mixer_quirks.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * USB Audio Driver for ALSA
  4. *
  5. * Quirks and vendor-specific extensions for mixer interfaces
  6. *
  7. * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
  8. *
  9. * Many codes borrowed from audio.c by
  10. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  11. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  12. *
  13. * Audio Advantage Micro II support added by:
  14. * Przemek Rudy (prudy1@o2.pl)
  15. */
  16. #include <linux/bitfield.h>
  17. #include <linux/hid.h>
  18. #include <linux/init.h>
  19. #include <linux/math64.h>
  20. #include <linux/slab.h>
  21. #include <linux/usb.h>
  22. #include <linux/usb/audio.h>
  23. #include <sound/asoundef.h>
  24. #include <sound/core.h>
  25. #include <sound/control.h>
  26. #include <sound/hda_verbs.h>
  27. #include <sound/hwdep.h>
  28. #include <sound/info.h>
  29. #include <sound/tlv.h>
  30. #include "usbaudio.h"
  31. #include "mixer.h"
  32. #include "mixer_quirks.h"
  33. #include "mixer_scarlett.h"
  34. #include "mixer_scarlett2.h"
  35. #include "mixer_us16x08.h"
  36. #include "mixer_s1810c.h"
  37. #include "helper.h"
  38. struct std_mono_table {
  39. unsigned int unitid, control, cmask;
  40. int val_type;
  41. const char *name;
  42. snd_kcontrol_tlv_rw_t *tlv_callback;
  43. };
  44. /* This function allows for the creation of standard UAC controls.
  45. * See the quirks for M-Audio FTUs or Ebox-44.
  46. * If you don't want to set a TLV callback pass NULL.
  47. *
  48. * Since there doesn't seem to be a devices that needs a multichannel
  49. * version, we keep it mono for simplicity.
  50. */
  51. static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
  52. unsigned int unitid,
  53. unsigned int control,
  54. unsigned int cmask,
  55. int val_type,
  56. unsigned int idx_off,
  57. const char *name,
  58. snd_kcontrol_tlv_rw_t *tlv_callback)
  59. {
  60. struct usb_mixer_elem_info *cval;
  61. struct snd_kcontrol *kctl;
  62. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  63. if (!cval)
  64. return -ENOMEM;
  65. snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
  66. cval->val_type = val_type;
  67. cval->channels = 1;
  68. cval->control = control;
  69. cval->cmask = cmask;
  70. cval->idx_off = idx_off;
  71. /* get_min_max() is called only for integer volumes later,
  72. * so provide a short-cut for booleans */
  73. cval->min = 0;
  74. cval->max = 1;
  75. cval->res = 0;
  76. cval->dBmin = 0;
  77. cval->dBmax = 0;
  78. /* Create control */
  79. kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
  80. if (!kctl) {
  81. kfree(cval);
  82. return -ENOMEM;
  83. }
  84. /* Set name */
  85. snprintf(kctl->id.name, sizeof(kctl->id.name), name);
  86. kctl->private_free = snd_usb_mixer_elem_free;
  87. /* set TLV */
  88. if (tlv_callback) {
  89. kctl->tlv.c = tlv_callback;
  90. kctl->vd[0].access |=
  91. SNDRV_CTL_ELEM_ACCESS_TLV_READ |
  92. SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  93. }
  94. /* Add control to mixer */
  95. return snd_usb_mixer_add_control(&cval->head, kctl);
  96. }
  97. static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
  98. unsigned int unitid,
  99. unsigned int control,
  100. unsigned int cmask,
  101. int val_type,
  102. const char *name,
  103. snd_kcontrol_tlv_rw_t *tlv_callback)
  104. {
  105. return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
  106. val_type, 0 /* Offset */, name, tlv_callback);
  107. }
  108. /*
  109. * Create a set of standard UAC controls from a table
  110. */
  111. static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
  112. const struct std_mono_table *t)
  113. {
  114. int err;
  115. while (t->name != NULL) {
  116. err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
  117. t->cmask, t->val_type, t->name, t->tlv_callback);
  118. if (err < 0)
  119. return err;
  120. t++;
  121. }
  122. return 0;
  123. }
  124. static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
  125. int id,
  126. usb_mixer_elem_resume_func_t resume,
  127. const struct snd_kcontrol_new *knew,
  128. struct usb_mixer_elem_list **listp)
  129. {
  130. struct usb_mixer_elem_list *list;
  131. struct snd_kcontrol *kctl;
  132. list = kzalloc(sizeof(*list), GFP_KERNEL);
  133. if (!list)
  134. return -ENOMEM;
  135. if (listp)
  136. *listp = list;
  137. list->mixer = mixer;
  138. list->id = id;
  139. list->resume = resume;
  140. kctl = snd_ctl_new1(knew, list);
  141. if (!kctl) {
  142. kfree(list);
  143. return -ENOMEM;
  144. }
  145. kctl->private_free = snd_usb_mixer_elem_free;
  146. /* don't use snd_usb_mixer_add_control() here, this is a special list element */
  147. return snd_usb_mixer_add_list(list, kctl, false);
  148. }
  149. /*
  150. * Sound Blaster remote control configuration
  151. *
  152. * format of remote control data:
  153. * Extigy: xx 00
  154. * Audigy 2 NX: 06 80 xx 00 00 00
  155. * Live! 24-bit: 06 80 xx yy 22 83
  156. */
  157. static const struct rc_config {
  158. u32 usb_id;
  159. u8 offset;
  160. u8 length;
  161. u8 packet_length;
  162. u8 min_packet_length; /* minimum accepted length of the URB result */
  163. u8 mute_mixer_id;
  164. u32 mute_code;
  165. } rc_configs[] = {
  166. { USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */
  167. { USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */
  168. { USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */
  169. { USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */
  170. { USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
  171. { USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
  172. { USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
  173. { USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */
  174. };
  175. static void snd_usb_soundblaster_remote_complete(struct urb *urb)
  176. {
  177. struct usb_mixer_interface *mixer = urb->context;
  178. const struct rc_config *rc = mixer->rc_cfg;
  179. u32 code;
  180. if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
  181. return;
  182. code = mixer->rc_buffer[rc->offset];
  183. if (rc->length == 2)
  184. code |= mixer->rc_buffer[rc->offset + 1] << 8;
  185. /* the Mute button actually changes the mixer control */
  186. if (code == rc->mute_code)
  187. snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
  188. mixer->rc_code = code;
  189. wmb();
  190. wake_up(&mixer->rc_waitq);
  191. }
  192. static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
  193. long count, loff_t *offset)
  194. {
  195. struct usb_mixer_interface *mixer = hw->private_data;
  196. int err;
  197. u32 rc_code;
  198. if (count != 1 && count != 4)
  199. return -EINVAL;
  200. err = wait_event_interruptible(mixer->rc_waitq,
  201. (rc_code = xchg(&mixer->rc_code, 0)) != 0);
  202. if (err == 0) {
  203. if (count == 1)
  204. err = put_user(rc_code, buf);
  205. else
  206. err = put_user(rc_code, (u32 __user *)buf);
  207. }
  208. return err < 0 ? err : count;
  209. }
  210. static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
  211. poll_table *wait)
  212. {
  213. struct usb_mixer_interface *mixer = hw->private_data;
  214. poll_wait(file, &mixer->rc_waitq, wait);
  215. return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
  216. }
  217. static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
  218. {
  219. struct snd_hwdep *hwdep;
  220. int err, len, i;
  221. for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
  222. if (rc_configs[i].usb_id == mixer->chip->usb_id)
  223. break;
  224. if (i >= ARRAY_SIZE(rc_configs))
  225. return 0;
  226. mixer->rc_cfg = &rc_configs[i];
  227. len = mixer->rc_cfg->packet_length;
  228. init_waitqueue_head(&mixer->rc_waitq);
  229. err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
  230. if (err < 0)
  231. return err;
  232. snprintf(hwdep->name, sizeof(hwdep->name),
  233. "%s remote control", mixer->chip->card->shortname);
  234. hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
  235. hwdep->private_data = mixer;
  236. hwdep->ops.read = snd_usb_sbrc_hwdep_read;
  237. hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
  238. hwdep->exclusive = 1;
  239. mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
  240. if (!mixer->rc_urb)
  241. return -ENOMEM;
  242. mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
  243. if (!mixer->rc_setup_packet) {
  244. usb_free_urb(mixer->rc_urb);
  245. mixer->rc_urb = NULL;
  246. return -ENOMEM;
  247. }
  248. mixer->rc_setup_packet->bRequestType =
  249. USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
  250. mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
  251. mixer->rc_setup_packet->wValue = cpu_to_le16(0);
  252. mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
  253. mixer->rc_setup_packet->wLength = cpu_to_le16(len);
  254. usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
  255. usb_rcvctrlpipe(mixer->chip->dev, 0),
  256. (u8*)mixer->rc_setup_packet, mixer->rc_buffer, len,
  257. snd_usb_soundblaster_remote_complete, mixer);
  258. return 0;
  259. }
  260. #define snd_audigy2nx_led_info snd_ctl_boolean_mono_info
  261. static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  262. {
  263. ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
  264. return 0;
  265. }
  266. static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
  267. int value, int index)
  268. {
  269. struct snd_usb_audio *chip = mixer->chip;
  270. int err;
  271. err = snd_usb_lock_shutdown(chip);
  272. if (err < 0)
  273. return err;
  274. if (chip->usb_id == USB_ID(0x041e, 0x3042))
  275. err = snd_usb_ctl_msg(chip->dev,
  276. usb_sndctrlpipe(chip->dev, 0), 0x24,
  277. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  278. !value, 0, NULL, 0);
  279. /* USB X-Fi S51 Pro */
  280. if (chip->usb_id == USB_ID(0x041e, 0x30df))
  281. err = snd_usb_ctl_msg(chip->dev,
  282. usb_sndctrlpipe(chip->dev, 0), 0x24,
  283. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  284. !value, 0, NULL, 0);
  285. else
  286. err = snd_usb_ctl_msg(chip->dev,
  287. usb_sndctrlpipe(chip->dev, 0), 0x24,
  288. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  289. value, index + 2, NULL, 0);
  290. snd_usb_unlock_shutdown(chip);
  291. return err;
  292. }
  293. static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
  294. struct snd_ctl_elem_value *ucontrol)
  295. {
  296. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  297. struct usb_mixer_interface *mixer = list->mixer;
  298. int index = kcontrol->private_value & 0xff;
  299. unsigned int value = ucontrol->value.integer.value[0];
  300. int old_value = kcontrol->private_value >> 8;
  301. int err;
  302. if (value > 1)
  303. return -EINVAL;
  304. if (value == old_value)
  305. return 0;
  306. kcontrol->private_value = (value << 8) | index;
  307. err = snd_audigy2nx_led_update(mixer, value, index);
  308. return err < 0 ? err : 1;
  309. }
  310. static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
  311. {
  312. int priv_value = list->kctl->private_value;
  313. return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
  314. priv_value & 0xff);
  315. }
  316. /* name and private_value are set dynamically */
  317. static const struct snd_kcontrol_new snd_audigy2nx_control = {
  318. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  319. .info = snd_audigy2nx_led_info,
  320. .get = snd_audigy2nx_led_get,
  321. .put = snd_audigy2nx_led_put,
  322. };
  323. static const char * const snd_audigy2nx_led_names[] = {
  324. "CMSS LED Switch",
  325. "Power LED Switch",
  326. "Dolby Digital LED Switch",
  327. };
  328. static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
  329. {
  330. int i, err;
  331. for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
  332. struct snd_kcontrol_new knew;
  333. /* USB X-Fi S51 doesn't have a CMSS LED */
  334. if ((mixer->chip->usb_id == USB_ID(0x041e, 0x3042)) && i == 0)
  335. continue;
  336. /* USB X-Fi S51 Pro doesn't have one either */
  337. if ((mixer->chip->usb_id == USB_ID(0x041e, 0x30df)) && i == 0)
  338. continue;
  339. if (i > 1 && /* Live24ext has 2 LEDs only */
  340. (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
  341. mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
  342. mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
  343. mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
  344. break;
  345. knew = snd_audigy2nx_control;
  346. knew.name = snd_audigy2nx_led_names[i];
  347. knew.private_value = (1 << 8) | i; /* LED on as default */
  348. err = add_single_ctl_with_resume(mixer, 0,
  349. snd_audigy2nx_led_resume,
  350. &knew, NULL);
  351. if (err < 0)
  352. return err;
  353. }
  354. return 0;
  355. }
  356. static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
  357. struct snd_info_buffer *buffer)
  358. {
  359. static const struct sb_jack {
  360. int unitid;
  361. const char *name;
  362. } jacks_audigy2nx[] = {
  363. {4, "dig in "},
  364. {7, "line in"},
  365. {19, "spk out"},
  366. {20, "hph out"},
  367. {-1, NULL}
  368. }, jacks_live24ext[] = {
  369. {4, "line in"}, /* &1=Line, &2=Mic*/
  370. {3, "hph out"}, /* headphones */
  371. {0, "RC "}, /* last command, 6 bytes see rc_config above */
  372. {-1, NULL}
  373. };
  374. const struct sb_jack *jacks;
  375. struct usb_mixer_interface *mixer = entry->private_data;
  376. int i, err;
  377. u8 buf[3];
  378. snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
  379. if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
  380. jacks = jacks_audigy2nx;
  381. else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
  382. mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
  383. jacks = jacks_live24ext;
  384. else
  385. return;
  386. for (i = 0; jacks[i].name; ++i) {
  387. snd_iprintf(buffer, "%s: ", jacks[i].name);
  388. err = snd_usb_lock_shutdown(mixer->chip);
  389. if (err < 0)
  390. return;
  391. err = snd_usb_ctl_msg(mixer->chip->dev,
  392. usb_rcvctrlpipe(mixer->chip->dev, 0),
  393. UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
  394. USB_RECIP_INTERFACE, 0,
  395. jacks[i].unitid << 8, buf, 3);
  396. snd_usb_unlock_shutdown(mixer->chip);
  397. if (err == 3 && (buf[0] == 3 || buf[0] == 6))
  398. snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
  399. else
  400. snd_iprintf(buffer, "?\n");
  401. }
  402. }
  403. /* EMU0204 */
  404. static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
  405. struct snd_ctl_elem_info *uinfo)
  406. {
  407. static const char * const texts[2] = {"1/2", "3/4"};
  408. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  409. }
  410. static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
  411. struct snd_ctl_elem_value *ucontrol)
  412. {
  413. ucontrol->value.enumerated.item[0] = kcontrol->private_value;
  414. return 0;
  415. }
  416. static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
  417. int value)
  418. {
  419. struct snd_usb_audio *chip = mixer->chip;
  420. int err;
  421. unsigned char buf[2];
  422. err = snd_usb_lock_shutdown(chip);
  423. if (err < 0)
  424. return err;
  425. buf[0] = 0x01;
  426. buf[1] = value ? 0x02 : 0x01;
  427. err = snd_usb_ctl_msg(chip->dev,
  428. usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
  429. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  430. 0x0400, 0x0e00, buf, 2);
  431. snd_usb_unlock_shutdown(chip);
  432. return err;
  433. }
  434. static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
  435. struct snd_ctl_elem_value *ucontrol)
  436. {
  437. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  438. struct usb_mixer_interface *mixer = list->mixer;
  439. unsigned int value = ucontrol->value.enumerated.item[0];
  440. int err;
  441. if (value > 1)
  442. return -EINVAL;
  443. if (value == kcontrol->private_value)
