ff-transaction.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * ff-transaction.c - a part of driver for RME Fireface series
  4. *
  5. * Copyright (c) 2015-2017 Takashi Sakamoto
  6. */
  7. #include "ff.h"
  8. static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
  9. int rcode)
  10. {
  11. struct snd_rawmidi_substream *substream =
  12. READ_ONCE(ff->rx_midi_substreams[port]);
  13. if (rcode_is_permanent_error(rcode)) {
  14. ff->rx_midi_error[port] = true;
  15. return;
  16. }
  17. if (rcode != RCODE_COMPLETE) {
  18. /* Transfer the message again, immediately. */
  19. ff->next_ktime[port] = 0;
  20. schedule_work(&ff->rx_midi_work[port]);
  21. return;
  22. }
  23. snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
  24. ff->rx_bytes[port] = 0;
  25. if (!snd_rawmidi_transmit_empty(substream))
  26. schedule_work(&ff->rx_midi_work[port]);
  27. }
  28. static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
  29. void *data, size_t length,
  30. void *callback_data)
  31. {
  32. struct snd_ff *ff =
  33. container_of(callback_data, struct snd_ff, transactions[0]);
  34. finish_transmit_midi_msg(ff, 0, rcode);
  35. }
  36. static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
  37. void *data, size_t length,
  38. void *callback_data)
  39. {
  40. struct snd_ff *ff =
  41. container_of(callback_data, struct snd_ff, transactions[1]);
  42. finish_transmit_midi_msg(ff, 1, rcode);
  43. }
  44. static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
  45. {
  46. struct snd_rawmidi_substream *substream =
  47. READ_ONCE(ff->rx_midi_substreams[port]);
  48. int quad_count;
  49. struct fw_device *fw_dev = fw_parent_device(ff->unit);
  50. unsigned long long addr;
  51. int generation;
  52. fw_transaction_callback_t callback;
  53. int tcode;
  54. if (substream == NULL || snd_rawmidi_transmit_empty(substream))
  55. return;
  56. if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
  57. return;
  58. /* Do it in next chance. */
  59. if (ktime_after(ff->next_ktime[port], ktime_get())) {
  60. schedule_work(&ff->rx_midi_work[port]);
  61. return;
  62. }
  63. quad_count = ff->spec->protocol->fill_midi_msg(ff, substream, port);
  64. if (quad_count <= 0)
  65. return;
  66. if (port == 0) {
  67. addr = ff->spec->midi_rx_addrs[0];
  68. callback = finish_transmit_midi0_msg;
  69. } else {
  70. addr = ff->spec->midi_rx_addrs[1];
  71. callback = finish_transmit_midi1_msg;
  72. }
  73. /* Set interval to next transaction. */
  74. ff->next_ktime[port] = ktime_add_ns(ktime_get(),
  75. ff->rx_bytes[port] * 8 * (NSEC_PER_SEC / 31250));
  76. if (quad_count == 1)
  77. tcode = TCODE_WRITE_QUADLET_REQUEST;
  78. else
  79. tcode = TCODE_WRITE_BLOCK_REQUEST;
  80. /*
  81. * In Linux FireWire core, when generation is updated with memory
  82. * barrier, node id has already been updated. In this module, After
  83. * this smp_rmb(), load/store instructions to memory are completed.
  84. * Thus, both of generation and node id are available with recent
  85. * values. This is a light-serialization solution to handle bus reset
  86. * events on IEEE 1394 bus.
  87. */
  88. generation = fw_dev->generation;
  89. smp_rmb();
  90. fw_send_request(fw_dev->card, &ff->transactions[port], tcode,
  91. fw_dev->node_id, generation, fw_dev->max_speed,
  92. addr, &ff->msg_buf[port], quad_count * 4,
  93. callback, &ff->transactions[port]);
  94. }
  95. static void transmit_midi0_msg(struct work_struct *work)
  96. {
  97. struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
  98. transmit_midi_msg(ff, 0);
  99. }
  100. static void transmit_midi1_msg(struct work_struct *work)
  101. {
  102. struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
  103. transmit_midi_msg(ff, 1);
  104. }
  105. static void handle_msg(struct fw_card *card, struct fw_request *request, int tcode,
  106. int destination, int source, int generation, unsigned long long offset,
  107. void *data, size_t length, void *callback_data)
  108. {
  109. struct snd_ff *ff = callback_data;
  110. __le32 *buf = data;
  111. u32 tstamp = fw_request_get_timestamp(request);
  112. unsigned long flag;
  113. fw_send_response(card, request, RCODE_COMPLETE);
  114. offset -= ff->async_handler.offset;
  115. spin_lock_irqsave(&ff->lock, flag);
  116. ff->spec->protocol->handle_msg(ff, (unsigned int)offset, buf, length, tstamp);
  117. spin_unlock_irqrestore(&ff->lock, flag);
  118. }
  119. static int allocate_own_address(struct snd_ff *ff, int i)
  120. {
  121. struct fw_address_region midi_msg_region;
  122. int err;
  123. ff->async_handler.length = ff->spec->midi_addr_range;
  124. ff->async_handler.address_callback = handle_msg;
  125. ff->async_handler.callback_data = ff;
  126. midi_msg_region.start = 0x000100000000ull * i;
  127. midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
  128. err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
  129. if (err >= 0) {
  130. /* Controllers are allowed to register this region. */
  131. if (ff->async_handler.offset & 0x0000ffffffff) {
  132. fw_core_remove_address_handler(&ff->async_handler);
  133. err = -EAGAIN;
  134. }
  135. }
  136. return err;
  137. }
  138. // Controllers are allowed to register higher 4 bytes of destination address to
  139. // receive asynchronous transactions for MIDI messages, while the way to
  140. // register lower 4 bytes of address is different depending on protocols. For
  141. // details, please refer to comments in protocol implementations.
  142. //
  143. // This driver expects userspace applications to configure registers for the
  144. // lower address because in most cases such registers has the other settings.
  145. int snd_ff_transaction_reregister(struct snd_ff *ff)
  146. {
  147. struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
  148. u32 addr;
  149. __le32 reg;
  150. /*
  151. * Controllers are allowed to register its node ID and upper 2 byte of
  152. * local address to listen asynchronous transactions.
  153. */
  154. addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
  155. reg = cpu_to_le32(addr);
  156. return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
  157. ff->spec->midi_high_addr,
  158. &reg, sizeof(reg), 0);
  159. }
  160. int snd_ff_transaction_register(struct snd_ff *ff)
  161. {
  162. int i, err;
  163. /*
  164. * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
  165. * be zero due to device specification.
  166. */
  167. for (i = 0; i < 0xffff; i++) {
  168. err = allocate_own_address(ff, i);
  169. if (err != -EBUSY && err != -EAGAIN)
  170. break;
  171. }
  172. if (err < 0)
  173. return err;
  174. err = snd_ff_transaction_reregister(ff);
  175. if (err < 0)
  176. return err;
  177. INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
  178. INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
  179. return 0;
  180. }
  181. void snd_ff_transaction_unregister(struct snd_ff *ff)
  182. {
  183. __le32 reg;
  184. if (ff->async_handler.callback_data == NULL)
  185. return;
  186. ff->async_handler.callback_data = NULL;
  187. /* Release higher 4 bytes of address. */
  188. reg = cpu_to_le32(0x00000000);
  189. snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
  190. ff->spec->midi_high_addr,
  191. &reg, sizeof(reg), 0);
  192. fw_core_remove_address_handler(&ff->async_handler);
  193. }