- * Invoked from a CPUs hotplug control thread after the CPU has been marked
- * inactive. All tasks which are not per CPU kernel threads are either
- * pushed off this CPU now via balance_push() or placed on a different CPU
- * during wakeup. Wait until the CPU is quiescent.
- */
- static void balance_hotplug_wait(void)
- {
- struct rq *rq = this_rq();
- rcuwait_wait_event(&rq->hotplug_wait,
- rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
- TASK_UNINTERRUPTIBLE);
- }
- #else
- static inline void balance_push(struct rq *rq)
- {
- }
- static inline void balance_push_set(int cpu, bool on)
- {
- }
- static inline void balance_hotplug_wait(void)
- {
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- void set_rq_online(struct rq *rq)
- {
- if (!rq->online) {
- const struct sched_class *class;
- cpumask_set_cpu(rq->cpu, rq->rd->online);
- rq->online = 1;
- for_each_class(class) {
- if (class->rq_online)
- class->rq_online(rq);
- }
- }
- }
- void set_rq_offline(struct rq *rq)
- {
- if (rq->online) {
- const struct sched_class *class;
- update_rq_clock(rq);
- for_each_class(class) {
- if (class->rq_offline)
- class->rq_offline(rq);
- }
- cpumask_clear_cpu(rq->cpu, rq->rd->online);
- rq->online = 0;
- }
- }
- static inline void sched_set_rq_online(struct rq *rq, int cpu)
- {
- struct rq_flags rf;
- rq_lock_irqsave(rq, &rf);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_online(rq);
- }
- rq_unlock_irqrestore(rq, &rf);
- }
- static inline void sched_set_rq_offline(struct rq *rq, int cpu)
- {
- struct rq_flags rf;
- rq_lock_irqsave(rq, &rf);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_offline(rq);
- }
- rq_unlock_irqrestore(rq, &rf);
- }
- /*
- * used to mark begin/end of suspend/resume:
- */
- static int num_cpus_frozen;
- /*
- * Update cpusets according to cpu_active mask. If cpusets are
- * disabled, cpuset_update_active_cpus() becomes a simple wrapper
- * around partition_sched_domains().
- *
- * If we come here as part of a suspend/resume, don't touch cpusets because we
- * want to restore it back to its original state upon resume anyway.
- */
- static void cpuset_cpu_active(void)
- {
- if (cpuhp_tasks_frozen) {
- /*
- * num_cpus_frozen tracks how many CPUs are involved in suspend
- * resume sequence. As long as this is not the last online
- * operation in the resume sequence, just build a single sched
- * domain, ignoring cpusets.
- */
- partition_sched_domains(1, NULL, NULL);
- if (--num_cpus_frozen)
- return;
- /*
- * This is the last CPU online operation. So fall through and
- * restore the original sched domains by considering the
- * cpuset configurations.
- */
- cpuset_force_rebuild();
- }
- cpuset_update_active_cpus();
- }
- static int cpuset_cpu_inactive(unsigned int cpu)
- {
- if (!cpuhp_tasks_frozen) {
- int ret = dl_bw_check_overflow(cpu);
- if (ret)
- return ret;
- cpuset_update_active_cpus();
- } else {
- num_cpus_frozen++;
- partition_sched_domains(1, NULL, NULL);
- }
- return 0;
- }
- static inline void sched_smt_present_inc(int cpu)
- {
- #ifdef CONFIG_SCHED_SMT
- if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
- static_branch_inc_cpuslocked(&sched_smt_present);
- #endif
- }
- static inline void sched_smt_present_dec(int cpu)
- {
- #ifdef CONFIG_SCHED_SMT
- if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
- static_branch_dec_cpuslocked(&sched_smt_present);
- #endif
- }
- int sched_cpu_activate(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- /*
- * Clear the balance_push callback and prepare to schedule
- * regular tasks.
- */
- balance_push_set(cpu, false);
- /*
- * When going up, increment the number of cores with SMT present.
- */
- sched_smt_present_inc(cpu);
- set_cpu_active(cpu, true);
- if (sched_smp_initialized) {
- sched_update_numa(cpu, true);
- sched_domains_numa_masks_set(cpu);
- cpuset_cpu_active();
- }
- scx_rq_activate(rq);
- /*
- * Put the rq online, if not already. This happens:
- *
- * 1) In the early boot process, because we build the real domains
- * after all CPUs have been brought up.
- *
- * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
- * domains.
- */
- sched_set_rq_online(rq, cpu);
- return 0;
- }
- int sched_cpu_deactivate(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- int ret;
- /*
- * Remove CPU from nohz.idle_cpus_mask to prevent participating in
- * load balancing when not active
- */
- nohz_balance_exit_idle(rq);
- set_cpu_active(cpu, false);
- /*
- * From this point forward, this CPU will refuse to run any task that
- * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
- * push those tasks away until this gets cleared, see
- * sched_cpu_dying().
- */
- balance_push_set(cpu, true);
- /*
- * We've cleared cpu_active_mask / set balance_push, wait for all
- * preempt-disabled and RCU users of this state to go away such that
- * all new such users will observe it.
- *
- * Specifically, we rely on ttwu to no longer target this CPU, see
- * ttwu_queue_cond() and is_cpu_allowed().
- *
- * Do sync before park smpboot threads to take care the RCU boost case.
- */
- synchronize_rcu();
- sched_set_rq_offline(rq, cpu);
- scx_rq_deactivate(rq);
- /*
- * When going down, decrement the number of cores with SMT present.
- */
- sched_smt_present_dec(cpu);
- #ifdef CONFIG_SCHED_SMT
- sched_core_cpu_deactivate(cpu);
- #endif
- if (!sched_smp_initialized)
- return 0;
- sched_update_numa(cpu, false);
- ret = cpuset_cpu_inactive(cpu);
- if (ret) {
- sched_smt_present_inc(cpu);
- sched_set_rq_online(rq, cpu);
- balance_push_set(cpu, false);
- set_cpu_active(cpu, true);
- sched_update_numa(cpu, true);
- return ret;
- }
- sched_domains_numa_masks_clear(cpu);
- return 0;
- }
- static void sched_rq_cpu_starting(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- rq->calc_load_update = calc_load_update;
- update_max_interval();
- }
- int sched_cpu_starting(unsigned int cpu)
- {
- sched_core_cpu_starting(cpu);
- sched_rq_cpu_starting(cpu);
- sched_tick_start(cpu);
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- /*
- * Invoked immediately before the stopper thread is invoked to bring the
- * CPU down completely. At this point all per CPU kthreads except the
- * hotplug thread (current) and the stopper thread (inactive) have been
- * either parked or have been unbound from the outgoing CPU. Ensure that
- * any of those which might be on the way out are gone.
- *
- * If after this point a bound task is being woken on this CPU then the
- * responsible hotplug callback has failed to do it's job.
- * sched_cpu_dying() will catch it with the appropriate fireworks.
- */
- int sched_cpu_wait_empty(unsigned int cpu)
- {
- balance_hotplug_wait();
- return 0;
- }
- /*
- * Since this CPU is going 'away' for a while, fold any nr_active delta we
- * might have. Called from the CPU stopper task after ensuring that the
- * stopper is the last running task on the CPU, so nr_active count is
- * stable. We need to take the tear-down thread which is calling this into
- * account, so we hand in adjust = 1 to the load calculation.
- *
- * Also see the comment "Global load-average calculations".
- */
- static void calc_load_migrate(struct rq *rq)
- {
- long delta = calc_load_fold_active(rq, 1);
- if (delta)
- atomic_long_add(delta, &calc_load_tasks);
- }
- static void dump_rq_tasks(struct rq *rq, const char *loglvl)
- {
- struct task_struct *g, *p;
- int cpu = cpu_of(rq);
- lockdep_assert_rq_held(rq);
- printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
- for_each_process_thread(g, p) {
- if (task_cpu(p) != cpu)
- continue;
- if (!task_on_rq_queued(p))
- continue;
- printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
- }
- }
- int sched_cpu_dying(unsigned int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
- /* Handle pending wakeups and then migrate everything off */
- sched_tick_stop(cpu);
- rq_lock_irqsave(rq, &rf);
- if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
- WARN(true, "Dying CPU not properly vacated!");
- dump_rq_tasks(rq, KERN_WARNING);
- }
- rq_unlock_irqrestore(rq, &rf);
- calc_load_migrate(rq);
- update_max_interval();
- hrtick_clear(rq);
- sched_core_cpu_dying(cpu);
- return 0;
- }
- #endif
- void __init sched_init_smp(void)
- {
- sched_init_numa(NUMA_NO_NODE);
- /*
- * There's no userspace yet to cause hotplug operations; hence all the
- * CPU masks are stable and all blatant races in the below code cannot
- * happen.
