pm.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Multipath TCP
  3. *
  4. * Copyright (c) 2019, Intel Corporation.
  5. */
  6. #define pr_fmt(fmt) "MPTCP: " fmt
  7. #include <linux/kernel.h>
  8. #include <net/mptcp.h>
  9. #include "protocol.h"
  10. #include "mib.h"
  11. /* path manager command handlers */
  12. int mptcp_pm_announce_addr(struct mptcp_sock *msk,
  13. const struct mptcp_addr_info *addr,
  14. bool echo)
  15. {
  16. u8 add_addr = READ_ONCE(msk->pm.addr_signal);
  17. pr_debug("msk=%p, local_id=%d, echo=%d\n", msk, addr->id, echo);
  18. lockdep_assert_held(&msk->pm.lock);
  19. if (add_addr &
  20. (echo ? BIT(MPTCP_ADD_ADDR_ECHO) : BIT(MPTCP_ADD_ADDR_SIGNAL))) {
  21. MPTCP_INC_STATS(sock_net((struct sock *)msk),
  22. echo ? MPTCP_MIB_ECHOADDTXDROP : MPTCP_MIB_ADDADDRTXDROP);
  23. return -EINVAL;
  24. }
  25. if (echo) {
  26. msk->pm.remote = *addr;
  27. add_addr |= BIT(MPTCP_ADD_ADDR_ECHO);
  28. } else {
  29. msk->pm.local = *addr;
  30. add_addr |= BIT(MPTCP_ADD_ADDR_SIGNAL);
  31. }
  32. WRITE_ONCE(msk->pm.addr_signal, add_addr);
  33. return 0;
  34. }
  35. int mptcp_pm_remove_addr(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list)
  36. {
  37. u8 rm_addr = READ_ONCE(msk->pm.addr_signal);
  38. pr_debug("msk=%p, rm_list_nr=%d\n", msk, rm_list->nr);
  39. if (rm_addr) {
  40. MPTCP_ADD_STATS(sock_net((struct sock *)msk),
  41. MPTCP_MIB_RMADDRTXDROP, rm_list->nr);
  42. return -EINVAL;
  43. }
  44. msk->pm.rm_list_tx = *rm_list;
  45. rm_addr |= BIT(MPTCP_RM_ADDR_SIGNAL);
  46. WRITE_ONCE(msk->pm.addr_signal, rm_addr);
  47. mptcp_pm_nl_addr_send_ack(msk);
  48. return 0;
  49. }
  50. /* path manager event handlers */
  51. void mptcp_pm_new_connection(struct mptcp_sock *msk, const struct sock *ssk, int server_side)
  52. {
  53. struct mptcp_pm_data *pm = &msk->pm;
  54. pr_debug("msk=%p, token=%u side=%d\n", msk, READ_ONCE(msk->token), server_side);
  55. WRITE_ONCE(pm->server_side, server_side);
  56. mptcp_event(MPTCP_EVENT_CREATED, msk, ssk, GFP_ATOMIC);
  57. }
  58. bool mptcp_pm_allow_new_subflow(struct mptcp_sock *msk)
  59. {
  60. struct mptcp_pm_data *pm = &msk->pm;
  61. unsigned int subflows_max;
  62. int ret = 0;
  63. if (mptcp_pm_is_userspace(msk)) {
  64. if (mptcp_userspace_pm_active(msk)) {
  65. spin_lock_bh(&pm->lock);
  66. pm->subflows++;
  67. spin_unlock_bh(&pm->lock);
  68. return true;
  69. }
  70. return false;
  71. }
  72. subflows_max = mptcp_pm_get_subflows_max(msk);
  73. pr_debug("msk=%p subflows=%d max=%d allow=%d\n", msk, pm->subflows,
  74. subflows_max, READ_ONCE(pm->accept_subflow));
  75. /* try to avoid acquiring the lock below */
  76. if (!READ_ONCE(pm->accept_subflow))
  77. return false;
  78. spin_lock_bh(&pm->lock);
  79. if (READ_ONCE(pm->accept_subflow)) {
  80. ret = pm->subflows < subflows_max;
  81. if (ret && ++pm->subflows == subflows_max)
  82. WRITE_ONCE(pm->accept_subflow, false);
  83. }
  84. spin_unlock_bh(&pm->lock);
  85. return ret;
  86. }
  87. /* return true if the new status bit is currently cleared, that is, this event
  88. * can be server, eventually by an already scheduled work
  89. */
  90. static bool mptcp_pm_schedule_work(struct mptcp_sock *msk,
  91. enum mptcp_pm_status new_status)
  92. {
  93. pr_debug("msk=%p status=%x new=%lx\n", msk, msk->pm.status,
  94. BIT(new_status));
  95. if (msk->pm.status & BIT(new_status))
  96. return false;
  97. msk->pm.status |= BIT(new_status);
  98. mptcp_schedule_work((struct sock *)msk);
  99. return true;
  100. }
  101. void mptcp_pm_fully_established(struct mptcp_sock *msk, const struct sock *ssk)
  102. {
  103. struct mptcp_pm_data *pm = &msk->pm;
  104. bool announce = false;
  105. pr_debug("msk=%p\n", msk);
  106. spin_lock_bh(&pm->lock);
  107. /* mptcp_pm_fully_established() can be invoked by multiple
  108. * racing paths - accept() and check_fully_established()
  109. * be sure to serve this event only once.
