cpm2.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /*
  2. * General Purpose functions for the global management of the
  3. * 8260 Communication Processor Module.
  4. * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
  5. * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
  6. * 2.3.99 Updates
  7. *
  8. * 2006 (c) MontaVista Software, Inc.
  9. * Vitaly Bordug <vbordug@ru.mvista.com>
  10. * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
  11. *
  12. * This file is licensed under the terms of the GNU General Public License
  13. * version 2. This program is licensed "as is" without any warranty of any
  14. * kind, whether express or implied.
  15. */
  16. /*
  17. *
  18. * In addition to the individual control of the communication
  19. * channels, there are a few functions that globally affect the
  20. * communication processor.
  21. *
  22. * Buffer descriptors must be allocated from the dual ported memory
  23. * space. The allocator for that is here. When the communication
  24. * process is reset, we reclaim the memory available. There is
  25. * currently no deallocator for this memory.
  26. */
  27. #include <linux/errno.h>
  28. #include <linux/sched.h>
  29. #include <linux/kernel.h>
  30. #include <linux/param.h>
  31. #include <linux/string.h>
  32. #include <linux/mm.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/page.h>
  39. #include <asm/cpm2.h>
  40. #include <asm/rheap.h>
  41. #include <sysdev/fsl_soc.h>
  42. cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
  43. /* We allocate this here because it is used almost exclusively for
  44. * the communication processor devices.
  45. */
  46. cpm2_map_t __iomem *cpm2_immr;
  47. EXPORT_SYMBOL(cpm2_immr);
  48. #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
  49. of space for CPM as it is larger
  50. than on PQ2 */
  51. void __init cpm2_reset(void)
  52. {
  53. #ifdef CONFIG_PPC_85xx
  54. cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
  55. #else
  56. cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
  57. #endif
  58. /* Tell everyone where the comm processor resides.
  59. */
  60. cpmp = &cpm2_immr->im_cpm;
  61. #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
  62. /* Reset the CPM.
  63. */
  64. cpm_command(CPM_CR_RST, 0);
  65. #endif
  66. }
  67. static DEFINE_SPINLOCK(cmd_lock);
  68. #define MAX_CR_CMD_LOOPS 10000
  69. int cpm_command(u32 command, u8 opcode)
  70. {
  71. int i, ret;
  72. unsigned long flags;
  73. spin_lock_irqsave(&cmd_lock, flags);
  74. ret = 0;
  75. out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
  76. for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  77. if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
  78. goto out;
  79. printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
  80. ret = -EIO;
  81. out:
  82. spin_unlock_irqrestore(&cmd_lock, flags);
  83. return ret;
  84. }
  85. EXPORT_SYMBOL(cpm_command);
  86. /* Set a baud rate generator. This needs lots of work. There are
  87. * eight BRGs, which can be connected to the CPM channels or output
  88. * as clocks. The BRGs are in two different block of internal
  89. * memory mapped space.
  90. * The baud rate clock is the system clock divided by something.
  91. * It was set up long ago during the initial boot phase and is
  92. * given to us.
  93. * Baud rate clocks are zero-based in the driver code (as that maps
  94. * to port numbers). Documentation uses 1-based numbering.
  95. */
  96. void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
  97. {
  98. u32 __iomem *bp;
  99. u32 val;
  100. /* This is good enough to get SMCs running.....
