| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Implement CPU time clocks for the POSIX clock interface.
- */
- #include <linux/sched/signal.h>
- #include <linux/sched/cputime.h>
- #include <linux/posix-timers.h>
- #include <linux/errno.h>
- #include <linux/math64.h>
- #include <linux/uaccess.h>
- #include <linux/kernel_stat.h>
- #include <trace/events/timer.h>
- #include <linux/tick.h>
- #include <linux/workqueue.h>
- #include <linux/compat.h>
- #include <linux/sched/deadline.h>
- #include <linux/task_work.h>
- #include "posix-timers.h"
- static void posix_cpu_timer_rearm(struct k_itimer *timer);
- void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
- {
- posix_cputimers_init(pct);
- if (cpu_limit != RLIM_INFINITY) {
- pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
- pct->timers_active = true;
- }
- }
- /*
- * Called after updating RLIMIT_CPU to run cpu timer and update
- * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
- * necessary. Needs siglock protection since other code may update the
- * expiration cache as well.
- *
- * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and
- * we cannot lock_task_sighand. Cannot fail if task is current.
- */
- int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
- {
- u64 nsecs = rlim_new * NSEC_PER_SEC;
- unsigned long irq_fl;
- if (!lock_task_sighand(task, &irq_fl))
- return -ESRCH;
- set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
- unlock_task_sighand(task, &irq_fl);
- return 0;
- }
- /*
- * Functions for validating access to tasks.
- */
- static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
- {
- const bool thread = !!CPUCLOCK_PERTHREAD(clock);
- const pid_t upid = CPUCLOCK_PID(clock);
- struct pid *pid;
- if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
- return NULL;
- /*
- * If the encoded PID is 0, then the timer is targeted at current
- * or the process to which current belongs.
- */
- if (upid == 0)
- return thread ? task_pid(current) : task_tgid(current);
- pid = find_vpid(upid);
- if (!pid)
- return NULL;
- if (thread) {
- struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
- return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
- }
- /*
- * For clock_gettime(PROCESS) allow finding the process by
- * with the pid of the current task. The code needs the tgid
- * of the process so that pid_task(pid, PIDTYPE_TGID) can be
- * used to find the process.
- */
- if (gettime && (pid == task_pid(current)))
- return task_tgid(current);
- /*
- * For processes require that pid identifies a process.
- */
- return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
- }
- static inline int validate_clock_permissions(const clockid_t clock)
- {
- int ret;
- rcu_read_lock();
- ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
- rcu_read_unlock();
- return ret;
- }
- static inline enum pid_type clock_pid_type(const clockid_t clock)
- {
- return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
- }
- static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
- {
- return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
- }
- /*
- * Update expiry time from increment, and increase overrun count,
- * given the current clock sample.
- */
- static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
- {
- u64 delta, incr, expires = timer->it.cpu.node.expires;
- int i;
- if (!timer->it_interval)
- return expires;
- if (now < expires)
- return expires;
- incr = timer->it_interval;
- delta = now + incr - expires;
- /* Don't use (incr*2 < delta), incr*2 might overflow. */
- for (i = 0; incr < delta - incr; i++)
- incr = incr << 1;
- for (; i >= 0; incr >>= 1, i--) {
- if (delta < incr)
- continue;
- timer->it.cpu.node.expires += incr;
- timer->it_overrun += 1LL << i;
- delta -= incr;
- }
- return timer->it.cpu.node.expires;
- }
- /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
- static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
- {
- return !(~pct->bases[CPUCLOCK_PROF].nextevt |
- ~pct->bases[CPUCLOCK_VIRT].nextevt |
- ~pct->bases[CPUCLOCK_SCHED].nextevt);
- }
- static int
- posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
- {
- int error = validate_clock_permissions(which_clock);
- if (!error) {
- tp->tv_sec = 0;
- tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- /*
- * If sched_clock is using a cycle counter, we
- * don't have any idea of its true resolution
- * exported, but it is much more than 1s/HZ.
- */
- tp->tv_nsec = 1;
- }
- }
- return error;
- }
- static int
- posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
- {
- int error = validate_clock_permissions(clock);
- /*
- * You can never reset a CPU clock, but we check for other errors
- * in the call before failing with EPERM.
- */
- return error ? : -EPERM;
- }
- /*
- * Sample a per-thread clock for the given task. clkid is validated.
- */
- static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
- {
- u64 utime, stime;
- if (clkid == CPUCLOCK_SCHED)
- return task_sched_runtime(p);
- task_cputime(p, &utime, &stime);
- switch (clkid) {
- case CPUCLOCK_PROF:
- return utime + stime;
- case CPUCLOCK_VIRT:
- return utime;
- default:
- WARN_ON_ONCE(1);
- }
- return 0;
- }
- static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
- {
- samples[CPUCLOCK_PROF] = stime + utime;
- samples[CPUCLOCK_VIRT] = utime;
- samples[CPUCLOCK_SCHED] = rtime;
- }
- static void task_sample_cputime(struct task_struct *p, u64 *samples)
- {
- u64 stime, utime;
- task_cputime(p, &utime, &stime);
- store_samples(samples, stime, utime, p->se.sum_exec_runtime);
- }
- static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
- u64 *samples)
- {
- u64 stime, utime, rtime;
- utime = atomic64_read(&at->utime);
- stime = atomic64_read(&at->stime);
- rtime = atomic64_read(&at->sum_exec_runtime);
- store_samples(samples, stime, utime, rtime);
- }
- /*
- * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
- * to avoid race conditions with concurrent updates to cputime.