- */
- mutex_lock(&sched_domains_mutex);
- sched_init_domains(cpu_active_mask);
- mutex_unlock(&sched_domains_mutex);
- /* Move init over to a non-isolated CPU */
- if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
- BUG();
- current->flags &= ~PF_NO_SETAFFINITY;
- sched_init_granularity();
- init_sched_rt_class();
- init_sched_dl_class();
- sched_smp_initialized = true;
- }
- static int __init migration_init(void)
- {
- sched_cpu_starting(smp_processor_id());
- return 0;
- }
- early_initcall(migration_init);
- #else
- void __init sched_init_smp(void)
- {
- sched_init_granularity();
- }
- #endif /* CONFIG_SMP */
- int in_sched_functions(unsigned long addr)
- {
- return in_lock_functions(addr) ||
- (addr >= (unsigned long)__sched_text_start
- && addr < (unsigned long)__sched_text_end);
- }
- #ifdef CONFIG_CGROUP_SCHED
- /*
- * Default task group.
- * Every task in system belongs to this group at bootup.
- */
- struct task_group root_task_group;
- LIST_HEAD(task_groups);
- /* Cacheline aligned slab cache for task_group */
- static struct kmem_cache *task_group_cache __ro_after_init;
- #endif
- void __init sched_init(void)
- {
- unsigned long ptr = 0;
- int i;
- /* Make sure the linker didn't screw up */
- #ifdef CONFIG_SMP
- BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
- #endif
- BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
- BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
- BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
- #ifdef CONFIG_SCHED_CLASS_EXT
- BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
- BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
- #endif
- wait_bit_init();
- #ifdef CONFIG_FAIR_GROUP_SCHED
- ptr += 2 * nr_cpu_ids * sizeof(void **);
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- ptr += 2 * nr_cpu_ids * sizeof(void **);
- #endif
- if (ptr) {
- ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- root_task_group.se = (struct sched_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.cfs_rq = (struct cfs_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.shares = ROOT_TASK_GROUP_LOAD;
- init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_EXT_GROUP_SCHED
- root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
- #endif /* CONFIG_EXT_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- root_task_group.rt_se = (struct sched_rt_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.rt_rq = (struct rt_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_RT_GROUP_SCHED */
- }
- #ifdef CONFIG_SMP
- init_defrootdomain();
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- init_rt_bandwidth(&root_task_group.rt_bandwidth,
- global_rt_period(), global_rt_runtime());
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_CGROUP_SCHED
- task_group_cache = KMEM_CACHE(task_group, 0);
- list_add(&root_task_group.list, &task_groups);
- INIT_LIST_HEAD(&root_task_group.children);
- INIT_LIST_HEAD(&root_task_group.siblings);
- autogroup_init(&init_task);
- #endif /* CONFIG_CGROUP_SCHED */
- for_each_possible_cpu(i) {
- struct rq *rq;
- rq = cpu_rq(i);
- raw_spin_lock_init(&rq->__lock);
- rq->nr_running = 0;
- rq->calc_load_active = 0;
- rq->calc_load_update = jiffies + LOAD_FREQ;
- init_cfs_rq(&rq->cfs);
- init_rt_rq(&rq->rt);
- init_dl_rq(&rq->dl);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
- rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
- /*
- * How much CPU bandwidth does root_task_group get?
- *
- * In case of task-groups formed through the cgroup filesystem, it
- * gets 100% of the CPU resources in the system. This overall
- * system CPU resource is divided among the tasks of
- * root_task_group and its child task-groups in a fair manner,
- * based on each entity's (task or task-group's) weight
- * (se->load.weight).
- *
- * In other words, if root_task_group has 10 tasks of weight
- * 1024) and two child groups A0 and A1 (of weight 1024 each),
- * then A0's share of the CPU resource is:
- *
- * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
- *
- * We achieve this by letting root_task_group's tasks sit
- * directly in rq->cfs (i.e root_task_group->se[] = NULL).
- */
- init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * This is required for init cpu because rt.c:__enable_runtime()
- * starts working after scheduler_running, which is not the case
- * yet.
- */
- rq->rt.rt_runtime = global_rt_runtime();
- init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
- #endif
- #ifdef CONFIG_SMP
- rq->sd = NULL;
- rq->rd = NULL;
- rq->cpu_capacity = SCHED_CAPACITY_SCALE;
- rq->balance_callback = &balance_push_callback;
- rq->active_balance = 0;
- rq->next_balance = jiffies;
- rq->push_cpu = 0;
- rq->cpu = i;
- rq->online = 0;
- rq->idle_stamp = 0;
- rq->avg_idle = 2*sysctl_sched_migration_cost;
- rq->max_idle_balance_cost = sysctl_sched_migration_cost;
- INIT_LIST_HEAD(&rq->cfs_tasks);
- rq_attach_root(rq, &def_root_domain);
- #ifdef CONFIG_NO_HZ_COMMON
- rq->last_blocked_load_update_tick = jiffies;
- atomic_set(&rq->nohz_flags, 0);
- INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
- #endif
- #ifdef CONFIG_HOTPLUG_CPU
- rcuwait_init(&rq->hotplug_wait);
- #endif
- #endif /* CONFIG_SMP */
- hrtick_rq_init(rq);
- atomic_set(&rq->nr_iowait, 0);
- fair_server_init(rq);
- #ifdef CONFIG_SCHED_CORE
- rq->core = rq;
- rq->core_pick = NULL;
- rq->core_dl_server = NULL;
- rq->core_enabled = 0;
- rq->core_tree = RB_ROOT;
- rq->core_forceidle_count = 0;
- rq->core_forceidle_occupation = 0;
- rq->core_forceidle_start = 0;
- rq->core_cookie = 0UL;
- #endif
- zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
- }
- set_load_weight(&init_task, false);
- init_task.se.slice = sysctl_sched_base_slice,
- /*
- * The boot idle thread does lazy MMU switching as well:
- */
- mmgrab_lazy_tlb(&init_mm);
- enter_lazy_tlb(&init_mm, current);
- /*
- * The idle task doesn't need the kthread struct to function, but it
- * is dressed up as a per-CPU kthread and thus needs to play the part
- * if we want to avoid special-casing it in code that deals with per-CPU
- * kthreads.
- */
- WARN_ON(!set_kthread_struct(current));
- /*
- * Make us the idle thread. Technically, schedule() should not be
- * called from this thread, however somewhere below it might be,
- * but because we are the idle thread, we just pick up running again
- * when this runqueue becomes "idle".
- */
- __sched_fork(0, current);
- init_idle(current, smp_processor_id());
- calc_load_update = jiffies + LOAD_FREQ;
- #ifdef CONFIG_SMP
- idle_thread_set_boot_cpu();
- balance_push_set(smp_processor_id(), false);
- #endif
- init_sched_fair_class();
- init_sched_ext_class();
- psi_init();
- init_uclamp();
- preempt_dynamic_init();
- scheduler_running = 1;
- }
- #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
- void __might_sleep(const char *file, int line)
- {
- unsigned int state = get_current_state();
- /*
- * Blocking primitives will set (and therefore destroy) current->state,
- * since we will exit with TASK_RUNNING make sure we enter with it,
- * otherwise we will destroy state.
