report_generic.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file contains generic KASAN specific error reporting code.
  4. *
  5. * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7. *
  8. * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9. * Andrey Konovalov <andreyknvl@gmail.com>
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/ftrace.h>
  13. #include <linux/init.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/printk.h>
  17. #include <linux/sched.h>
  18. #include <linux/sched/task_stack.h>
  19. #include <linux/slab.h>
  20. #include <linux/stackdepot.h>
  21. #include <linux/stacktrace.h>
  22. #include <linux/string.h>
  23. #include <linux/types.h>
  24. #include <linux/kasan.h>
  25. #include <linux/module.h>
  26. #include <asm/sections.h>
  27. #include "kasan.h"
  28. #include "../slab.h"
  29. const void *kasan_find_first_bad_addr(const void *addr, size_t size)
  30. {
  31. const void *p = addr;
  32. if (!addr_has_metadata(p))
  33. return p;
  34. while (p < addr + size && !(*(u8 *)kasan_mem_to_shadow(p)))
  35. p += KASAN_GRANULE_SIZE;
  36. return p;
  37. }
  38. size_t kasan_get_alloc_size(void *object, struct kmem_cache *cache)
  39. {
  40. size_t size = 0;
  41. u8 *shadow;
  42. /*
  43. * Skip the addr_has_metadata check, as this function only operates on
  44. * slab memory, which must have metadata.
  45. */
  46. /*
  47. * The loop below returns 0 for freed objects, for which KASAN cannot
  48. * calculate the allocation size based on the metadata.
  49. */
  50. shadow = (u8 *)kasan_mem_to_shadow(object);
  51. while (size < cache->object_size) {
  52. if (*shadow == 0)
  53. size += KASAN_GRANULE_SIZE;
  54. else if (*shadow >= 1 && *shadow <= KASAN_GRANULE_SIZE - 1)
  55. return size + *shadow;
  56. else
  57. return size;
  58. shadow++;
  59. }
  60. return cache->object_size;
  61. }
  62. static const char *get_shadow_bug_type(struct kasan_report_info *info)
  63. {
  64. const char *bug_type = "unknown-crash";
  65. u8 *shadow_addr;
  66. shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr);
  67. /*
  68. * If shadow byte value is in [0, KASAN_GRANULE_SIZE) we can look
  69. * at the next shadow byte to determine the type of the bad access.
  70. */
  71. if (*shadow_addr > 0 && *shadow_addr <= KASAN_GRANULE_SIZE - 1)
  72. shadow_addr++;
  73. switch (*shadow_addr) {
  74. case 0 ... KASAN_GRANULE_SIZE - 1:
  75. /*
  76. * In theory it's still possible to see these shadow values
  77. * due to a data race in the kernel code.
  78. */
  79. bug_type = "out-of-bounds";
  80. break;
  81. case KASAN_PAGE_REDZONE:
  82. case KASAN_SLAB_REDZONE:
  83. bug_type = "slab-out-of-bounds";
  84. break;
  85. case KASAN_GLOBAL_REDZONE:
  86. bug_type = "global-out-of-bounds";
  87. break;
  88. case KASAN_STACK_LEFT:
  89. case KASAN_STACK_MID:
  90. case KASAN_STACK_RIGHT:
  91. case KASAN_STACK_PARTIAL:
  92. bug_type = "stack-out-of-bounds";
  93. break;
  94. case KASAN_PAGE_FREE:
  95. bug_type = "use-after-free";
  96. break;
  97. case KASAN_SLAB_FREE:
  98. case KASAN_SLAB_FREE_META:
  99. bug_type = "slab-use-after-free";
  100. break;
  101. case KASAN_ALLOCA_LEFT:
  102. case KASAN_ALLOCA_RIGHT:
  103. bug_type = "alloca-out-of-bounds";
  104. break;
  105. case KASAN_VMALLOC_INVALID:
  106. bug_type = "vmalloc-out-of-bounds";
  107. break;
  108. }
  109. return bug_type;
  110. }
  111. static const char *get_wild_bug_type(struct kasan_report_info *info)
  112. {
  113. const char *bug_type = "unknown-crash";
  114. if ((unsigned long)info->access_addr < PAGE_SIZE)
  115. bug_type = "null-ptr-deref";
  116. else if ((unsigned long)info->access_addr < TASK_SIZE)
  117. bug_type = "user-memory-access";
  118. else
  119. bug_type = "wild-memory-access";
  120. return bug_type;
  121. }
  122. static const char *get_bug_type(struct kasan_report_info *info)
  123. {
  124. /*
  125. * If access_size is a negative number, then it has reason to be
  126. * defined as out-of-bounds bug type.