- */
- static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
- {
- u64 curr_cputime = atomic64_read(cputime);
- do {
- if (sum_cputime <= curr_cputime)
- return;
- } while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
- }
- static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
- struct task_cputime *sum)
- {
- __update_gt_cputime(&cputime_atomic->utime, sum->utime);
- __update_gt_cputime(&cputime_atomic->stime, sum->stime);
- __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
- }
- /**
- * thread_group_sample_cputime - Sample cputime for a given task
- * @tsk: Task for which cputime needs to be started
- * @samples: Storage for time samples
- *
- * Called from sys_getitimer() to calculate the expiry time of an active
- * timer. That means group cputime accounting is already active. Called
- * with task sighand lock held.
- *
- * Updates @times with an uptodate sample of the thread group cputimes.
- */
- void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
- {
- struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
- struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
- WARN_ON_ONCE(!pct->timers_active);
- proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
- }
- /**
- * thread_group_start_cputime - Start cputime and return a sample
- * @tsk: Task for which cputime needs to be started
- * @samples: Storage for time samples
- *
- * The thread group cputime accounting is avoided when there are no posix
- * CPU timers armed. Before starting a timer it's required to check whether
- * the time accounting is active. If not, a full update of the atomic
- * accounting store needs to be done and the accounting enabled.
- *
- * Updates @times with an uptodate sample of the thread group cputimes.
- */
- static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
- {
- struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
- struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
- lockdep_assert_task_sighand_held(tsk);
- /* Check if cputimer isn't running. This is accessed without locking. */
- if (!READ_ONCE(pct->timers_active)) {
- struct task_cputime sum;
- /*
- * The POSIX timer interface allows for absolute time expiry
- * values through the TIMER_ABSTIME flag, therefore we have
- * to synchronize the timer to the clock every time we start it.
- */
- thread_group_cputime(tsk, &sum);
- update_gt_cputime(&cputimer->cputime_atomic, &sum);
- /*
- * We're setting timers_active without a lock. Ensure this
- * only gets written to in one operation. We set it after
- * update_gt_cputime() as a small optimization, but
- * barriers are not required because update_gt_cputime()
- * can handle concurrent updates.
- */
- WRITE_ONCE(pct->timers_active, true);
- }
- proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
- }
- static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
- {
- struct task_cputime ct;
- thread_group_cputime(tsk, &ct);
- store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
- }
- /*
- * Sample a process (thread group) clock for the given task clkid. If the
- * group's cputime accounting is already enabled, read the atomic
- * store. Otherwise a full update is required. clkid is already validated.
- */
- static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
- bool start)
- {
- struct thread_group_cputimer *cputimer = &p->signal->cputimer;
- struct posix_cputimers *pct = &p->signal->posix_cputimers;
- u64 samples[CPUCLOCK_MAX];
- if (!READ_ONCE(pct->timers_active)) {
- if (start)
- thread_group_start_cputime(p, samples);
- else
- __thread_group_cputime(p, samples);
- } else {
- proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
- }
- return samples[clkid];
- }
- static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
- {
- const clockid_t clkid = CPUCLOCK_WHICH(clock);
- struct task_struct *tsk;
- u64 t;
- rcu_read_lock();
- tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
- if (!tsk) {
- rcu_read_unlock();
- return -EINVAL;
- }
- if (CPUCLOCK_PERTHREAD(clock))
- t = cpu_clock_sample(clkid, tsk);
- else
- t = cpu_clock_sample_group(clkid, tsk, false);
- rcu_read_unlock();
- *tp = ns_to_timespec64(t);
- return 0;
- }
- /*
- * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
- * This is called from sys_timer_create() and do_cpu_nanosleep() with the
- * new timer already all-zeros initialized.
- */
- static int posix_cpu_timer_create(struct k_itimer *new_timer)
- {
- static struct lock_class_key posix_cpu_timers_key;
- struct pid *pid;
- rcu_read_lock();
- pid = pid_for_clock(new_timer->it_clock, false);
- if (!pid) {
- rcu_read_unlock();
- return -EINVAL;
- }
- /*
- * If posix timer expiry is handled in task work context then
- * timer::it_lock can be taken without disabling interrupts as all
- * other locking happens in task context. This requires a separate
- * lock class key otherwise regular posix timer expiry would record
- * the lock class being taken in interrupt context and generate a
- * false positive warning.
- */
- if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
- lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
- new_timer->kclock = &clock_posix_cpu;
- timerqueue_init(&new_timer->it.cpu.node);
- new_timer->it.cpu.pid = get_pid(pid);
- rcu_read_unlock();
- return 0;
- }
- static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
- struct task_struct *tsk)
- {
- int clkidx = CPUCLOCK_WHICH(timer->it_clock);
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- return tsk->posix_cputimers.bases + clkidx;
- else
- return tsk->signal->posix_cputimers.bases + clkidx;
- }
- /*
- * Force recalculating the base earliest expiration on the next tick.
- * This will also re-evaluate the need to keep around the process wide
- * cputime counter and tick dependency and eventually shut these down
- * if necessary.
- */
- static void trigger_base_recalc_expires(struct k_itimer *timer,
- struct task_struct *tsk)
- {
- struct posix_cputimer_base *base = timer_base(timer, tsk);
- base->nextevt = 0;
- }
- /*
- * Dequeue the timer and reset the base if it was its earliest expiration.
- * It makes sure the next tick recalculates the base next expiration so we
- * don't keep the costly process wide cputime counter around for a random
- * amount of time, along with the tick dependency.