- */
- WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
- "do not call blocking ops when !TASK_RUNNING; "
- "state=%x set at [<%p>] %pS\n", state,
- (void *)current->task_state_change,
- (void *)current->task_state_change);
- __might_resched(file, line, 0);
- }
- EXPORT_SYMBOL(__might_sleep);
- static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
- {
- if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
- return;
- if (preempt_count() == preempt_offset)
- return;
- pr_err("Preemption disabled at:");
- print_ip_sym(KERN_ERR, ip);
- }
- static inline bool resched_offsets_ok(unsigned int offsets)
- {
- unsigned int nested = preempt_count();
- nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
- return nested == offsets;
- }
- void __might_resched(const char *file, int line, unsigned int offsets)
- {
- /* Ratelimiting timestamp: */
- static unsigned long prev_jiffy;
- unsigned long preempt_disable_ip;
- /* WARN_ON_ONCE() by default, no rate limit required: */
- rcu_sleep_check();
- if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
- !is_idle_task(current) && !current->non_block_count) ||
- system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
- oops_in_progress)
- return;
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
- /* Save this before calling printk(), since that will clobber it: */
- preempt_disable_ip = get_preempt_disable_ip(current);
- pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
- file, line);
- pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
- in_atomic(), irqs_disabled(), current->non_block_count,
- current->pid, current->comm);
- pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
- offsets & MIGHT_RESCHED_PREEMPT_MASK);
- if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
- pr_err("RCU nest depth: %d, expected: %u\n",
- rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
- }
- if (task_stack_end_corrupted(current))
- pr_emerg("Thread overran stack, or stack corrupted\n");
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
- print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
- preempt_disable_ip);
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- EXPORT_SYMBOL(__might_resched);
- void __cant_sleep(const char *file, int line, int preempt_offset)
- {
- static unsigned long prev_jiffy;
- if (irqs_disabled())
- return;
- if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
- return;
- if (preempt_count() > preempt_offset)
- return;
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
- printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
- printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
- in_atomic(), irqs_disabled(),
- current->pid, current->comm);
- debug_show_held_locks(current);
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- EXPORT_SYMBOL_GPL(__cant_sleep);
- #ifdef CONFIG_SMP
- void __cant_migrate(const char *file, int line)
- {
- static unsigned long prev_jiffy;
- if (irqs_disabled())
- return;
- if (is_migration_disabled(current))
- return;
- if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
- return;
- if (preempt_count() > 0)
- return;
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
- pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
- pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
- in_atomic(), irqs_disabled(), is_migration_disabled(current),
- current->pid, current->comm);
- debug_show_held_locks(current);
- dump_stack();
- add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
- }
- EXPORT_SYMBOL_GPL(__cant_migrate);
- #endif
- #endif
- #ifdef CONFIG_MAGIC_SYSRQ
- void normalize_rt_tasks(void)
- {
- struct task_struct *g, *p;
- struct sched_attr attr = {
- .sched_policy = SCHED_NORMAL,
- };
- read_lock(&tasklist_lock);
- for_each_process_thread(g, p) {
- /*
- * Only normalize user tasks:
- */
- if (p->flags & PF_KTHREAD)
- continue;
- p->se.exec_start = 0;
- schedstat_set(p->stats.wait_start, 0);
- schedstat_set(p->stats.sleep_start, 0);
- schedstat_set(p->stats.block_start, 0);
- if (!rt_or_dl_task(p)) {
- /*
- * Renice negative nice level userspace
- * tasks back to 0:
- */
- if (task_nice(p) < 0)
- set_user_nice(p, 0);
- continue;
- }
- __sched_setscheduler(p, &attr, false, false);
- }
- read_unlock(&tasklist_lock);
- }
- #endif /* CONFIG_MAGIC_SYSRQ */
- #if defined(CONFIG_KGDB_KDB)
- /*
- * These functions are only useful for KDB.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
- /**
- * curr_task - return the current task for a given CPU.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- *
- * Return: The current task for @cpu.
- */
- struct task_struct *curr_task(int cpu)
- {
- return cpu_curr(cpu);
- }
- #endif /* defined(CONFIG_KGDB_KDB) */
- #ifdef CONFIG_CGROUP_SCHED
- /* task_group_lock serializes the addition/removal of task groups */
- static DEFINE_SPINLOCK(task_group_lock);
- static inline void alloc_uclamp_sched_group(struct task_group *tg,
- struct task_group *parent)
- {
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- enum uclamp_id clamp_id;
- for_each_clamp_id(clamp_id) {
- uclamp_se_set(&tg->uclamp_req[clamp_id],
- uclamp_none(clamp_id), false);
- tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
- }
- #endif
- }
- static void sched_free_group(struct task_group *tg)
- {
- free_fair_sched_group(tg);
- free_rt_sched_group(tg);
- autogroup_free(tg);
- kmem_cache_free(task_group_cache, tg);
- }
- static void sched_free_group_rcu(struct rcu_head *rcu)
- {
- sched_free_group(container_of(rcu, struct task_group, rcu));
- }
- static void sched_unregister_group(struct task_group *tg)
- {
- unregister_fair_sched_group(tg);
- unregister_rt_sched_group(tg);
- /*
- * We have to wait for yet another RCU grace period to expire, as
- * print_cfs_stats() might run concurrently.
- */
- call_rcu(&tg->rcu, sched_free_group_rcu);
- }
- /* allocate runqueue etc for a new task group */
- struct task_group *sched_create_group(struct task_group *parent)
- {
- struct task_group *tg;
- tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
- if (!tg)
- return ERR_PTR(-ENOMEM);
- if (!alloc_fair_sched_group(tg, parent))
- goto err;
- if (!alloc_rt_sched_group(tg, parent))
- goto err;
- scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
- alloc_uclamp_sched_group(tg, parent);
- return tg;
- err:
- sched_free_group(tg);
- return ERR_PTR(-ENOMEM);
- }
- void sched_online_group(struct task_group *tg, struct task_group *parent)
- {
- unsigned long flags;
- spin_lock_irqsave(&task_group_lock, flags);
- list_add_rcu(&tg->list, &task_groups);
- /* Root should already exist: */
- WARN_ON(!parent);
- tg->parent = parent;
- INIT_LIST_HEAD(&tg->children);
- list_add_rcu(&tg->siblings, &parent->children);
- spin_unlock_irqrestore(&task_group_lock, flags);
- online_fair_sched_group(tg);
- }
- /* RCU callback to free various structures associated with a task group */
- static void sched_unregister_group_rcu(struct rcu_head *rhp)
- {
- /* Now it should be safe to free those cfs_rqs: */
- sched_unregister_group(container_of(rhp, struct task_group, rcu));
- }
- void sched_destroy_group(struct task_group *tg)
- {
- /* Wait for possible concurrent references to cfs_rqs complete: */
- call_rcu(&tg->rcu, sched_unregister_group_rcu);
- }
- void sched_release_group(struct task_group *tg)
- {
- unsigned long flags;
- /*
- * Unlink first, to avoid walk_tg_tree_from() from finding us (via
- * sched_cfs_period_timer()).
- *
- * For this to be effective, we have to wait for all pending users of
- * this task group to leave their RCU critical section to ensure no new
- * user will see our dying task group any more. Specifically ensure
- * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
- *
- * We therefore defer calling unregister_fair_sched_group() to
- * sched_unregister_group() which is guarantied to get called only after the
- * current RCU grace period has expired.
- */
- spin_lock_irqsave(&task_group_lock, flags);
- list_del_rcu(&tg->list);
- list_del_rcu(&tg->siblings);
- spin_unlock_irqrestore(&task_group_lock, flags);
- }
- static struct task_group *sched_get_task_group(struct task_struct *tsk)
- {
- struct task_group *tg;
- /*
- * All callers are synchronized by task_rq_lock(); we do not use RCU
- * which is pointless here. Thus, we pass "true" to task_css_check()
- * to prevent lockdep warnings.
- */
- tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
- struct task_group, css);
- tg = autogroup_task_group(tsk, tg);
- return tg;
- }
- static void sched_change_group(struct task_struct *tsk, struct task_group *group)
- {
- tsk->sched_task_group = group;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- if (tsk->sched_class->task_change_group)
- tsk->sched_class->task_change_group(tsk);
- else
- #endif
- set_task_rq(tsk, task_cpu(tsk));
- }
- /*
- * Change task's runqueue when it moves between groups.
- *
- * The caller of this function should have put the task in its new group by
- * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
- * its new group.
- */
- void sched_move_task(struct task_struct *tsk, bool for_autogroup)
- {
- int queued, running, queue_flags =
- DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- struct task_group *group;
- struct rq *rq;
- CLASS(task_rq_lock, rq_guard)(tsk);
- rq = rq_guard.rq;
- /*
- * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
- * group changes.