  444. return 0;
  445. kcontrol->private_value = value;
  446. err = snd_emu0204_ch_switch_update(mixer, value);
  447. return err < 0 ? err : 1;
  448. }
  449. static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
  450. {
  451. return snd_emu0204_ch_switch_update(list->mixer,
  452. list->kctl->private_value);
  453. }
  454. static const struct snd_kcontrol_new snd_emu0204_control = {
  455. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  456. .name = "Front Jack Channels",
  457. .info = snd_emu0204_ch_switch_info,
  458. .get = snd_emu0204_ch_switch_get,
  459. .put = snd_emu0204_ch_switch_put,
  460. .private_value = 0,
  461. };
  462. static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
  463. {
  464. return add_single_ctl_with_resume(mixer, 0,
  465. snd_emu0204_ch_switch_resume,
  466. &snd_emu0204_control, NULL);
  467. }
  468. /* ASUS Xonar U1 / U3 controls */
  469. static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
  470. struct snd_ctl_elem_value *ucontrol)
  471. {
  472. ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
  473. return 0;
  474. }
  475. static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
  476. unsigned char status)
  477. {
  478. struct snd_usb_audio *chip = mixer->chip;
  479. int err;
  480. err = snd_usb_lock_shutdown(chip);
  481. if (err < 0)
  482. return err;
  483. err = snd_usb_ctl_msg(chip->dev,
  484. usb_sndctrlpipe(chip->dev, 0), 0x08,
  485. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  486. 50, 0, &status, 1);
  487. snd_usb_unlock_shutdown(chip);
  488. return err;
  489. }
  490. static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
  491. struct snd_ctl_elem_value *ucontrol)
  492. {
  493. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  494. u8 old_status, new_status;
  495. int err;
  496. old_status = kcontrol->private_value;
  497. if (ucontrol->value.integer.value[0])
  498. new_status = old_status | 0x02;
  499. else
  500. new_status = old_status & ~0x02;
  501. if (new_status == old_status)
  502. return 0;
  503. kcontrol->private_value = new_status;
  504. err = snd_xonar_u1_switch_update(list->mixer, new_status);
  505. return err < 0 ? err : 1;
  506. }
  507. static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
  508. {
  509. return snd_xonar_u1_switch_update(list->mixer,
  510. list->kctl->private_value);
  511. }
  512. static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
  513. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  514. .name = "Digital Playback Switch",
  515. .info = snd_ctl_boolean_mono_info,
  516. .get = snd_xonar_u1_switch_get,
  517. .put = snd_xonar_u1_switch_put,
  518. .private_value = 0x05,
  519. };
  520. static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
  521. {
  522. return add_single_ctl_with_resume(mixer, 0,
  523. snd_xonar_u1_switch_resume,
  524. &snd_xonar_u1_output_switch, NULL);
  525. }
  526. /* Digidesign Mbox 1 helper functions */
  527. static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip)
  528. {
  529. unsigned char buff[3];
  530. int err;
  531. int is_spdif_synced;
  532. /* Read clock source */
  533. err = snd_usb_ctl_msg(chip->dev,
  534. usb_rcvctrlpipe(chip->dev, 0), 0x81,
  535. USB_DIR_IN |
  536. USB_TYPE_CLASS |
  537. USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
  538. if (err < 0)
  539. return err;
  540. /* spdif sync: buff is all zeroes */
  541. is_spdif_synced = !(buff[0] | buff[1] | buff[2]);
  542. return is_spdif_synced;
  543. }
  544. static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero)
  545. {
  546. /* 2 possibilities: Internal -> expects sample rate
  547. * S/PDIF sync -> expects rate = 0
  548. */
  549. unsigned char buff[3];
  550. buff[0] = (rate_or_zero >> 0) & 0xff;
  551. buff[1] = (rate_or_zero >> 8) & 0xff;
  552. buff[2] = (rate_or_zero >> 16) & 0xff;
  553. /* Set clock source */
  554. return snd_usb_ctl_msg(chip->dev,
  555. usb_sndctrlpipe(chip->dev, 0), 0x1,
  556. USB_TYPE_CLASS |
  557. USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
  558. }
  559. static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip)
  560. {
  561. /* Hardware gives 2 possibilities: ANALOG Source -> 0x01
  562. * S/PDIF Source -> 0x02
  563. */
  564. int err;
  565. unsigned char source[1];
  566. /* Read input source */
  567. err = snd_usb_ctl_msg(chip->dev,
  568. usb_rcvctrlpipe(chip->dev, 0), 0x81,
  569. USB_DIR_IN |
  570. USB_TYPE_CLASS |
  571. USB_RECIP_INTERFACE, 0x00, 0x500, source, 1);
  572. if (err < 0)
  573. return err;
  574. return (source[0] == 2);
  575. }
  576. static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif)
  577. {
  578. /* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF
  579. * Hardware expects 2 possibilities: ANALOG Source -> 0x01
  580. * S/PDIF Source -> 0x02
  581. */
  582. unsigned char buff[1];
  583. buff[0] = (is_spdif & 1) + 1;
  584. /* Set input source */
  585. return snd_usb_ctl_msg(chip->dev,
  586. usb_sndctrlpipe(chip->dev, 0), 0x1,
  587. USB_TYPE_CLASS |
  588. USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
  589. }
  590. /* Digidesign Mbox 1 clock source switch (internal/spdif) */
  591. static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl,
  592. struct snd_ctl_elem_value *ucontrol)
  593. {
  594. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  595. struct snd_usb_audio *chip = list->mixer->chip;
  596. int err;
  597. err = snd_usb_lock_shutdown(chip);
  598. if (err < 0)
  599. goto err;
  600. err = snd_mbox1_is_spdif_synced(chip);
  601. if (err < 0)
  602. goto err;
  603. kctl->private_value = err;
  604. err = 0;
  605. ucontrol->value.enumerated.item[0] = kctl->private_value;
  606. err:
  607. snd_usb_unlock_shutdown(chip);
  608. return err;
  609. }
  610. static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync)
  611. {
  612. struct snd_usb_audio *chip = mixer->chip;
  613. int err;
  614. err = snd_usb_lock_shutdown(chip);
  615. if (err < 0)
  616. return err;
  617. err = snd_mbox1_is_spdif_input(chip);
  618. if (err < 0)
  619. goto err;
  620. err = snd_mbox1_is_spdif_synced(chip);
  621. if (err < 0)
  622. goto err;
  623. /* FIXME: hardcoded sample rate */
  624. err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000);
  625. if (err < 0)
  626. goto err;
  627. err = snd_mbox1_is_spdif_synced(chip);
  628. err:
  629. snd_usb_unlock_shutdown(chip);
  630. return err;
  631. }
  632. static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl,
  633. struct snd_ctl_elem_value *ucontrol)
  634. {
  635. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  636. struct usb_mixer_interface *mixer = list->mixer;
  637. int err;
  638. bool cur_val, new_val;
  639. cur_val = kctl->private_value;
  640. new_val = ucontrol->value.enumerated.item[0];
  641. if (cur_val == new_val)
  642. return 0;
  643. kctl->private_value = new_val;
  644. err = snd_mbox1_clk_switch_update(mixer, new_val);
  645. return err < 0 ? err : 1;
  646. }
  647. static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol,
  648. struct snd_ctl_elem_info *uinfo)
  649. {
  650. static const char *const texts[2] = {
  651. "Internal",
  652. "S/PDIF"
  653. };
  654. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  655. }
  656. static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list)
  657. {
  658. return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value);
  659. }
  660. /* Digidesign Mbox 1 input source switch (analog/spdif) */
  661. static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl,
  662. struct snd_ctl_elem_value *ucontrol)
  663. {
  664. ucontrol->value.enumerated.item[0] = kctl->private_value;
  665. return 0;
  666. }
  667. static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input)
  668. {
  669. struct snd_usb_audio *chip = mixer->chip;
  670. int err;
  671. err = snd_usb_lock_shutdown(chip);
  672. if (err < 0)
  673. return err;
  674. err = snd_mbox1_is_spdif_input(chip);
  675. if (err < 0)
  676. goto err;
  677. err = snd_mbox1_set_input_source(chip, is_spdif_input);
  678. if (err < 0)
  679. goto err;
  680. err = snd_mbox1_is_spdif_input(chip);
  681. if (err < 0)
  682. goto err;
  683. err = snd_mbox1_is_spdif_synced(chip);
  684. err:
  685. snd_usb_unlock_shutdown(chip);
  686. return err;
  687. }
  688. static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl,
  689. struct snd_ctl_elem_value *ucontrol)
  690. {
  691. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  692. struct usb_mixer_interface *mixer = list->mixer;
  693. int err;
  694. bool cur_val, new_val;
  695. cur_val = kctl->private_value;
  696. new_val = ucontrol->value.enumerated.item[0];
  697. if (cur_val == new_val)
  698. return 0;
  699. kctl->private_value = new_val;
  700. err = snd_mbox1_src_switch_update(mixer, new_val);
  701. return err < 0 ? err : 1;
  702. }
  703. static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol,
  704. struct snd_ctl_elem_info *uinfo)
  705. {
  706. static const char *const texts[2] = {
  707. "Analog",
  708. "S/PDIF"
  709. };
  710. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  711. }
  712. static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list)
  713. {
  714. return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value);
  715. }
  716. static const struct snd_kcontrol_new snd_mbox1_clk_switch = {
  717. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  718. .name = "Clock Source",
  719. .index = 0,
  720. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  721. .info = snd_mbox1_clk_switch_info,
  722. .get = snd_mbox1_clk_switch_get,
  723. .put = snd_mbox1_clk_switch_put,
  724. .private_value = 0
  725. };
  726. static const struct snd_kcontrol_new snd_mbox1_src_switch = {
  727. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  728. .name = "Input Source",
  729. .index = 1,
  730. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  731. .info = snd_mbox1_src_switch_info,
  732. .get = snd_mbox1_src_switch_get,
  733. .put = snd_mbox1_src_switch_put,
  734. .private_value = 0
  735. };
  736. static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer)
  737. {
  738. int err;
  739. err = add_single_ctl_with_resume(mixer, 0,
  740. snd_mbox1_clk_switch_resume,
  741. &snd_mbox1_clk_switch, NULL);
  742. if (err < 0)
  743. return err;
  744. return add_single_ctl_with_resume(mixer, 1,
  745. snd_mbox1_src_switch_resume,
  746. &snd_mbox1_src_switch, NULL);
  747. }
  748. /* Native Instruments device quirks */
  749. #define _MAKE_NI_CONTROL(bRequest,wIndex) ((bRequest) << 16 | (wIndex))
  750. static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
  751. struct snd_kcontrol *kctl)
  752. {
  753. struct usb_device *dev = mixer->chip->dev;
  754. unsigned int pval = kctl->private_value;
  755. u8 value;
  756. int err;
  757. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
  758. (pval >> 16) & 0xff,
  759. USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
  760. 0, pval & 0xffff, &value, 1);
  761. if (err < 0) {
  762. dev_err(&dev->dev,
  763. "unable to issue vendor read request (ret = %d)", err);
  764. return err;
  765. }
  766. kctl->private_value |= ((unsigned int)value << 24);
  767. return 0;
  768. }
  769. static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
  770. struct snd_ctl_elem_value *ucontrol)
  771. {
  772. ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
  773. return 0;
  774. }
  775. static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
  776. {
  777. struct snd_usb_audio *chip = list->mixer->chip;
  778. unsigned int pval = list->kctl->private_value;
  779. int err;
  780. err = snd_usb_lock_shutdown(chip);
  781. if (err < 0)
  782. return err;
  783. err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
  784. (pval >> 16) & 0xff,
  785. USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
  786. pval >> 24, pval & 0xffff, NULL, 0, 1000);
  787. snd_usb_unlock_shutdown(chip);
  788. return err;
  789. }
  790. static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
  791. struct snd_ctl_elem_value *ucontrol)
  792. {
  793. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  794. u8 oldval = (kcontrol->private_value >> 24) & 0xff;
  795. u8 newval = ucontrol->value.integer.value[0];
  796. int err;
  797. if (oldval == newval)
  798. return 0;
  799. kcontrol->private_value &= ~(0xff << 24);
  800. kcontrol->private_value |= (unsigned int)newval << 24;
  801. err = snd_ni_update_cur_val(list);
  802. return err < 0 ? err : 1;
  803. }
  804. static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
  805. {
  806. .name = "Direct Thru Channel A",
  807. .private_value = _MAKE_NI_CONTROL(0x01, 0x03),
  808. },
  809. {
  810. .name = "Direct Thru Channel B",
  811. .private_value = _MAKE_NI_CONTROL(0x01, 0x05),
  812. },
  813. {
  814. .name = "Phono Input Channel A",
  815. .private_value = _MAKE_NI_CONTROL(0x02, 0x03),
  816. },
  817. {
  818. .name = "Phono Input Channel B",
  819. .private_value = _MAKE_NI_CONTROL(0x02, 0x05),
  820. },
  821. };
  822. static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
  823. {
  824. .name = "Direct Thru Channel A",
  825. .private_value = _MAKE_NI_CONTROL(0x01, 0x03),
  826. },
  827. {
  828. .name = "Direct Thru Channel B",
  829. .private_value = _MAKE_NI_CONTROL(0x01, 0x05),
  830. },
  831. {
  832. .name = "Direct Thru Channel C",
  833. .private_value = _MAKE_NI_CONTROL(0x01, 0x07),
  834. },
  835. {
  836. .name = "Direct Thru Channel D",
  837. .private_value = _MAKE_NI_CONTROL(0x01, 0x09),
  838. },
  839. {
  840. .name = "Phono Input Channel A",
  841. .private_value = _MAKE_NI_CONTROL(0x02, 0x03),
  842. },
  843. {
  844. .name = "Phono Input Channel B",
  845. .private_value = _MAKE_NI_CONTROL(0x02, 0x05),
  846. },
  847. {
  848. .name = "Phono Input Channel C",
  849. .private_value = _MAKE_NI_CONTROL(0x02, 0x07),
  850. },
  851. {
  852. .name = "Phono Input Channel D",
  853. .private_value = _MAKE_NI_CONTROL(0x02, 0x09),
  854. },
  855. };
  856. static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
  857. const struct snd_kcontrol_new *kc,
  858. unsigned int count)
  859. {
  860. int i, err = 0;
  861. struct snd_kcontrol_new template = {
  862. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  863. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  864. .get = snd_nativeinstruments_control_get,
  865. .put = snd_nativeinstruments_control_put,
  866. .info = snd_ctl_boolean_mono_info,
  867. };
  868. for (i = 0; i < count; i++) {
  869. struct usb_mixer_elem_list *list;
  870. template.name = kc[i].name;
  871. template.private_value = kc[i].private_value;
  872. err = add_single_ctl_with_resume(mixer, 0,
  873. snd_ni_update_cur_val,
  874. &template, &list);
  875. if (err < 0)
  876. break;
  877. snd_ni_control_init_val(mixer, list->kctl);
  878. }
  879. return err;
  880. }
  881. /* M-Audio FastTrack Ultra quirks */
  882. /* FTU Effect switch (also used by C400/C600) */
  883. static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
  884. struct snd_ctl_elem_info *uinfo)
  885. {
  886. static const char *const texts[8] = {
  887. "Room 1", "Room 2", "Room 3", "Hall 1",
  888. "Hall 2", "Plate", "Delay", "Echo"
  889. };
  890. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  891. }
  892. static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
  893. struct snd_kcontrol *kctl)
  894. {
  895. struct usb_device *dev = mixer->chip->dev;
  896. unsigned int pval = kctl->private_value;
  897. int err;
  898. unsigned char value[2];
  899. value[0] = 0x00;
  900. value[1] = 0x00;
  901. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
  902. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  903. pval & 0xff00,
  904. snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8),
  905. value, 2);
