recv.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /*
  2. * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <net/sock.h>
  36. #include <linux/in.h>
  37. #include <linux/export.h>
  38. #include <linux/sched/clock.h>
  39. #include <linux/time.h>
  40. #include <linux/rds.h>
  41. #include "rds.h"
  42. void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
  43. struct in6_addr *saddr)
  44. {
  45. refcount_set(&inc->i_refcount, 1);
  46. INIT_LIST_HEAD(&inc->i_item);
  47. inc->i_conn = conn;
  48. inc->i_saddr = *saddr;
  49. inc->i_usercopy.rdma_cookie = 0;
  50. inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
  51. memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace));
  52. }
  53. EXPORT_SYMBOL_GPL(rds_inc_init);
  54. void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp,
  55. struct in6_addr *saddr)
  56. {
  57. refcount_set(&inc->i_refcount, 1);
  58. INIT_LIST_HEAD(&inc->i_item);
  59. inc->i_conn = cp->cp_conn;
  60. inc->i_conn_path = cp;
  61. inc->i_saddr = *saddr;
  62. inc->i_usercopy.rdma_cookie = 0;
  63. inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
  64. }
  65. EXPORT_SYMBOL_GPL(rds_inc_path_init);
  66. static void rds_inc_addref(struct rds_incoming *inc)
  67. {
  68. rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
  69. refcount_inc(&inc->i_refcount);
  70. }
  71. void rds_inc_put(struct rds_incoming *inc)
  72. {
  73. rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
  74. if (refcount_dec_and_test(&inc->i_refcount)) {
  75. BUG_ON(!list_empty(&inc->i_item));
  76. inc->i_conn->c_trans->inc_free(inc);
  77. }
  78. }
  79. EXPORT_SYMBOL_GPL(rds_inc_put);
  80. static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
  81. struct rds_cong_map *map,
  82. int delta, __be16 port)
  83. {
  84. int now_congested;
  85. if (delta == 0)
  86. return;
  87. rs->rs_rcv_bytes += delta;
  88. if (delta > 0)
  89. rds_stats_add(s_recv_bytes_added_to_socket, delta);
  90. else
  91. rds_stats_add(s_recv_bytes_removed_from_socket, -delta);
  92. /* loop transport doesn't send/recv congestion updates */
  93. if (rs->rs_transport->t_type == RDS_TRANS_LOOP)
  94. return;
  95. now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
  96. rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d "
  97. "now_cong %d delta %d\n",
  98. rs, &rs->rs_bound_addr,
  99. ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
  100. rds_sk_rcvbuf(rs), now_congested, delta);
  101. /* wasn't -> am congested */
  102. if (!rs->rs_congested && now_congested) {
  103. rs->rs_congested = 1;
  104. rds_cong_set_bit(map, port);
  105. rds_cong_queue_updates(map);
  106. }
  107. /* was -> aren't congested */
  108. /* Require more free space before reporting uncongested to prevent
  109. bouncing cong/uncong state too often */
  110. else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
  111. rs->rs_congested = 0;
  112. rds_cong_clear_bit(map, port);
  113. rds_cong_queue_updates(map);
  114. }
  115. /* do nothing if no change in cong state */
  116. }
  117. static void rds_conn_peer_gen_update(struct rds_connection *conn,
  118. u32 peer_gen_num)
  119. {
  120. int i;
  121. struct rds_message *rm, *tmp;
  122. unsigned long flags;
  123. WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP);
  124. if (peer_gen_num != 0) {
  125. if (conn->c_peer_gen_num != 0 &&
  126. peer_gen_num != conn->c_peer_gen_num) {
  127. for (i = 0; i < RDS_MPATH_WORKERS; i++) {
  128. struct rds_conn_path *cp;
  129. cp = &conn->c_path[i];
  130. spin_lock_irqsave(&cp->cp_lock, flags);
  131. cp->cp_next_tx_seq = 1;
  132. cp->cp_next_rx_seq = 0;
  133. list_for_each_entry_safe(rm, tmp,
  134. &cp->cp_retrans,
  135. m_conn_item) {
  136. set_bit(RDS_MSG_FLUSH, &rm->m_flags);
  137. }
  138. spin_unlock_irqrestore(&cp->cp_lock, flags);
  139. }
  140. }
  141. conn->c_peer_gen_num = peer_gen_num;
  142. }
  143. }
  144. /*
  145. * Process all extension headers that come with this message.