  101. */
  102. if (brg < 4) {
  103. bp = &cpm2_immr->im_brgc1;
  104. } else {
  105. bp = &cpm2_immr->im_brgc5;
  106. brg -= 4;
  107. }
  108. bp += brg;
  109. /* Round the clock divider to the nearest integer. */
  110. val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
  111. if (div16)
  112. val |= CPM_BRG_DIV16;
  113. out_be32(bp, val);
  114. }
  115. EXPORT_SYMBOL(__cpm2_setbrg);
  116. int __init cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
  117. {
  118. int ret = 0;
  119. int shift;
  120. int i, bits = 0;
  121. u32 __iomem *reg;
  122. u32 mask = 7;
  123. u8 clk_map[][3] = {
  124. {CPM_CLK_FCC1, CPM_BRG5, 0},
  125. {CPM_CLK_FCC1, CPM_BRG6, 1},
  126. {CPM_CLK_FCC1, CPM_BRG7, 2},
  127. {CPM_CLK_FCC1, CPM_BRG8, 3},
  128. {CPM_CLK_FCC1, CPM_CLK9, 4},
  129. {CPM_CLK_FCC1, CPM_CLK10, 5},
  130. {CPM_CLK_FCC1, CPM_CLK11, 6},
  131. {CPM_CLK_FCC1, CPM_CLK12, 7},
  132. {CPM_CLK_FCC2, CPM_BRG5, 0},
  133. {CPM_CLK_FCC2, CPM_BRG6, 1},
  134. {CPM_CLK_FCC2, CPM_BRG7, 2},
  135. {CPM_CLK_FCC2, CPM_BRG8, 3},
  136. {CPM_CLK_FCC2, CPM_CLK13, 4},
  137. {CPM_CLK_FCC2, CPM_CLK14, 5},
  138. {CPM_CLK_FCC2, CPM_CLK15, 6},
  139. {CPM_CLK_FCC2, CPM_CLK16, 7},
  140. {CPM_CLK_FCC3, CPM_BRG5, 0},
  141. {CPM_CLK_FCC3, CPM_BRG6, 1},
  142. {CPM_CLK_FCC3, CPM_BRG7, 2},
  143. {CPM_CLK_FCC3, CPM_BRG8, 3},
  144. {CPM_CLK_FCC3, CPM_CLK13, 4},
  145. {CPM_CLK_FCC3, CPM_CLK14, 5},
  146. {CPM_CLK_FCC3, CPM_CLK15, 6},
  147. {CPM_CLK_FCC3, CPM_CLK16, 7},
  148. {CPM_CLK_SCC1, CPM_BRG1, 0},
  149. {CPM_CLK_SCC1, CPM_BRG2, 1},
  150. {CPM_CLK_SCC1, CPM_BRG3, 2},
  151. {CPM_CLK_SCC1, CPM_BRG4, 3},
  152. {CPM_CLK_SCC1, CPM_CLK11, 4},
  153. {CPM_CLK_SCC1, CPM_CLK12, 5},
  154. {CPM_CLK_SCC1, CPM_CLK3, 6},
  155. {CPM_CLK_SCC1, CPM_CLK4, 7},
  156. {CPM_CLK_SCC2, CPM_BRG1, 0},
  157. {CPM_CLK_SCC2, CPM_BRG2, 1},
  158. {CPM_CLK_SCC2, CPM_BRG3, 2},
  159. {CPM_CLK_SCC2, CPM_BRG4, 3},
  160. {CPM_CLK_SCC2, CPM_CLK11, 4},
  161. {CPM_CLK_SCC2, CPM_CLK12, 5},
  162. {CPM_CLK_SCC2, CPM_CLK3, 6},
  163. {CPM_CLK_SCC2, CPM_CLK4, 7},
  164. {CPM_CLK_SCC3, CPM_BRG1, 0},
  165. {CPM_CLK_SCC3, CPM_BRG2, 1},
  166. {CPM_CLK_SCC3, CPM_BRG3, 2},
  167. {CPM_CLK_SCC3, CPM_BRG4, 3},
  168. {CPM_CLK_SCC3, CPM_CLK5, 4},
  169. {CPM_CLK_SCC3, CPM_CLK6, 5},
  170. {CPM_CLK_SCC3, CPM_CLK7, 6},
  171. {CPM_CLK_SCC3, CPM_CLK8, 7},
  172. {CPM_CLK_SCC4, CPM_BRG1, 0},
  173. {CPM_CLK_SCC4, CPM_BRG2, 1},
  174. {CPM_CLK_SCC4, CPM_BRG3, 2},
  175. {CPM_CLK_SCC4, CPM_BRG4, 3},
  176. {CPM_CLK_SCC4, CPM_CLK5, 4},
  177. {CPM_CLK_SCC4, CPM_CLK6, 5},
  178. {CPM_CLK_SCC4, CPM_CLK7, 6},
  179. {CPM_CLK_SCC4, CPM_CLK8, 7},
  180. };
  181. switch (target) {
  182. case CPM_CLK_SCC1:
  183. reg = &cpm2_immr->im_cpmux.cmx_scr;
  184. shift = 24;
  185. break;
  186. case CPM_CLK_SCC2:
  187. reg = &cpm2_immr->im_cpmux.cmx_scr;
  188. shift = 16;
  189. break;
  190. case CPM_CLK_SCC3:
  191. reg = &cpm2_immr->im_cpmux.cmx_scr;
  192. shift = 8;
  193. break;
  194. case CPM_CLK_SCC4:
  195. reg = &cpm2_immr->im_cpmux.cmx_scr;
