imx6q-cpufreq.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  4. */
  5. #include <linux/clk.h>
  6. #include <linux/cpu.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/err.h>
  9. #include <linux/module.h>
  10. #include <linux/nvmem-consumer.h>
  11. #include <linux/of.h>
  12. #include <linux/of_address.h>
  13. #include <linux/pm_opp.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/regulator/consumer.h>
  16. #include <linux/mfd/syscon.h>
  17. #include <linux/regmap.h>
  18. #define PU_SOC_VOLTAGE_NORMAL 1250000
  19. #define PU_SOC_VOLTAGE_HIGH 1275000
  20. #define FREQ_1P2_GHZ 1200000000
  21. static struct regulator *arm_reg;
  22. static struct regulator *pu_reg;
  23. static struct regulator *soc_reg;
  24. enum IMX6_CPUFREQ_CLKS {
  25. ARM,
  26. PLL1_SYS,
  27. STEP,
  28. PLL1_SW,
  29. PLL2_PFD2_396M,
  30. /* MX6UL requires two more clks */
  31. PLL2_BUS,
  32. SECONDARY_SEL,
  33. };
  34. #define IMX6Q_CPUFREQ_CLK_NUM 5
  35. #define IMX6UL_CPUFREQ_CLK_NUM 7
  36. static int num_clks;
  37. static struct clk_bulk_data clks[] = {
  38. { .id = "arm" },
  39. { .id = "pll1_sys" },
  40. { .id = "step" },
  41. { .id = "pll1_sw" },
  42. { .id = "pll2_pfd2_396m" },
  43. { .id = "pll2_bus" },
  44. { .id = "secondary_sel" },
  45. };
  46. static struct device *cpu_dev;
  47. static struct cpufreq_frequency_table *freq_table;
  48. static unsigned int max_freq;
  49. static unsigned int transition_latency;
  50. static u32 *imx6_soc_volt;
  51. static u32 soc_opp_count;
  52. static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
  53. {
  54. struct dev_pm_opp *opp;
  55. unsigned long freq_hz, volt, volt_old;
  56. unsigned int old_freq, new_freq;
  57. bool pll1_sys_temp_enabled = false;
  58. int ret;
  59. new_freq = freq_table[index].frequency;
  60. freq_hz = new_freq * 1000;
  61. old_freq = clk_get_rate(clks[ARM].clk) / 1000;
  62. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  63. if (IS_ERR(opp)) {
  64. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  65. return PTR_ERR(opp);
  66. }
  67. volt = dev_pm_opp_get_voltage(opp);
  68. dev_pm_opp_put(opp);
  69. volt_old = regulator_get_voltage(arm_reg);
  70. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  71. old_freq / 1000, volt_old / 1000,
  72. new_freq / 1000, volt / 1000);
  73. /* scaling up? scale voltage before frequency */
  74. if (new_freq > old_freq) {
  75. if (!IS_ERR(pu_reg)) {
  76. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  77. if (ret) {
  78. dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
  79. return ret;
  80. }
  81. }
  82. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  83. if (ret) {
  84. dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
  85. return ret;
  86. }
  87. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  88. if (ret) {
  89. dev_err(cpu_dev,
  90. "failed to scale vddarm up: %d\n", ret);
  91. return ret;
  92. }
  93. }
  94. /*
  95. * The setpoints are selected per PLL/PDF frequencies, so we need to
  96. * reprogram PLL for frequency scaling. The procedure of reprogramming
  97. * PLL1 is as below.
  98. * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
  99. * flow is slightly different from other i.MX6 OSC.
  100. * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
  101. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  102. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  103. * - Disable pll2_pfd2_396m_clk
  104. */
  105. if (of_machine_is_compatible("fsl,imx6ul") ||
  106. of_machine_is_compatible("fsl,imx6ull")) {
  107. /*
  108. * When changing pll1_sw_clk's parent to pll1_sys_clk,
  109. * CPU may run at higher than 528MHz, this will lead to
  110. * the system unstable if the voltage is lower than the
  111. * voltage of 528MHz, so lower the CPU frequency to one
  112. * half before changing CPU frequency.