  146. */
  147. static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
  148. {
  149. struct rds_header *hdr = &inc->i_hdr;
  150. unsigned int pos = 0, type, len;
  151. union {
  152. struct rds_ext_header_version version;
  153. struct rds_ext_header_rdma rdma;
  154. struct rds_ext_header_rdma_dest rdma_dest;
  155. } buffer;
  156. while (1) {
  157. len = sizeof(buffer);
  158. type = rds_message_next_extension(hdr, &pos, &buffer, &len);
  159. if (type == RDS_EXTHDR_NONE)
  160. break;
  161. /* Process extension header here */
  162. switch (type) {
  163. case RDS_EXTHDR_RDMA:
  164. rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
  165. break;
  166. case RDS_EXTHDR_RDMA_DEST:
  167. /* We ignore the size for now. We could stash it
  168. * somewhere and use it for error checking. */
  169. inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie(
  170. be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
  171. be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
  172. break;
  173. }
  174. }
  175. }
  176. static void rds_recv_hs_exthdrs(struct rds_header *hdr,
  177. struct rds_connection *conn)
  178. {
  179. unsigned int pos = 0, type, len;
  180. union {
  181. struct rds_ext_header_version version;
  182. u16 rds_npaths;
  183. u32 rds_gen_num;
  184. } buffer;
  185. u32 new_peer_gen_num = 0;
  186. while (1) {
  187. len = sizeof(buffer);
  188. type = rds_message_next_extension(hdr, &pos, &buffer, &len);
  189. if (type == RDS_EXTHDR_NONE)
  190. break;
  191. /* Process extension header here */
  192. switch (type) {
  193. case RDS_EXTHDR_NPATHS:
  194. conn->c_npaths = min_t(int, RDS_MPATH_WORKERS,
  195. be16_to_cpu(buffer.rds_npaths));
  196. break;
  197. case RDS_EXTHDR_GEN_NUM:
  198. new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num);
  199. break;
  200. default:
  201. pr_warn_ratelimited("ignoring unknown exthdr type "
  202. "0x%x\n", type);
  203. }
  204. }
  205. /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
  206. conn->c_npaths = max_t(int, conn->c_npaths, 1);
  207. conn->c_ping_triggered = 0;
  208. rds_conn_peer_gen_update(conn, new_peer_gen_num);
  209. }
  210. /* rds_start_mprds() will synchronously start multiple paths when appropriate.
  211. * The scheme is based on the following rules:
  212. *
  213. * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
  214. * sender's npaths (s_npaths)
  215. * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
  216. * sends back a probe-pong with r_npaths. After that, if rcvr is the
  217. * smaller ip addr, it starts rds_conn_path_connect_if_down on all
  218. * mprds_paths.
  219. * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
  220. * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
  221. * called after reception of the probe-pong on all mprds_paths.
  222. * Otherwise (sender of probe-ping is not the smaller ip addr): just call
  223. * rds_conn_path_connect_if_down on the hashed path. (see rule 4)
  224. * 4. rds_connect_worker must only trigger a connection if laddr < faddr.
  225. * 5. sender may end up queuing the packet on the cp. will get sent out later.
  226. * when connection is completed.
  227. */
  228. static void rds_start_mprds(struct rds_connection *conn)
  229. {
  230. int i;
  231. struct rds_conn_path *cp;
  232. if (conn->c_npaths > 1 &&
  233. rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) {
  234. for (i = 0; i < conn->c_npaths; i++) {
  235. cp = &conn->c_path[i];
  236. rds_conn_path_connect_if_down(cp);
  237. }
  238. }
  239. }
  240. /*
  241. * The transport must make sure that this is serialized against other
  242. * rx and conn reset on this specific conn.
