init.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file contains KASAN shadow initialization code.
  4. *
  5. * Copyright (c) 2015 Samsung Electronics Co., Ltd.
  6. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7. */
  8. #include <linux/memblock.h>
  9. #include <linux/init.h>
  10. #include <linux/kasan.h>
  11. #include <linux/kernel.h>
  12. #include <linux/mm.h>
  13. #include <linux/pfn.h>
  14. #include <linux/slab.h>
  15. #include <asm/page.h>
  16. #include <asm/pgalloc.h>
  17. #include "kasan.h"
  18. /*
  19. * This page serves two purposes:
  20. * - It used as early shadow memory. The entire shadow region populated
  21. * with this page, before we will be able to setup normal shadow memory.
  22. * - Latter it reused it as zero shadow to cover large ranges of memory
  23. * that allowed to access, but not handled by kasan (vmalloc/vmemmap ...).
  24. */
  25. unsigned char kasan_early_shadow_page[PAGE_SIZE] __page_aligned_bss;
  26. #if CONFIG_PGTABLE_LEVELS > 4
  27. p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D] __page_aligned_bss;
  28. static inline bool kasan_p4d_table(pgd_t pgd)
  29. {
  30. return pgd_page(pgd) == virt_to_page(lm_alias(kasan_early_shadow_p4d));
  31. }
  32. #else
  33. static inline bool kasan_p4d_table(pgd_t pgd)
  34. {
  35. return false;
  36. }
  37. #endif
  38. #if CONFIG_PGTABLE_LEVELS > 3
  39. pud_t kasan_early_shadow_pud[MAX_PTRS_PER_PUD] __page_aligned_bss;
  40. static inline bool kasan_pud_table(p4d_t p4d)
  41. {
  42. return p4d_page(p4d) == virt_to_page(lm_alias(kasan_early_shadow_pud));
  43. }
  44. #else
  45. static inline bool kasan_pud_table(p4d_t p4d)
  46. {
  47. return false;
  48. }
  49. #endif
  50. #if CONFIG_PGTABLE_LEVELS > 2
  51. pmd_t kasan_early_shadow_pmd[MAX_PTRS_PER_PMD] __page_aligned_bss;
  52. static inline bool kasan_pmd_table(pud_t pud)
  53. {
  54. return pud_page(pud) == virt_to_page(lm_alias(kasan_early_shadow_pmd));
  55. }
  56. #else
  57. static inline bool kasan_pmd_table(pud_t pud)
  58. {
  59. return false;
  60. }
  61. #endif
  62. pte_t kasan_early_shadow_pte[MAX_PTRS_PER_PTE + PTE_HWTABLE_PTRS]
  63. __page_aligned_bss;
  64. static inline bool kasan_pte_table(pmd_t pmd)
  65. {
  66. return pmd_page(pmd) == virt_to_page(lm_alias(kasan_early_shadow_pte));
  67. }
  68. static inline bool kasan_early_shadow_page_entry(pte_t pte)
  69. {
  70. return pte_page(pte) == virt_to_page(lm_alias(kasan_early_shadow_page));
  71. }
  72. static __init void *early_alloc(size_t size, int node)
  73. {
  74. void *ptr = memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
  75. MEMBLOCK_ALLOC_ACCESSIBLE, node);
  76. if (!ptr)
  77. panic("%s: Failed to allocate %zu bytes align=%zx nid=%d from=%llx\n",
  78. __func__, size, size, node, (u64)__pa(MAX_DMA_ADDRESS));
  79. return ptr;
  80. }
  81. static void __ref zero_pte_populate(pmd_t *pmd, unsigned long addr,
  82. unsigned long end)
  83. {
  84. pte_t *pte = pte_offset_kernel(pmd, addr);
  85. pte_t zero_pte;
  86. zero_pte = pfn_pte(PFN_DOWN(__pa_symbol(kasan_early_shadow_page)),
  87. PAGE_KERNEL);
  88. zero_pte = pte_wrprotect(zero_pte);
  89. while (addr + PAGE_SIZE <= end) {
  90. set_pte_at(&init_mm, addr, pte, zero_pte);
  91. addr += PAGE_SIZE;
  92. pte = pte_offset_kernel(pmd, addr);
  93. }
  94. }
  95. void __weak __meminit kernel_pte_init(void *addr)
  96. {
  97. }
  98. static int __ref zero_pmd_populate(pud_t *pud, unsigned long addr,
  99. unsigned long end)
  100. {
  101. pmd_t *pmd = pmd_offset(pud, addr);
  102. unsigned long next;
  103. do {
  104. next = pmd_addr_end(addr, end);