  127. *
  128. * Casting negative numbers to size_t would indeed turn up as
  129. * a large size_t and its value will be larger than ULONG_MAX/2,
  130. * so that this can qualify as out-of-bounds.
  131. */
  132. if (info->access_addr + info->access_size < info->access_addr)
  133. return "out-of-bounds";
  134. if (addr_has_metadata(info->access_addr))
  135. return get_shadow_bug_type(info);
  136. return get_wild_bug_type(info);
  137. }
  138. void kasan_complete_mode_report_info(struct kasan_report_info *info)
  139. {
  140. struct kasan_alloc_meta *alloc_meta;
  141. struct kasan_free_meta *free_meta;
  142. if (!info->bug_type)
  143. info->bug_type = get_bug_type(info);
  144. if (!info->cache || !info->object)
  145. return;
  146. alloc_meta = kasan_get_alloc_meta(info->cache, info->object);
  147. if (alloc_meta)
  148. memcpy(&info->alloc_track, &alloc_meta->alloc_track,
  149. sizeof(info->alloc_track));
  150. if (*(u8 *)kasan_mem_to_shadow(info->object) == KASAN_SLAB_FREE_META) {
  151. /* Free meta must be present with KASAN_SLAB_FREE_META. */
  152. free_meta = kasan_get_free_meta(info->cache, info->object);
  153. memcpy(&info->free_track, &free_meta->free_track,
  154. sizeof(info->free_track));
  155. }
  156. }
  157. void kasan_metadata_fetch_row(char *buffer, void *row)
  158. {
  159. memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW);
  160. }
  161. void kasan_print_aux_stacks(struct kmem_cache *cache, const void *object)
  162. {
  163. struct kasan_alloc_meta *alloc_meta;
  164. alloc_meta = kasan_get_alloc_meta(cache, object);
  165. if (!alloc_meta)
  166. return;
  167. if (alloc_meta->aux_stack[0]) {
  168. pr_err("Last potentially related work creation:\n");
  169. stack_depot_print(alloc_meta->aux_stack[0]);
  170. pr_err("\n");
  171. }
  172. if (alloc_meta->aux_stack[1]) {
  173. pr_err("Second to last potentially related work creation:\n");
  174. stack_depot_print(alloc_meta->aux_stack[1]);
  175. pr_err("\n");
  176. }
  177. }
  178. #ifdef CONFIG_KASAN_STACK
  179. static bool __must_check tokenize_frame_descr(const char **frame_descr,
  180. char *token, size_t max_tok_len,
  181. unsigned long *value)
  182. {
  183. const char *sep = strchr(*frame_descr, ' ');
  184. if (sep == NULL)
  185. sep = *frame_descr + strlen(*frame_descr);
  186. if (token != NULL) {
  187. const size_t tok_len = sep - *frame_descr;
  188. if (tok_len + 1 > max_tok_len) {
  189. pr_err("internal error: frame description too long: %s\n",
  190. *frame_descr);
  191. return false;
  192. }
  193. /* Copy token (+ 1 byte for '\0'). */
  194. strscpy(token, *frame_descr, tok_len + 1);
  195. }
  196. /* Advance frame_descr past separator. */
  197. *frame_descr = sep + 1;
  198. if (value != NULL && kstrtoul(token, 10, value)) {
  199. pr_err("internal error: not a valid number: %s\n", token);
  200. return false;
  201. }
  202. return true;
  203. }
  204. static void print_decoded_frame_descr(const char *frame_descr)
  205. {
  206. /*
  207. * We need to parse the following string:
  208. * "n alloc_1 alloc_2 ... alloc_n"
  209. * where alloc_i looks like
  210. * "offset size len name"
  211. * or "offset size len name:line".