  243. *
  244. * We currently assert that only one fragmented message will be sent
  245. * down a connection at a time. This lets us reassemble in the conn
  246. * instead of per-flow which means that we don't have to go digging through
  247. * flows to tear down partial reassembly progress on conn failure and
  248. * we save flow lookup and locking for each frag arrival. It does mean
  249. * that small messages will wait behind large ones. Fragmenting at all
  250. * is only to reduce the memory consumption of pre-posted buffers.
  251. *
  252. * The caller passes in saddr and daddr instead of us getting it from the
  253. * conn. This lets loopback, who only has one conn for both directions,
  254. * tell us which roles the addrs in the conn are playing for this message.
  255. */
  256. void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr,
  257. struct in6_addr *daddr,
  258. struct rds_incoming *inc, gfp_t gfp)
  259. {
  260. struct rds_sock *rs = NULL;
  261. struct sock *sk;
  262. unsigned long flags;
  263. struct rds_conn_path *cp;
  264. inc->i_conn = conn;
  265. inc->i_rx_jiffies = jiffies;
  266. if (conn->c_trans->t_mp_capable)
  267. cp = inc->i_conn_path;
  268. else
  269. cp = &conn->c_path[0];
  270. rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
  271. "flags 0x%x rx_jiffies %lu\n", conn,
  272. (unsigned long long)cp->cp_next_rx_seq,
  273. inc,
  274. (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
  275. be32_to_cpu(inc->i_hdr.h_len),
  276. be16_to_cpu(inc->i_hdr.h_sport),
  277. be16_to_cpu(inc->i_hdr.h_dport),
  278. inc->i_hdr.h_flags,
  279. inc->i_rx_jiffies);
  280. /*
  281. * Sequence numbers should only increase. Messages get their
  282. * sequence number as they're queued in a sending conn. They
  283. * can be dropped, though, if the sending socket is closed before
  284. * they hit the wire. So sequence numbers can skip forward
  285. * under normal operation. They can also drop back in the conn
  286. * failover case as previously sent messages are resent down the
  287. * new instance of a conn. We drop those, otherwise we have
  288. * to assume that the next valid seq does not come after a
  289. * hole in the fragment stream.
  290. *
  291. * The headers don't give us a way to realize if fragments of
  292. * a message have been dropped. We assume that frags that arrive
  293. * to a flow are part of the current message on the flow that is
  294. * being reassembled. This means that senders can't drop messages
  295. * from the sending conn until all their frags are sent.
  296. *
  297. * XXX we could spend more on the wire to get more robust failure
  298. * detection, arguably worth it to avoid data corruption.