  110. */
  111. if (READ_ONCE(pm->work_pending) &&
  112. !(msk->pm.status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)))
  113. mptcp_pm_schedule_work(msk, MPTCP_PM_ESTABLISHED);
  114. if ((msk->pm.status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)) == 0)
  115. announce = true;
  116. msk->pm.status |= BIT(MPTCP_PM_ALREADY_ESTABLISHED);
  117. spin_unlock_bh(&pm->lock);
  118. if (announce)
  119. mptcp_event(MPTCP_EVENT_ESTABLISHED, msk, ssk, GFP_ATOMIC);
  120. }
  121. void mptcp_pm_connection_closed(struct mptcp_sock *msk)
  122. {
  123. pr_debug("msk=%p\n", msk);
  124. }
  125. void mptcp_pm_subflow_established(struct mptcp_sock *msk)
  126. {
  127. struct mptcp_pm_data *pm = &msk->pm;
  128. pr_debug("msk=%p\n", msk);
  129. if (!READ_ONCE(pm->work_pending))
  130. return;
  131. spin_lock_bh(&pm->lock);
  132. if (READ_ONCE(pm->work_pending))
  133. mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
  134. spin_unlock_bh(&pm->lock);
  135. }
  136. void mptcp_pm_subflow_check_next(struct mptcp_sock *msk,
  137. const struct mptcp_subflow_context *subflow)
  138. {
  139. struct mptcp_pm_data *pm = &msk->pm;
  140. bool update_subflows;
  141. update_subflows = subflow->request_join || subflow->mp_join;
  142. if (mptcp_pm_is_userspace(msk)) {
  143. if (update_subflows) {
  144. spin_lock_bh(&pm->lock);
  145. pm->subflows--;
  146. spin_unlock_bh(&pm->lock);
  147. }
  148. return;
  149. }
  150. if (!READ_ONCE(pm->work_pending) && !update_subflows)
  151. return;
  152. spin_lock_bh(&pm->lock);
  153. if (update_subflows)
  154. __mptcp_pm_close_subflow(msk);
  155. /* Even if this subflow is not really established, tell the PM to try
  156. * to pick the next ones, if possible.