- *
- * If another timer gets queued between this and the next tick, its
- * expiration will update the base next event if necessary on the next
- * tick.
- */
- static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
- {
- struct cpu_timer *ctmr = &timer->it.cpu;
- struct posix_cputimer_base *base;
- timer->it_active = 0;
- if (!cpu_timer_dequeue(ctmr))
- return;
- base = timer_base(timer, p);
- if (cpu_timer_getexpires(ctmr) == base->nextevt)
- trigger_base_recalc_expires(timer, p);
- }
- /*
- * Clean up a CPU-clock timer that is about to be destroyed.
- * This is called from timer deletion with the timer already locked.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
- static int posix_cpu_timer_del(struct k_itimer *timer)
- {
- struct cpu_timer *ctmr = &timer->it.cpu;
- struct sighand_struct *sighand;
- struct task_struct *p;
- unsigned long flags;
- int ret = 0;
- rcu_read_lock();
- p = cpu_timer_task_rcu(timer);
- if (!p)
- goto out;
- /*
- * Protect against sighand release/switch in exit/exec and process/
- * thread timer list entry concurrent read/writes.
- */
- sighand = lock_task_sighand(p, &flags);
- if (unlikely(sighand == NULL)) {
- /*
- * This raced with the reaping of the task. The exit cleanup
- * should have removed this timer from the timer queue.
- */
- WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
- } else {
- if (timer->it.cpu.firing)
- ret = TIMER_RETRY;
- else
- disarm_timer(timer, p);
- unlock_task_sighand(p, &flags);
- }
- out:
- rcu_read_unlock();
- if (!ret)
- put_pid(ctmr->pid);
- return ret;
- }
- static void cleanup_timerqueue(struct timerqueue_head *head)
- {
- struct timerqueue_node *node;
- struct cpu_timer *ctmr;
- while ((node = timerqueue_getnext(head))) {
- timerqueue_del(head, node);
- ctmr = container_of(node, struct cpu_timer, node);
- ctmr->head = NULL;
- }
- }
- /*
- * Clean out CPU timers which are still armed when a thread exits. The
- * timers are only removed from the list. No other updates are done. The
- * corresponding posix timers are still accessible, but cannot be rearmed.
- *
- * This must be called with the siglock held.
- */
- static void cleanup_timers(struct posix_cputimers *pct)
- {
- cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
- cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
- cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
- }
- /*
- * These are both called with the siglock held, when the current thread
- * is being reaped. When the final (leader) thread in the group is reaped,
- * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
- */
- void posix_cpu_timers_exit(struct task_struct *tsk)
- {
- cleanup_timers(&tsk->posix_cputimers);
- }
- void posix_cpu_timers_exit_group(struct task_struct *tsk)
- {
- cleanup_timers(&tsk->signal->posix_cputimers);
- }
- /*
- * Insert the timer on the appropriate list before any timers that
- * expire later. This must be called with the sighand lock held.
- */
- static void arm_timer(struct k_itimer *timer, struct task_struct *p)
- {
- struct posix_cputimer_base *base = timer_base(timer, p);
- struct cpu_timer *ctmr = &timer->it.cpu;
- u64 newexp = cpu_timer_getexpires(ctmr);
- timer->it_active = 1;
- if (!cpu_timer_enqueue(&base->tqhead, ctmr))
- return;
- /*
- * We are the new earliest-expiring POSIX 1.b timer, hence
- * need to update expiration cache. Take into account that
- * for process timers we share expiration cache with itimers
- * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
- */
- if (newexp < base->nextevt)
- base->nextevt = newexp;
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
- else
- tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
- }
- /*
- * The timer is locked, fire it and arrange for its reload.
- */
- static void cpu_timer_fire(struct k_itimer *timer)
- {
- struct cpu_timer *ctmr = &timer->it.cpu;
- timer->it_active = 0;
- if (unlikely(timer->sigq == NULL)) {
- /*
- * This a special case for clock_nanosleep,
- * not a normal timer from sys_timer_create.
- */
- wake_up_process(timer->it_process);
- cpu_timer_setexpires(ctmr, 0);
- } else if (!timer->it_interval) {
- /*
- * One-shot timer. Clear it as soon as it's fired.
- */
- posix_timer_queue_signal(timer);
- cpu_timer_setexpires(ctmr, 0);
- } else if (posix_timer_queue_signal(timer)) {
- /*
- * The signal did not get queued because the signal
- * was ignored, so we won't get any callback to
- * reload the timer. But we need to keep it
- * ticking in case the signal is deliverable next time.
- */
- posix_cpu_timer_rearm(timer);
- ++timer->it_requeue_pending;
- }
- }
- static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now);
- /*
- * Guts of sys_timer_settime for CPU timers.
- * This is called with the timer locked and interrupts disabled.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
- static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
- struct itimerspec64 *new, struct itimerspec64 *old)
- {
- bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
- clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
- struct cpu_timer *ctmr = &timer->it.cpu;
- u64 old_expires, new_expires, now;
- struct sighand_struct *sighand;
- struct task_struct *p;
- unsigned long flags;
- int ret = 0;
- rcu_read_lock();
- p = cpu_timer_task_rcu(timer);
- if (!p) {
- /*
- * If p has just been reaped, we can no
- * longer get any information about it at all.
- */
- rcu_read_unlock();
- return -ESRCH;
- }
- /*
- * Use the to_ktime conversion because that clamps the maximum
- * value to KTIME_MAX and avoid multiplication overflows.