  299. */
  300. if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq &&
  301. (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
  302. rds_stats_inc(s_recv_drop_old_seq);
  303. goto out;
  304. }
  305. cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
  306. if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
  307. if (inc->i_hdr.h_sport == 0) {
  308. rdsdebug("ignore ping with 0 sport from %pI6c\n",
  309. saddr);
  310. goto out;
  311. }
  312. rds_stats_inc(s_recv_ping);
  313. rds_send_pong(cp, inc->i_hdr.h_sport);
  314. /* if this is a handshake ping, start multipath if necessary */
  315. if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport),
  316. be16_to_cpu(inc->i_hdr.h_dport))) {
  317. rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
  318. rds_start_mprds(cp->cp_conn);
  319. }
  320. goto out;
  321. }
  322. if (be16_to_cpu(inc->i_hdr.h_dport) == RDS_FLAG_PROBE_PORT &&
  323. inc->i_hdr.h_sport == 0) {
  324. rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
  325. /* if this is a handshake pong, start multipath if necessary */
  326. rds_start_mprds(cp->cp_conn);
  327. wake_up(&cp->cp_conn->c_hs_waitq);
  328. goto out;
  329. }
  330. rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if);
  331. if (!rs) {
  332. rds_stats_inc(s_recv_drop_no_sock);
  333. goto out;
  334. }
  335. /* Process extension headers */
  336. rds_recv_incoming_exthdrs(inc, rs);
  337. /* We can be racing with rds_release() which marks the socket dead. */
  338. sk = rds_rs_to_sk(rs);
  339. /* serialize with rds_release -> sock_orphan */
  340. write_lock_irqsave(&rs->rs_recv_lock, flags);
  341. if (!sock_flag(sk, SOCK_DEAD)) {
  342. rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
  343. rds_stats_inc(s_recv_queued);
  344. rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
  345. be32_to_cpu(inc->i_hdr.h_len),
  346. inc->i_hdr.h_dport);
  347. if (sock_flag(sk, SOCK_RCVTSTAMP))
  348. inc->i_usercopy.rx_tstamp = ktime_get_real();
  349. rds_inc_addref(inc);
  350. inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock();
  351. list_add_tail(&inc->i_item, &rs->rs_recv_queue);
  352. __rds_wake_sk_sleep(sk);
  353. } else {
  354. rds_stats_inc(s_recv_drop_dead_sock);
  355. }
  356. write_unlock_irqrestore(&rs->rs_recv_lock, flags);
  357. out:
  358. if (rs)
  359. rds_sock_put(rs);
  360. }
  361. EXPORT_SYMBOL_GPL(rds_recv_incoming);
  362. /*
  363. * be very careful here. This is being called as the condition in
  364. * wait_event_*() needs to cope with being called many times.
  365. */
  366. static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
  367. {
  368. unsigned long flags;
  369. if (!*inc) {
  370. read_lock_irqsave(&rs->rs_recv_lock, flags);
  371. if (!list_empty(&rs->rs_recv_queue)) {
  372. *inc = list_entry(rs->rs_recv_queue.next,
  373. struct rds_incoming,
  374. i_item);
  375. rds_inc_addref(*inc);
  376. }
  377. read_unlock_irqrestore(&rs->rs_recv_lock, flags);
  378. }
  379. return *inc != NULL;
  380. }
  381. static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
  382. int drop)
  383. {
  384. struct sock *sk = rds_rs_to_sk(rs);
  385. int ret = 0;
  386. unsigned long flags;
  387. struct rds_incoming *to_drop = NULL;
  388. write_lock_irqsave(&rs->rs_recv_lock, flags);
  389. if (!list_empty(&inc->i_item)) {
  390. ret = 1;
  391. if (drop) {
  392. /* XXX make sure this i_conn is reliable */
  393. rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
  394. -be32_to_cpu(inc->i_hdr.h_len),
  395. inc->i_hdr.h_dport);
  396. list_del_init(&inc->i_item);
  397. to_drop = inc;
  398. }
  399. }
  400. write_unlock_irqrestore(&rs->rs_recv_lock, flags);
  401. if (to_drop)
  402. rds_inc_put(to_drop);
  403. rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
  404. return ret;
  405. }
  406. /*
  407. * Pull errors off the error queue.
  408. * If msghdr is NULL, we will just purge the error queue.
  409. */
  410. int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
  411. {
  412. struct rds_notifier *notifier;
  413. struct rds_rdma_notify cmsg;
  414. unsigned int count = 0, max_messages = ~0U;
  415. unsigned long flags;
  416. LIST_HEAD(copy);
  417. int err = 0;
  418. memset(&cmsg, 0, sizeof(cmsg)); /* fill holes with zero */
  419. /* put_cmsg copies to user space and thus may sleep. We can't do this
  420. * with rs_lock held, so first grab as many notifications as we can stuff
  421. * in the user provided cmsg buffer. We don't try to copy more, to avoid
  422. * losing notifications - except when the buffer is so small that it wouldn't
  423. * even hold a single notification. Then we give him as much of this single
  424. * msg as we can squeeze in, and set MSG_CTRUNC.