  157. */
  158. if (mptcp_pm_nl_check_work_pending(msk))
  159. mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
  160. spin_unlock_bh(&pm->lock);
  161. }
  162. void mptcp_pm_add_addr_received(const struct sock *ssk,
  163. const struct mptcp_addr_info *addr)
  164. {
  165. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  166. struct mptcp_sock *msk = mptcp_sk(subflow->conn);
  167. struct mptcp_pm_data *pm = &msk->pm;
  168. pr_debug("msk=%p remote_id=%d accept=%d\n", msk, addr->id,
  169. READ_ONCE(pm->accept_addr));
  170. mptcp_event_addr_announced(ssk, addr);
  171. spin_lock_bh(&pm->lock);
  172. if (mptcp_pm_is_userspace(msk)) {
  173. if (mptcp_userspace_pm_active(msk)) {
  174. mptcp_pm_announce_addr(msk, addr, true);
  175. mptcp_pm_add_addr_send_ack(msk);
  176. } else {
  177. __MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_ADDADDRDROP);
  178. }
  179. /* id0 should not have a different address */
  180. } else if ((addr->id == 0 && !mptcp_pm_nl_is_init_remote_addr(msk, addr)) ||
  181. (addr->id > 0 && !READ_ONCE(pm->accept_addr))) {
  182. mptcp_pm_announce_addr(msk, addr, true);
  183. mptcp_pm_add_addr_send_ack(msk);
  184. } else if (mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_RECEIVED)) {
  185. pm->remote = *addr;
  186. } else {
  187. __MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_ADDADDRDROP);
  188. }
  189. spin_unlock_bh(&pm->lock);
  190. }
  191. void mptcp_pm_add_addr_echoed(struct mptcp_sock *msk,
  192. const struct mptcp_addr_info *addr)
  193. {
  194. struct mptcp_pm_data *pm = &msk->pm;
  195. pr_debug("msk=%p\n", msk);
  196. spin_lock_bh(&pm->lock);
  197. if (mptcp_lookup_anno_list_by_saddr(msk, addr) && READ_ONCE(pm->work_pending))
  198. mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
  199. spin_unlock_bh(&pm->lock);
  200. }
  201. void mptcp_pm_add_addr_send_ack(struct mptcp_sock *msk)
  202. {
  203. if (!mptcp_pm_should_add_signal(msk))
  204. return;
  205. mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_SEND_ACK);
  206. }
  207. void mptcp_pm_rm_addr_received(struct mptcp_sock *msk,
  208. const struct mptcp_rm_list *rm_list)
  209. {
  210. struct mptcp_pm_data *pm = &msk->pm;
  211. u8 i;
  212. pr_debug("msk=%p remote_ids_nr=%d\n", msk, rm_list->nr);
  213. for (i = 0; i < rm_list->nr; i++)
  214. mptcp_event_addr_removed(msk, rm_list->ids[i]);
  215. spin_lock_bh(&pm->lock);
  216. if (mptcp_pm_schedule_work(msk, MPTCP_PM_RM_ADDR_RECEIVED))
  217. pm->rm_list_rx = *rm_list;
  218. else
  219. __MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_RMADDRDROP);
  220. spin_unlock_bh(&pm->lock);
  221. }
  222. void mptcp_pm_mp_prio_received(struct sock *ssk, u8 bkup)
  223. {
  224. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  225. struct sock *sk = subflow->conn;
  226. struct mptcp_sock *msk;
  227. pr_debug("subflow->backup=%d, bkup=%d\n", subflow->backup, bkup);
  228. msk = mptcp_sk(sk);
  229. if (subflow->backup != bkup)
  230. subflow->backup = bkup;
  231. mptcp_event(MPTCP_EVENT_SUB_PRIORITY, msk, ssk, GFP_ATOMIC);
  232. }
  233. void mptcp_pm_mp_fail_received(struct sock *sk, u64 fail_seq)
  234. {
  235. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
  236. struct mptcp_sock *msk = mptcp_sk(subflow->conn);
  237. pr_debug("fail_seq=%llu\n", fail_seq);
  238. if (!READ_ONCE(msk->allow_infinite_fallback))
  239. return;
  240. if (!subflow->fail_tout) {
  241. pr_debug("send MP_FAIL response and infinite map\n");
  242. subflow->send_mp_fail = 1;
  243. subflow->send_infinite_map = 1;
  244. tcp_send_ack(sk);
  245. } else {
  246. pr_debug("MP_FAIL response received\n");
  247. WRITE_ONCE(subflow->fail_tout, 0);