  906. if (err < 0)
  907. return err;
  908. kctl->private_value |= (unsigned int)value[0] << 24;
  909. return 0;
  910. }
  911. static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
  912. struct snd_ctl_elem_value *ucontrol)
  913. {
  914. ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
  915. return 0;
  916. }
  917. static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
  918. {
  919. struct snd_usb_audio *chip = list->mixer->chip;
  920. unsigned int pval = list->kctl->private_value;
  921. unsigned char value[2];
  922. int err;
  923. value[0] = pval >> 24;
  924. value[1] = 0;
  925. err = snd_usb_lock_shutdown(chip);
  926. if (err < 0)
  927. return err;
  928. err = snd_usb_ctl_msg(chip->dev,
  929. usb_sndctrlpipe(chip->dev, 0),
  930. UAC_SET_CUR,
  931. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  932. pval & 0xff00,
  933. snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8),
  934. value, 2);
  935. snd_usb_unlock_shutdown(chip);
  936. return err;
  937. }
  938. static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
  939. struct snd_ctl_elem_value *ucontrol)
  940. {
  941. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  942. unsigned int pval = list->kctl->private_value;
  943. int cur_val, err, new_val;
  944. cur_val = pval >> 24;
  945. new_val = ucontrol->value.enumerated.item[0];
  946. if (cur_val == new_val)
  947. return 0;
  948. kctl->private_value &= ~(0xff << 24);
  949. kctl->private_value |= new_val << 24;
  950. err = snd_ftu_eff_switch_update(list);
  951. return err < 0 ? err : 1;
  952. }
  953. static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
  954. int validx, int bUnitID)
  955. {
  956. static struct snd_kcontrol_new template = {
  957. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  958. .name = "Effect Program Switch",
  959. .index = 0,
  960. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  961. .info = snd_ftu_eff_switch_info,
  962. .get = snd_ftu_eff_switch_get,
  963. .put = snd_ftu_eff_switch_put
  964. };
  965. struct usb_mixer_elem_list *list;
  966. int err;
  967. err = add_single_ctl_with_resume(mixer, bUnitID,
  968. snd_ftu_eff_switch_update,
  969. &template, &list);
  970. if (err < 0)
  971. return err;
  972. list->kctl->private_value = (validx << 8) | bUnitID;
  973. snd_ftu_eff_switch_init(mixer, list->kctl);
  974. return 0;
  975. }
  976. /* Create volume controls for FTU devices*/
  977. static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
  978. {
  979. char name[64];
  980. unsigned int control, cmask;
  981. int in, out, err;
  982. const unsigned int id = 5;
  983. const int val_type = USB_MIXER_S16;
  984. for (out = 0; out < 8; out++) {
  985. control = out + 1;
  986. for (in = 0; in < 8; in++) {
  987. cmask = BIT(in);
  988. snprintf(name, sizeof(name),
  989. "AIn%d - Out%d Capture Volume",
  990. in + 1, out + 1);
  991. err = snd_create_std_mono_ctl(mixer, id, control,
  992. cmask, val_type, name,
  993. &snd_usb_mixer_vol_tlv);
  994. if (err < 0)
  995. return err;
  996. }
  997. for (in = 8; in < 16; in++) {
  998. cmask = BIT(in);
  999. snprintf(name, sizeof(name),
  1000. "DIn%d - Out%d Playback Volume",
  1001. in - 7, out + 1);
  1002. err = snd_create_std_mono_ctl(mixer, id, control,
  1003. cmask, val_type, name,
  1004. &snd_usb_mixer_vol_tlv);
  1005. if (err < 0)
  1006. return err;
  1007. }
  1008. }
  1009. return 0;
  1010. }
  1011. /* This control needs a volume quirk, see mixer.c */
  1012. static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
  1013. {
  1014. static const char name[] = "Effect Volume";
  1015. const unsigned int id = 6;
  1016. const int val_type = USB_MIXER_U8;
  1017. const unsigned int control = 2;
  1018. const unsigned int cmask = 0;
  1019. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1020. name, snd_usb_mixer_vol_tlv);
  1021. }
  1022. /* This control needs a volume quirk, see mixer.c */
  1023. static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
  1024. {
  1025. static const char name[] = "Effect Duration";
  1026. const unsigned int id = 6;
  1027. const int val_type = USB_MIXER_S16;
  1028. const unsigned int control = 3;
  1029. const unsigned int cmask = 0;
  1030. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1031. name, snd_usb_mixer_vol_tlv);
  1032. }
  1033. /* This control needs a volume quirk, see mixer.c */
  1034. static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
  1035. {
  1036. static const char name[] = "Effect Feedback Volume";
  1037. const unsigned int id = 6;
  1038. const int val_type = USB_MIXER_U8;
  1039. const unsigned int control = 4;
  1040. const unsigned int cmask = 0;
  1041. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1042. name, NULL);
  1043. }
  1044. static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
  1045. {
  1046. unsigned int cmask;
  1047. int err, ch;
  1048. char name[48];
  1049. const unsigned int id = 7;
  1050. const int val_type = USB_MIXER_S16;
  1051. const unsigned int control = 7;
  1052. for (ch = 0; ch < 4; ++ch) {
  1053. cmask = BIT(ch);
  1054. snprintf(name, sizeof(name),
  1055. "Effect Return %d Volume", ch + 1);
  1056. err = snd_create_std_mono_ctl(mixer, id, control,
  1057. cmask, val_type, name,
  1058. snd_usb_mixer_vol_tlv);
  1059. if (err < 0)
  1060. return err;
  1061. }
  1062. return 0;
  1063. }
  1064. static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
  1065. {
  1066. unsigned int cmask;
  1067. int err, ch;
  1068. char name[48];
  1069. const unsigned int id = 5;
  1070. const int val_type = USB_MIXER_S16;
  1071. const unsigned int control = 9;
  1072. for (ch = 0; ch < 8; ++ch) {
  1073. cmask = BIT(ch);
  1074. snprintf(name, sizeof(name),
  1075. "Effect Send AIn%d Volume", ch + 1);
  1076. err = snd_create_std_mono_ctl(mixer, id, control, cmask,
  1077. val_type, name,
  1078. snd_usb_mixer_vol_tlv);
  1079. if (err < 0)
  1080. return err;
  1081. }
  1082. for (ch = 8; ch < 16; ++ch) {
  1083. cmask = BIT(ch);
  1084. snprintf(name, sizeof(name),
  1085. "Effect Send DIn%d Volume", ch - 7);
  1086. err = snd_create_std_mono_ctl(mixer, id, control, cmask,
  1087. val_type, name,
  1088. snd_usb_mixer_vol_tlv);
  1089. if (err < 0)
  1090. return err;
  1091. }
  1092. return 0;
  1093. }
  1094. static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
  1095. {
  1096. int err;
  1097. err = snd_ftu_create_volume_ctls(mixer);
  1098. if (err < 0)
  1099. return err;
  1100. err = snd_ftu_create_effect_switch(mixer, 1, 6);
  1101. if (err < 0)
  1102. return err;
  1103. err = snd_ftu_create_effect_volume_ctl(mixer);
  1104. if (err < 0)
  1105. return err;
  1106. err = snd_ftu_create_effect_duration_ctl(mixer);
  1107. if (err < 0)
  1108. return err;
  1109. err = snd_ftu_create_effect_feedback_ctl(mixer);
  1110. if (err < 0)
  1111. return err;
  1112. err = snd_ftu_create_effect_return_ctls(mixer);
  1113. if (err < 0)
  1114. return err;
  1115. err = snd_ftu_create_effect_send_ctls(mixer);
  1116. if (err < 0)
  1117. return err;
  1118. return 0;
  1119. }
  1120. void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
  1121. unsigned char samplerate_id)
  1122. {
  1123. struct usb_mixer_interface *mixer;
  1124. struct usb_mixer_elem_info *cval;
  1125. int unitid = 12; /* SampleRate ExtensionUnit ID */
  1126. list_for_each_entry(mixer, &chip->mixer_list, list) {
  1127. if (mixer->id_elems[unitid]) {
  1128. cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
  1129. snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
  1130. cval->control << 8,
  1131. samplerate_id);
  1132. snd_usb_mixer_notify_id(mixer, unitid);
  1133. break;
  1134. }
  1135. }
  1136. }
  1137. /* M-Audio Fast Track C400/C600 */
  1138. /* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
  1139. static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
  1140. {
  1141. char name[64];
  1142. unsigned int cmask, offset;
  1143. int out, chan, err;
  1144. int num_outs = 0;
  1145. int num_ins = 0;
  1146. const unsigned int id = 0x40;
  1147. const int val_type = USB_MIXER_S16;
  1148. const int control = 1;
  1149. switch (mixer->chip->usb_id) {
  1150. case USB_ID(0x0763, 0x2030):
  1151. num_outs = 6;
  1152. num_ins = 4;
  1153. break;
  1154. case USB_ID(0x0763, 0x2031):
  1155. num_outs = 8;
  1156. num_ins = 6;
  1157. break;
  1158. }
  1159. for (chan = 0; chan < num_outs + num_ins; chan++) {
  1160. for (out = 0; out < num_outs; out++) {
  1161. if (chan < num_outs) {
  1162. snprintf(name, sizeof(name),
  1163. "PCM%d-Out%d Playback Volume",
  1164. chan + 1, out + 1);
  1165. } else {
  1166. snprintf(name, sizeof(name),
  1167. "In%d-Out%d Playback Volume",
  1168. chan - num_outs + 1, out + 1);
  1169. }
  1170. cmask = (out == 0) ? 0 : BIT(out - 1);
  1171. offset = chan * num_outs;
  1172. err = snd_create_std_mono_ctl_offset(mixer, id, control,
  1173. cmask, val_type, offset, name,
  1174. &snd_usb_mixer_vol_tlv);
  1175. if (err < 0)
  1176. return err;
  1177. }
  1178. }
  1179. return 0;
  1180. }
  1181. /* This control needs a volume quirk, see mixer.c */
  1182. static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
  1183. {
  1184. static const char name[] = "Effect Volume";
  1185. const unsigned int id = 0x43;
  1186. const int val_type = USB_MIXER_U8;
  1187. const unsigned int control = 3;
  1188. const unsigned int cmask = 0;
  1189. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1190. name, snd_usb_mixer_vol_tlv);
  1191. }
  1192. /* This control needs a volume quirk, see mixer.c */
  1193. static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
  1194. {
  1195. static const char name[] = "Effect Duration";
  1196. const unsigned int id = 0x43;
  1197. const int val_type = USB_MIXER_S16;
  1198. const unsigned int control = 4;
  1199. const unsigned int cmask = 0;
  1200. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1201. name, snd_usb_mixer_vol_tlv);
  1202. }
  1203. /* This control needs a volume quirk, see mixer.c */
  1204. static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
  1205. {
  1206. static const char name[] = "Effect Feedback Volume";
  1207. const unsigned int id = 0x43;
  1208. const int val_type = USB_MIXER_U8;
  1209. const unsigned int control = 5;
  1210. const unsigned int cmask = 0;
  1211. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1212. name, NULL);
  1213. }
  1214. static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
  1215. {
  1216. char name[64];
  1217. unsigned int cmask;
  1218. int chan, err;
  1219. int num_outs = 0;
  1220. int num_ins = 0;
  1221. const unsigned int id = 0x42;
  1222. const int val_type = USB_MIXER_S16;
  1223. const int control = 1;
  1224. switch (mixer->chip->usb_id) {
  1225. case USB_ID(0x0763, 0x2030):
  1226. num_outs = 6;
  1227. num_ins = 4;
  1228. break;
  1229. case USB_ID(0x0763, 0x2031):
  1230. num_outs = 8;
  1231. num_ins = 6;
  1232. break;
  1233. }
  1234. for (chan = 0; chan < num_outs + num_ins; chan++) {
  1235. if (chan < num_outs) {
  1236. snprintf(name, sizeof(name),
  1237. "Effect Send DOut%d",
  1238. chan + 1);
  1239. } else {
  1240. snprintf(name, sizeof(name),
  1241. "Effect Send AIn%d",
  1242. chan - num_outs + 1);
  1243. }
  1244. cmask = (chan == 0) ? 0 : BIT(chan - 1);
  1245. err = snd_create_std_mono_ctl(mixer, id, control,
  1246. cmask, val_type, name,
  1247. &snd_usb_mixer_vol_tlv);
  1248. if (err < 0)
  1249. return err;
  1250. }
  1251. return 0;
  1252. }
  1253. static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
  1254. {
  1255. char name[64];
  1256. unsigned int cmask;
  1257. int chan, err;
  1258. int num_outs = 0;
  1259. int offset = 0;
  1260. const unsigned int id = 0x40;
  1261. const int val_type = USB_MIXER_S16;
  1262. const int control = 1;
  1263. switch (mixer->chip->usb_id) {
  1264. case USB_ID(0x0763, 0x2030):
  1265. num_outs = 6;
  1266. offset = 0x3c;
  1267. /* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
  1268. break;
  1269. case USB_ID(0x0763, 0x2031):
  1270. num_outs = 8;
  1271. offset = 0x70;
  1272. /* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
  1273. break;
  1274. }
  1275. for (chan = 0; chan < num_outs; chan++) {
  1276. snprintf(name, sizeof(name),
  1277. "Effect Return %d",
  1278. chan + 1);
  1279. cmask = (chan == 0) ? 0 :
  1280. BIT(chan + (chan % 2) * num_outs - 1);
  1281. err = snd_create_std_mono_ctl_offset(mixer, id, control,
  1282. cmask, val_type, offset, name,
  1283. &snd_usb_mixer_vol_tlv);
  1284. if (err < 0)
  1285. return err;
  1286. }
  1287. return 0;
  1288. }
  1289. static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
  1290. {
  1291. int err;
  1292. err = snd_c400_create_vol_ctls(mixer);
  1293. if (err < 0)
  1294. return err;
  1295. err = snd_c400_create_effect_vol_ctls(mixer);
  1296. if (err < 0)
  1297. return err;
  1298. err = snd_c400_create_effect_ret_vol_ctls(mixer);
  1299. if (err < 0)
  1300. return err;
  1301. err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
  1302. if (err < 0)
  1303. return err;
  1304. err = snd_c400_create_effect_volume_ctl(mixer);
  1305. if (err < 0)
  1306. return err;
  1307. err = snd_c400_create_effect_duration_ctl(mixer);
  1308. if (err < 0)
  1309. return err;
  1310. err = snd_c400_create_effect_feedback_ctl(mixer);
  1311. if (err < 0)
  1312. return err;
  1313. return 0;
  1314. }
  1315. /*
  1316. * The mixer units for Ebox-44 are corrupt, and even where they
  1317. * are valid they presents mono controls as L and R channels of
  1318. * stereo. So we provide a good mixer here.
  1319. */
  1320. static const struct std_mono_table ebox44_table[] = {
  1321. {
  1322. .unitid = 4,
  1323. .control = 1,
  1324. .cmask = 0x0,
  1325. .val_type = USB_MIXER_INV_BOOLEAN,
  1326. .name = "Headphone Playback Switch"
  1327. },
  1328. {
  1329. .unitid = 4,
  1330. .control = 2,
  1331. .cmask = 0x1,
  1332. .val_type = USB_MIXER_S16,
  1333. .name = "Headphone A Mix Playback Volume"
  1334. },
  1335. {
  1336. .unitid = 4,
  1337. .control = 2,
  1338. .cmask = 0x2,
  1339. .val_type = USB_MIXER_S16,
  1340. .name = "Headphone B Mix Playback Volume"
  1341. },
  1342. {
  1343. .unitid = 7,
  1344. .control = 1,
  1345. .cmask = 0x0,
  1346. .val_type = USB_MIXER_INV_BOOLEAN,
  1347. .name = "Output Playback Switch"
  1348. },
  1349. {
  1350. .unitid = 7,
  1351. .control = 2,
  1352. .cmask = 0x1,
  1353. .val_type = USB_MIXER_S16,
  1354. .name = "Output A Playback Volume"
  1355. },
  1356. {
  1357. .unitid = 7,
  1358. .control = 2,
  1359. .cmask = 0x2,
  1360. .val_type = USB_MIXER_S16,
  1361. .name = "Output B Playback Volume"
  1362. },
  1363. {
  1364. .unitid = 10,
  1365. .control = 1,
  1366. .cmask = 0x0,
  1367. .val_type = USB_MIXER_INV_BOOLEAN,
  1368. .name = "Input Capture Switch"
  1369. },
  1370. {
  1371. .unitid = 10,
  1372. .control = 2,
  1373. .cmask = 0x1,
  1374. .val_type = USB_MIXER_S16,
  1375. .name = "Input A Capture Volume"
  1376. },
  1377. {
  1378. .unitid = 10,
  1379. .control = 2,
  1380. .cmask = 0x2,
  1381. .val_type = USB_MIXER_S16,
  1382. .name = "Input B Capture Volume"
  1383. },
  1384. {}
  1385. };
  1386. /* Audio Advantage Micro II findings:
  1387. *
  1388. * Mapping spdif AES bits to vendor register.bit:
  1389. * AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
  1390. * AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
  1391. * AES2: [0 0 0 0 0 0 0 0]
  1392. * AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
  1393. * (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
  1394. *
  1395. * power on values:
  1396. * r2: 0x10
  1397. * r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
  1398. * just after it to 0xa0, presumably it disables/mutes some analog
  1399. * parts when there is no audio.)