  425. */
  426. if (msghdr) {
  427. max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
  428. if (!max_messages)
  429. max_messages = 1;
  430. }
  431. spin_lock_irqsave(&rs->rs_lock, flags);
  432. while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
  433. notifier = list_entry(rs->rs_notify_queue.next,
  434. struct rds_notifier, n_list);
  435. list_move(&notifier->n_list, &copy);
  436. count++;
  437. }
  438. spin_unlock_irqrestore(&rs->rs_lock, flags);
  439. if (!count)
  440. return 0;
  441. while (!list_empty(&copy)) {
  442. notifier = list_entry(copy.next, struct rds_notifier, n_list);
  443. if (msghdr) {
  444. cmsg.user_token = notifier->n_user_token;
  445. cmsg.status = notifier->n_status;
  446. err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
  447. sizeof(cmsg), &cmsg);
  448. if (err)
  449. break;
  450. }
  451. list_del_init(&notifier->n_list);
  452. kfree(notifier);
  453. }
  454. /* If we bailed out because of an error in put_cmsg,
  455. * we may be left with one or more notifications that we
  456. * didn't process. Return them to the head of the list. */
  457. if (!list_empty(&copy)) {
  458. spin_lock_irqsave(&rs->rs_lock, flags);
  459. list_splice(&copy, &rs->rs_notify_queue);
  460. spin_unlock_irqrestore(&rs->rs_lock, flags);
  461. }
  462. return err;
  463. }
  464. /*
  465. * Queue a congestion notification
  466. */
  467. static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
  468. {
  469. uint64_t notify = rs->rs_cong_notify;
  470. unsigned long flags;
  471. int err;
  472. err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
  473. sizeof(notify), &notify);
  474. if (err)
  475. return err;
  476. spin_lock_irqsave(&rs->rs_lock, flags);
  477. rs->rs_cong_notify &= ~notify;
  478. spin_unlock_irqrestore(&rs->rs_lock, flags);
  479. return 0;
  480. }
  481. /*
  482. * Receive any control messages.
  483. */
  484. static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg,
  485. struct rds_sock *rs)
  486. {
  487. int ret = 0;
  488. if (inc->i_usercopy.rdma_cookie) {
  489. ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
  490. sizeof(inc->i_usercopy.rdma_cookie),
  491. &inc->i_usercopy.rdma_cookie);
  492. if (ret)
  493. goto out;
  494. }
  495. if ((inc->i_usercopy.rx_tstamp != 0) &&
  496. sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) {
  497. struct __kernel_old_timeval tv =
  498. ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp);
  499. if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) {
  500. ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
  501. sizeof(tv), &tv);
  502. } else {
  503. struct __kernel_sock_timeval sk_tv;
  504. sk_tv.tv_sec = tv.tv_sec;
  505. sk_tv.tv_usec = tv.tv_usec;
  506. ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
  507. sizeof(sk_tv), &sk_tv);
  508. }
  509. if (ret)
  510. goto out;
  511. }
  512. if (rs->rs_rx_traces) {
  513. struct rds_cmsg_rx_trace t;
  514. int i, j;
  515. memset(&t, 0, sizeof(t));
  516. inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock();
  517. t.rx_traces = rs->rs_rx_traces;
  518. for (i = 0; i < rs->rs_rx_traces; i++) {
  519. j = rs->rs_rx_trace[i];
  520. t.rx_trace_pos[i] = j;
  521. t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] -
  522. inc->i_rx_lat_trace[j];
  523. }
  524. ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY,
  525. sizeof(t), &t);
  526. if (ret)
  527. goto out;
  528. }
  529. out:
  530. return ret;
  531. }
  532. static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg)
  533. {
  534. struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue;
  535. struct rds_msg_zcopy_info *info = NULL;
  536. struct rds_zcopy_cookies *done;
  537. unsigned long flags;
  538. if (!msg->msg_control)
  539. return false;
  540. if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) ||
  541. msg->msg_controllen < CMSG_SPACE(sizeof(*done)))
  542. return false;
  543. spin_lock_irqsave(&q->lock, flags);
  544. if (!list_empty(&q->zcookie_head)) {
  545. info = list_entry(q->zcookie_head.next,