  248. }
  249. }
  250. /* path manager helpers */
  251. bool mptcp_pm_add_addr_signal(struct mptcp_sock *msk, const struct sk_buff *skb,
  252. unsigned int opt_size, unsigned int remaining,
  253. struct mptcp_addr_info *addr, bool *echo,
  254. bool *drop_other_suboptions)
  255. {
  256. int ret = false;
  257. u8 add_addr;
  258. u8 family;
  259. bool port;
  260. spin_lock_bh(&msk->pm.lock);
  261. /* double check after the lock is acquired */
  262. if (!mptcp_pm_should_add_signal(msk))
  263. goto out_unlock;
  264. /* always drop every other options for pure ack ADD_ADDR; this is a
  265. * plain dup-ack from TCP perspective. The other MPTCP-relevant info,
  266. * if any, will be carried by the 'original' TCP ack
  267. */
  268. if (skb && skb_is_tcp_pure_ack(skb)) {
  269. remaining += opt_size;
  270. *drop_other_suboptions = true;
  271. }
  272. *echo = mptcp_pm_should_add_signal_echo(msk);
  273. port = !!(*echo ? msk->pm.remote.port : msk->pm.local.port);
  274. family = *echo ? msk->pm.remote.family : msk->pm.local.family;
  275. if (remaining < mptcp_add_addr_len(family, *echo, port))
  276. goto out_unlock;
  277. if (*echo) {
  278. *addr = msk->pm.remote;
  279. add_addr = msk->pm.addr_signal & ~BIT(MPTCP_ADD_ADDR_ECHO);
  280. } else {
  281. *addr = msk->pm.local;
  282. add_addr = msk->pm.addr_signal & ~BIT(MPTCP_ADD_ADDR_SIGNAL);
  283. }
  284. WRITE_ONCE(msk->pm.addr_signal, add_addr);
  285. ret = true;
  286. out_unlock:
  287. spin_unlock_bh(&msk->pm.lock);
  288. return ret;
  289. }
  290. bool mptcp_pm_rm_addr_signal(struct mptcp_sock *msk, unsigned int remaining,
  291. struct mptcp_rm_list *rm_list)
  292. {
  293. int ret = false, len;
  294. u8 rm_addr;
  295. spin_lock_bh(&msk->pm.lock);
  296. /* double check after the lock is acquired */
  297. if (!mptcp_pm_should_rm_signal(msk))
  298. goto out_unlock;
  299. rm_addr = msk->pm.addr_signal & ~BIT(MPTCP_RM_ADDR_SIGNAL);
  300. len = mptcp_rm_addr_len(&msk->pm.rm_list_tx);
  301. if (len < 0) {
  302. WRITE_ONCE(msk->pm.addr_signal, rm_addr);
  303. goto out_unlock;
  304. }
  305. if (remaining < len)
  306. goto out_unlock;
  307. *rm_list = msk->pm.rm_list_tx;
  308. WRITE_ONCE(msk->pm.addr_signal, rm_addr);
  309. ret = true;
  310. out_unlock:
  311. spin_unlock_bh(&msk->pm.lock);
  312. return ret;
  313. }
  314. int mptcp_pm_get_local_id(struct mptcp_sock *msk, struct sock_common *skc)
  315. {
  316. struct mptcp_addr_info skc_local;
  317. struct mptcp_addr_info msk_local;
  318. if (WARN_ON_ONCE(!msk))
  319. return -1;
  320. /* The 0 ID mapping is defined by the first subflow, copied into the msk
  321. * addr
  322. */
  323. mptcp_local_address((struct sock_common *)msk, &msk_local);
  324. mptcp_local_address((struct sock_common *)skc, &skc_local);
  325. if (mptcp_addresses_equal(&msk_local, &skc_local, false))
  326. return 0;
  327. if (mptcp_pm_is_userspace(msk))
  328. return mptcp_userspace_pm_get_local_id(msk, &skc_local);
  329. return mptcp_pm_nl_get_local_id(msk, &skc_local);
  330. }
  331. bool mptcp_pm_is_backup(struct mptcp_sock *msk, struct sock_common *skc)
  332. {
  333. struct mptcp_addr_info skc_local;
  334. mptcp_local_address((struct sock_common *)skc, &skc_local);
  335. if (mptcp_pm_is_userspace(msk))
  336. return mptcp_userspace_pm_is_backup(msk, &skc_local);
  337. return mptcp_pm_nl_is_backup(msk, &skc_local);
  338. }
  339. int mptcp_pm_get_addr(struct sk_buff *skb, struct genl_info *info)
  340. {
  341. if (info->attrs[MPTCP_PM_ATTR_TOKEN])
  342. return mptcp_userspace_pm_get_addr(skb, info);
  343. return mptcp_pm_nl_get_addr(skb, info);
  344. }