  105. if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
  106. pmd_populate_kernel(&init_mm, pmd,
  107. lm_alias(kasan_early_shadow_pte));
  108. continue;
  109. }
  110. if (pmd_none(*pmd)) {
  111. pte_t *p;
  112. if (slab_is_available())
  113. p = pte_alloc_one_kernel(&init_mm);
  114. else {
  115. p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
  116. kernel_pte_init(p);
  117. }
  118. if (!p)
  119. return -ENOMEM;
  120. pmd_populate_kernel(&init_mm, pmd, p);
  121. }
  122. zero_pte_populate(pmd, addr, next);
  123. } while (pmd++, addr = next, addr != end);
  124. return 0;
  125. }
  126. void __weak __meminit pmd_init(void *addr)
  127. {
  128. }
  129. static int __ref zero_pud_populate(p4d_t *p4d, unsigned long addr,
  130. unsigned long end)
  131. {
  132. pud_t *pud = pud_offset(p4d, addr);
  133. unsigned long next;
  134. do {
  135. next = pud_addr_end(addr, end);
  136. if (IS_ALIGNED(addr, PUD_SIZE) && end - addr >= PUD_SIZE) {
  137. pmd_t *pmd;
  138. pud_populate(&init_mm, pud,
  139. lm_alias(kasan_early_shadow_pmd));
  140. pmd = pmd_offset(pud, addr);
  141. pmd_populate_kernel(&init_mm, pmd,
  142. lm_alias(kasan_early_shadow_pte));
  143. continue;
  144. }
  145. if (pud_none(*pud)) {
  146. pmd_t *p;
  147. if (slab_is_available()) {
  148. p = pmd_alloc(&init_mm, pud, addr);
  149. if (!p)
  150. return -ENOMEM;
  151. } else {
  152. p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
  153. pmd_init(p);
  154. pud_populate(&init_mm, pud, p);
  155. }
  156. }
  157. zero_pmd_populate(pud, addr, next);
  158. } while (pud++, addr = next, addr != end);
  159. return 0;
  160. }
  161. void __weak __meminit pud_init(void *addr)
  162. {
  163. }
  164. static int __ref zero_p4d_populate(pgd_t *pgd, unsigned long addr,
  165. unsigned long end)
  166. {
  167. p4d_t *p4d = p4d_offset(pgd, addr);
  168. unsigned long next;
  169. do {
  170. next = p4d_addr_end(addr, end);
  171. if (IS_ALIGNED(addr, P4D_SIZE) && end - addr >= P4D_SIZE) {
  172. pud_t *pud;
  173. pmd_t *pmd;
  174. p4d_populate(&init_mm, p4d,
  175. lm_alias(kasan_early_shadow_pud));
  176. pud = pud_offset(p4d, addr);
  177. pud_populate(&init_mm, pud,
  178. lm_alias(kasan_early_shadow_pmd));
  179. pmd = pmd_offset(pud, addr);
  180. pmd_populate_kernel(&init_mm, pmd,
  181. lm_alias(kasan_early_shadow_pte));
  182. continue;
  183. }
  184. if (p4d_none(*p4d)) {
  185. pud_t *p;
  186. if (slab_is_available()) {
  187. p = pud_alloc(&init_mm, p4d, addr);
  188. if (!p)
  189. return -ENOMEM;
  190. } else {
  191. p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
  192. pud_init(p);
  193. p4d_populate(&init_mm, p4d, p);
  194. }
  195. }
  196. zero_pud_populate(p4d, addr, next);
  197. } while (p4d++, addr = next, addr != end);
  198. return 0;
  199. }
  200. /**
  201. * kasan_populate_early_shadow - populate shadow memory region with
  202. * kasan_early_shadow_page
  203. * @shadow_start: start of the memory range to populate
  204. * @shadow_end: end of the memory range to populate
  205. */
  206. int __ref kasan_populate_early_shadow(const void *shadow_start,
  207. const void *shadow_end)
  208. {
  209. unsigned long addr = (unsigned long)shadow_start;
  210. unsigned long end = (unsigned long)shadow_end;
  211. pgd_t *pgd = pgd_offset_k(addr);
  212. unsigned long next;
  213. do {
  214. next = pgd_addr_end(addr, end);
  215. if (IS_ALIGNED(addr, PGDIR_SIZE) && end - addr >= PGDIR_SIZE) {
  216. p4d_t *p4d;
  217. pud_t *pud;
  218. pmd_t *pmd;
  219. /*
  220. * kasan_early_shadow_pud should be populated with pmds
  221. * at this moment.