- */
- group = sched_get_task_group(tsk);
- if (group == tsk->sched_task_group)
- return;
- update_rq_clock(rq);
- running = task_current(rq, tsk);
- queued = task_on_rq_queued(tsk);
- if (queued)
- dequeue_task(rq, tsk, queue_flags);
- if (running)
- put_prev_task(rq, tsk);
- sched_change_group(tsk, group);
- if (!for_autogroup)
- scx_cgroup_move_task(tsk);
- if (queued)
- enqueue_task(rq, tsk, queue_flags);
- if (running) {
- set_next_task(rq, tsk);
- /*
- * After changing group, the running task may have joined a
- * throttled one but it's still the running task. Trigger a
- * resched to make sure that task can still run.
- */
- resched_curr(rq);
- }
- }
- static struct cgroup_subsys_state *
- cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
- {
- struct task_group *parent = css_tg(parent_css);
- struct task_group *tg;
- if (!parent) {
- /* This is early initialization for the top cgroup */
- return &root_task_group.css;
- }
- tg = sched_create_group(parent);
- if (IS_ERR(tg))
- return ERR_PTR(-ENOMEM);
- return &tg->css;
- }
- /* Expose task group only after completing cgroup initialization */
- static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- struct task_group *parent = css_tg(css->parent);
- int ret;
- ret = scx_tg_online(tg);
- if (ret)
- return ret;
- if (parent)
- sched_online_group(tg, parent);
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- /* Propagate the effective uclamp value for the new group */
- guard(mutex)(&uclamp_mutex);
- guard(rcu)();
- cpu_util_update_eff(css);
- #endif
- return 0;
- }
- static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- scx_tg_offline(tg);
- }
- static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- sched_release_group(tg);
- }
- static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
- {
- struct task_group *tg = css_tg(css);
- /*
- * Relies on the RCU grace period between css_released() and this.
- */
- sched_unregister_group(tg);
- }
- static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- struct task_struct *task;
- struct cgroup_subsys_state *css;
- cgroup_taskset_for_each(task, css, tset) {
- if (!sched_rt_can_attach(css_tg(css), task))
- return -EINVAL;
- }
- #endif
- return scx_cgroup_can_attach(tset);
- }
- static void cpu_cgroup_attach(struct cgroup_taskset *tset)
- {
- struct task_struct *task;
- struct cgroup_subsys_state *css;
- cgroup_taskset_for_each(task, css, tset)
- sched_move_task(task, false);
- scx_cgroup_finish_attach();
- }
- static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
- {
- scx_cgroup_cancel_attach(tset);
- }
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- static void cpu_util_update_eff(struct cgroup_subsys_state *css)
- {
- struct cgroup_subsys_state *top_css = css;
- struct uclamp_se *uc_parent = NULL;
- struct uclamp_se *uc_se = NULL;
- unsigned int eff[UCLAMP_CNT];
- enum uclamp_id clamp_id;
- unsigned int clamps;
- lockdep_assert_held(&uclamp_mutex);
- SCHED_WARN_ON(!rcu_read_lock_held());
- css_for_each_descendant_pre(css, top_css) {
- uc_parent = css_tg(css)->parent
- ? css_tg(css)->parent->uclamp : NULL;
- for_each_clamp_id(clamp_id) {
- /* Assume effective clamps matches requested clamps */
- eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
- /* Cap effective clamps with parent's effective clamps */
- if (uc_parent &&
- eff[clamp_id] > uc_parent[clamp_id].value) {
- eff[clamp_id] = uc_parent[clamp_id].value;
- }
- }
- /* Ensure protection is always capped by limit */
- eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
- /* Propagate most restrictive effective clamps */
- clamps = 0x0;
- uc_se = css_tg(css)->uclamp;
- for_each_clamp_id(clamp_id) {
- if (eff[clamp_id] == uc_se[clamp_id].value)
- continue;
- uc_se[clamp_id].value = eff[clamp_id];
- uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
- clamps |= (0x1 << clamp_id);
- }
- if (!clamps) {
- css = css_rightmost_descendant(css);
- continue;
- }
- /* Immediately update descendants RUNNABLE tasks */
- uclamp_update_active_tasks(css);
- }
- }
- /*
- * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
- * C expression. Since there is no way to convert a macro argument (N) into a
- * character constant, use two levels of macros.
- */
- #define _POW10(exp) ((unsigned int)1e##exp)
- #define POW10(exp) _POW10(exp)
- struct uclamp_request {
- #define UCLAMP_PERCENT_SHIFT 2
- #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
- s64 percent;
- u64 util;
- int ret;
- };
- static inline struct uclamp_request
- capacity_from_percent(char *buf)
- {
- struct uclamp_request req = {
- .percent = UCLAMP_PERCENT_SCALE,
- .util = SCHED_CAPACITY_SCALE,
- .ret = 0,
- };
- buf = strim(buf);
- if (strcmp(buf, "max")) {
- req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
- &req.percent);
- if (req.ret)
- return req;
- if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
- req.ret = -ERANGE;
- return req;
- }
- req.util = req.percent << SCHED_CAPACITY_SHIFT;
- req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
- }
- return req;
- }
- static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
- size_t nbytes, loff_t off,
- enum uclamp_id clamp_id)
- {
- struct uclamp_request req;
- struct task_group *tg;
- req = capacity_from_percent(buf);
- if (req.ret)
- return req.ret;
- static_branch_enable(&sched_uclamp_used);
- guard(mutex)(&uclamp_mutex);
- guard(rcu)();
- tg = css_tg(of_css(of));
- if (tg->uclamp_req[clamp_id].value != req.util)
- uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
- /*
- * Because of not recoverable conversion rounding we keep track of the
- * exact requested value
- */
- tg->uclamp_pct[clamp_id] = req.percent;
- /* Update effective clamps to track the most restrictive value */
- cpu_util_update_eff(of_css(of));
- return nbytes;
- }
- static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes,
- loff_t off)
- {
- return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
- }
- static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes,
- loff_t off)
- {
- return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
- }
- static inline void cpu_uclamp_print(struct seq_file *sf,
- enum uclamp_id clamp_id)
- {
- struct task_group *tg;
- u64 util_clamp;
- u64 percent;
- u32 rem;
- scoped_guard (rcu) {
- tg = css_tg(seq_css(sf));
- util_clamp = tg->uclamp_req[clamp_id].value;
- }
- if (util_clamp == SCHED_CAPACITY_SCALE) {
- seq_puts(sf, "max\n");
- return;
- }
- percent = tg->uclamp_pct[clamp_id];
- percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
- seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
- }
- static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
- {
- cpu_uclamp_print(sf, UCLAMP_MIN);
- return 0;
- }
- static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
- {
- cpu_uclamp_print(sf, UCLAMP_MAX);
- return 0;
- }
- #endif /* CONFIG_UCLAMP_TASK_GROUP */
- #ifdef CONFIG_GROUP_SCHED_WEIGHT
- static unsigned long tg_weight(struct task_group *tg)
- {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- return scale_load_down(tg->shares);
- #else
- return sched_weight_from_cgroup(tg->scx_weight);
- #endif
- }
- static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 shareval)
- {
- int ret;
- if (shareval > scale_load_down(ULONG_MAX))
- shareval = MAX_SHARES;
- ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
- if (!ret)
- scx_group_set_weight(css_tg(css),
- sched_weight_to_cgroup(shareval));
- return ret;
- }
- static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return tg_weight(css_tg(css));
- }
- #endif /* CONFIG_GROUP_SCHED_WEIGHT */
- #ifdef CONFIG_CFS_BANDWIDTH
- static DEFINE_MUTEX(cfs_constraints_mutex);
- const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
- static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
- /* More than 203 days if BW_SHIFT equals 20. */
- static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
- static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
- static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
- u64 burst)
- {
- int i, ret = 0, runtime_enabled, runtime_was_enabled;
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- if (tg == &root_task_group)
- return -EINVAL;
- /*
- * Ensure we have at some amount of bandwidth every period. This is
- * to prevent reaching a state of large arrears when throttled via
- * entity_tick() resulting in prolonged exit starvation.
- */
- if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
- return -EINVAL;
- /*
- * Likewise, bound things on the other side by preventing insane quota
- * periods. This also allows us to normalize in computing quota
- * feasibility.
- */
- if (period > max_cfs_quota_period)
- return -EINVAL;
- /*
- * Bound quota to defend quota against overflow during bandwidth shift.