  345. int mptcp_pm_dump_addr(struct sk_buff *msg, struct netlink_callback *cb)
  346. {
  347. const struct genl_info *info = genl_info_dump(cb);
  348. if (info->attrs[MPTCP_PM_ATTR_TOKEN])
  349. return mptcp_userspace_pm_dump_addr(msg, cb);
  350. return mptcp_pm_nl_dump_addr(msg, cb);
  351. }
  352. int mptcp_pm_set_flags(struct sk_buff *skb, struct genl_info *info)
  353. {
  354. if (info->attrs[MPTCP_PM_ATTR_TOKEN])
  355. return mptcp_userspace_pm_set_flags(skb, info);
  356. return mptcp_pm_nl_set_flags(skb, info);
  357. }
  358. void mptcp_pm_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk)
  359. {
  360. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  361. u32 rcv_tstamp = READ_ONCE(tcp_sk(ssk)->rcv_tstamp);
  362. /* keep track of rtx periods with no progress */
  363. if (!subflow->stale_count) {
  364. subflow->stale_rcv_tstamp = rcv_tstamp;
  365. subflow->stale_count++;
  366. } else if (subflow->stale_rcv_tstamp == rcv_tstamp) {
  367. if (subflow->stale_count < U8_MAX)
  368. subflow->stale_count++;
  369. mptcp_pm_nl_subflow_chk_stale(msk, ssk);
  370. } else {
  371. subflow->stale_count = 0;
  372. mptcp_subflow_set_active(subflow);
  373. }
  374. }
  375. /* if sk is ipv4 or ipv6_only allows only same-family local and remote addresses,
  376. * otherwise allow any matching local/remote pair
  377. */
  378. bool mptcp_pm_addr_families_match(const struct sock *sk,
  379. const struct mptcp_addr_info *loc,
  380. const struct mptcp_addr_info *rem)
  381. {
  382. bool mptcp_is_v4 = sk->sk_family == AF_INET;
  383. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  384. bool loc_is_v4 = loc->family == AF_INET || ipv6_addr_v4mapped(&loc->addr6);
  385. bool rem_is_v4 = rem->family == AF_INET || ipv6_addr_v4mapped(&rem->addr6);
  386. if (mptcp_is_v4)
  387. return loc_is_v4 && rem_is_v4;
  388. if (ipv6_only_sock(sk))
  389. return !loc_is_v4 && !rem_is_v4;
  390. return loc_is_v4 == rem_is_v4;
  391. #else
  392. return mptcp_is_v4 && loc->family == AF_INET && rem->family == AF_INET;
  393. #endif
  394. }
  395. void mptcp_pm_data_reset(struct mptcp_sock *msk)
  396. {
  397. u8 pm_type = mptcp_get_pm_type(sock_net((struct sock *)msk));
  398. struct mptcp_pm_data *pm = &msk->pm;
  399. pm->add_addr_signaled = 0;
  400. pm->add_addr_accepted = 0;
  401. pm->local_addr_used = 0;
  402. pm->subflows = 0;
  403. pm->rm_list_tx.nr = 0;
  404. pm->rm_list_rx.nr = 0;
  405. WRITE_ONCE(pm->pm_type, pm_type);
  406. if (pm_type == MPTCP_PM_TYPE_KERNEL) {
  407. bool subflows_allowed = !!mptcp_pm_get_subflows_max(msk);
  408. /* pm->work_pending must be only be set to 'true' when
  409. * pm->pm_type is set to MPTCP_PM_TYPE_KERNEL
  410. */
  411. WRITE_ONCE(pm->work_pending,
  412. (!!mptcp_pm_get_local_addr_max(msk) &&
  413. subflows_allowed) ||
  414. !!mptcp_pm_get_add_addr_signal_max(msk));
  415. WRITE_ONCE(pm->accept_addr,
  416. !!mptcp_pm_get_add_addr_accept_max(msk) &&
  417. subflows_allowed);
  418. WRITE_ONCE(pm->accept_subflow, subflows_allowed);
  419. } else {
  420. WRITE_ONCE(pm->work_pending, 0);
  421. WRITE_ONCE(pm->accept_addr, 0);
  422. WRITE_ONCE(pm->accept_subflow, 0);
  423. }
  424. WRITE_ONCE(pm->addr_signal, 0);
  425. WRITE_ONCE(pm->remote_deny_join_id0, false);
  426. pm->status = 0;
  427. bitmap_fill(msk->pm.id_avail_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
  428. }
  429. void mptcp_pm_data_init(struct mptcp_sock *msk)
  430. {
  431. spin_lock_init(&msk->pm.lock);
  432. INIT_LIST_HEAD(&msk->pm.anno_list);
  433. INIT_LIST_HEAD(&msk->pm.userspace_pm_local_addr_list);
  434. mptcp_pm_data_reset(msk);
  435. }
  436. void __init mptcp_pm_init(void)
  437. {
  438. mptcp_pm_nl_init();
  439. }