  1400. * r9: 0x28
  1401. *
  1402. * Optical transmitter on/off:
  1403. * vendor register.bit: 9.1
  1404. * 0 - on (0x28 register value)
  1405. * 1 - off (0x2a register value)
  1406. *
  1407. */
  1408. static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
  1409. struct snd_ctl_elem_info *uinfo)
  1410. {
  1411. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1412. uinfo->count = 1;
  1413. return 0;
  1414. }
  1415. static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
  1416. struct snd_ctl_elem_value *ucontrol)
  1417. {
  1418. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1419. struct snd_usb_audio *chip = list->mixer->chip;
  1420. int err;
  1421. struct usb_interface *iface;
  1422. struct usb_host_interface *alts;
  1423. unsigned int ep;
  1424. unsigned char data[3];
  1425. int rate;
  1426. err = snd_usb_lock_shutdown(chip);
  1427. if (err < 0)
  1428. return err;
  1429. ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
  1430. ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
  1431. ucontrol->value.iec958.status[2] = 0x00;
  1432. /* use known values for that card: interface#1 altsetting#1 */
  1433. iface = usb_ifnum_to_if(chip->dev, 1);
  1434. if (!iface || iface->num_altsetting < 2) {
  1435. err = -EINVAL;
  1436. goto end;
  1437. }
  1438. alts = &iface->altsetting[1];
  1439. if (get_iface_desc(alts)->bNumEndpoints < 1) {
  1440. err = -EINVAL;
  1441. goto end;
  1442. }
  1443. ep = get_endpoint(alts, 0)->bEndpointAddress;
  1444. err = snd_usb_ctl_msg(chip->dev,
  1445. usb_rcvctrlpipe(chip->dev, 0),
  1446. UAC_GET_CUR,
  1447. USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
  1448. UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
  1449. ep,
  1450. data,
  1451. sizeof(data));
  1452. if (err < 0)
  1453. goto end;
  1454. rate = data[0] | (data[1] << 8) | (data[2] << 16);
  1455. ucontrol->value.iec958.status[3] = (rate == 48000) ?
  1456. IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
  1457. err = 0;
  1458. end:
  1459. snd_usb_unlock_shutdown(chip);
  1460. return err;
  1461. }
  1462. static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
  1463. {
  1464. struct snd_usb_audio *chip = list->mixer->chip;
  1465. unsigned int pval = list->kctl->private_value;
  1466. u8 reg;
  1467. int err;
  1468. err = snd_usb_lock_shutdown(chip);
  1469. if (err < 0)
  1470. return err;
  1471. reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
  1472. err = snd_usb_ctl_msg(chip->dev,
  1473. usb_sndctrlpipe(chip->dev, 0),
  1474. UAC_SET_CUR,
  1475. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  1476. reg,
  1477. 2,
  1478. NULL,
  1479. 0);
  1480. if (err < 0)
  1481. goto end;
  1482. reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
  1483. reg |= (pval >> 12) & 0x0f;
  1484. err = snd_usb_ctl_msg(chip->dev,
  1485. usb_sndctrlpipe(chip->dev, 0),
  1486. UAC_SET_CUR,
  1487. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  1488. reg,
  1489. 3,
  1490. NULL,
  1491. 0);
  1492. if (err < 0)
  1493. goto end;
  1494. end:
  1495. snd_usb_unlock_shutdown(chip);
  1496. return err;
  1497. }
  1498. static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
  1499. struct snd_ctl_elem_value *ucontrol)
  1500. {
  1501. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1502. unsigned int pval, pval_old;
  1503. int err;
  1504. pval = pval_old = kcontrol->private_value;
  1505. pval &= 0xfffff0f0;
  1506. pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
  1507. pval |= (ucontrol->value.iec958.status[0] & 0x0f);
  1508. pval &= 0xffff0fff;
  1509. pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
  1510. /* The frequency bits in AES3 cannot be set via register access. */
  1511. /* Silently ignore any bits from the request that cannot be set. */
  1512. if (pval == pval_old)
  1513. return 0;
  1514. kcontrol->private_value = pval;
  1515. err = snd_microii_spdif_default_update(list);
  1516. return err < 0 ? err : 1;
  1517. }
  1518. static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1519. struct snd_ctl_elem_value *ucontrol)
  1520. {
  1521. ucontrol->value.iec958.status[0] = 0x0f;
  1522. ucontrol->value.iec958.status[1] = 0xff;
  1523. ucontrol->value.iec958.status[2] = 0x00;
  1524. ucontrol->value.iec958.status[3] = 0x00;
  1525. return 0;
  1526. }
  1527. static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
  1528. struct snd_ctl_elem_value *ucontrol)
  1529. {
  1530. ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
  1531. return 0;
  1532. }
  1533. static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
  1534. {
  1535. struct snd_usb_audio *chip = list->mixer->chip;
  1536. u8 reg = list->kctl->private_value;
  1537. int err;
  1538. err = snd_usb_lock_shutdown(chip);
  1539. if (err < 0)
  1540. return err;
  1541. err = snd_usb_ctl_msg(chip->dev,
  1542. usb_sndctrlpipe(chip->dev, 0),
  1543. UAC_SET_CUR,
  1544. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  1545. reg,
  1546. 9,
  1547. NULL,
  1548. 0);
  1549. snd_usb_unlock_shutdown(chip);
  1550. return err;
  1551. }
  1552. static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
  1553. struct snd_ctl_elem_value *ucontrol)
  1554. {
  1555. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1556. u8 reg;
  1557. int err;
  1558. reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
  1559. if (reg != list->kctl->private_value)
  1560. return 0;
  1561. kcontrol->private_value = reg;
  1562. err = snd_microii_spdif_switch_update(list);
  1563. return err < 0 ? err : 1;
  1564. }
  1565. static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
  1566. {
  1567. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1568. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  1569. .info = snd_microii_spdif_info,
  1570. .get = snd_microii_spdif_default_get,
  1571. .put = snd_microii_spdif_default_put,
  1572. .private_value = 0x00000100UL,/* reset value */
  1573. },
  1574. {
  1575. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1576. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1577. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
  1578. .info = snd_microii_spdif_info,
  1579. .get = snd_microii_spdif_mask_get,
  1580. },
  1581. {
  1582. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1583. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  1584. .info = snd_ctl_boolean_mono_info,
  1585. .get = snd_microii_spdif_switch_get,
  1586. .put = snd_microii_spdif_switch_put,
  1587. .private_value = 0x00000028UL,/* reset value */
  1588. }
  1589. };
  1590. static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
  1591. {
  1592. int err, i;
  1593. static const usb_mixer_elem_resume_func_t resume_funcs[] = {
  1594. snd_microii_spdif_default_update,
  1595. NULL,
  1596. snd_microii_spdif_switch_update
  1597. };
  1598. for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
  1599. err = add_single_ctl_with_resume(mixer, 0,
  1600. resume_funcs[i],
  1601. &snd_microii_mixer_spdif[i],
  1602. NULL);
  1603. if (err < 0)
  1604. return err;
  1605. }
  1606. return 0;
  1607. }
  1608. /* Creative Sound Blaster E1 */
  1609. static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
  1610. struct snd_ctl_elem_value *ucontrol)
  1611. {
  1612. ucontrol->value.integer.value[0] = kcontrol->private_value;
  1613. return 0;
  1614. }
  1615. static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
  1616. unsigned char state)
  1617. {
  1618. struct snd_usb_audio *chip = mixer->chip;
  1619. int err;
  1620. unsigned char buff[2];
  1621. buff[0] = 0x02;
  1622. buff[1] = state ? 0x02 : 0x00;
  1623. err = snd_usb_lock_shutdown(chip);
  1624. if (err < 0)
  1625. return err;
  1626. err = snd_usb_ctl_msg(chip->dev,
  1627. usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
  1628. USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
  1629. 0x0202, 3, buff, 2);
  1630. snd_usb_unlock_shutdown(chip);
  1631. return err;
  1632. }
  1633. static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
  1634. struct snd_ctl_elem_value *ucontrol)
  1635. {
  1636. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1637. unsigned char value = !!ucontrol->value.integer.value[0];
  1638. int err;
  1639. if (kcontrol->private_value == value)
  1640. return 0;
  1641. kcontrol->private_value = value;
  1642. err = snd_soundblaster_e1_switch_update(list->mixer, value);
  1643. return err < 0 ? err : 1;
  1644. }
  1645. static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
  1646. {
  1647. return snd_soundblaster_e1_switch_update(list->mixer,
  1648. list->kctl->private_value);
  1649. }
  1650. static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
  1651. struct snd_ctl_elem_info *uinfo)
  1652. {
  1653. static const char *const texts[2] = {
  1654. "Mic", "Aux"
  1655. };
  1656. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  1657. }
  1658. static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
  1659. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1660. .name = "Input Source",
  1661. .info = snd_soundblaster_e1_switch_info,
  1662. .get = snd_soundblaster_e1_switch_get,
  1663. .put = snd_soundblaster_e1_switch_put,
  1664. .private_value = 0,
  1665. };
  1666. static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
  1667. {
  1668. return add_single_ctl_with_resume(mixer, 0,
  1669. snd_soundblaster_e1_switch_resume,
  1670. &snd_soundblaster_e1_input_switch,
  1671. NULL);
  1672. }
  1673. /*
  1674. * Dell WD15 dock jack detection
  1675. *
  1676. * The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec
  1677. * from Realtek. It is a UAC 1 device, and UAC 1 does not support jack
  1678. * detection. Instead, jack detection works by sending HD Audio commands over
  1679. * vendor-type USB messages.
  1680. */
  1681. #define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D))
  1682. #define REALTEK_HDA_VALUE 0x0038
  1683. #define REALTEK_HDA_SET 62
  1684. #define REALTEK_MANUAL_MODE 72
  1685. #define REALTEK_HDA_GET_OUT 88
  1686. #define REALTEK_HDA_GET_IN 89
  1687. #define REALTEK_AUDIO_FUNCTION_GROUP 0x01
  1688. #define REALTEK_LINE1 0x1a
  1689. #define REALTEK_VENDOR_REGISTERS 0x20
  1690. #define REALTEK_HP_OUT 0x21
  1691. #define REALTEK_CBJ_CTRL2 0x50
  1692. #define REALTEK_JACK_INTERRUPT_NODE 5
  1693. #define REALTEK_MIC_FLAG 0x100
  1694. static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd)
  1695. {
  1696. struct usb_device *dev = chip->dev;
  1697. __be32 buf = cpu_to_be32(cmd);
  1698. return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET,
  1699. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
  1700. REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
  1701. }
  1702. static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value)
  1703. {
  1704. struct usb_device *dev = chip->dev;
  1705. int err;
  1706. __be32 buf = cpu_to_be32(cmd);
  1707. err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT,
  1708. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
  1709. REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
  1710. if (err < 0)
  1711. return err;
  1712. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN,
  1713. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
  1714. REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
  1715. if (err < 0)
  1716. return err;
  1717. *value = be32_to_cpu(buf);
  1718. return 0;
  1719. }
  1720. static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol,
  1721. struct snd_ctl_elem_value *ucontrol)
  1722. {
  1723. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1724. struct snd_usb_audio *chip = cval->head.mixer->chip;
  1725. u32 pv = kcontrol->private_value;
  1726. u32 node_id = pv & 0xff;
  1727. u32 sense;
  1728. u32 cbj_ctrl2;
  1729. bool presence;
  1730. int err;
  1731. err = snd_usb_lock_shutdown(chip);
  1732. if (err < 0)
  1733. return err;
  1734. err = realtek_hda_get(chip,
  1735. HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0),
  1736. &sense);
  1737. if (err < 0)
  1738. goto err;
  1739. if (pv & REALTEK_MIC_FLAG) {
  1740. err = realtek_hda_set(chip,
  1741. HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX,
  1742. REALTEK_VENDOR_REGISTERS,
  1743. REALTEK_CBJ_CTRL2));
  1744. if (err < 0)
  1745. goto err;
  1746. err = realtek_hda_get(chip,
  1747. HDA_VERB_CMD(AC_VERB_GET_PROC_COEF,
  1748. REALTEK_VENDOR_REGISTERS, 0),
  1749. &cbj_ctrl2);
  1750. if (err < 0)
  1751. goto err;
  1752. }
  1753. err:
  1754. snd_usb_unlock_shutdown(chip);
  1755. if (err < 0)
  1756. return err;
  1757. presence = sense & AC_PINSENSE_PRESENCE;
  1758. if (pv & REALTEK_MIC_FLAG)
  1759. presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070;
  1760. ucontrol->value.integer.value[0] = presence;
  1761. return 0;
  1762. }
  1763. static const struct snd_kcontrol_new realtek_connector_ctl_ro = {
  1764. .iface = SNDRV_CTL_ELEM_IFACE_CARD,
  1765. .name = "", /* will be filled later manually */
  1766. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1767. .info = snd_ctl_boolean_mono_info,
  1768. .get = realtek_ctl_connector_get,
  1769. };
  1770. static int realtek_resume_jack(struct usb_mixer_elem_list *list)
  1771. {
  1772. snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1773. &list->kctl->id);
  1774. return 0;
  1775. }
  1776. static int realtek_add_jack(struct usb_mixer_interface *mixer,
  1777. char *name, u32 val)
  1778. {
  1779. struct usb_mixer_elem_info *cval;
  1780. struct snd_kcontrol *kctl;
  1781. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1782. if (!cval)
  1783. return -ENOMEM;
  1784. snd_usb_mixer_elem_init_std(&cval->head, mixer,
  1785. REALTEK_JACK_INTERRUPT_NODE);
  1786. cval->head.resume = realtek_resume_jack;
  1787. cval->val_type = USB_MIXER_BOOLEAN;
  1788. cval->channels = 1;
  1789. cval->min = 0;
  1790. cval->max = 1;
  1791. kctl = snd_ctl_new1(&realtek_connector_ctl_ro, cval);
  1792. if (!kctl) {
  1793. kfree(cval);
  1794. return -ENOMEM;
  1795. }
  1796. kctl->private_value = val;
  1797. strscpy(kctl->id.name, name, sizeof(kctl->id.name));
  1798. kctl->private_free = snd_usb_mixer_elem_free;
  1799. return snd_usb_mixer_add_control(&cval->head, kctl);
  1800. }
  1801. static int dell_dock_mixer_create(struct usb_mixer_interface *mixer)
  1802. {
  1803. int err;
  1804. struct usb_device *dev = mixer->chip->dev;
  1805. /* Power down the audio codec to avoid loud pops in the next step. */
  1806. realtek_hda_set(mixer->chip,
  1807. HDA_VERB_CMD(AC_VERB_SET_POWER_STATE,
  1808. REALTEK_AUDIO_FUNCTION_GROUP,
  1809. AC_PWRST_D3));
  1810. /*
  1811. * Turn off 'manual mode' in case it was enabled. This removes the need
  1812. * to power cycle the dock after it was attached to a Windows machine.