- */
- new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
- /*
- * Protect against sighand release/switch in exit/exec and p->cpu_timers
- * and p->signal->cpu_timers read/write in arm_timer()
- */
- sighand = lock_task_sighand(p, &flags);
- /*
- * If p has just been reaped, we can no
- * longer get any information about it at all.
- */
- if (unlikely(sighand == NULL)) {
- rcu_read_unlock();
- return -ESRCH;
- }
- /* Retrieve the current expiry time before disarming the timer */
- old_expires = cpu_timer_getexpires(ctmr);
- if (unlikely(timer->it.cpu.firing)) {
- timer->it.cpu.firing = -1;
- ret = TIMER_RETRY;
- } else {
- cpu_timer_dequeue(ctmr);
- timer->it_active = 0;
- }
- /*
- * Sample the current clock for saving the previous setting
- * and for rearming the timer.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- now = cpu_clock_sample(clkid, p);
- else
- now = cpu_clock_sample_group(clkid, p, !sigev_none);
- /* Retrieve the previous expiry value if requested. */
- if (old) {
- old->it_value = (struct timespec64){ };
- if (old_expires)
- __posix_cpu_timer_get(timer, old, now);
- }
- /* Retry if the timer expiry is running concurrently */
- if (unlikely(ret)) {
- unlock_task_sighand(p, &flags);
- goto out;
- }
- /* Convert relative expiry time to absolute */
- if (new_expires && !(timer_flags & TIMER_ABSTIME))
- new_expires += now;
- /* Set the new expiry time (might be 0) */
- cpu_timer_setexpires(ctmr, new_expires);
- /*
- * Arm the timer if it is not disabled, the new expiry value has
- * not yet expired and the timer requires signal delivery.
- * SIGEV_NONE timers are never armed. In case the timer is not
- * armed, enforce the reevaluation of the timer base so that the
- * process wide cputime counter can be disabled eventually.
- */
- if (likely(!sigev_none)) {
- if (new_expires && now < new_expires)
- arm_timer(timer, p);
- else
- trigger_base_recalc_expires(timer, p);
- }
- unlock_task_sighand(p, &flags);
- posix_timer_set_common(timer, new);
- /*
- * If the new expiry time was already in the past the timer was not
- * queued. Fire it immediately even if the thread never runs to
- * accumulate more time on this clock.
- */
- if (!sigev_none && new_expires && now >= new_expires)
- cpu_timer_fire(timer);
- out:
- rcu_read_unlock();
- return ret;
- }
- static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now)
- {
- bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
- u64 expires, iv = timer->it_interval;
- /*
- * Make sure that interval timers are moved forward for the
- * following cases:
- * - SIGEV_NONE timers which are never armed
- * - Timers which expired, but the signal has not yet been
- * delivered
- */
- if (iv && ((timer->it_requeue_pending & REQUEUE_PENDING) || sigev_none))
- expires = bump_cpu_timer(timer, now);
- else
- expires = cpu_timer_getexpires(&timer->it.cpu);
- /*
- * Expired interval timers cannot have a remaining time <= 0.
- * The kernel has to move them forward so that the next
- * timer expiry is > @now.
- */
- if (now < expires) {
- itp->it_value = ns_to_timespec64(expires - now);
- } else {
- /*
- * A single shot SIGEV_NONE timer must return 0, when it is
- * expired! Timers which have a real signal delivery mode
- * must return a remaining time greater than 0 because the
- * signal has not yet been delivered.
- */
- if (!sigev_none)
- itp->it_value.tv_nsec = 1;
- }
- }
- static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
- {
- clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
- struct task_struct *p;
- u64 now;
- rcu_read_lock();
- p = cpu_timer_task_rcu(timer);
- if (p && cpu_timer_getexpires(&timer->it.cpu)) {
- itp->it_interval = ktime_to_timespec64(timer->it_interval);
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- now = cpu_clock_sample(clkid, p);
- else
- now = cpu_clock_sample_group(clkid, p, false);
- __posix_cpu_timer_get(timer, itp, now);
- }
- rcu_read_unlock();
- }
- #define MAX_COLLECTED 20
- static u64 collect_timerqueue(struct timerqueue_head *head,
- struct list_head *firing, u64 now)
- {
- struct timerqueue_node *next;
- int i = 0;
- while ((next = timerqueue_getnext(head))) {
- struct cpu_timer *ctmr;
- u64 expires;
- ctmr = container_of(next, struct cpu_timer, node);
- expires = cpu_timer_getexpires(ctmr);
- /* Limit the number of timers to expire at once */
- if (++i == MAX_COLLECTED || now < expires)
- return expires;
- ctmr->firing = 1;
- /* See posix_cpu_timer_wait_running() */
- rcu_assign_pointer(ctmr->handling, current);
- cpu_timer_dequeue(ctmr);
- list_add_tail(&ctmr->elist, firing);
- }
- return U64_MAX;
- }
- static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
- struct list_head *firing)
- {
- struct posix_cputimer_base *base = pct->bases;
- int i;
- for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
- base->nextevt = collect_timerqueue(&base->tqhead, firing,
- samples[i]);
- }
- }
- static inline void check_dl_overrun(struct task_struct *tsk)
- {
- if (tsk->dl.dl_overrun) {
- tsk->dl.dl_overrun = 0;
- send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
- }
- }
- static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
- {
- if (time < limit)
- return false;
- if (print_fatal_signals) {
- pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
- rt ? "RT" : "CPU", hard ? "hard" : "soft",
- current->comm, task_pid_nr(current));
- }
- send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
- return true;
- }
- /*
- * Check for any per-thread CPU timers that have fired and move them off
- * the tsk->cpu_timers[N] list onto the firing list. Here we update the
- * tsk->it_*_expires values to reflect the remaining thread CPU timers.