  196. shift = 0;
  197. break;
  198. case CPM_CLK_FCC1:
  199. reg = &cpm2_immr->im_cpmux.cmx_fcr;
  200. shift = 24;
  201. break;
  202. case CPM_CLK_FCC2:
  203. reg = &cpm2_immr->im_cpmux.cmx_fcr;
  204. shift = 16;
  205. break;
  206. case CPM_CLK_FCC3:
  207. reg = &cpm2_immr->im_cpmux.cmx_fcr;
  208. shift = 8;
  209. break;
  210. default:
  211. printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
  212. return -EINVAL;
  213. }
  214. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  215. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  216. bits = clk_map[i][2];
  217. break;
  218. }
  219. }
  220. if (i == ARRAY_SIZE(clk_map))
  221. ret = -EINVAL;
  222. bits <<= shift;
  223. mask <<= shift;
  224. if (mode == CPM_CLK_RTX) {
  225. bits |= bits << 3;
  226. mask |= mask << 3;
  227. } else if (mode == CPM_CLK_RX) {
  228. bits <<= 3;
  229. mask <<= 3;
  230. }
  231. out_be32(reg, (in_be32(reg) & ~mask) | bits);
  232. return ret;
  233. }
  234. int __init cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
  235. {
  236. int ret = 0;
  237. int shift;
  238. int i, bits = 0;
  239. u8 __iomem *reg;
  240. u8 mask = 3;
  241. u8 clk_map[][3] = {
  242. {CPM_CLK_SMC1, CPM_BRG1, 0},
  243. {CPM_CLK_SMC1, CPM_BRG7, 1},
  244. {CPM_CLK_SMC1, CPM_CLK7, 2},
  245. {CPM_CLK_SMC1, CPM_CLK9, 3},
  246. {CPM_CLK_SMC2, CPM_BRG2, 0},
  247. {CPM_CLK_SMC2, CPM_BRG8, 1},
  248. {CPM_CLK_SMC2, CPM_CLK4, 2},
  249. {CPM_CLK_SMC2, CPM_CLK15, 3},
  250. };
  251. switch (target) {
  252. case CPM_CLK_SMC1:
  253. reg = &cpm2_immr->im_cpmux.cmx_smr;
  254. mask = 3;
  255. shift = 4;
  256. break;
  257. case CPM_CLK_SMC2:
  258. reg = &cpm2_immr->im_cpmux.cmx_smr;
  259. mask = 3;
  260. shift = 0;
  261. break;
  262. default:
  263. printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
  264. return -EINVAL;
  265. }
  266. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  267. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  268. bits = clk_map[i][2];
  269. break;
  270. }
  271. }
  272. if (i == ARRAY_SIZE(clk_map))
  273. ret = -EINVAL;
  274. bits <<= shift;
  275. mask <<= shift;
  276. out_8(reg, (in_8(reg) & ~mask) | bits);
  277. return ret;
  278. }
  279. struct cpm2_ioports {
  280. u32 dir, par, sor, odr, dat;
  281. u32 res[3];
  282. };
  283. void __init cpm2_set_pin(int port, int pin, int flags)
  284. {
  285. struct cpm2_ioports __iomem *iop =
  286. (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
  287. pin = 1 << (31 - pin);
  288. if (flags & CPM_PIN_OUTPUT)
  289. setbits32(&iop[port].dir, pin);
  290. else
  291. clrbits32(&iop[port].dir, pin);
  292. if (!(flags & CPM_PIN_GPIO))
  293. setbits32(&iop[port].par, pin);
  294. else
  295. clrbits32(&iop[port].par, pin);
  296. if (flags & CPM_PIN_SECONDARY)
  297. setbits32(&iop[port].sor, pin);
  298. else
  299. clrbits32(&iop[port].sor, pin);
  300. if (flags & CPM_PIN_OPENDRAIN)
  301. setbits32(&iop[port].odr, pin);
  302. else
  303. clrbits32(&iop[port].odr, pin);
  304. }