  1813. */
  1814. snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE,
  1815. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
  1816. 0, 0, NULL, 0);
  1817. err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1);
  1818. if (err < 0)
  1819. return err;
  1820. err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT);
  1821. if (err < 0)
  1822. return err;
  1823. err = realtek_add_jack(mixer, "Headset Mic Jack",
  1824. REALTEK_HP_OUT | REALTEK_MIC_FLAG);
  1825. if (err < 0)
  1826. return err;
  1827. return 0;
  1828. }
  1829. static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id)
  1830. {
  1831. struct snd_usb_audio *chip = mixer->chip;
  1832. u16 buf = 0;
  1833. snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
  1834. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1835. (UAC_FU_VOLUME << 8) | ch,
  1836. snd_usb_ctrl_intf(mixer->hostif) | (id << 8),
  1837. &buf, 2);
  1838. }
  1839. static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
  1840. {
  1841. /* fix to 0dB playback volumes */
  1842. dell_dock_init_vol(mixer, 1, 16);
  1843. dell_dock_init_vol(mixer, 2, 16);
  1844. dell_dock_init_vol(mixer, 1, 19);
  1845. dell_dock_init_vol(mixer, 2, 19);
  1846. return 0;
  1847. }
  1848. /* RME Class Compliant device quirks */
  1849. #define SND_RME_GET_STATUS1 23
  1850. #define SND_RME_GET_CURRENT_FREQ 17
  1851. #define SND_RME_CLK_SYSTEM_SHIFT 16
  1852. #define SND_RME_CLK_SYSTEM_MASK 0x1f
  1853. #define SND_RME_CLK_AES_SHIFT 8
  1854. #define SND_RME_CLK_SPDIF_SHIFT 12
  1855. #define SND_RME_CLK_AES_SPDIF_MASK 0xf
  1856. #define SND_RME_CLK_SYNC_SHIFT 6
  1857. #define SND_RME_CLK_SYNC_MASK 0x3
  1858. #define SND_RME_CLK_FREQMUL_SHIFT 18
  1859. #define SND_RME_CLK_FREQMUL_MASK 0x7
  1860. #define SND_RME_CLK_SYSTEM(x) \
  1861. ((x >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
  1862. #define SND_RME_CLK_AES(x) \
  1863. ((x >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
  1864. #define SND_RME_CLK_SPDIF(x) \
  1865. ((x >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
  1866. #define SND_RME_CLK_SYNC(x) \
  1867. ((x >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
  1868. #define SND_RME_CLK_FREQMUL(x) \
  1869. ((x >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
  1870. #define SND_RME_CLK_AES_LOCK 0x1
  1871. #define SND_RME_CLK_AES_SYNC 0x4
  1872. #define SND_RME_CLK_SPDIF_LOCK 0x2
  1873. #define SND_RME_CLK_SPDIF_SYNC 0x8
  1874. #define SND_RME_SPDIF_IF_SHIFT 4
  1875. #define SND_RME_SPDIF_FORMAT_SHIFT 5
  1876. #define SND_RME_BINARY_MASK 0x1
  1877. #define SND_RME_SPDIF_IF(x) \
  1878. ((x >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
  1879. #define SND_RME_SPDIF_FORMAT(x) \
  1880. ((x >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
  1881. static const u32 snd_rme_rate_table[] = {
  1882. 32000, 44100, 48000, 50000,
  1883. 64000, 88200, 96000, 100000,
  1884. 128000, 176400, 192000, 200000,
  1885. 256000, 352800, 384000, 400000,
  1886. 512000, 705600, 768000, 800000
  1887. };
  1888. /* maximum number of items for AES and S/PDIF rates for above table */
  1889. #define SND_RME_RATE_IDX_AES_SPDIF_NUM 12
  1890. enum snd_rme_domain {
  1891. SND_RME_DOMAIN_SYSTEM,
  1892. SND_RME_DOMAIN_AES,
  1893. SND_RME_DOMAIN_SPDIF
  1894. };
  1895. enum snd_rme_clock_status {
  1896. SND_RME_CLOCK_NOLOCK,
  1897. SND_RME_CLOCK_LOCK,
  1898. SND_RME_CLOCK_SYNC
  1899. };
  1900. static int snd_rme_read_value(struct snd_usb_audio *chip,
  1901. unsigned int item,
  1902. u32 *value)
  1903. {
  1904. struct usb_device *dev = chip->dev;
  1905. int err;
  1906. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
  1907. item,
  1908. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  1909. 0, 0,
  1910. value, sizeof(*value));
  1911. if (err < 0)
  1912. dev_err(&dev->dev,
  1913. "unable to issue vendor read request %d (ret = %d)",
  1914. item, err);
  1915. return err;
  1916. }
  1917. static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
  1918. u32 *status1)
  1919. {
  1920. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1921. struct snd_usb_audio *chip = list->mixer->chip;
  1922. int err;
  1923. err = snd_usb_lock_shutdown(chip);
  1924. if (err < 0)
  1925. return err;
  1926. err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
  1927. snd_usb_unlock_shutdown(chip);
  1928. return err;
  1929. }
  1930. static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
  1931. struct snd_ctl_elem_value *ucontrol)
  1932. {
  1933. u32 status1;
  1934. u32 rate = 0;
  1935. int idx;
  1936. int err;
  1937. err = snd_rme_get_status1(kcontrol, &status1);
  1938. if (err < 0)
  1939. return err;
  1940. switch (kcontrol->private_value) {
  1941. case SND_RME_DOMAIN_SYSTEM:
  1942. idx = SND_RME_CLK_SYSTEM(status1);
  1943. if (idx < ARRAY_SIZE(snd_rme_rate_table))
  1944. rate = snd_rme_rate_table[idx];
  1945. break;
  1946. case SND_RME_DOMAIN_AES:
  1947. idx = SND_RME_CLK_AES(status1);
  1948. if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
  1949. rate = snd_rme_rate_table[idx];
  1950. break;
  1951. case SND_RME_DOMAIN_SPDIF:
  1952. idx = SND_RME_CLK_SPDIF(status1);
  1953. if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
  1954. rate = snd_rme_rate_table[idx];
  1955. break;
  1956. default:
  1957. return -EINVAL;
  1958. }
  1959. ucontrol->value.integer.value[0] = rate;
  1960. return 0;
  1961. }
  1962. static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
  1963. struct snd_ctl_elem_value *ucontrol)
  1964. {
  1965. u32 status1;
  1966. int idx = SND_RME_CLOCK_NOLOCK;
  1967. int err;
  1968. err = snd_rme_get_status1(kcontrol, &status1);
  1969. if (err < 0)
  1970. return err;
  1971. switch (kcontrol->private_value) {
  1972. case SND_RME_DOMAIN_AES: /* AES */
  1973. if (status1 & SND_RME_CLK_AES_SYNC)
  1974. idx = SND_RME_CLOCK_SYNC;
  1975. else if (status1 & SND_RME_CLK_AES_LOCK)
  1976. idx = SND_RME_CLOCK_LOCK;
  1977. break;
  1978. case SND_RME_DOMAIN_SPDIF: /* SPDIF */
  1979. if (status1 & SND_RME_CLK_SPDIF_SYNC)
  1980. idx = SND_RME_CLOCK_SYNC;
  1981. else if (status1 & SND_RME_CLK_SPDIF_LOCK)
  1982. idx = SND_RME_CLOCK_LOCK;
  1983. break;
  1984. default:
  1985. return -EINVAL;
  1986. }
  1987. ucontrol->value.enumerated.item[0] = idx;
  1988. return 0;
  1989. }
  1990. static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
  1991. struct snd_ctl_elem_value *ucontrol)
  1992. {
  1993. u32 status1;
  1994. int err;
  1995. err = snd_rme_get_status1(kcontrol, &status1);
  1996. if (err < 0)
  1997. return err;
  1998. ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
  1999. return 0;
  2000. }
  2001. static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
  2002. struct snd_ctl_elem_value *ucontrol)
  2003. {
  2004. u32 status1;
  2005. int err;
  2006. err = snd_rme_get_status1(kcontrol, &status1);
  2007. if (err < 0)
  2008. return err;
  2009. ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
  2010. return 0;
  2011. }
  2012. static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
  2013. struct snd_ctl_elem_value *ucontrol)
  2014. {
  2015. u32 status1;
  2016. int err;
  2017. err = snd_rme_get_status1(kcontrol, &status1);
  2018. if (err < 0)
  2019. return err;
  2020. ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
  2021. return 0;
  2022. }
  2023. static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
  2024. struct snd_ctl_elem_value *ucontrol)
  2025. {
  2026. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2027. struct snd_usb_audio *chip = list->mixer->chip;
  2028. u32 status1;
  2029. const u64 num = 104857600000000ULL;
  2030. u32 den;
  2031. unsigned int freq;
  2032. int err;
  2033. err = snd_usb_lock_shutdown(chip);
  2034. if (err < 0)
  2035. return err;
  2036. err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
  2037. if (err < 0)
  2038. goto end;
  2039. err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
  2040. if (err < 0)
  2041. goto end;
  2042. freq = (den == 0) ? 0 : div64_u64(num, den);
  2043. freq <<= SND_RME_CLK_FREQMUL(status1);
  2044. ucontrol->value.integer.value[0] = freq;
  2045. end:
  2046. snd_usb_unlock_shutdown(chip);
  2047. return err;
  2048. }
  2049. static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
  2050. struct snd_ctl_elem_info *uinfo)
  2051. {
  2052. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  2053. uinfo->count = 1;
  2054. switch (kcontrol->private_value) {
  2055. case SND_RME_DOMAIN_SYSTEM:
  2056. uinfo->value.integer.min = 32000;
  2057. uinfo->value.integer.max = 800000;
  2058. break;
  2059. case SND_RME_DOMAIN_AES:
  2060. case SND_RME_DOMAIN_SPDIF:
  2061. default:
  2062. uinfo->value.integer.min = 0;
  2063. uinfo->value.integer.max = 200000;
  2064. }
  2065. uinfo->value.integer.step = 0;
  2066. return 0;
  2067. }
  2068. static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
  2069. struct snd_ctl_elem_info *uinfo)
  2070. {
  2071. static const char *const sync_states[] = {
  2072. "No Lock", "Lock", "Sync"
  2073. };
  2074. return snd_ctl_enum_info(uinfo, 1,
  2075. ARRAY_SIZE(sync_states), sync_states);
  2076. }
  2077. static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
  2078. struct snd_ctl_elem_info *uinfo)
  2079. {
  2080. static const char *const spdif_if[] = {
  2081. "Coaxial", "Optical"
  2082. };
  2083. return snd_ctl_enum_info(uinfo, 1,
  2084. ARRAY_SIZE(spdif_if), spdif_if);
  2085. }
  2086. static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
  2087. struct snd_ctl_elem_info *uinfo)
  2088. {
  2089. static const char *const optical_type[] = {
  2090. "Consumer", "Professional"
  2091. };
  2092. return snd_ctl_enum_info(uinfo, 1,
  2093. ARRAY_SIZE(optical_type), optical_type);
  2094. }
  2095. static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
  2096. struct snd_ctl_elem_info *uinfo)
  2097. {
  2098. static const char *const sync_sources[] = {
  2099. "Internal", "AES", "SPDIF", "Internal"
  2100. };
  2101. return snd_ctl_enum_info(uinfo, 1,
  2102. ARRAY_SIZE(sync_sources), sync_sources);
  2103. }
  2104. static const struct snd_kcontrol_new snd_rme_controls[] = {
  2105. {
  2106. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2107. .name = "AES Rate",
  2108. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2109. .info = snd_rme_rate_info,
  2110. .get = snd_rme_rate_get,
  2111. .private_value = SND_RME_DOMAIN_AES
  2112. },
  2113. {
  2114. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2115. .name = "AES Sync",
  2116. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2117. .info = snd_rme_sync_state_info,
  2118. .get = snd_rme_sync_state_get,
  2119. .private_value = SND_RME_DOMAIN_AES
  2120. },
  2121. {
  2122. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2123. .name = "SPDIF Rate",
  2124. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2125. .info = snd_rme_rate_info,
  2126. .get = snd_rme_rate_get,
  2127. .private_value = SND_RME_DOMAIN_SPDIF
  2128. },
  2129. {
  2130. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2131. .name = "SPDIF Sync",
  2132. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2133. .info = snd_rme_sync_state_info,
  2134. .get = snd_rme_sync_state_get,
  2135. .private_value = SND_RME_DOMAIN_SPDIF
  2136. },
  2137. {
  2138. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2139. .name = "SPDIF Interface",
  2140. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2141. .info = snd_rme_spdif_if_info,
  2142. .get = snd_rme_spdif_if_get,
  2143. },
  2144. {
  2145. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2146. .name = "SPDIF Format",
  2147. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2148. .info = snd_rme_spdif_format_info,
  2149. .get = snd_rme_spdif_format_get,
  2150. },
  2151. {
  2152. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2153. .name = "Sync Source",
  2154. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2155. .info = snd_rme_sync_source_info,
  2156. .get = snd_rme_sync_source_get
  2157. },
  2158. {
  2159. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2160. .name = "System Rate",
  2161. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2162. .info = snd_rme_rate_info,
  2163. .get = snd_rme_rate_get,
  2164. .private_value = SND_RME_DOMAIN_SYSTEM
  2165. },
  2166. {
  2167. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2168. .name = "Current Frequency",
  2169. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2170. .info = snd_rme_rate_info,
  2171. .get = snd_rme_current_freq_get
  2172. }
  2173. };
  2174. static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
  2175. {
  2176. int err, i;
  2177. for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
  2178. err = add_single_ctl_with_resume(mixer, 0,
  2179. NULL,
  2180. &snd_rme_controls[i],
  2181. NULL);
  2182. if (err < 0)
  2183. return err;
  2184. }
  2185. return 0;
  2186. }
  2187. /*
  2188. * RME Babyface Pro (FS)
  2189. *
  2190. * These devices exposes a couple of DSP functions via request to EP0.
  2191. * Switches are available via control registers, while routing is controlled
  2192. * by controlling the volume on each possible crossing point.
  2193. * Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
  2194. * 0dB being at dec. 32768.