  222. * [pud,pmd]_populate*() below needed only for
  223. * 3,2 - level page tables where we don't have
  224. * puds,pmds, so pgd_populate(), pud_populate()
  225. * is noops.
  226. */
  227. pgd_populate(&init_mm, pgd,
  228. lm_alias(kasan_early_shadow_p4d));
  229. p4d = p4d_offset(pgd, addr);
  230. p4d_populate(&init_mm, p4d,
  231. lm_alias(kasan_early_shadow_pud));
  232. pud = pud_offset(p4d, addr);
  233. pud_populate(&init_mm, pud,
  234. lm_alias(kasan_early_shadow_pmd));
  235. pmd = pmd_offset(pud, addr);
  236. pmd_populate_kernel(&init_mm, pmd,
  237. lm_alias(kasan_early_shadow_pte));
  238. continue;
  239. }
  240. if (pgd_none(*pgd)) {
  241. p4d_t *p;
  242. if (slab_is_available()) {
  243. p = p4d_alloc(&init_mm, pgd, addr);
  244. if (!p)
  245. return -ENOMEM;
  246. } else {
  247. pgd_populate(&init_mm, pgd,
  248. early_alloc(PAGE_SIZE, NUMA_NO_NODE));
  249. }
  250. }
  251. zero_p4d_populate(pgd, addr, next);
  252. } while (pgd++, addr = next, addr != end);
  253. return 0;
  254. }
  255. static void kasan_free_pte(pte_t *pte_start, pmd_t *pmd)
  256. {
  257. pte_t *pte;
  258. int i;
  259. for (i = 0; i < PTRS_PER_PTE; i++) {
  260. pte = pte_start + i;
  261. if (!pte_none(ptep_get(pte)))
  262. return;
  263. }
  264. pte_free_kernel(&init_mm, (pte_t *)page_to_virt(pmd_page(*pmd)));
  265. pmd_clear(pmd);
  266. }
  267. static void kasan_free_pmd(pmd_t *pmd_start, pud_t *pud)
  268. {
  269. pmd_t *pmd;
  270. int i;
  271. for (i = 0; i < PTRS_PER_PMD; i++) {
  272. pmd = pmd_start + i;
  273. if (!pmd_none(*pmd))
  274. return;
  275. }
  276. pmd_free(&init_mm, (pmd_t *)page_to_virt(pud_page(*pud)));
  277. pud_clear(pud);
  278. }
  279. static void kasan_free_pud(pud_t *pud_start, p4d_t *p4d)
  280. {
  281. pud_t *pud;
  282. int i;
  283. for (i = 0; i < PTRS_PER_PUD; i++) {
  284. pud = pud_start + i;
  285. if (!pud_none(*pud))
  286. return;
  287. }
  288. pud_free(&init_mm, (pud_t *)page_to_virt(p4d_page(*p4d)));
  289. p4d_clear(p4d);
  290. }
  291. static void kasan_free_p4d(p4d_t *p4d_start, pgd_t *pgd)
  292. {
  293. p4d_t *p4d;
  294. int i;
  295. for (i = 0; i < PTRS_PER_P4D; i++) {
  296. p4d = p4d_start + i;
  297. if (!p4d_none(*p4d))
  298. return;
  299. }
  300. p4d_free(&init_mm, (p4d_t *)page_to_virt(pgd_page(*pgd)));
  301. pgd_clear(pgd);
  302. }
  303. static void kasan_remove_pte_table(pte_t *pte, unsigned long addr,
  304. unsigned long end)
  305. {
  306. unsigned long next;
  307. pte_t ptent;
  308. for (; addr < end; addr = next, pte++) {
  309. next = (addr + PAGE_SIZE) & PAGE_MASK;
  310. if (next > end)
  311. next = end;
  312. ptent = ptep_get(pte);
  313. if (!pte_present(ptent))
  314. continue;
  315. if (WARN_ON(!kasan_early_shadow_page_entry(ptent)))
  316. continue;
  317. pte_clear(&init_mm, addr, pte);
  318. }
  319. }
  320. static void kasan_remove_pmd_table(pmd_t *pmd, unsigned long addr,
  321. unsigned long end)
  322. {
  323. unsigned long next;
  324. for (; addr < end; addr = next, pmd++) {
  325. pte_t *pte;
  326. next = pmd_addr_end(addr, end);