- */
- if (quota != RUNTIME_INF && quota > max_cfs_runtime)
- return -EINVAL;
- if (quota != RUNTIME_INF && (burst > quota ||
- burst + quota > max_cfs_runtime))
- return -EINVAL;
- /*
- * Prevent race between setting of cfs_rq->runtime_enabled and
- * unthrottle_offline_cfs_rqs().
- */
- guard(cpus_read_lock)();
- guard(mutex)(&cfs_constraints_mutex);
- ret = __cfs_schedulable(tg, period, quota);
- if (ret)
- return ret;
- runtime_enabled = quota != RUNTIME_INF;
- runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
- /*
- * If we need to toggle cfs_bandwidth_used, off->on must occur
- * before making related changes, and on->off must occur afterwards
- */
- if (runtime_enabled && !runtime_was_enabled)
- cfs_bandwidth_usage_inc();
- scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
- cfs_b->period = ns_to_ktime(period);
- cfs_b->quota = quota;
- cfs_b->burst = burst;
- __refill_cfs_bandwidth_runtime(cfs_b);
- /*
- * Restart the period timer (if active) to handle new
- * period expiry:
- */
- if (runtime_enabled)
- start_cfs_bandwidth(cfs_b);
- }
- for_each_online_cpu(i) {
- struct cfs_rq *cfs_rq = tg->cfs_rq[i];
- struct rq *rq = cfs_rq->rq;
- guard(rq_lock_irq)(rq);
- cfs_rq->runtime_enabled = runtime_enabled;
- cfs_rq->runtime_remaining = 0;
- if (cfs_rq->throttled)
- unthrottle_cfs_rq(cfs_rq);
- }
- if (runtime_was_enabled && !runtime_enabled)
- cfs_bandwidth_usage_dec();
- return 0;
- }
- static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
- {
- u64 quota, period, burst;
- period = ktime_to_ns(tg->cfs_bandwidth.period);
- burst = tg->cfs_bandwidth.burst;
- if (cfs_quota_us < 0)
- quota = RUNTIME_INF;
- else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
- quota = (u64)cfs_quota_us * NSEC_PER_USEC;
- else
- return -EINVAL;
- return tg_set_cfs_bandwidth(tg, period, quota, burst);
- }
- static long tg_get_cfs_quota(struct task_group *tg)
- {
- u64 quota_us;
- if (tg->cfs_bandwidth.quota == RUNTIME_INF)
- return -1;
- quota_us = tg->cfs_bandwidth.quota;
- do_div(quota_us, NSEC_PER_USEC);
- return quota_us;
- }
- static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
- {
- u64 quota, period, burst;
- if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
- return -EINVAL;
- period = (u64)cfs_period_us * NSEC_PER_USEC;
- quota = tg->cfs_bandwidth.quota;
- burst = tg->cfs_bandwidth.burst;
- return tg_set_cfs_bandwidth(tg, period, quota, burst);
- }
- static long tg_get_cfs_period(struct task_group *tg)
- {
- u64 cfs_period_us;
- cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
- do_div(cfs_period_us, NSEC_PER_USEC);
- return cfs_period_us;
- }
- static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
- {
- u64 quota, period, burst;
- if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
- return -EINVAL;
- burst = (u64)cfs_burst_us * NSEC_PER_USEC;
- period = ktime_to_ns(tg->cfs_bandwidth.period);
- quota = tg->cfs_bandwidth.quota;
- return tg_set_cfs_bandwidth(tg, period, quota, burst);
- }
- static long tg_get_cfs_burst(struct task_group *tg)
- {
- u64 burst_us;
- burst_us = tg->cfs_bandwidth.burst;
- do_div(burst_us, NSEC_PER_USEC);
- return burst_us;
- }
- static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return tg_get_cfs_quota(css_tg(css));
- }
- static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
- struct cftype *cftype, s64 cfs_quota_us)
- {
- return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
- }
- static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return tg_get_cfs_period(css_tg(css));
- }
- static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 cfs_period_us)
- {
- return tg_set_cfs_period(css_tg(css), cfs_period_us);
- }
- static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return tg_get_cfs_burst(css_tg(css));
- }
- static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 cfs_burst_us)
- {
- return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
- }
- struct cfs_schedulable_data {
- struct task_group *tg;
- u64 period, quota;
- };
- /*
- * normalize group quota/period to be quota/max_period
- * note: units are usecs
- */
- static u64 normalize_cfs_quota(struct task_group *tg,
- struct cfs_schedulable_data *d)
- {
- u64 quota, period;
- if (tg == d->tg) {
- period = d->period;
- quota = d->quota;
- } else {
- period = tg_get_cfs_period(tg);
- quota = tg_get_cfs_quota(tg);
- }
- /* note: these should typically be equivalent */
- if (quota == RUNTIME_INF || quota == -1)
- return RUNTIME_INF;
- return to_ratio(period, quota);
- }
- static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
- {
- struct cfs_schedulable_data *d = data;
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- s64 quota = 0, parent_quota = -1;
- if (!tg->parent) {
- quota = RUNTIME_INF;
- } else {
- struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
- quota = normalize_cfs_quota(tg, d);
- parent_quota = parent_b->hierarchical_quota;
- /*
- * Ensure max(child_quota) <= parent_quota. On cgroup2,
- * always take the non-RUNTIME_INF min. On cgroup1, only
- * inherit when no limit is set. In both cases this is used
- * by the scheduler to determine if a given CFS task has a
- * bandwidth constraint at some higher level.
- */
- if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
- if (quota == RUNTIME_INF)
- quota = parent_quota;
- else if (parent_quota != RUNTIME_INF)
- quota = min(quota, parent_quota);
- } else {
- if (quota == RUNTIME_INF)
- quota = parent_quota;
- else if (parent_quota != RUNTIME_INF && quota > parent_quota)
- return -EINVAL;
- }
- }
- cfs_b->hierarchical_quota = quota;
- return 0;
- }
- static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
- {
- struct cfs_schedulable_data data = {
- .tg = tg,
- .period = period,
- .quota = quota,
- };
- if (quota != RUNTIME_INF) {
- do_div(data.period, NSEC_PER_USEC);
- do_div(data.quota, NSEC_PER_USEC);
- }
- guard(rcu)();
- return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
- }
- static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
- {
- struct task_group *tg = css_tg(seq_css(sf));
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
- seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
- seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
- if (schedstat_enabled() && tg != &root_task_group) {
- struct sched_statistics *stats;
- u64 ws = 0;
- int i;
- for_each_possible_cpu(i) {
- stats = __schedstats_from_se(tg->se[i]);
- ws += schedstat_val(stats->wait_sum);
- }
- seq_printf(sf, "wait_sum %llu\n", ws);
- }
- seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
- seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
- return 0;
- }
- static u64 throttled_time_self(struct task_group *tg)
- {
- int i;
- u64 total = 0;
- for_each_possible_cpu(i) {
- total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
- }
- return total;
- }
- static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
- {
- struct task_group *tg = css_tg(seq_css(sf));
- seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
- return 0;
- }
- #endif /* CONFIG_CFS_BANDWIDTH */
- #ifdef CONFIG_RT_GROUP_SCHED
- static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
- struct cftype *cft, s64 val)
- {
- return sched_group_set_rt_runtime(css_tg(css), val);
- }
- static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return sched_group_rt_runtime(css_tg(css));
- }
- static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
- struct cftype *cftype, u64 rt_period_us)
- {
- return sched_group_set_rt_period(css_tg(css), rt_period_us);
- }
- static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return sched_group_rt_period(css_tg(css));
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_GROUP_SCHED_WEIGHT
- static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return css_tg(css)->idle;