  2195. */
  2196. enum {
  2197. SND_BBFPRO_CTL_REG1 = 0,
  2198. SND_BBFPRO_CTL_REG2
  2199. };
  2200. #define SND_BBFPRO_CTL_REG_MASK 1
  2201. #define SND_BBFPRO_CTL_IDX_MASK 0xff
  2202. #define SND_BBFPRO_CTL_IDX_SHIFT 1
  2203. #define SND_BBFPRO_CTL_VAL_MASK 1
  2204. #define SND_BBFPRO_CTL_VAL_SHIFT 9
  2205. #define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
  2206. #define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
  2207. #define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
  2208. #define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
  2209. #define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
  2210. #define SND_BBFPRO_CTL_REG2_48V_AN1 0
  2211. #define SND_BBFPRO_CTL_REG2_48V_AN2 1
  2212. #define SND_BBFPRO_CTL_REG2_SENS_IN3 2
  2213. #define SND_BBFPRO_CTL_REG2_SENS_IN4 3
  2214. #define SND_BBFPRO_CTL_REG2_PAD_AN1 4
  2215. #define SND_BBFPRO_CTL_REG2_PAD_AN2 5
  2216. #define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992
  2217. #define SND_BBFPRO_MIXER_IDX_MASK 0x3ff
  2218. #define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
  2219. #define SND_BBFPRO_MIXER_VAL_SHIFT 9
  2220. #define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
  2221. #define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
  2222. #define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03
  2223. #define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7
  2224. #define SND_BBFPRO_GAIN_VAL_MASK 0x7f
  2225. #define SND_BBFPRO_GAIN_VAL_MIN 0
  2226. #define SND_BBFPRO_GAIN_VAL_MIC_MAX 65
  2227. #define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments
  2228. #define SND_BBFPRO_USBREQ_CTL_REG1 0x10
  2229. #define SND_BBFPRO_USBREQ_CTL_REG2 0x17
  2230. #define SND_BBFPRO_USBREQ_GAIN 0x1a
  2231. #define SND_BBFPRO_USBREQ_MIXER 0x12
  2232. static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
  2233. u8 index, u8 value)
  2234. {
  2235. int err;
  2236. u16 usb_req, usb_idx, usb_val;
  2237. struct snd_usb_audio *chip = mixer->chip;
  2238. err = snd_usb_lock_shutdown(chip);
  2239. if (err < 0)
  2240. return err;
  2241. if (reg == SND_BBFPRO_CTL_REG1) {
  2242. usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
  2243. if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
  2244. usb_idx = 3;
  2245. usb_val = value ? 3 : 0;
  2246. } else {
  2247. usb_idx = BIT(index);
  2248. usb_val = value ? usb_idx : 0;
  2249. }
  2250. } else {
  2251. usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
  2252. usb_idx = BIT(index);
  2253. usb_val = value ? usb_idx : 0;
  2254. }
  2255. err = snd_usb_ctl_msg(chip->dev,
  2256. usb_sndctrlpipe(chip->dev, 0), usb_req,
  2257. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  2258. usb_val, usb_idx, NULL, 0);
  2259. snd_usb_unlock_shutdown(chip);
  2260. return err;
  2261. }
  2262. static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
  2263. struct snd_ctl_elem_value *ucontrol)
  2264. {
  2265. u8 reg, idx, val;
  2266. int pv;
  2267. pv = kcontrol->private_value;
  2268. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2269. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2270. val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
  2271. if ((reg == SND_BBFPRO_CTL_REG1 &&
  2272. idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
  2273. (reg == SND_BBFPRO_CTL_REG2 &&
  2274. (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
  2275. idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
  2276. ucontrol->value.enumerated.item[0] = val;
  2277. } else {
  2278. ucontrol->value.integer.value[0] = val;
  2279. }
  2280. return 0;
  2281. }
  2282. static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
  2283. struct snd_ctl_elem_info *uinfo)
  2284. {
  2285. u8 reg, idx;
  2286. int pv;
  2287. pv = kcontrol->private_value;
  2288. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2289. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2290. if (reg == SND_BBFPRO_CTL_REG1 &&
  2291. idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
  2292. static const char * const texts[2] = {
  2293. "AutoSync",
  2294. "Internal"
  2295. };
  2296. return snd_ctl_enum_info(uinfo, 1, 2, texts);
  2297. } else if (reg == SND_BBFPRO_CTL_REG2 &&
  2298. (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
  2299. idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
  2300. static const char * const texts[2] = {
  2301. "-10dBV",
  2302. "+4dBu"
  2303. };
  2304. return snd_ctl_enum_info(uinfo, 1, 2, texts);
  2305. }
  2306. uinfo->count = 1;
  2307. uinfo->value.integer.min = 0;
  2308. uinfo->value.integer.max = 1;
  2309. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  2310. return 0;
  2311. }
  2312. static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
  2313. struct snd_ctl_elem_value *ucontrol)
  2314. {
  2315. int err;
  2316. u8 reg, idx;
  2317. int old_value, pv, val;
  2318. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2319. struct usb_mixer_interface *mixer = list->mixer;
  2320. pv = kcontrol->private_value;
  2321. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2322. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2323. old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
  2324. if ((reg == SND_BBFPRO_CTL_REG1 &&
  2325. idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
  2326. (reg == SND_BBFPRO_CTL_REG2 &&
  2327. (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
  2328. idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
  2329. val = ucontrol->value.enumerated.item[0];
  2330. } else {
  2331. val = ucontrol->value.integer.value[0];
  2332. }
  2333. if (val > 1)
  2334. return -EINVAL;
  2335. if (val == old_value)
  2336. return 0;
  2337. kcontrol->private_value = reg
  2338. | ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
  2339. | ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
  2340. err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
  2341. return err < 0 ? err : 1;
  2342. }
  2343. static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
  2344. {
  2345. u8 reg, idx;
  2346. int value, pv;
  2347. pv = list->kctl->private_value;
  2348. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2349. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2350. value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
  2351. return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
  2352. }
  2353. static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer,
  2354. u8 channel, u8 gain)
  2355. {
  2356. int err;
  2357. struct snd_usb_audio *chip = mixer->chip;
  2358. if (channel < 2) {
  2359. // XLR preamp: 3-bit fine, 5-bit coarse; special case >60
  2360. if (gain < 60)
  2361. gain = ((gain % 3) << 5) | (gain / 3);
  2362. else
  2363. gain = ((gain % 6) << 5) | (60 / 3);
  2364. }
  2365. err = snd_usb_lock_shutdown(chip);
  2366. if (err < 0)
  2367. return err;
  2368. err = snd_usb_ctl_msg(chip->dev,
  2369. usb_sndctrlpipe(chip->dev, 0),
  2370. SND_BBFPRO_USBREQ_GAIN,
  2371. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  2372. gain, channel, NULL, 0);
  2373. snd_usb_unlock_shutdown(chip);
  2374. return err;
  2375. }
  2376. static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol,
  2377. struct snd_ctl_elem_value *ucontrol)
  2378. {
  2379. int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK;
  2380. ucontrol->value.integer.value[0] = value;
  2381. return 0;
  2382. }
  2383. static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol,
  2384. struct snd_ctl_elem_info *uinfo)
  2385. {
  2386. int pv, channel;
  2387. pv = kcontrol->private_value;
  2388. channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
  2389. SND_BBFPRO_GAIN_CHANNEL_MASK;
  2390. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  2391. uinfo->count = 1;
  2392. uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN;
  2393. if (channel < 2)
  2394. uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX;
  2395. else
  2396. uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX;
  2397. return 0;
  2398. }
  2399. static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol,
  2400. struct snd_ctl_elem_value *ucontrol)
  2401. {
  2402. int pv, channel, old_value, value, err;
  2403. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2404. struct usb_mixer_interface *mixer = list->mixer;
  2405. pv = kcontrol->private_value;
  2406. channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
  2407. SND_BBFPRO_GAIN_CHANNEL_MASK;
  2408. old_value = pv & SND_BBFPRO_GAIN_VAL_MASK;
  2409. value = ucontrol->value.integer.value[0];
  2410. if (value < SND_BBFPRO_GAIN_VAL_MIN)
  2411. return -EINVAL;
  2412. if (channel < 2) {
  2413. if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX)
  2414. return -EINVAL;
  2415. } else {
  2416. if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX)
  2417. return -EINVAL;
  2418. }
  2419. if (value == old_value)
  2420. return 0;
  2421. err = snd_bbfpro_gain_update(mixer, channel, value);
  2422. if (err < 0)
  2423. return err;
  2424. kcontrol->private_value =
  2425. (channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value;
  2426. return 1;
  2427. }
  2428. static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list)
  2429. {
  2430. int pv, channel, value;
  2431. struct snd_kcontrol *kctl = list->kctl;
  2432. pv = kctl->private_value;
  2433. channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
  2434. SND_BBFPRO_GAIN_CHANNEL_MASK;
  2435. value = pv & SND_BBFPRO_GAIN_VAL_MASK;
  2436. return snd_bbfpro_gain_update(list->mixer, channel, value);
  2437. }
  2438. static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
  2439. u32 value)
  2440. {
  2441. struct snd_usb_audio *chip = mixer->chip;
  2442. int err;
  2443. u16 idx;
  2444. u16 usb_idx, usb_val;
  2445. u32 v;
  2446. err = snd_usb_lock_shutdown(chip);
  2447. if (err < 0)
  2448. return err;
  2449. idx = index & SND_BBFPRO_MIXER_IDX_MASK;
  2450. // 18 bit linear volume, split so 2 bits end up in index.
  2451. v = value & SND_BBFPRO_MIXER_VAL_MASK;
  2452. usb_idx = idx | (v & 0x3) << 14;
  2453. usb_val = (v >> 2) & 0xffff;
  2454. err = snd_usb_ctl_msg(chip->dev,
  2455. usb_sndctrlpipe(chip->dev, 0),
  2456. SND_BBFPRO_USBREQ_MIXER,
  2457. USB_DIR_OUT | USB_TYPE_VENDOR |
  2458. USB_RECIP_DEVICE,
  2459. usb_val, usb_idx, NULL, 0);
  2460. snd_usb_unlock_shutdown(chip);
  2461. return err;
  2462. }
  2463. static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
  2464. struct snd_ctl_elem_value *ucontrol)
  2465. {
  2466. ucontrol->value.integer.value[0] =
  2467. kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
  2468. return 0;
  2469. }
  2470. static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
  2471. struct snd_ctl_elem_info *uinfo)
  2472. {
  2473. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  2474. uinfo->count = 1;
  2475. uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
  2476. uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
  2477. return 0;
  2478. }
  2479. static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
  2480. struct snd_ctl_elem_value *ucontrol)
  2481. {
  2482. int err;
  2483. u16 idx;
  2484. u32 new_val, old_value, uvalue;
  2485. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2486. struct usb_mixer_interface *mixer = list->mixer;
  2487. uvalue = ucontrol->value.integer.value[0];
  2488. idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
  2489. old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
  2490. if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
  2491. return -EINVAL;
  2492. if (uvalue == old_value)
  2493. return 0;
  2494. new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
  2495. kcontrol->private_value = idx
  2496. | (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
  2497. err = snd_bbfpro_vol_update(mixer, idx, new_val);
  2498. return err < 0 ? err : 1;
  2499. }
  2500. static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
  2501. {
  2502. int pv = list->kctl->private_value;
  2503. u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
  2504. u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
  2505. & SND_BBFPRO_MIXER_VAL_MASK;
  2506. return snd_bbfpro_vol_update(list->mixer, idx, val);
  2507. }
  2508. // Predfine elements
  2509. static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
  2510. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2511. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2512. .index = 0,
  2513. .info = snd_bbfpro_ctl_info,
  2514. .get = snd_bbfpro_ctl_get,
  2515. .put = snd_bbfpro_ctl_put
  2516. };
  2517. static const struct snd_kcontrol_new snd_bbfpro_gain_control = {
  2518. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2519. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2520. .index = 0,
  2521. .info = snd_bbfpro_gain_info,
  2522. .get = snd_bbfpro_gain_get,
  2523. .put = snd_bbfpro_gain_put
  2524. };
  2525. static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
  2526. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2527. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2528. .index = 0,
  2529. .info = snd_bbfpro_vol_info,
  2530. .get = snd_bbfpro_vol_get,
  2531. .put = snd_bbfpro_vol_put
  2532. };
  2533. static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
  2534. u8 index, char *name)
  2535. {
  2536. struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
  2537. knew.name = name;
  2538. knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
  2539. | ((index & SND_BBFPRO_CTL_IDX_MASK)
  2540. << SND_BBFPRO_CTL_IDX_SHIFT);
  2541. return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
  2542. &knew, NULL);
  2543. }
  2544. static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel,
  2545. char *name)
  2546. {
  2547. struct snd_kcontrol_new knew = snd_bbfpro_gain_control;
  2548. knew.name = name;
  2549. knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT;
  2550. return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume,
  2551. &knew, NULL);
  2552. }
  2553. static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
  2554. char *name)
  2555. {
  2556. struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
  2557. knew.name = name;
  2558. knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
  2559. return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
  2560. &knew, NULL);
  2561. }
  2562. static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
  2563. {
  2564. int err, i, o;
  2565. char name[48];
  2566. static const char * const input[] = {
  2567. "AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
  2568. "ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
  2569. static const char * const output[] = {
  2570. "AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
  2571. "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
  2572. for (o = 0 ; o < 12 ; ++o) {
  2573. for (i = 0 ; i < 12 ; ++i) {
  2574. // Line routing
  2575. snprintf(name, sizeof(name),
  2576. "%s-%s-%s Playback Volume",
  2577. (i < 2 ? "Mic" : "Line"),
  2578. input[i], output[o]);
  2579. err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
  2580. if (err < 0)
  2581. return err;
  2582. // PCM routing... yes, it is output remapping
  2583. snprintf(name, sizeof(name),
  2584. "PCM-%s-%s Playback Volume",
  2585. output[i], output[o]);
  2586. err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
  2587. name);
  2588. if (err < 0)
  2589. return err;
  2590. }
  2591. }
  2592. // Main out volume
  2593. for (i = 0 ; i < 12 ; ++i) {
  2594. snprintf(name, sizeof(name), "Main-Out %s", output[i]);
  2595. // Main outs are offset to 992
  2596. err = snd_bbfpro_vol_add(mixer,
  2597. i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET,
  2598. name);
  2599. if (err < 0)
  2600. return err;
  2601. }
  2602. // Input gain
  2603. for (i = 0 ; i < 4 ; ++i) {
  2604. if (i < 2)
  2605. snprintf(name, sizeof(name), "Mic-%s Gain", input[i]);
  2606. else
  2607. snprintf(name, sizeof(name), "Line-%s Gain", input[i]);
  2608. err = snd_bbfpro_gain_add(mixer, i, name);
  2609. if (err < 0)
  2610. return err;
  2611. }
  2612. // Control Reg 1
  2613. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2614. SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
  2615. "Sample Clock Source");
  2616. if (err < 0)
  2617. return err;
  2618. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2619. SND_BBFPRO_CTL_REG1_SPDIF_PRO,
  2620. "IEC958 Pro Mask");
  2621. if (err < 0)
  2622. return err;
  2623. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2624. SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
  2625. "IEC958 Emphasis");
  2626. if (err < 0)
  2627. return err;
  2628. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2629. SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
  2630. "IEC958 Switch");
  2631. if (err < 0)
  2632. return err;
  2633. // Control Reg 2
  2634. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2635. SND_BBFPRO_CTL_REG2_48V_AN1,
  2636. "Mic-AN1 48V");
  2637. if (err < 0)
  2638. return err;
  2639. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2640. SND_BBFPRO_CTL_REG2_48V_AN2,
  2641. "Mic-AN2 48V");
  2642. if (err < 0)
  2643. return err;
  2644. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2645. SND_BBFPRO_CTL_REG2_SENS_IN3,
  2646. "Line-IN3 Sens.");
  2647. if (err < 0)
  2648. return err;
  2649. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2650. SND_BBFPRO_CTL_REG2_SENS_IN4,
  2651. "Line-IN4 Sens.");
  2652. if (err < 0)
  2653. return err;
  2654. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2655. SND_BBFPRO_CTL_REG2_PAD_AN1,
  2656. "Mic-AN1 PAD");
  2657. if (err < 0)
  2658. return err;
  2659. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2660. SND_BBFPRO_CTL_REG2_PAD_AN2,
  2661. "Mic-AN2 PAD");
  2662. if (err < 0)
  2663. return err;
  2664. return 0;
  2665. }
  2666. /*
  2667. * RME Digiface USB