  212. */
  213. char token[64];
  214. unsigned long num_objects;
  215. if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
  216. &num_objects))
  217. return;
  218. pr_err("\n");
  219. pr_err("This frame has %lu %s:\n", num_objects,
  220. num_objects == 1 ? "object" : "objects");
  221. while (num_objects--) {
  222. unsigned long offset;
  223. unsigned long size;
  224. /* access offset */
  225. if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
  226. &offset))
  227. return;
  228. /* access size */
  229. if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
  230. &size))
  231. return;
  232. /* name length (unused) */
  233. if (!tokenize_frame_descr(&frame_descr, NULL, 0, NULL))
  234. return;
  235. /* object name */
  236. if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
  237. NULL))
  238. return;
  239. /* Strip line number; without filename it's not very helpful. */
  240. strreplace(token, ':', '\0');
  241. /* Finally, print object information. */
  242. pr_err(" [%lu, %lu) '%s'", offset, offset + size, token);
  243. }
  244. }
  245. /* Returns true only if the address is on the current task's stack. */
  246. static bool __must_check get_address_stack_frame_info(const void *addr,
  247. unsigned long *offset,
  248. const char **frame_descr,
  249. const void **frame_pc)
  250. {
  251. unsigned long aligned_addr;
  252. unsigned long mem_ptr;
  253. const u8 *shadow_bottom;
  254. const u8 *shadow_ptr;
  255. const unsigned long *frame;
  256. BUILD_BUG_ON(IS_ENABLED(CONFIG_STACK_GROWSUP));
  257. aligned_addr = round_down((unsigned long)addr, sizeof(long));
  258. mem_ptr = round_down(aligned_addr, KASAN_GRANULE_SIZE);
  259. shadow_ptr = kasan_mem_to_shadow((void *)aligned_addr);
  260. shadow_bottom = kasan_mem_to_shadow(end_of_stack(current));
  261. while (shadow_ptr >= shadow_bottom && *shadow_ptr != KASAN_STACK_LEFT) {
  262. shadow_ptr--;
  263. mem_ptr -= KASAN_GRANULE_SIZE;
  264. }
  265. while (shadow_ptr >= shadow_bottom && *shadow_ptr == KASAN_STACK_LEFT) {
  266. shadow_ptr--;
  267. mem_ptr -= KASAN_GRANULE_SIZE;
  268. }
  269. if (shadow_ptr < shadow_bottom)
  270. return false;
  271. frame = (const unsigned long *)(mem_ptr + KASAN_GRANULE_SIZE);
  272. if (frame[0] != KASAN_CURRENT_STACK_FRAME_MAGIC) {
  273. pr_err("internal error: frame has invalid marker: %lu\n",
  274. frame[0]);
  275. return false;
  276. }
  277. *offset = (unsigned long)addr - (unsigned long)frame;
  278. *frame_descr = (const char *)frame[1];
  279. *frame_pc = (void *)frame[2];
  280. return true;
  281. }
  282. void kasan_print_address_stack_frame(const void *addr)
  283. {
  284. unsigned long offset;
  285. const char *frame_descr;
  286. const void *frame_pc;
  287. if (WARN_ON(!object_is_on_stack(addr)))
  288. return;
  289. pr_err("The buggy address belongs to stack of task %s/%d\n",
  290. current->comm, task_pid_nr(current));
  291. if (!get_address_stack_frame_info(addr, &offset, &frame_descr,
  292. &frame_pc))
  293. return;
  294. pr_err(" and is located at offset %lu in frame:\n", offset);
  295. pr_err(" %pS\n", frame_pc);
  296. if (!frame_descr)
  297. return;
  298. print_decoded_frame_descr(frame_descr);
  299. }
  300. #endif /* CONFIG_KASAN_STACK */
  301. #define DEFINE_ASAN_REPORT_LOAD(size) \
  302. void __asan_report_load##size##_noabort(void *addr) \
  303. { \
  304. kasan_report(addr, size, false, _RET_IP_); \
  305. } \
  306. EXPORT_SYMBOL(__asan_report_load##size##_noabort)
  307. #define DEFINE_ASAN_REPORT_STORE(size) \
  308. void __asan_report_store##size##_noabort(void *addr) \
  309. { \
  310. kasan_report(addr, size, true, _RET_IP_); \
  311. } \
  312. EXPORT_SYMBOL(__asan_report_store##size##_noabort)
  313. DEFINE_ASAN_REPORT_LOAD(1);
  314. DEFINE_ASAN_REPORT_LOAD(2);
  315. DEFINE_ASAN_REPORT_LOAD(4);
  316. DEFINE_ASAN_REPORT_LOAD(8);
  317. DEFINE_ASAN_REPORT_LOAD(16);
  318. DEFINE_ASAN_REPORT_STORE(1);
  319. DEFINE_ASAN_REPORT_STORE(2);
  320. DEFINE_ASAN_REPORT_STORE(4);
  321. DEFINE_ASAN_REPORT_STORE(8);
  322. DEFINE_ASAN_REPORT_STORE(16);
  323. void __asan_report_load_n_noabort(void *addr, ssize_t size)
  324. {
  325. kasan_report(addr, size, false, _RET_IP_);
  326. }
  327. EXPORT_SYMBOL(__asan_report_load_n_noabort);
  328. void __asan_report_store_n_noabort(void *addr, ssize_t size)
  329. {
  330. kasan_report(addr, size, true, _RET_IP_);
  331. }
  332. EXPORT_SYMBOL(__asan_report_store_n_noabort);