- */
- static void check_thread_timers(struct task_struct *tsk,
- struct list_head *firing)
- {
- struct posix_cputimers *pct = &tsk->posix_cputimers;
- u64 samples[CPUCLOCK_MAX];
- unsigned long soft;
- if (dl_task(tsk))
- check_dl_overrun(tsk);
- if (expiry_cache_is_inactive(pct))
- return;
- task_sample_cputime(tsk, samples);
- collect_posix_cputimers(pct, samples, firing);
- /*
- * Check for the special case thread timers.
- */
- soft = task_rlimit(tsk, RLIMIT_RTTIME);
- if (soft != RLIM_INFINITY) {
- /* Task RT timeout is accounted in jiffies. RTTIME is usec */
- unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
- unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
- /* At the hard limit, send SIGKILL. No further action. */
- if (hard != RLIM_INFINITY &&
- check_rlimit(rttime, hard, SIGKILL, true, true))
- return;
- /* At the soft limit, send a SIGXCPU every second */
- if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
- soft += USEC_PER_SEC;
- tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
- }
- }
- if (expiry_cache_is_inactive(pct))
- tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
- }
- static inline void stop_process_timers(struct signal_struct *sig)
- {
- struct posix_cputimers *pct = &sig->posix_cputimers;
- /* Turn off the active flag. This is done without locking. */
- WRITE_ONCE(pct->timers_active, false);
- tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
- }
- static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
- u64 *expires, u64 cur_time, int signo)
- {
- if (!it->expires)
- return;
- if (cur_time >= it->expires) {
- if (it->incr)
- it->expires += it->incr;
- else
- it->expires = 0;
- trace_itimer_expire(signo == SIGPROF ?
- ITIMER_PROF : ITIMER_VIRTUAL,
- task_tgid(tsk), cur_time);
- send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
- }
- if (it->expires && it->expires < *expires)
- *expires = it->expires;
- }
- /*
- * Check for any per-thread CPU timers that have fired and move them
- * off the tsk->*_timers list onto the firing list. Per-thread timers
- * have already been taken off.
- */
- static void check_process_timers(struct task_struct *tsk,
- struct list_head *firing)
- {
- struct signal_struct *const sig = tsk->signal;
- struct posix_cputimers *pct = &sig->posix_cputimers;
- u64 samples[CPUCLOCK_MAX];
- unsigned long soft;
- /*
- * If there are no active process wide timers (POSIX 1.b, itimers,
- * RLIMIT_CPU) nothing to check. Also skip the process wide timer
- * processing when there is already another task handling them.
- */
- if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
- return;
- /*
- * Signify that a thread is checking for process timers.
- * Write access to this field is protected by the sighand lock.
- */
- pct->expiry_active = true;
- /*
- * Collect the current process totals. Group accounting is active
- * so the sample can be taken directly.
- */
- proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
- collect_posix_cputimers(pct, samples, firing);
- /*
- * Check for the special case process timers.
- */
- check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
- &pct->bases[CPUCLOCK_PROF].nextevt,
- samples[CPUCLOCK_PROF], SIGPROF);
- check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
- &pct->bases[CPUCLOCK_VIRT].nextevt,
- samples[CPUCLOCK_VIRT], SIGVTALRM);
- soft = task_rlimit(tsk, RLIMIT_CPU);
- if (soft != RLIM_INFINITY) {
- /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
- unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
- u64 ptime = samples[CPUCLOCK_PROF];
- u64 softns = (u64)soft * NSEC_PER_SEC;
- u64 hardns = (u64)hard * NSEC_PER_SEC;
- /* At the hard limit, send SIGKILL. No further action. */
- if (hard != RLIM_INFINITY &&
- check_rlimit(ptime, hardns, SIGKILL, false, true))
- return;
- /* At the soft limit, send a SIGXCPU every second */
- if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
- sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
- softns += NSEC_PER_SEC;
- }
- /* Update the expiry cache */
- if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
- pct->bases[CPUCLOCK_PROF].nextevt = softns;
- }
- if (expiry_cache_is_inactive(pct))
- stop_process_timers(sig);
- pct->expiry_active = false;
- }
- /*
- * This is called from the signal code (via posixtimer_rearm)
- * when the last timer signal was delivered and we have to reload the timer.
- */
- static void posix_cpu_timer_rearm(struct k_itimer *timer)
- {
- clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
- struct task_struct *p;
- struct sighand_struct *sighand;
- unsigned long flags;
- u64 now;
- rcu_read_lock();
- p = cpu_timer_task_rcu(timer);
- if (!p)
- goto out;
- /* Protect timer list r/w in arm_timer() */
- sighand = lock_task_sighand(p, &flags);
- if (unlikely(sighand == NULL))
- goto out;
- /*
- * Fetch the current sample and update the timer's expiry time.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- now = cpu_clock_sample(clkid, p);
- else
- now = cpu_clock_sample_group(clkid, p, true);
- bump_cpu_timer(timer, now);
- /*
- * Now re-arm for the new expiry time.