  2668. */
  2669. #define RME_DIGIFACE_READ_STATUS 17
  2670. #define RME_DIGIFACE_STATUS_REG0L 0
  2671. #define RME_DIGIFACE_STATUS_REG0H 1
  2672. #define RME_DIGIFACE_STATUS_REG1L 2
  2673. #define RME_DIGIFACE_STATUS_REG1H 3
  2674. #define RME_DIGIFACE_STATUS_REG2L 4
  2675. #define RME_DIGIFACE_STATUS_REG2H 5
  2676. #define RME_DIGIFACE_STATUS_REG3L 6
  2677. #define RME_DIGIFACE_STATUS_REG3H 7
  2678. #define RME_DIGIFACE_CTL_REG1 16
  2679. #define RME_DIGIFACE_CTL_REG2 18
  2680. /* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */
  2681. #define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask))
  2682. #define RME_DIGIFACE_INVERT BIT(31)
  2683. /* Nonconst helpers */
  2684. #define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1))
  2685. #define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask))
  2686. static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val)
  2687. {
  2688. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2689. struct snd_usb_audio *chip = list->mixer->chip;
  2690. struct usb_device *dev = chip->dev;
  2691. int err;
  2692. err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0),
  2693. item,
  2694. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  2695. val, mask, NULL, 0);
  2696. if (err < 0)
  2697. dev_err(&dev->dev,
  2698. "unable to issue control set request %d (ret = %d)",
  2699. item, err);
  2700. return err;
  2701. }
  2702. static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4])
  2703. {
  2704. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2705. struct snd_usb_audio *chip = list->mixer->chip;
  2706. struct usb_device *dev = chip->dev;
  2707. __le32 buf[4];
  2708. int err;
  2709. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
  2710. RME_DIGIFACE_READ_STATUS,
  2711. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  2712. 0, 0,
  2713. buf, sizeof(buf));
  2714. if (err < 0) {
  2715. dev_err(&dev->dev,
  2716. "unable to issue status read request (ret = %d)",
  2717. err);
  2718. } else {
  2719. for (int i = 0; i < ARRAY_SIZE(buf); i++)
  2720. status[i] = le32_to_cpu(buf[i]);
  2721. }
  2722. return err;
  2723. }
  2724. static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol)
  2725. {
  2726. int err;
  2727. u32 status[4];
  2728. bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
  2729. u8 reg = (kcontrol->private_value >> 16) & 0xff;
  2730. u16 mask = kcontrol->private_value & 0xffff;
  2731. u16 val;
  2732. err = snd_rme_digiface_read_status(kcontrol, status);
  2733. if (err < 0)
  2734. return err;
  2735. switch (reg) {
  2736. /* Status register halfwords */
  2737. case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H:
  2738. break;
  2739. case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */
  2740. reg = RME_DIGIFACE_STATUS_REG3L;
  2741. break;
  2742. case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */
  2743. reg = RME_DIGIFACE_STATUS_REG3H;
  2744. break;
  2745. default:
  2746. return -EINVAL;
  2747. }
  2748. if (reg & 1)
  2749. val = status[reg >> 1] >> 16;
  2750. else
  2751. val = status[reg >> 1] & 0xffff;
  2752. if (invert)
  2753. val ^= mask;
  2754. return field_get(mask, val);
  2755. }
  2756. static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol,
  2757. struct snd_ctl_elem_value *ucontrol)
  2758. {
  2759. int freq = snd_rme_digiface_get_status_val(kcontrol);
  2760. if (freq < 0)
  2761. return freq;
  2762. if (freq >= ARRAY_SIZE(snd_rme_rate_table))
  2763. return -EIO;
  2764. ucontrol->value.integer.value[0] = snd_rme_rate_table[freq];
  2765. return 0;
  2766. }
  2767. static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol,
  2768. struct snd_ctl_elem_value *ucontrol)
  2769. {
  2770. int val = snd_rme_digiface_get_status_val(kcontrol);
  2771. if (val < 0)
  2772. return val;
  2773. ucontrol->value.enumerated.item[0] = val;
  2774. return 0;
  2775. }
  2776. static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol,
  2777. struct snd_ctl_elem_value *ucontrol)
  2778. {
  2779. bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
  2780. u8 reg = (kcontrol->private_value >> 16) & 0xff;
  2781. u16 mask = kcontrol->private_value & 0xffff;
  2782. u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]);
  2783. if (invert)
  2784. val ^= mask;
  2785. return snd_rme_digiface_write_reg(kcontrol, reg, mask, val);
  2786. }
  2787. static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol,
  2788. struct snd_ctl_elem_value *ucontrol)
  2789. {
  2790. int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol);
  2791. /* 7 means internal for current sync */
  2792. if (ucontrol->value.enumerated.item[0] == 7)
  2793. ucontrol->value.enumerated.item[0] = 0;
  2794. return ret;
  2795. }
  2796. static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol,
  2797. struct snd_ctl_elem_value *ucontrol)
  2798. {
  2799. u32 status[4];
  2800. int err;
  2801. bool valid, sync;
  2802. err = snd_rme_digiface_read_status(kcontrol, status);
  2803. if (err < 0)
  2804. return err;
  2805. valid = status[0] & BIT(kcontrol->private_value);
  2806. sync = status[0] & BIT(5 + kcontrol->private_value);
  2807. if (!valid)
  2808. ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK;
  2809. else if (!sync)
  2810. ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK;
  2811. else
  2812. ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC;
  2813. return 0;
  2814. }
  2815. static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol,
  2816. struct snd_ctl_elem_info *uinfo)
  2817. {
  2818. static const char *const format[] = {
  2819. "ADAT", "S/PDIF"
  2820. };
  2821. return snd_ctl_enum_info(uinfo, 1,
  2822. ARRAY_SIZE(format), format);
  2823. }
  2824. static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol,
  2825. struct snd_ctl_elem_info *uinfo)
  2826. {
  2827. static const char *const sync_sources[] = {
  2828. "Internal", "Input 1", "Input 2", "Input 3", "Input 4"
  2829. };
  2830. return snd_ctl_enum_info(uinfo, 1,
  2831. ARRAY_SIZE(sync_sources), sync_sources);
  2832. }
  2833. static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol,
  2834. struct snd_ctl_elem_info *uinfo)
  2835. {
  2836. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  2837. uinfo->count = 1;
  2838. uinfo->value.integer.min = 0;
  2839. uinfo->value.integer.max = 200000;
  2840. uinfo->value.integer.step = 0;
  2841. return 0;
  2842. }
  2843. static const struct snd_kcontrol_new snd_rme_digiface_controls[] = {
  2844. {
  2845. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2846. .name = "Input 1 Sync",
  2847. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2848. .info = snd_rme_sync_state_info,
  2849. .get = snd_rme_digiface_sync_state_get,
  2850. .private_value = 0,
  2851. },
  2852. {
  2853. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2854. .name = "Input 1 Format",
  2855. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2856. .info = snd_rme_digiface_format_info,
  2857. .get = snd_rme_digiface_enum_get,
  2858. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) |
  2859. RME_DIGIFACE_INVERT,
  2860. },
  2861. {
  2862. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2863. .name = "Input 1 Rate",
  2864. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2865. .info = snd_rme_digiface_rate_info,
  2866. .get = snd_rme_digiface_rate_get,
  2867. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
  2868. },
  2869. {
  2870. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2871. .name = "Input 2 Sync",
  2872. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2873. .info = snd_rme_sync_state_info,
  2874. .get = snd_rme_digiface_sync_state_get,
  2875. .private_value = 1,
  2876. },
  2877. {
  2878. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2879. .name = "Input 2 Format",
  2880. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2881. .info = snd_rme_digiface_format_info,
  2882. .get = snd_rme_digiface_enum_get,
  2883. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) |
  2884. RME_DIGIFACE_INVERT,
  2885. },
  2886. {
  2887. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2888. .name = "Input 2 Rate",
  2889. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2890. .info = snd_rme_digiface_rate_info,
  2891. .get = snd_rme_digiface_rate_get,
  2892. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)),
  2893. },
  2894. {
  2895. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2896. .name = "Input 3 Sync",
  2897. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2898. .info = snd_rme_sync_state_info,
  2899. .get = snd_rme_digiface_sync_state_get,
  2900. .private_value = 2,
  2901. },
  2902. {
  2903. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2904. .name = "Input 3 Format",
  2905. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2906. .info = snd_rme_digiface_format_info,
  2907. .get = snd_rme_digiface_enum_get,
  2908. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) |
  2909. RME_DIGIFACE_INVERT,
  2910. },
  2911. {
  2912. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2913. .name = "Input 3 Rate",
  2914. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2915. .info = snd_rme_digiface_rate_info,
  2916. .get = snd_rme_digiface_rate_get,
  2917. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)),
  2918. },
  2919. {
  2920. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2921. .name = "Input 4 Sync",
  2922. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2923. .info = snd_rme_sync_state_info,
  2924. .get = snd_rme_digiface_sync_state_get,
  2925. .private_value = 3,
  2926. },
  2927. {
  2928. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2929. .name = "Input 4 Format",
  2930. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2931. .info = snd_rme_digiface_format_info,
  2932. .get = snd_rme_digiface_enum_get,
  2933. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) |
  2934. RME_DIGIFACE_INVERT,
  2935. },
  2936. {
  2937. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2938. .name = "Input 4 Rate",
  2939. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2940. .info = snd_rme_digiface_rate_info,
  2941. .get = snd_rme_digiface_rate_get,
  2942. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
  2943. },
  2944. {
  2945. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2946. .name = "Output 1 Format",
  2947. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2948. .info = snd_rme_digiface_format_info,
  2949. .get = snd_rme_digiface_enum_get,
  2950. .put = snd_rme_digiface_enum_put,
  2951. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)),
  2952. },
  2953. {
  2954. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2955. .name = "Output 2 Format",
  2956. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2957. .info = snd_rme_digiface_format_info,
  2958. .get = snd_rme_digiface_enum_get,
  2959. .put = snd_rme_digiface_enum_put,
  2960. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)),
  2961. },
  2962. {
  2963. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2964. .name = "Output 3 Format",
  2965. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2966. .info = snd_rme_digiface_format_info,
  2967. .get = snd_rme_digiface_enum_get,
  2968. .put = snd_rme_digiface_enum_put,
  2969. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)),
  2970. },
  2971. {
  2972. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2973. .name = "Output 4 Format",
  2974. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2975. .info = snd_rme_digiface_format_info,
  2976. .get = snd_rme_digiface_enum_get,
  2977. .put = snd_rme_digiface_enum_put,
  2978. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)),
  2979. },
  2980. {
  2981. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2982. .name = "Sync Source",
  2983. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2984. .info = snd_rme_digiface_sync_source_info,
  2985. .get = snd_rme_digiface_enum_get,
  2986. .put = snd_rme_digiface_enum_put,
  2987. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)),
  2988. },
  2989. {
  2990. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2991. .name = "Current Sync Source",
  2992. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2993. .info = snd_rme_digiface_sync_source_info,
  2994. .get = snd_rme_digiface_current_sync_get,
  2995. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)),
  2996. },
  2997. {
  2998. /*
  2999. * This is writeable, but it is only set by the PCM rate.
  3000. * Mixer apps currently need to drive the mixer using raw USB requests,
  3001. * so they can also change this that way to configure the rate for
  3002. * stand-alone operation when the PCM is closed.
  3003. */
  3004. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  3005. .name = "System Rate",
  3006. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  3007. .info = snd_rme_rate_info,
  3008. .get = snd_rme_digiface_rate_get,
  3009. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)),
  3010. },
  3011. {
  3012. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  3013. .name = "Current Rate",
  3014. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  3015. .info = snd_rme_rate_info,
  3016. .get = snd_rme_digiface_rate_get,
  3017. .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)),
  3018. }
  3019. };
  3020. static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer)
  3021. {
  3022. int err, i;
  3023. for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) {
  3024. err = add_single_ctl_with_resume(mixer, 0,
  3025. NULL,
  3026. &snd_rme_digiface_controls[i],
  3027. NULL);
  3028. if (err < 0)
  3029. return err;
  3030. }
  3031. return 0;
  3032. }
  3033. /*
  3034. * Pioneer DJ DJM Mixers
  3035. *
  3036. * These devices generally have options for soft-switching the playback and
  3037. * capture sources in addition to the recording level. Although different
  3038. * devices have different configurations, there seems to be canonical values
  3039. * for specific capture/playback types: See the definitions of these below.
  3040. *
  3041. * The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
  3042. * capture phono would be 0x0203. Capture, playback and capture level have
  3043. * different wIndexes.
  3044. */
  3045. // Capture types
  3046. #define SND_DJM_CAP_LINE 0x00
  3047. #define SND_DJM_CAP_CDLINE 0x01
  3048. #define SND_DJM_CAP_DIGITAL 0x02
  3049. #define SND_DJM_CAP_PHONO 0x03
  3050. #define SND_DJM_CAP_PFADER 0x06
  3051. #define SND_DJM_CAP_XFADERA 0x07
  3052. #define SND_DJM_CAP_XFADERB 0x08
  3053. #define SND_DJM_CAP_MIC 0x09
  3054. #define SND_DJM_CAP_AUX 0x0d
  3055. #define SND_DJM_CAP_RECOUT 0x0a
  3056. #define SND_DJM_CAP_NONE 0x0f
  3057. #define SND_DJM_CAP_CH1PFADER 0x11
  3058. #define SND_DJM_CAP_CH2PFADER 0x12
  3059. #define SND_DJM_CAP_CH3PFADER 0x13
  3060. #define SND_DJM_CAP_CH4PFADER 0x14
  3061. // Playback types
  3062. #define SND_DJM_PB_CH1 0x00
  3063. #define SND_DJM_PB_CH2 0x01
  3064. #define SND_DJM_PB_AUX 0x04
  3065. #define SND_DJM_WINDEX_CAP 0x8002
  3066. #define SND_DJM_WINDEX_CAPLVL 0x8003
  3067. #define SND_DJM_WINDEX_PB 0x8016
  3068. // kcontrol->private_value layout
  3069. #define SND_DJM_VALUE_MASK 0x0000ffff
  3070. #define SND_DJM_GROUP_MASK 0x00ff0000
  3071. #define SND_DJM_DEVICE_MASK 0xff000000
  3072. #define SND_DJM_GROUP_SHIFT 16
  3073. #define SND_DJM_DEVICE_SHIFT 24
  3074. // device table index
  3075. // used for the snd_djm_devices table, so please update accordingly
  3076. #define SND_DJM_250MK2_IDX 0x0
  3077. #define SND_DJM_750_IDX 0x1
  3078. #define SND_DJM_850_IDX 0x2
  3079. #define SND_DJM_900NXS2_IDX 0x3
  3080. #define SND_DJM_750MK2_IDX 0x4
  3081. #define SND_DJM_450_IDX 0x5
  3082. #define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
  3083. .name = _name, \
  3084. .options = snd_djm_opts_##suffix, \
  3085. .noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
  3086. .default_value = _default_value, \
  3087. .wIndex = _windex }
  3088. #define SND_DJM_DEVICE(suffix) { \
  3089. .controls = snd_djm_ctls_##suffix, \
  3090. .ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
  3091. struct snd_djm_device {
  3092. const char *name;
  3093. const struct snd_djm_ctl *controls;
  3094. size_t ncontrols;
  3095. };
  3096. struct snd_djm_ctl {
  3097. const char *name;
  3098. const u16 *options;
  3099. size_t noptions;
  3100. u16 default_value;
  3101. u16 wIndex;
  3102. };
  3103. static const char *snd_djm_get_label_caplevel(u16 wvalue)
  3104. {
  3105. switch (wvalue) {
  3106. case 0x0000: return "-19dB";
  3107. case 0x0100: return "-15dB";
  3108. case 0x0200: return "-10dB";
  3109. case 0x0300: return "-5dB";
  3110. default: return NULL;
  3111. }
  3112. };
  3113. static const char *snd_djm_get_label_cap_common(u16 wvalue)
  3114. {
  3115. switch (wvalue & 0x00ff) {
  3116. case SND_DJM_CAP_LINE: return "Control Tone LINE";
  3117. case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE";
  3118. case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL";
  3119. case SND_DJM_CAP_PHONO: return "Control Tone PHONO";
  3120. case SND_DJM_CAP_PFADER: return "Post Fader";
  3121. case SND_DJM_CAP_XFADERA: return "Cross Fader A";
  3122. case SND_DJM_CAP_XFADERB: return "Cross Fader B";
  3123. case SND_DJM_CAP_MIC: return "Mic";
  3124. case SND_DJM_CAP_RECOUT: return "Rec Out";
  3125. case SND_DJM_CAP_AUX: return "Aux";
  3126. case SND_DJM_CAP_NONE: return "None";
  3127. case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1";
  3128. case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2";
  3129. case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3";
  3130. case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4";
  3131. default: return NULL;
  3132. }
  3133. };
  3134. // The DJM-850 has different values for CD/LINE and LINE capture
  3135. // control options than the other DJM declared in this file.