- }
- static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
- struct cftype *cft, s64 idle)
- {
- int ret;
- ret = sched_group_set_idle(css_tg(css), idle);
- if (!ret)
- scx_group_set_idle(css_tg(css), idle);
- return ret;
- }
- #endif
- static struct cftype cpu_legacy_files[] = {
- #ifdef CONFIG_GROUP_SCHED_WEIGHT
- {
- .name = "shares",
- .read_u64 = cpu_shares_read_u64,
- .write_u64 = cpu_shares_write_u64,
- },
- {
- .name = "idle",
- .read_s64 = cpu_idle_read_s64,
- .write_s64 = cpu_idle_write_s64,
- },
- #endif
- #ifdef CONFIG_CFS_BANDWIDTH
- {
- .name = "cfs_quota_us",
- .read_s64 = cpu_cfs_quota_read_s64,
- .write_s64 = cpu_cfs_quota_write_s64,
- },
- {
- .name = "cfs_period_us",
- .read_u64 = cpu_cfs_period_read_u64,
- .write_u64 = cpu_cfs_period_write_u64,
- },
- {
- .name = "cfs_burst_us",
- .read_u64 = cpu_cfs_burst_read_u64,
- .write_u64 = cpu_cfs_burst_write_u64,
- },
- {
- .name = "stat",
- .seq_show = cpu_cfs_stat_show,
- },
- {
- .name = "stat.local",
- .seq_show = cpu_cfs_local_stat_show,
- },
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- {
- .name = "rt_runtime_us",
- .read_s64 = cpu_rt_runtime_read,
- .write_s64 = cpu_rt_runtime_write,
- },
- {
- .name = "rt_period_us",
- .read_u64 = cpu_rt_period_read_uint,
- .write_u64 = cpu_rt_period_write_uint,
- },
- #endif
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- {
- .name = "uclamp.min",
- .flags = CFTYPE_NOT_ON_ROOT,
- .seq_show = cpu_uclamp_min_show,
- .write = cpu_uclamp_min_write,
- },
- {
- .name = "uclamp.max",
- .flags = CFTYPE_NOT_ON_ROOT,
- .seq_show = cpu_uclamp_max_show,
- .write = cpu_uclamp_max_write,
- },
- #endif
- { } /* Terminate */
- };
- static int cpu_extra_stat_show(struct seq_file *sf,
- struct cgroup_subsys_state *css)
- {
- #ifdef CONFIG_CFS_BANDWIDTH
- {
- struct task_group *tg = css_tg(css);
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- u64 throttled_usec, burst_usec;
- throttled_usec = cfs_b->throttled_time;
- do_div(throttled_usec, NSEC_PER_USEC);
- burst_usec = cfs_b->burst_time;
- do_div(burst_usec, NSEC_PER_USEC);
- seq_printf(sf, "nr_periods %d\n"
- "nr_throttled %d\n"
- "throttled_usec %llu\n"
- "nr_bursts %d\n"
- "burst_usec %llu\n",
- cfs_b->nr_periods, cfs_b->nr_throttled,
- throttled_usec, cfs_b->nr_burst, burst_usec);
- }
- #endif
- return 0;
- }
- static int cpu_local_stat_show(struct seq_file *sf,
- struct cgroup_subsys_state *css)
- {
- #ifdef CONFIG_CFS_BANDWIDTH
- {
- struct task_group *tg = css_tg(css);
- u64 throttled_self_usec;
- throttled_self_usec = throttled_time_self(tg);
- do_div(throttled_self_usec, NSEC_PER_USEC);
- seq_printf(sf, "throttled_usec %llu\n",
- throttled_self_usec);
- }
- #endif
- return 0;
- }
- #ifdef CONFIG_GROUP_SCHED_WEIGHT
- static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- return sched_weight_to_cgroup(tg_weight(css_tg(css)));
- }
- static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 cgrp_weight)
- {
- unsigned long weight;
- int ret;
- if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
- return -ERANGE;
- weight = sched_weight_from_cgroup(cgrp_weight);
- ret = sched_group_set_shares(css_tg(css), scale_load(weight));
- if (!ret)
- scx_group_set_weight(css_tg(css), cgrp_weight);
- return ret;
- }
- static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
- struct cftype *cft)
- {
- unsigned long weight = tg_weight(css_tg(css));
- int last_delta = INT_MAX;
- int prio, delta;
- /* find the closest nice value to the current weight */
- for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
- delta = abs(sched_prio_to_weight[prio] - weight);
- if (delta >= last_delta)
- break;
- last_delta = delta;
- }
- return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
- }
- static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
- struct cftype *cft, s64 nice)
- {
- unsigned long weight;
- int idx, ret;
- if (nice < MIN_NICE || nice > MAX_NICE)
- return -ERANGE;
- idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
- idx = array_index_nospec(idx, 40);
- weight = sched_prio_to_weight[idx];
- ret = sched_group_set_shares(css_tg(css), scale_load(weight));
- if (!ret)
- scx_group_set_weight(css_tg(css),
- sched_weight_to_cgroup(weight));
- return ret;
- }
- #endif /* CONFIG_GROUP_SCHED_WEIGHT */
- static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
- long period, long quota)
- {
- if (quota < 0)
- seq_puts(sf, "max");
- else
- seq_printf(sf, "%ld", quota);
- seq_printf(sf, " %ld\n", period);
- }
- /* caller should put the current value in *@periodp before calling */
- static int __maybe_unused cpu_period_quota_parse(char *buf,
- u64 *periodp, u64 *quotap)
- {
- char tok[21]; /* U64_MAX */
- if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
- return -EINVAL;
- *periodp *= NSEC_PER_USEC;
- if (sscanf(tok, "%llu", quotap))
- *quotap *= NSEC_PER_USEC;
- else if (!strcmp(tok, "max"))
- *quotap = RUNTIME_INF;
- else
- return -EINVAL;
- return 0;
- }
- #ifdef CONFIG_CFS_BANDWIDTH
- static int cpu_max_show(struct seq_file *sf, void *v)
- {
- struct task_group *tg = css_tg(seq_css(sf));
- cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
- return 0;
- }
- static ssize_t cpu_max_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off)
- {
- struct task_group *tg = css_tg(of_css(of));
- u64 period = tg_get_cfs_period(tg);
- u64 burst = tg->cfs_bandwidth.burst;
- u64 quota;
- int ret;
- ret = cpu_period_quota_parse(buf, &period, "a);
- if (!ret)
- ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
- return ret ?: nbytes;
- }
- #endif
- static struct cftype cpu_files[] = {
- #ifdef CONFIG_GROUP_SCHED_WEIGHT
- {
- .name = "weight",
- .flags = CFTYPE_NOT_ON_ROOT,
- .read_u64 = cpu_weight_read_u64,
- .write_u64 = cpu_weight_write_u64,
- },
- {
- .name = "weight.nice",
- .flags = CFTYPE_NOT_ON_ROOT,
- .read_s64 = cpu_weight_nice_read_s64,
- .write_s64 = cpu_weight_nice_write_s64,
- },
- {
- .name = "idle",
- .flags = CFTYPE_NOT_ON_ROOT,
- .read_s64 = cpu_idle_read_s64,
- .write_s64 = cpu_idle_write_s64,
- },
- #endif
- #ifdef CONFIG_CFS_BANDWIDTH
- {
- .name = "max",
- .flags = CFTYPE_NOT_ON_ROOT,
- .seq_show = cpu_max_show,
- .write = cpu_max_write,
- },
- {
- .name = "max.burst",
- .flags = CFTYPE_NOT_ON_ROOT,
- .read_u64 = cpu_cfs_burst_read_u64,
- .write_u64 = cpu_cfs_burst_write_u64,
- },
- #endif
- #ifdef CONFIG_UCLAMP_TASK_GROUP
- {
- .name = "uclamp.min",
- .flags = CFTYPE_NOT_ON_ROOT,
- .seq_show = cpu_uclamp_min_show,
- .write = cpu_uclamp_min_write,
- },
- {
- .name = "uclamp.max",
- .flags = CFTYPE_NOT_ON_ROOT,
- .seq_show = cpu_uclamp_max_show,
- .write = cpu_uclamp_max_write,
- },
- #endif
- { } /* terminate */
- };
- struct cgroup_subsys cpu_cgrp_subsys = {
- .css_alloc = cpu_cgroup_css_alloc,
- .css_online = cpu_cgroup_css_online,
- .css_offline = cpu_cgroup_css_offline,
- .css_released = cpu_cgroup_css_released,
- .css_free = cpu_cgroup_css_free,
- .css_extra_stat_show = cpu_extra_stat_show,
- .css_local_stat_show = cpu_local_stat_show,
- .can_attach = cpu_cgroup_can_attach,
- .attach = cpu_cgroup_attach,
- .cancel_attach = cpu_cgroup_cancel_attach,
- .legacy_cftypes = cpu_legacy_files,
- .dfl_cftypes = cpu_files,
- .early_init = true,
- .threaded = true,
- };
- #endif /* CONFIG_CGROUP_SCHED */
- void dump_cpu_task(int cpu)
- {
- if (in_hardirq() && cpu == smp_processor_id()) {
- struct pt_regs *regs;
- regs = get_irq_regs();
- if (regs) {
- show_regs(regs);
- return;
- }
- }
- if (trigger_single_cpu_backtrace(cpu))
- return;
- pr_info("Task dump for CPU %d:\n", cpu);
- sched_show_task(cpu_curr(cpu));
- }
- /*
- * Nice levels are multiplicative, with a gentle 10% change for every
- * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
- * nice 1, it will get ~10% less CPU time than another CPU-bound task
- * that remained on nice 0.