  546. struct rds_msg_zcopy_info, rs_zcookie_next);
  547. list_del(&info->rs_zcookie_next);
  548. }
  549. spin_unlock_irqrestore(&q->lock, flags);
  550. if (!info)
  551. return false;
  552. done = &info->zcookies;
  553. if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done),
  554. done)) {
  555. spin_lock_irqsave(&q->lock, flags);
  556. list_add(&info->rs_zcookie_next, &q->zcookie_head);
  557. spin_unlock_irqrestore(&q->lock, flags);
  558. return false;
  559. }
  560. kfree(info);
  561. return true;
  562. }
  563. int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  564. int msg_flags)
  565. {
  566. struct sock *sk = sock->sk;
  567. struct rds_sock *rs = rds_sk_to_rs(sk);
  568. long timeo;
  569. int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
  570. DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
  571. DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
  572. struct rds_incoming *inc = NULL;
  573. /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
  574. timeo = sock_rcvtimeo(sk, nonblock);
  575. rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
  576. if (msg_flags & MSG_OOB)
  577. goto out;
  578. if (msg_flags & MSG_ERRQUEUE)
  579. return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR);
  580. while (1) {
  581. /* If there are pending notifications, do those - and nothing else */
  582. if (!list_empty(&rs->rs_notify_queue)) {
  583. ret = rds_notify_queue_get(rs, msg);
  584. break;
  585. }
  586. if (rs->rs_cong_notify) {
  587. ret = rds_notify_cong(rs, msg);
  588. break;
  589. }
  590. if (!rds_next_incoming(rs, &inc)) {
  591. if (nonblock) {
  592. bool reaped = rds_recvmsg_zcookie(rs, msg);
  593. ret = reaped ? 0 : -EAGAIN;
  594. break;
  595. }
  596. timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
  597. (!list_empty(&rs->rs_notify_queue) ||
  598. rs->rs_cong_notify ||
  599. rds_next_incoming(rs, &inc)), timeo);
  600. rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
  601. timeo);
  602. if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
  603. continue;
  604. ret = timeo;
  605. if (ret == 0)
  606. ret = -ETIMEDOUT;
  607. break;
  608. }
  609. rdsdebug("copying inc %p from %pI6c:%u to user\n", inc,
  610. &inc->i_conn->c_faddr,
  611. ntohs(inc->i_hdr.h_sport));
  612. ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter);
  613. if (ret < 0)
  614. break;
  615. /*
  616. * if the message we just copied isn't at the head of the
  617. * recv queue then someone else raced us to return it, try
  618. * to get the next message.
  619. */
  620. if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
  621. rds_inc_put(inc);
  622. inc = NULL;
  623. rds_stats_inc(s_recv_deliver_raced);
  624. iov_iter_revert(&msg->msg_iter, ret);
  625. continue;
  626. }
  627. if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
  628. if (msg_flags & MSG_TRUNC)
  629. ret = be32_to_cpu(inc->i_hdr.h_len);
  630. msg->msg_flags |= MSG_TRUNC;
  631. }
  632. if (rds_cmsg_recv(inc, msg, rs)) {
  633. ret = -EFAULT;
  634. break;
  635. }
  636. rds_recvmsg_zcookie(rs, msg);
  637. rds_stats_inc(s_recv_delivered);
  638. if (msg->msg_name) {
  639. if (ipv6_addr_v4mapped(&inc->i_saddr)) {
  640. sin->sin_family = AF_INET;
  641. sin->sin_port = inc->i_hdr.h_sport;
  642. sin->sin_addr.s_addr =
  643. inc->i_saddr.s6_addr32[3];
  644. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  645. msg->msg_namelen = sizeof(*sin);
  646. } else {
  647. sin6->sin6_family = AF_INET6;
  648. sin6->sin6_port = inc->i_hdr.h_sport;
  649. sin6->sin6_addr = inc->i_saddr;
  650. sin6->sin6_flowinfo = 0;
  651. sin6->sin6_scope_id = rs->rs_bound_scope_id;
  652. msg->msg_namelen = sizeof(*sin6);
  653. }
  654. }
  655. break;
  656. }
  657. if (inc)
  658. rds_inc_put(inc);
  659. out:
  660. return ret;
  661. }
  662. /*
  663. * The socket is being shut down and we're asked to drop messages that were
  664. * queued for recvmsg. The caller has unbound the socket so the receive path
  665. * won't queue any more incoming fragments or messages on the socket.