  3136. static const char *snd_djm_get_label_cap_850(u16 wvalue)
  3137. {
  3138. switch (wvalue & 0x00ff) {
  3139. case 0x00: return "Control Tone CD/LINE";
  3140. case 0x01: return "Control Tone LINE";
  3141. default: return snd_djm_get_label_cap_common(wvalue);
  3142. }
  3143. };
  3144. static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
  3145. {
  3146. switch (device_idx) {
  3147. case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue);
  3148. default: return snd_djm_get_label_cap_common(wvalue);
  3149. }
  3150. };
  3151. static const char *snd_djm_get_label_pb(u16 wvalue)
  3152. {
  3153. switch (wvalue & 0x00ff) {
  3154. case SND_DJM_PB_CH1: return "Ch1";
  3155. case SND_DJM_PB_CH2: return "Ch2";
  3156. case SND_DJM_PB_AUX: return "Aux";
  3157. default: return NULL;
  3158. }
  3159. };
  3160. static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
  3161. {
  3162. switch (windex) {
  3163. case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(wvalue);
  3164. case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue);
  3165. case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue);
  3166. default: return NULL;
  3167. }
  3168. };
  3169. // common DJM capture level option values
  3170. static const u16 snd_djm_opts_cap_level[] = {
  3171. 0x0000, 0x0100, 0x0200, 0x0300 };
  3172. // DJM-250MK2
  3173. static const u16 snd_djm_opts_250mk2_cap1[] = {
  3174. 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
  3175. static const u16 snd_djm_opts_250mk2_cap2[] = {
  3176. 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
  3177. static const u16 snd_djm_opts_250mk2_cap3[] = {
  3178. 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
  3179. static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
  3180. static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
  3181. static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
  3182. static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
  3183. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  3184. SND_DJM_CTL("Ch1 Input", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
  3185. SND_DJM_CTL("Ch2 Input", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
  3186. SND_DJM_CTL("Ch3 Input", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
  3187. SND_DJM_CTL("Ch1 Output", 250mk2_pb1, 0, SND_DJM_WINDEX_PB),
  3188. SND_DJM_CTL("Ch2 Output", 250mk2_pb2, 1, SND_DJM_WINDEX_PB),
  3189. SND_DJM_CTL("Ch3 Output", 250mk2_pb3, 2, SND_DJM_WINDEX_PB)
  3190. };
  3191. // DJM-450
  3192. static const u16 snd_djm_opts_450_cap1[] = {
  3193. 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
  3194. static const u16 snd_djm_opts_450_cap2[] = {
  3195. 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
  3196. static const u16 snd_djm_opts_450_cap3[] = {
  3197. 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
  3198. static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 };
  3199. static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 };
  3200. static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 };
  3201. static const struct snd_djm_ctl snd_djm_ctls_450[] = {
  3202. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  3203. SND_DJM_CTL("Ch1 Input", 450_cap1, 2, SND_DJM_WINDEX_CAP),
  3204. SND_DJM_CTL("Ch2 Input", 450_cap2, 2, SND_DJM_WINDEX_CAP),
  3205. SND_DJM_CTL("Ch3 Input", 450_cap3, 0, SND_DJM_WINDEX_CAP),
  3206. SND_DJM_CTL("Ch1 Output", 450_pb1, 0, SND_DJM_WINDEX_PB),
  3207. SND_DJM_CTL("Ch2 Output", 450_pb2, 1, SND_DJM_WINDEX_PB),
  3208. SND_DJM_CTL("Ch3 Output", 450_pb3, 2, SND_DJM_WINDEX_PB)
  3209. };
  3210. // DJM-750
  3211. static const u16 snd_djm_opts_750_cap1[] = {
  3212. 0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
  3213. static const u16 snd_djm_opts_750_cap2[] = {
  3214. 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
  3215. static const u16 snd_djm_opts_750_cap3[] = {
  3216. 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
  3217. static const u16 snd_djm_opts_750_cap4[] = {
  3218. 0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
  3219. static const struct snd_djm_ctl snd_djm_ctls_750[] = {
  3220. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  3221. SND_DJM_CTL("Ch1 Input", 750_cap1, 2, SND_DJM_WINDEX_CAP),
  3222. SND_DJM_CTL("Ch2 Input", 750_cap2, 2, SND_DJM_WINDEX_CAP),
  3223. SND_DJM_CTL("Ch3 Input", 750_cap3, 0, SND_DJM_WINDEX_CAP),
  3224. SND_DJM_CTL("Ch4 Input", 750_cap4, 0, SND_DJM_WINDEX_CAP)
  3225. };
  3226. // DJM-850
  3227. static const u16 snd_djm_opts_850_cap1[] = {
  3228. 0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
  3229. static const u16 snd_djm_opts_850_cap2[] = {
  3230. 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
  3231. static const u16 snd_djm_opts_850_cap3[] = {
  3232. 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
  3233. static const u16 snd_djm_opts_850_cap4[] = {
  3234. 0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
  3235. static const struct snd_djm_ctl snd_djm_ctls_850[] = {
  3236. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  3237. SND_DJM_CTL("Ch1 Input", 850_cap1, 1, SND_DJM_WINDEX_CAP),
  3238. SND_DJM_CTL("Ch2 Input", 850_cap2, 0, SND_DJM_WINDEX_CAP),
  3239. SND_DJM_CTL("Ch3 Input", 850_cap3, 0, SND_DJM_WINDEX_CAP),
  3240. SND_DJM_CTL("Ch4 Input", 850_cap4, 1, SND_DJM_WINDEX_CAP)
  3241. };
  3242. // DJM-900NXS2
  3243. static const u16 snd_djm_opts_900nxs2_cap1[] = {
  3244. 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
  3245. static const u16 snd_djm_opts_900nxs2_cap2[] = {
  3246. 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
  3247. static const u16 snd_djm_opts_900nxs2_cap3[] = {
  3248. 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
  3249. static const u16 snd_djm_opts_900nxs2_cap4[] = {
  3250. 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
  3251. static const u16 snd_djm_opts_900nxs2_cap5[] = {
  3252. 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
  3253. static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
  3254. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  3255. SND_DJM_CTL("Ch1 Input", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
  3256. SND_DJM_CTL("Ch2 Input", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
  3257. SND_DJM_CTL("Ch3 Input", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
  3258. SND_DJM_CTL("Ch4 Input", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
  3259. SND_DJM_CTL("Ch5 Input", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
  3260. };
  3261. // DJM-750MK2
  3262. static const u16 snd_djm_opts_750mk2_cap1[] = {
  3263. 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
  3264. static const u16 snd_djm_opts_750mk2_cap2[] = {
  3265. 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
  3266. static const u16 snd_djm_opts_750mk2_cap3[] = {
  3267. 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
  3268. static const u16 snd_djm_opts_750mk2_cap4[] = {
  3269. 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
  3270. static const u16 snd_djm_opts_750mk2_cap5[] = {
  3271. 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
  3272. static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
  3273. static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
  3274. static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
  3275. static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = {
  3276. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  3277. SND_DJM_CTL("Ch1 Input", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP),
  3278. SND_DJM_CTL("Ch2 Input", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP),
  3279. SND_DJM_CTL("Ch3 Input", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP),
  3280. SND_DJM_CTL("Ch4 Input", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP),
  3281. SND_DJM_CTL("Ch5 Input", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP),
  3282. SND_DJM_CTL("Ch1 Output", 750mk2_pb1, 0, SND_DJM_WINDEX_PB),
  3283. SND_DJM_CTL("Ch2 Output", 750mk2_pb2, 1, SND_DJM_WINDEX_PB),
  3284. SND_DJM_CTL("Ch3 Output", 750mk2_pb3, 2, SND_DJM_WINDEX_PB)
  3285. };
  3286. static const struct snd_djm_device snd_djm_devices[] = {
  3287. [SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2),
  3288. [SND_DJM_750_IDX] = SND_DJM_DEVICE(750),
  3289. [SND_DJM_850_IDX] = SND_DJM_DEVICE(850),
  3290. [SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2),
  3291. [SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2),
  3292. [SND_DJM_450_IDX] = SND_DJM_DEVICE(450),
  3293. };
  3294. static int snd_djm_controls_info(struct snd_kcontrol *kctl,
  3295. struct snd_ctl_elem_info *info)
  3296. {
  3297. unsigned long private_value = kctl->private_value;
  3298. u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
  3299. u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
  3300. const struct snd_djm_device *device = &snd_djm_devices[device_idx];
  3301. const char *name;
  3302. const struct snd_djm_ctl *ctl;
  3303. size_t noptions;
  3304. if (ctl_idx >= device->ncontrols)
  3305. return -EINVAL;
  3306. ctl = &device->controls[ctl_idx];
  3307. noptions = ctl->noptions;
  3308. if (info->value.enumerated.item >= noptions)
  3309. info->value.enumerated.item = noptions - 1;
  3310. name = snd_djm_get_label(device_idx,
  3311. ctl->options[info->value.enumerated.item],
  3312. ctl->wIndex);
  3313. if (!name)
  3314. return -EINVAL;
  3315. strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
  3316. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  3317. info->count = 1;
  3318. info->value.enumerated.items = noptions;
  3319. return 0;
  3320. }
  3321. static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
  3322. u8 device_idx, u8 group, u16 value)
  3323. {
  3324. int err;
  3325. const struct snd_djm_device *device = &snd_djm_devices[device_idx];
  3326. if ((group >= device->ncontrols) || value >= device->controls[group].noptions)
  3327. return -EINVAL;
  3328. err = snd_usb_lock_shutdown(mixer->chip);
  3329. if (err)
  3330. return err;
  3331. err = snd_usb_ctl_msg(
  3332. mixer->chip->dev, usb_sndctrlpipe(mixer->chip->dev, 0),
  3333. USB_REQ_SET_FEATURE,
  3334. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  3335. device->controls[group].options[value],
  3336. device->controls[group].wIndex,
  3337. NULL, 0);
  3338. snd_usb_unlock_shutdown(mixer->chip);
  3339. return err;
  3340. }
  3341. static int snd_djm_controls_get(struct snd_kcontrol *kctl,
  3342. struct snd_ctl_elem_value *elem)
  3343. {
  3344. elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
  3345. return 0;
  3346. }
  3347. static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
  3348. {
  3349. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  3350. struct usb_mixer_interface *mixer = list->mixer;
  3351. unsigned long private_value = kctl->private_value;
  3352. u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
  3353. u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
  3354. u16 value = elem->value.enumerated.item[0];
  3355. kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
  3356. (group << SND_DJM_GROUP_SHIFT) |
  3357. value);
  3358. return snd_djm_controls_update(mixer, device, group, value);
  3359. }
  3360. static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
  3361. {
  3362. unsigned long private_value = list->kctl->private_value;
  3363. u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
  3364. u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
  3365. u16 value = (private_value & SND_DJM_VALUE_MASK);
  3366. return snd_djm_controls_update(list->mixer, device, group, value);
  3367. }
  3368. static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
  3369. const u8 device_idx)
  3370. {
  3371. int err, i;
  3372. u16 value;
  3373. const struct snd_djm_device *device = &snd_djm_devices[device_idx];
  3374. struct snd_kcontrol_new knew = {
  3375. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  3376. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  3377. .index = 0,
  3378. .info = snd_djm_controls_info,
  3379. .get = snd_djm_controls_get,
  3380. .put = snd_djm_controls_put
  3381. };
  3382. for (i = 0; i < device->ncontrols; i++) {
  3383. value = device->controls[i].default_value;
  3384. knew.name = device->controls[i].name;
  3385. knew.private_value = (
  3386. ((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
  3387. (i << SND_DJM_GROUP_SHIFT) |
  3388. value);
  3389. err = snd_djm_controls_update(mixer, device_idx, i, value);
  3390. if (err)
  3391. return err;
  3392. err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
  3393. &knew, NULL);
  3394. if (err)
  3395. return err;
  3396. }
  3397. return 0;
  3398. }
  3399. int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
  3400. {
  3401. int err = 0;
  3402. err = snd_usb_soundblaster_remote_init(mixer);
  3403. if (err < 0)
  3404. return err;
  3405. switch (mixer->chip->usb_id) {
  3406. /* Tascam US-16x08 */
  3407. case USB_ID(0x0644, 0x8047):
  3408. err = snd_us16x08_controls_create(mixer);
  3409. break;
  3410. case USB_ID(0x041e, 0x3020):
  3411. case USB_ID(0x041e, 0x3040):
  3412. case USB_ID(0x041e, 0x3042):
  3413. case USB_ID(0x041e, 0x30df):
  3414. case USB_ID(0x041e, 0x3048):
  3415. err = snd_audigy2nx_controls_create(mixer);
  3416. if (err < 0)
  3417. break;
  3418. snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
  3419. mixer, snd_audigy2nx_proc_read);
  3420. break;
  3421. /* EMU0204 */
  3422. case USB_ID(0x041e, 0x3f19):
  3423. err = snd_emu0204_controls_create(mixer);
  3424. break;
  3425. case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
  3426. case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
  3427. err = snd_c400_create_mixer(mixer);
  3428. break;
  3429. case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
  3430. case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
  3431. err = snd_ftu_create_mixer(mixer);
  3432. break;
  3433. case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
  3434. case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
  3435. case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
  3436. err = snd_xonar_u1_controls_create(mixer);
  3437. break;
  3438. case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
  3439. err = snd_microii_controls_create(mixer);
  3440. break;
  3441. case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
  3442. err = snd_mbox1_controls_create(mixer);
  3443. break;
  3444. case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
  3445. err = snd_nativeinstruments_create_mixer(mixer,
  3446. snd_nativeinstruments_ta6_mixers,
  3447. ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
  3448. break;
  3449. case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
  3450. err = snd_nativeinstruments_create_mixer(mixer,
  3451. snd_nativeinstruments_ta10_mixers,
  3452. ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
  3453. break;
  3454. case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
  3455. /* detection is disabled in mixer_maps.c */
  3456. err = snd_create_std_mono_table(mixer, ebox44_table);
  3457. break;
  3458. case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
  3459. case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
  3460. case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
  3461. case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
  3462. case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
  3463. err = snd_scarlett_controls_create(mixer);
  3464. break;
  3465. case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
  3466. case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
  3467. case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
  3468. case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */
  3469. case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */
  3470. case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */
  3471. case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */
  3472. case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */
  3473. case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */
  3474. case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */
  3475. case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */
  3476. case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */
  3477. case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */
  3478. case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */
  3479. case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */
  3480. case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */
  3481. case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */
  3482. case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */
  3483. case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */
  3484. case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */
  3485. err = snd_scarlett2_init(mixer);
  3486. break;
  3487. case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
  3488. err = snd_soundblaster_e1_switch_create(mixer);
  3489. break;
  3490. case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
  3491. err = dell_dock_mixer_create(mixer);
  3492. if (err < 0)
  3493. break;
  3494. err = dell_dock_mixer_init(mixer);
  3495. break;
  3496. case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */
  3497. err = dell_dock_mixer_create(mixer);
  3498. break;
  3499. case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
  3500. case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
  3501. case USB_ID(0x2a39, 0x3fd4): /* RME */
  3502. err = snd_rme_controls_create(mixer);
  3503. break;
  3504. case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */
  3505. err = snd_sc1810_init_mixer(mixer);
  3506. break;
  3507. case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
  3508. err = snd_bbfpro_controls_create(mixer);
  3509. break;
  3510. case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */
  3511. case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */
  3512. err = snd_rme_digiface_controls_create(mixer);
  3513. break;
  3514. case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
  3515. err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
  3516. break;
  3517. case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */
  3518. err = snd_djm_controls_create(mixer, SND_DJM_450_IDX);
  3519. break;
  3520. case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
  3521. err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
  3522. break;
  3523. case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */
  3524. err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX);
  3525. break;
  3526. case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
  3527. err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
  3528. break;
  3529. case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
  3530. err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
  3531. break;
  3532. }
  3533. return err;
  3534. }
  3535. void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
  3536. {
  3537. switch (mixer->chip->usb_id) {
  3538. case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
  3539. dell_dock_mixer_init(mixer);
  3540. break;
  3541. }
  3542. }
  3543. void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
  3544. int unitid)
  3545. {
  3546. if (!mixer->rc_cfg)
  3547. return;
  3548. /* unit ids specific to Extigy/Audigy 2 NX: */
  3549. switch (unitid) {
  3550. case 0: /* remote control */
  3551. mixer->rc_urb->dev = mixer->chip->dev;
  3552. usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
  3553. break;
  3554. case 4: /* digital in jack */
  3555. case 7: /* line in jacks */
  3556. case 19: /* speaker out jacks */
  3557. case 20: /* headphones out jack */
  3558. break;
  3559. /* live24ext: 4 = line-in jack */
  3560. case 3: /* hp-out jack (may actuate Mute) */
  3561. if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
  3562. mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
  3563. snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
  3564. break;
  3565. default:
  3566. usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
  3567. break;
  3568. }
  3569. }
  3570. static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
  3571. struct usb_mixer_elem_info *cval,
  3572. struct snd_kcontrol *kctl)
  3573. {
  3574. /* Approximation using 10 ranges based on output measurement on hw v1.2.
  3575. * This seems close to the cubic mapping e.g. alsamixer uses. */
  3576. static const DECLARE_TLV_DB_RANGE(scale,
  3577. 0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970),
  3578. 2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160),
  3579. 6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710),
  3580. 8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
  3581. 15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
  3582. 17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
  3583. 20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
  3584. 27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
  3585. 32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
  3586. 41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
  3587. );
  3588. if (cval->min == 0 && cval->max == 50) {
  3589. usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
  3590. kctl->tlv.p = scale;
  3591. kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  3592. kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  3593. } else if (cval->min == 0 && cval->max <= 1000) {
  3594. /* Some other clearly broken DragonFly variant.
  3595. * At least a 0..53 variant (hw v1.0) exists.
  3596. */
  3597. usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
  3598. kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  3599. }
  3600. }
  3601. void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
  3602. struct usb_mixer_elem_info *cval, int unitid,
  3603. struct snd_kcontrol *kctl)
  3604. {
  3605. switch (mixer->chip->usb_id) {
  3606. case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
  3607. if (unitid == 7 && cval->control == UAC_FU_VOLUME)
  3608. snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
  3609. break;
  3610. /* lowest playback value is muted on some devices */
  3611. case USB_ID(0x0d8c, 0x000c): /* C-Media */
  3612. case USB_ID(0x0d8c, 0x0014): /* C-Media */
  3613. case USB_ID(0x19f7, 0x0003): /* RODE NT-USB */
  3614. if (strstr(kctl->id.name, "Playback"))
  3615. cval->min_mute = 1;
  3616. break;
  3617. }
  3618. }