- */
- arm_timer(timer, p);
- unlock_task_sighand(p, &flags);
- out:
- rcu_read_unlock();
- }
- /**
- * task_cputimers_expired - Check whether posix CPU timers are expired
- *
- * @samples: Array of current samples for the CPUCLOCK clocks
- * @pct: Pointer to a posix_cputimers container
- *
- * Returns true if any member of @samples is greater than the corresponding
- * member of @pct->bases[CLK].nextevt. False otherwise
- */
- static inline bool
- task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
- {
- int i;
- for (i = 0; i < CPUCLOCK_MAX; i++) {
- if (samples[i] >= pct->bases[i].nextevt)
- return true;
- }
- return false;
- }
- /**
- * fastpath_timer_check - POSIX CPU timers fast path.
- *
- * @tsk: The task (thread) being checked.
- *
- * Check the task and thread group timers. If both are zero (there are no
- * timers set) return false. Otherwise snapshot the task and thread group
- * timers and compare them with the corresponding expiration times. Return
- * true if a timer has expired, else return false.
- */
- static inline bool fastpath_timer_check(struct task_struct *tsk)
- {
- struct posix_cputimers *pct = &tsk->posix_cputimers;
- struct signal_struct *sig;
- if (!expiry_cache_is_inactive(pct)) {
- u64 samples[CPUCLOCK_MAX];
- task_sample_cputime(tsk, samples);
- if (task_cputimers_expired(samples, pct))
- return true;
- }
- sig = tsk->signal;
- pct = &sig->posix_cputimers;
- /*
- * Check if thread group timers expired when timers are active and
- * no other thread in the group is already handling expiry for
- * thread group cputimers. These fields are read without the
- * sighand lock. However, this is fine because this is meant to be
- * a fastpath heuristic to determine whether we should try to
- * acquire the sighand lock to handle timer expiry.
- *
- * In the worst case scenario, if concurrently timers_active is set
- * or expiry_active is cleared, but the current thread doesn't see
- * the change yet, the timer checks are delayed until the next
- * thread in the group gets a scheduler interrupt to handle the
- * timer. This isn't an issue in practice because these types of
- * delays with signals actually getting sent are expected.
- */
- if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
- u64 samples[CPUCLOCK_MAX];
- proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
- samples);
- if (task_cputimers_expired(samples, pct))
- return true;
- }
- if (dl_task(tsk) && tsk->dl.dl_overrun)
- return true;
- return false;
- }
- static void handle_posix_cpu_timers(struct task_struct *tsk);
- #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
- static void posix_cpu_timers_work(struct callback_head *work)
- {
- struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
- mutex_lock(&cw->mutex);
- handle_posix_cpu_timers(current);
- mutex_unlock(&cw->mutex);
- }
- /*
- * Invoked from the posix-timer core when a cancel operation failed because
- * the timer is marked firing. The caller holds rcu_read_lock(), which
- * protects the timer and the task which is expiring it from being freed.
- */
- static void posix_cpu_timer_wait_running(struct k_itimer *timr)
- {
- struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
- /* Has the handling task completed expiry already? */
- if (!tsk)
- return;
- /* Ensure that the task cannot go away */
- get_task_struct(tsk);
- /* Now drop the RCU protection so the mutex can be locked */
- rcu_read_unlock();
- /* Wait on the expiry mutex */
- mutex_lock(&tsk->posix_cputimers_work.mutex);
- /* Release it immediately again. */
- mutex_unlock(&tsk->posix_cputimers_work.mutex);
- /* Drop the task reference. */
- put_task_struct(tsk);
- /* Relock RCU so the callsite is balanced */
- rcu_read_lock();
- }
- static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
- {
- /* Ensure that timr->it.cpu.handling task cannot go away */
- rcu_read_lock();
- spin_unlock_irq(&timr->it_lock);
- posix_cpu_timer_wait_running(timr);
- rcu_read_unlock();
- /* @timr is on stack and is valid */
- spin_lock_irq(&timr->it_lock);
- }
- /*
- * Clear existing posix CPU timers task work.
- */
- void clear_posix_cputimers_work(struct task_struct *p)
- {
- /*
- * A copied work entry from the old task is not meaningful, clear it.
- * N.B. init_task_work will not do this.
- */
- memset(&p->posix_cputimers_work.work, 0,
- sizeof(p->posix_cputimers_work.work));
- init_task_work(&p->posix_cputimers_work.work,
- posix_cpu_timers_work);
- mutex_init(&p->posix_cputimers_work.mutex);
- p->posix_cputimers_work.scheduled = false;
- }
- /*
- * Initialize posix CPU timers task work in init task. Out of line to
- * keep the callback static and to avoid header recursion hell.
- */
- void __init posix_cputimers_init_work(void)
- {
- clear_posix_cputimers_work(current);
- }
- /*
- * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
- * in hard interrupt context or in task context with interrupts
- * disabled. Aside of that the writer/reader interaction is always in the
- * context of the current task, which means they are strict per CPU.
- */
- static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
- {
- return tsk->posix_cputimers_work.scheduled;
- }
- static inline void __run_posix_cpu_timers(struct task_struct *tsk)
- {
- if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
- return;
- /* Schedule task work to actually expire the timers */
- tsk->posix_cputimers_work.scheduled = true;
- task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
- }
- static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
- unsigned long start)
- {
- bool ret = true;
- /*
- * On !RT kernels interrupts are disabled while collecting expired
- * timers, so no tick can happen and the fast path check can be
- * reenabled without further checks.
- */
- if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
- tsk->posix_cputimers_work.scheduled = false;
- return true;
- }
- /*
- * On RT enabled kernels ticks can happen while the expired timers
- * are collected under sighand lock. But any tick which observes
- * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
- * checks. So reenabling the tick work has do be done carefully:
- *
- * Disable interrupts and run the fast path check if jiffies have
- * advanced since the collecting of expired timers started. If
- * jiffies have not advanced or the fast path check did not find
- * newly expired timers, reenable the fast path check in the timer
- * interrupt. If there are newly expired timers, return false and
- * let the collection loop repeat.