  327. if (!pmd_present(*pmd))
  328. continue;
  329. if (kasan_pte_table(*pmd)) {
  330. if (IS_ALIGNED(addr, PMD_SIZE) &&
  331. IS_ALIGNED(next, PMD_SIZE)) {
  332. pmd_clear(pmd);
  333. continue;
  334. }
  335. }
  336. pte = pte_offset_kernel(pmd, addr);
  337. kasan_remove_pte_table(pte, addr, next);
  338. kasan_free_pte(pte_offset_kernel(pmd, 0), pmd);
  339. }
  340. }
  341. static void kasan_remove_pud_table(pud_t *pud, unsigned long addr,
  342. unsigned long end)
  343. {
  344. unsigned long next;
  345. for (; addr < end; addr = next, pud++) {
  346. pmd_t *pmd, *pmd_base;
  347. next = pud_addr_end(addr, end);
  348. if (!pud_present(*pud))
  349. continue;
  350. if (kasan_pmd_table(*pud)) {
  351. if (IS_ALIGNED(addr, PUD_SIZE) &&
  352. IS_ALIGNED(next, PUD_SIZE)) {
  353. pud_clear(pud);
  354. continue;
  355. }
  356. }
  357. pmd = pmd_offset(pud, addr);
  358. pmd_base = pmd_offset(pud, 0);
  359. kasan_remove_pmd_table(pmd, addr, next);
  360. kasan_free_pmd(pmd_base, pud);
  361. }
  362. }
  363. static void kasan_remove_p4d_table(p4d_t *p4d, unsigned long addr,
  364. unsigned long end)
  365. {
  366. unsigned long next;
  367. for (; addr < end; addr = next, p4d++) {
  368. pud_t *pud;
  369. next = p4d_addr_end(addr, end);
  370. if (!p4d_present(*p4d))
  371. continue;
  372. if (kasan_pud_table(*p4d)) {
  373. if (IS_ALIGNED(addr, P4D_SIZE) &&
  374. IS_ALIGNED(next, P4D_SIZE)) {
  375. p4d_clear(p4d);
  376. continue;
  377. }
  378. }
  379. pud = pud_offset(p4d, addr);
  380. kasan_remove_pud_table(pud, addr, next);
  381. kasan_free_pud(pud_offset(p4d, 0), p4d);
  382. }
  383. }
  384. void kasan_remove_zero_shadow(void *start, unsigned long size)
  385. {
  386. unsigned long addr, end, next;
  387. pgd_t *pgd;
  388. addr = (unsigned long)kasan_mem_to_shadow(start);
  389. end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT);
  390. if (WARN_ON((unsigned long)start % KASAN_MEMORY_PER_SHADOW_PAGE) ||
  391. WARN_ON(size % KASAN_MEMORY_PER_SHADOW_PAGE))
  392. return;
  393. for (; addr < end; addr = next) {
  394. p4d_t *p4d;
  395. next = pgd_addr_end(addr, end);
  396. pgd = pgd_offset_k(addr);
  397. if (!pgd_present(*pgd))
  398. continue;
  399. if (kasan_p4d_table(*pgd)) {
  400. if (IS_ALIGNED(addr, PGDIR_SIZE) &&
  401. IS_ALIGNED(next, PGDIR_SIZE)) {
  402. pgd_clear(pgd);
  403. continue;
  404. }
  405. }
  406. p4d = p4d_offset(pgd, addr);
  407. kasan_remove_p4d_table(p4d, addr, next);
  408. kasan_free_p4d(p4d_offset(pgd, 0), pgd);
  409. }
  410. }
  411. int kasan_add_zero_shadow(void *start, unsigned long size)
  412. {
  413. int ret;
  414. void *shadow_start, *shadow_end;
  415. shadow_start = kasan_mem_to_shadow(start);
  416. shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT);
  417. if (WARN_ON((unsigned long)start % KASAN_MEMORY_PER_SHADOW_PAGE) ||
  418. WARN_ON(size % KASAN_MEMORY_PER_SHADOW_PAGE))
  419. return -EINVAL;
  420. ret = kasan_populate_early_shadow(shadow_start, shadow_end);
  421. if (ret)
  422. kasan_remove_zero_shadow(start, size);
  423. return ret;
  424. }