  666. */
  667. void rds_clear_recv_queue(struct rds_sock *rs)
  668. {
  669. struct sock *sk = rds_rs_to_sk(rs);
  670. struct rds_incoming *inc, *tmp;
  671. unsigned long flags;
  672. LIST_HEAD(to_drop);
  673. write_lock_irqsave(&rs->rs_recv_lock, flags);
  674. list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
  675. rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
  676. -be32_to_cpu(inc->i_hdr.h_len),
  677. inc->i_hdr.h_dport);
  678. list_move(&inc->i_item, &to_drop);
  679. }
  680. write_unlock_irqrestore(&rs->rs_recv_lock, flags);
  681. list_for_each_entry_safe(inc, tmp, &to_drop, i_item) {
  682. list_del_init(&inc->i_item);
  683. rds_inc_put(inc);
  684. }
  685. }
  686. /*
  687. * inc->i_saddr isn't used here because it is only set in the receive
  688. * path.
  689. */
  690. void rds_inc_info_copy(struct rds_incoming *inc,
  691. struct rds_info_iterator *iter,
  692. __be32 saddr, __be32 daddr, int flip)
  693. {
  694. struct rds_info_message minfo;
  695. minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
  696. minfo.len = be32_to_cpu(inc->i_hdr.h_len);
  697. minfo.tos = inc->i_conn->c_tos;
  698. if (flip) {
  699. minfo.laddr = daddr;
  700. minfo.faddr = saddr;
  701. minfo.lport = inc->i_hdr.h_dport;
  702. minfo.fport = inc->i_hdr.h_sport;
  703. } else {
  704. minfo.laddr = saddr;
  705. minfo.faddr = daddr;
  706. minfo.lport = inc->i_hdr.h_sport;
  707. minfo.fport = inc->i_hdr.h_dport;
  708. }
  709. minfo.flags = 0;
  710. rds_info_copy(iter, &minfo, sizeof(minfo));
  711. }
  712. #if IS_ENABLED(CONFIG_IPV6)
  713. void rds6_inc_info_copy(struct rds_incoming *inc,
  714. struct rds_info_iterator *iter,
  715. struct in6_addr *saddr, struct in6_addr *daddr,
  716. int flip)
  717. {
  718. struct rds6_info_message minfo6;
  719. minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence);
  720. minfo6.len = be32_to_cpu(inc->i_hdr.h_len);
  721. minfo6.tos = inc->i_conn->c_tos;
  722. if (flip) {
  723. minfo6.laddr = *daddr;
  724. minfo6.faddr = *saddr;
  725. minfo6.lport = inc->i_hdr.h_dport;
  726. minfo6.fport = inc->i_hdr.h_sport;
  727. } else {
  728. minfo6.laddr = *saddr;
  729. minfo6.faddr = *daddr;
  730. minfo6.lport = inc->i_hdr.h_sport;
  731. minfo6.fport = inc->i_hdr.h_dport;
  732. }
  733. minfo6.flags = 0;
  734. rds_info_copy(iter, &minfo6, sizeof(minfo6));
  735. }
  736. #endif