- *
- * The "10% effect" is relative and cumulative: from _any_ nice level,
- * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
- * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
- * If a task goes up by ~10% and another task goes down by ~10% then
- * the relative distance between them is ~25%.)
- */
- const int sched_prio_to_weight[40] = {
- /* -20 */ 88761, 71755, 56483, 46273, 36291,
- /* -15 */ 29154, 23254, 18705, 14949, 11916,
- /* -10 */ 9548, 7620, 6100, 4904, 3906,
- /* -5 */ 3121, 2501, 1991, 1586, 1277,
- /* 0 */ 1024, 820, 655, 526, 423,
- /* 5 */ 335, 272, 215, 172, 137,
- /* 10 */ 110, 87, 70, 56, 45,
- /* 15 */ 36, 29, 23, 18, 15,
- };
- /*
- * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
- *
- * In cases where the weight does not change often, we can use the
- * pre-calculated inverse to speed up arithmetics by turning divisions
- * into multiplications:
- */
- const u32 sched_prio_to_wmult[40] = {
- /* -20 */ 48388, 59856, 76040, 92818, 118348,
- /* -15 */ 147320, 184698, 229616, 287308, 360437,
- /* -10 */ 449829, 563644, 704093, 875809, 1099582,
- /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
- /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
- /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
- /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
- /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
- };
- void call_trace_sched_update_nr_running(struct rq *rq, int count)
- {
- trace_sched_update_nr_running_tp(rq, count);
- }
- #ifdef CONFIG_SCHED_MM_CID
- /*
- * @cid_lock: Guarantee forward-progress of cid allocation.
- *
- * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
- * is only used when contention is detected by the lock-free allocation so
- * forward progress can be guaranteed.
- */
- DEFINE_RAW_SPINLOCK(cid_lock);
- /*
- * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
- *
- * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
- * detected, it is set to 1 to ensure that all newly coming allocations are
- * serialized by @cid_lock until the allocation which detected contention
- * completes and sets @use_cid_lock back to 0. This guarantees forward progress
- * of a cid allocation.
- */
- int use_cid_lock;
- /*
- * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
- * concurrently with respect to the execution of the source runqueue context
- * switch.
- *
- * There is one basic properties we want to guarantee here:
- *
- * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
- * used by a task. That would lead to concurrent allocation of the cid and
- * userspace corruption.
- *
- * Provide this guarantee by introducing a Dekker memory ordering to guarantee
- * that a pair of loads observe at least one of a pair of stores, which can be
- * shown as:
- *
- * X = Y = 0
- *
- * w[X]=1 w[Y]=1
- * MB MB
- * r[Y]=y r[X]=x
- *
- * Which guarantees that x==0 && y==0 is impossible. But rather than using
- * values 0 and 1, this algorithm cares about specific state transitions of the
- * runqueue current task (as updated by the scheduler context switch), and the
- * per-mm/cpu cid value.
- *
- * Let's introduce task (Y) which has task->mm == mm and task (N) which has
- * task->mm != mm for the rest of the discussion. There are two scheduler state
- * transitions on context switch we care about:
- *
- * (TSA) Store to rq->curr with transition from (N) to (Y)
- *
- * (TSB) Store to rq->curr with transition from (Y) to (N)
- *
- * On the remote-clear side, there is one transition we care about:
- *
- * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
- *
- * There is also a transition to UNSET state which can be performed from all
- * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
- * guarantees that only a single thread will succeed:
- *
- * (TMB) cmpxchg to *pcpu_cid to mark UNSET
- *
- * Just to be clear, what we do _not_ want to happen is a transition to UNSET
- * when a thread is actively using the cid (property (1)).
- *
- * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
- *
- * Scenario A) (TSA)+(TMA) (from next task perspective)
- *
- * CPU0 CPU1
- *
- * Context switch CS-1 Remote-clear
- * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
- * (implied barrier after cmpxchg)
- * - switch_mm_cid()
- * - memory barrier (see switch_mm_cid()
- * comment explaining how this barrier
- * is combined with other scheduler
- * barriers)
- * - mm_cid_get (next)
- * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
- *
- * This Dekker ensures that either task (Y) is observed by the
- * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
- * observed.
- *
- * If task (Y) store is observed by rcu_dereference(), it means that there is
- * still an active task on the cpu. Remote-clear will therefore not transition
- * to UNSET, which fulfills property (1).
- *
- * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
- * it will move its state to UNSET, which clears the percpu cid perhaps
- * uselessly (which is not an issue for correctness). Because task (Y) is not
- * observed, CPU1 can move ahead to set the state to UNSET. Because moving
- * state to UNSET is done with a cmpxchg expecting that the old state has the
- * LAZY flag set, only one thread will successfully UNSET.
- *
- * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
- * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
- * CPU1 will observe task (Y) and do nothing more, which is fine.
- *
- * What we are effectively preventing with this Dekker is a scenario where
- * neither LAZY flag nor store (Y) are observed, which would fail property (1)
- * because this would UNSET a cid which is actively used.
- */
- void sched_mm_cid_migrate_from(struct task_struct *t)
- {
- t->migrate_from_cpu = task_cpu(t);
- }
- static
- int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
- struct task_struct *t,
- struct mm_cid *src_pcpu_cid)
- {
- struct mm_struct *mm = t->mm;
- struct task_struct *src_task;
- int src_cid, last_mm_cid;
- if (!mm)
- return -1;
- last_mm_cid = t->last_mm_cid;
- /*
- * If the migrated task has no last cid, or if the current
- * task on src rq uses the cid, it means the source cid does not need
- * to be moved to the destination cpu.
- */
- if (last_mm_cid == -1)
- return -1;
- src_cid = READ_ONCE(src_pcpu_cid->cid);
- if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
- return -1;
- /*
- * If we observe an active task using the mm on this rq, it means we
- * are not the last task to be migrated from this cpu for this mm, so
- * there is no need to move src_cid to the destination cpu.
- */
- guard(rcu)();
- src_task = rcu_dereference(src_rq->curr);
- if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
- t->last_mm_cid = -1;
- return -1;
- }
- return src_cid;
- }
- static
- int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
- struct task_struct *t,
- struct mm_cid *src_pcpu_cid,
- int src_cid)
- {
- struct task_struct *src_task;
- struct mm_struct *mm = t->mm;
- int lazy_cid;
- if (src_cid == -1)
- return -1;
- /*
- * Attempt to clear the source cpu cid to move it to the destination
- * cpu.
- */
- lazy_cid = mm_cid_set_lazy_put(src_cid);
- if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
- return -1;
- /*
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm matches the scheduler barrier in context_switch()
- * between store to rq->curr and load of prev and next task's
- * per-mm/cpu cid.
- *
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm_cid_active matches the barrier in
- * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
- * sched_mm_cid_after_execve() between store to t->mm_cid_active and
- * load of per-mm/cpu cid.
- */
- /*
- * If we observe an active task using the mm on this rq after setting
- * the lazy-put flag, this task will be responsible for transitioning
- * from lazy-put flag set to MM_CID_UNSET.
- */
- scoped_guard (rcu) {
- src_task = rcu_dereference(src_rq->curr);
- if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
- /*
- * We observed an active task for this mm, there is therefore
- * no point in moving this cid to the destination cpu.
- */
- t->last_mm_cid = -1;
- return -1;
- }
- }
- /*
- * The src_cid is unused, so it can be unset.
- */
- if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
- return -1;
- return src_cid;
- }
- /*
- * Migration to dst cpu. Called with dst_rq lock held.
- * Interrupts are disabled, which keeps the window of cid ownership without the
- * source rq lock held small.