- */
- local_irq_disable();
- if (start != jiffies && fastpath_timer_check(tsk))
- ret = false;
- else
- tsk->posix_cputimers_work.scheduled = false;
- local_irq_enable();
- return ret;
- }
- #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
- static inline void __run_posix_cpu_timers(struct task_struct *tsk)
- {
- lockdep_posixtimer_enter();
- handle_posix_cpu_timers(tsk);
- lockdep_posixtimer_exit();
- }
- static void posix_cpu_timer_wait_running(struct k_itimer *timr)
- {
- cpu_relax();
- }
- static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
- {
- spin_unlock_irq(&timr->it_lock);
- cpu_relax();
- spin_lock_irq(&timr->it_lock);
- }
- static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
- {
- return false;
- }
- static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
- unsigned long start)
- {
- return true;
- }
- #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
- static void handle_posix_cpu_timers(struct task_struct *tsk)
- {
- struct k_itimer *timer, *next;
- unsigned long flags, start;
- LIST_HEAD(firing);
- if (!lock_task_sighand(tsk, &flags))
- return;
- do {
- /*
- * On RT locking sighand lock does not disable interrupts,
- * so this needs to be careful vs. ticks. Store the current
- * jiffies value.
- */
- start = READ_ONCE(jiffies);
- barrier();
- /*
- * Here we take off tsk->signal->cpu_timers[N] and
- * tsk->cpu_timers[N] all the timers that are firing, and
- * put them on the firing list.
- */
- check_thread_timers(tsk, &firing);
- check_process_timers(tsk, &firing);
- /*
- * The above timer checks have updated the expiry cache and
- * because nothing can have queued or modified timers after
- * sighand lock was taken above it is guaranteed to be
- * consistent. So the next timer interrupt fastpath check
- * will find valid data.
- *
- * If timer expiry runs in the timer interrupt context then
- * the loop is not relevant as timers will be directly
- * expired in interrupt context. The stub function below
- * returns always true which allows the compiler to
- * optimize the loop out.
- *
- * If timer expiry is deferred to task work context then
- * the following rules apply:
- *
- * - On !RT kernels no tick can have happened on this CPU
- * after sighand lock was acquired because interrupts are
- * disabled. So reenabling task work before dropping
- * sighand lock and reenabling interrupts is race free.
- *
- * - On RT kernels ticks might have happened but the tick
- * work ignored posix CPU timer handling because the
- * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
- * must be done very carefully including a check whether
- * ticks have happened since the start of the timer
- * expiry checks. posix_cpu_timers_enable_work() takes
- * care of that and eventually lets the expiry checks
- * run again.
- */
- } while (!posix_cpu_timers_enable_work(tsk, start));
- /*
- * We must release sighand lock before taking any timer's lock.
- * There is a potential race with timer deletion here, as the
- * siglock now protects our private firing list. We have set
- * the firing flag in each timer, so that a deletion attempt
- * that gets the timer lock before we do will give it up and
- * spin until we've taken care of that timer below.
- */
- unlock_task_sighand(tsk, &flags);
- /*
- * Now that all the timers on our list have the firing flag,
- * no one will touch their list entries but us. We'll take
- * each timer's lock before clearing its firing flag, so no
- * timer call will interfere.
- */
- list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
- int cpu_firing;
- /*
- * spin_lock() is sufficient here even independent of the
- * expiry context. If expiry happens in hard interrupt
- * context it's obvious. For task work context it's safe
- * because all other operations on timer::it_lock happen in
- * task context (syscall or exit).
- */
- spin_lock(&timer->it_lock);
- list_del_init(&timer->it.cpu.elist);
- cpu_firing = timer->it.cpu.firing;
- timer->it.cpu.firing = 0;
- /*
- * The firing flag is -1 if we collided with a reset
- * of the timer, which already reported this
- * almost-firing as an overrun. So don't generate an event.
- */
- if (likely(cpu_firing >= 0))
- cpu_timer_fire(timer);
- /* See posix_cpu_timer_wait_running() */
- rcu_assign_pointer(timer->it.cpu.handling, NULL);
- spin_unlock(&timer->it_lock);
- }
- }
- /*
- * This is called from the timer interrupt handler. The irq handler has
- * already updated our counts. We need to check if any timers fire now.
- * Interrupts are disabled.
- */
- void run_posix_cpu_timers(void)
- {
- struct task_struct *tsk = current;
- lockdep_assert_irqs_disabled();
- /*
- * If the actual expiry is deferred to task work context and the
- * work is already scheduled there is no point to do anything here.
- */
- if (posix_cpu_timers_work_scheduled(tsk))
- return;
- /*
- * The fast path checks that there are no expired thread or thread
- * group timers. If that's so, just return.
- */
- if (!fastpath_timer_check(tsk))
- return;
- __run_posix_cpu_timers(tsk);
- }
- /*
- * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
- * The tsk->sighand->siglock must be held by the caller.
- */
- void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
- u64 *newval, u64 *oldval)
- {
- u64 now, *nextevt;
- if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
- return;
- nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
- now = cpu_clock_sample_group(clkid, tsk, true);
- if (oldval) {
- /*
- * We are setting itimer. The *oldval is absolute and we update
- * it to be relative, *newval argument is relative and we update
- * it to be absolute.