- */
- void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
- {
- struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
- struct mm_struct *mm = t->mm;
- int src_cid, dst_cid, src_cpu;
- struct rq *src_rq;
- lockdep_assert_rq_held(dst_rq);
- if (!mm)
- return;
- src_cpu = t->migrate_from_cpu;
- if (src_cpu == -1) {
- t->last_mm_cid = -1;
- return;
- }
- /*
- * Move the src cid if the dst cid is unset. This keeps id
- * allocation closest to 0 in cases where few threads migrate around
- * many CPUs.
- *
- * If destination cid is already set, we may have to just clear
- * the src cid to ensure compactness in frequent migrations
- * scenarios.
- *
- * It is not useful to clear the src cid when the number of threads is
- * greater or equal to the number of allowed CPUs, because user-space
- * can expect that the number of allowed cids can reach the number of
- * allowed CPUs.
- */
- dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
- dst_cid = READ_ONCE(dst_pcpu_cid->cid);
- if (!mm_cid_is_unset(dst_cid) &&
- atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
- return;
- src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
- src_rq = cpu_rq(src_cpu);
- src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
- if (src_cid == -1)
- return;
- src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
- src_cid);
- if (src_cid == -1)
- return;
- if (!mm_cid_is_unset(dst_cid)) {
- __mm_cid_put(mm, src_cid);
- return;
- }
- /* Move src_cid to dst cpu. */
- mm_cid_snapshot_time(dst_rq, mm);
- WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
- }
- static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
- int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct task_struct *t;
- int cid, lazy_cid;
- cid = READ_ONCE(pcpu_cid->cid);
- if (!mm_cid_is_valid(cid))
- return;
- /*
- * Clear the cpu cid if it is set to keep cid allocation compact. If
- * there happens to be other tasks left on the source cpu using this
- * mm, the next task using this mm will reallocate its cid on context
- * switch.
- */
- lazy_cid = mm_cid_set_lazy_put(cid);
- if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
- return;
- /*
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm matches the scheduler barrier in context_switch()
- * between store to rq->curr and load of prev and next task's
- * per-mm/cpu cid.
- *
- * The implicit barrier after cmpxchg per-mm/cpu cid before loading
- * rq->curr->mm_cid_active matches the barrier in
- * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
- * sched_mm_cid_after_execve() between store to t->mm_cid_active and
- * load of per-mm/cpu cid.
- */
- /*
- * If we observe an active task using the mm on this rq after setting
- * the lazy-put flag, that task will be responsible for transitioning
- * from lazy-put flag set to MM_CID_UNSET.
- */
- scoped_guard (rcu) {
- t = rcu_dereference(rq->curr);
- if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
- return;
- }
- /*
- * The cid is unused, so it can be unset.
- * Disable interrupts to keep the window of cid ownership without rq
- * lock small.
- */
- scoped_guard (irqsave) {
- if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
- __mm_cid_put(mm, cid);
- }
- }
- static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct mm_cid *pcpu_cid;
- struct task_struct *curr;
- u64 rq_clock;
- /*
- * rq->clock load is racy on 32-bit but one spurious clear once in a
- * while is irrelevant.
- */
- rq_clock = READ_ONCE(rq->clock);
- pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
- /*
- * In order to take care of infrequently scheduled tasks, bump the time
- * snapshot associated with this cid if an active task using the mm is
- * observed on this rq.
- */
- scoped_guard (rcu) {
- curr = rcu_dereference(rq->curr);
- if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
- WRITE_ONCE(pcpu_cid->time, rq_clock);
- return;
- }
- }
- if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
- return;
- sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
- }
- static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
- int weight)
- {
- struct mm_cid *pcpu_cid;
- int cid;
- pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
- cid = READ_ONCE(pcpu_cid->cid);
- if (!mm_cid_is_valid(cid) || cid < weight)
- return;
- sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
- }
- static void task_mm_cid_work(struct callback_head *work)
- {
- unsigned long now = jiffies, old_scan, next_scan;
- struct task_struct *t = current;
- struct cpumask *cidmask;
- struct mm_struct *mm;
- int weight, cpu;
- SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
- work->next = work; /* Prevent double-add */
- if (t->flags & PF_EXITING)
- return;
- mm = t->mm;
- if (!mm)
- return;
- old_scan = READ_ONCE(mm->mm_cid_next_scan);
- next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
- if (!old_scan) {
- unsigned long res;
- res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
- if (res != old_scan)
- old_scan = res;
- else
- old_scan = next_scan;
- }
- if (time_before(now, old_scan))
- return;
- if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
- return;
- cidmask = mm_cidmask(mm);
- /* Clear cids that were not recently used. */
- for_each_possible_cpu(cpu)
- sched_mm_cid_remote_clear_old(mm, cpu);
- weight = cpumask_weight(cidmask);
- /*
- * Clear cids that are greater or equal to the cidmask weight to
- * recompact it.
- */
- for_each_possible_cpu(cpu)
- sched_mm_cid_remote_clear_weight(mm, cpu, weight);
- }
- void init_sched_mm_cid(struct task_struct *t)
- {
- struct mm_struct *mm = t->mm;
- int mm_users = 0;
- if (mm) {
- mm_users = atomic_read(&mm->mm_users);
- if (mm_users == 1)
- mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
- }
- t->cid_work.next = &t->cid_work; /* Protect against double add */
- init_task_work(&t->cid_work, task_mm_cid_work);
- }
- void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
- {
- struct callback_head *work = &curr->cid_work;
- unsigned long now = jiffies;
- if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
- work->next != work)
- return;
- if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
- return;
- /* No page allocation under rq lock */
- task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
- }
- void sched_mm_cid_exit_signals(struct task_struct *t)
- {
- struct mm_struct *mm = t->mm;
- struct rq *rq;
- if (!mm)
- return;
- preempt_disable();
- rq = this_rq();
- guard(rq_lock_irqsave)(rq);
- preempt_enable_no_resched(); /* holding spinlock */
- WRITE_ONCE(t->mm_cid_active, 0);
- /*
- * Store t->mm_cid_active before loading per-mm/cpu cid.
- * Matches barrier in sched_mm_cid_remote_clear_old().
- */
- smp_mb();
- mm_cid_put(mm);
- t->last_mm_cid = t->mm_cid = -1;
- }
- void sched_mm_cid_before_execve(struct task_struct *t)
- {
- struct mm_struct *mm = t->mm;
- struct rq *rq;
- if (!mm)
- return;
- preempt_disable();
- rq = this_rq();
- guard(rq_lock_irqsave)(rq);
- preempt_enable_no_resched(); /* holding spinlock */
- WRITE_ONCE(t->mm_cid_active, 0);
- /*
- * Store t->mm_cid_active before loading per-mm/cpu cid.
- * Matches barrier in sched_mm_cid_remote_clear_old().
- */
- smp_mb();
- mm_cid_put(mm);
- t->last_mm_cid = t->mm_cid = -1;
- }
- void sched_mm_cid_after_execve(struct task_struct *t)
- {
- struct mm_struct *mm = t->mm;
- struct rq *rq;
- if (!mm)
- return;
- preempt_disable();
- rq = this_rq();
- scoped_guard (rq_lock_irqsave, rq) {
- preempt_enable_no_resched(); /* holding spinlock */
- WRITE_ONCE(t->mm_cid_active, 1);
- /*
- * Store t->mm_cid_active before loading per-mm/cpu cid.
- * Matches barrier in sched_mm_cid_remote_clear_old().
- */
- smp_mb();
- t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
- }
- rseq_set_notify_resume(t);
- }
- void sched_mm_cid_fork(struct task_struct *t)
- {
- WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
- t->mm_cid_active = 1;
- }
- #endif
- #ifdef CONFIG_SCHED_CLASS_EXT
- void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
- struct sched_enq_and_set_ctx *ctx)
- {
- struct rq *rq = task_rq(p);
- lockdep_assert_rq_held(rq);
- *ctx = (struct sched_enq_and_set_ctx){
- .p = p,
- .queue_flags = queue_flags,
- .queued = task_on_rq_queued(p),
- .running = task_current(rq, p),
- };
- update_rq_clock(rq);
- if (ctx->queued)
- dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
- if (ctx->running)
- put_prev_task(rq, p);
- }
- void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
- {
- struct rq *rq = task_rq(ctx->p);
- lockdep_assert_rq_held(rq);
- if (ctx->queued)
- enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
- if (ctx->running)
- set_next_task(rq, ctx->p);
- }
- #endif /* CONFIG_SCHED_CLASS_EXT */
|