- */
- if (*oldval) {
- if (*oldval <= now) {
- /* Just about to fire. */
- *oldval = TICK_NSEC;
- } else {
- *oldval -= now;
- }
- }
- if (*newval)
- *newval += now;
- }
- /*
- * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
- * expiry cache is also used by RLIMIT_CPU!.
- */
- if (*newval < *nextevt)
- *nextevt = *newval;
- tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
- }
- static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
- const struct timespec64 *rqtp)
- {
- struct itimerspec64 it;
- struct k_itimer timer;
- u64 expires;
- int error;
- /*
- * Set up a temporary timer and then wait for it to go off.
- */
- memset(&timer, 0, sizeof timer);
- spin_lock_init(&timer.it_lock);
- timer.it_clock = which_clock;
- timer.it_overrun = -1;
- error = posix_cpu_timer_create(&timer);
- timer.it_process = current;
- if (!error) {
- static struct itimerspec64 zero_it;
- struct restart_block *restart;
- memset(&it, 0, sizeof(it));
- it.it_value = *rqtp;
- spin_lock_irq(&timer.it_lock);
- error = posix_cpu_timer_set(&timer, flags, &it, NULL);
- if (error) {
- spin_unlock_irq(&timer.it_lock);
- return error;
- }
- while (!signal_pending(current)) {
- if (!cpu_timer_getexpires(&timer.it.cpu)) {
- /*
- * Our timer fired and was reset, below
- * deletion can not fail.
- */
- posix_cpu_timer_del(&timer);
- spin_unlock_irq(&timer.it_lock);
- return 0;
- }
- /*
- * Block until cpu_timer_fire (or a signal) wakes us.
- */
- __set_current_state(TASK_INTERRUPTIBLE);
- spin_unlock_irq(&timer.it_lock);
- schedule();
- spin_lock_irq(&timer.it_lock);
- }
- /*
- * We were interrupted by a signal.
- */
- expires = cpu_timer_getexpires(&timer.it.cpu);
- error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
- if (!error) {
- /* Timer is now unarmed, deletion can not fail. */
- posix_cpu_timer_del(&timer);
- } else {
- while (error == TIMER_RETRY) {
- posix_cpu_timer_wait_running_nsleep(&timer);
- error = posix_cpu_timer_del(&timer);
- }
- }
- spin_unlock_irq(&timer.it_lock);
- if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
- /*
- * It actually did fire already.
- */
- return 0;
- }
- error = -ERESTART_RESTARTBLOCK;
- /*
- * Report back to the user the time still remaining.
- */
- restart = ¤t->restart_block;
- restart->nanosleep.expires = expires;
- if (restart->nanosleep.type != TT_NONE)
- error = nanosleep_copyout(restart, &it.it_value);
- }
- return error;
- }
- static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
- static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
- const struct timespec64 *rqtp)
- {
- struct restart_block *restart_block = ¤t->restart_block;
- int error;
- /*
- * Diagnose required errors first.
- */
- if (CPUCLOCK_PERTHREAD(which_clock) &&
- (CPUCLOCK_PID(which_clock) == 0 ||
- CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
- return -EINVAL;
- error = do_cpu_nanosleep(which_clock, flags, rqtp);
- if (error == -ERESTART_RESTARTBLOCK) {
- if (flags & TIMER_ABSTIME)
- return -ERESTARTNOHAND;
- restart_block->nanosleep.clockid = which_clock;
- set_restart_fn(restart_block, posix_cpu_nsleep_restart);
- }
- return error;
- }
- static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
- {
- clockid_t which_clock = restart_block->nanosleep.clockid;
- struct timespec64 t;
- t = ns_to_timespec64(restart_block->nanosleep.expires);
- return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
- }
- #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
- #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
- static int process_cpu_clock_getres(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
- }
- static int process_cpu_clock_get(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_get(PROCESS_CLOCK, tp);
- }
- static int process_cpu_timer_create(struct k_itimer *timer)
- {
- timer->it_clock = PROCESS_CLOCK;
- return posix_cpu_timer_create(timer);
- }
- static int process_cpu_nsleep(const clockid_t which_clock, int flags,
- const struct timespec64 *rqtp)
- {
- return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
- }
- static int thread_cpu_clock_getres(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_getres(THREAD_CLOCK, tp);
- }
- static int thread_cpu_clock_get(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_get(THREAD_CLOCK, tp);
- }
- static int thread_cpu_timer_create(struct k_itimer *timer)
- {
- timer->it_clock = THREAD_CLOCK;
- return posix_cpu_timer_create(timer);
- }
- const struct k_clock clock_posix_cpu = {
- .clock_getres = posix_cpu_clock_getres,
- .clock_set = posix_cpu_clock_set,
- .clock_get_timespec = posix_cpu_clock_get,
- .timer_create = posix_cpu_timer_create,
- .nsleep = posix_cpu_nsleep,
- .timer_set = posix_cpu_timer_set,
- .timer_del = posix_cpu_timer_del,
- .timer_get = posix_cpu_timer_get,
- .timer_rearm = posix_cpu_timer_rearm,
- .timer_wait_running = posix_cpu_timer_wait_running,
- };
- const struct k_clock clock_process = {
- .clock_getres = process_cpu_clock_getres,
- .clock_get_timespec = process_cpu_clock_get,
- .timer_create = process_cpu_timer_create,
- .nsleep = process_cpu_nsleep,
- };
- const struct k_clock clock_thread = {
- .clock_getres = thread_cpu_clock_getres,
- .clock_get_timespec = thread_cpu_clock_get,
- .timer_create = thread_cpu_timer_create,
- };
|