  113. */
  114. clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
  115. clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
  116. if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
  117. clk_set_parent(clks[SECONDARY_SEL].clk,
  118. clks[PLL2_BUS].clk);
  119. else
  120. clk_set_parent(clks[SECONDARY_SEL].clk,
  121. clks[PLL2_PFD2_396M].clk);
  122. clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
  123. clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
  124. if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
  125. clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
  126. clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
  127. }
  128. } else {
  129. clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
  130. clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
  131. if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
  132. clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
  133. clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
  134. } else {
  135. /* pll1_sys needs to be enabled for divider rate change to work. */
  136. pll1_sys_temp_enabled = true;
  137. clk_prepare_enable(clks[PLL1_SYS].clk);
  138. }
  139. }
  140. /* Ensure the arm clock divider is what we expect */
  141. ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
  142. if (ret) {
  143. int ret1;
  144. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  145. ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
  146. if (ret1)
  147. dev_warn(cpu_dev,
  148. "failed to restore vddarm voltage: %d\n", ret1);
  149. return ret;
  150. }
  151. /* PLL1 is only needed until after ARM-PODF is set. */
  152. if (pll1_sys_temp_enabled)
  153. clk_disable_unprepare(clks[PLL1_SYS].clk);
  154. /* scaling down? scale voltage after frequency */
  155. if (new_freq < old_freq) {
  156. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  157. if (ret)
  158. dev_warn(cpu_dev,
  159. "failed to scale vddarm down: %d\n", ret);
  160. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  161. if (ret)
  162. dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
  163. if (!IS_ERR(pu_reg)) {
  164. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  165. if (ret)
  166. dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
  167. }
  168. }
  169. return 0;
  170. }
  171. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  172. {
  173. policy->clk = clks[ARM].clk;
  174. cpufreq_generic_init(policy, freq_table, transition_latency);
  175. policy->suspend_freq = max_freq;
  176. return 0;
  177. }
  178. static struct cpufreq_driver imx6q_cpufreq_driver = {
  179. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
  180. CPUFREQ_IS_COOLING_DEV,
  181. .verify = cpufreq_generic_frequency_table_verify,
  182. .target_index = imx6q_set_target,
  183. .get = cpufreq_generic_get,
  184. .init = imx6q_cpufreq_init,
  185. .register_em = cpufreq_register_em_with_opp,
  186. .name = "imx6q-cpufreq",
  187. .attr = cpufreq_generic_attr,
  188. .suspend = cpufreq_generic_suspend,
  189. };
  190. static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq)
  191. {
  192. int ret = dev_pm_opp_disable(dev, freq);
  193. if (ret < 0 && ret != -ENODEV)
  194. dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000);
  195. }
  196. #define OCOTP_CFG3 0x440
  197. #define OCOTP_CFG3_SPEED_SHIFT 16
  198. #define OCOTP_CFG3_SPEED_1P2GHZ 0x3
  199. #define OCOTP_CFG3_SPEED_996MHZ 0x2
  200. #define OCOTP_CFG3_SPEED_852MHZ 0x1
  201. static int imx6q_opp_check_speed_grading(struct device *dev)
  202. {
  203. u32 val;
  204. int ret;
  205. if (of_property_present(dev->of_node, "nvmem-cells")) {
  206. ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
  207. if (ret)
  208. return ret;
  209. } else {
  210. struct regmap *ocotp;
  211. ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp");
  212. if (IS_ERR(ocotp))
  213. return -ENOENT;
  214. /*
  215. * SPEED_GRADING[1:0] defines the max speed of ARM:
  216. * 2b'11: 1200000000Hz;
  217. * 2b'10: 996000000Hz;
  218. * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
  219. * 2b'00: 792000000Hz;
  220. * We need to set the max speed of ARM according to fuse map.
  221. */
  222. regmap_read(ocotp, OCOTP_CFG3, &val);
  223. }
  224. val >>= OCOTP_CFG3_SPEED_SHIFT;
  225. val &= 0x3;
  226. if (val < OCOTP_CFG3_SPEED_996MHZ)
  227. imx6x_disable_freq_in_opp(dev, 996000000);
  228. if (of_machine_is_compatible("fsl,imx6q") ||
  229. of_machine_is_compatible("fsl,imx6qp")) {
  230. if (val != OCOTP_CFG3_SPEED_852MHZ)
  231. imx6x_disable_freq_in_opp(dev, 852000000);
  232. if (val != OCOTP_CFG3_SPEED_1P2GHZ)
  233. imx6x_disable_freq_in_opp(dev, 1200000000);
  234. }
  235. return 0;
  236. }
  237. #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
  238. #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
  239. #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
  240. static int imx6ul_opp_check_speed_grading(struct device *dev)
  241. {
  242. u32 val;
  243. int ret = 0;
  244. if (of_property_present(dev->of_node, "nvmem-cells")) {
  245. ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
  246. if (ret)
  247. return ret;
  248. } else {
  249. struct regmap *ocotp;
  250. ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp");
  251. if (IS_ERR(ocotp))
  252. ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp");
  253. if (IS_ERR(ocotp))
  254. return -ENOENT;
  255. regmap_read(ocotp, OCOTP_CFG3, &val);
  256. }
  257. /*
  258. * Speed GRADING[1:0] defines the max speed of ARM:
  259. * 2b'00: Reserved;
  260. * 2b'01: 528000000Hz;
  261. * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
  262. * 2b'11: 900000000Hz on i.MX6ULL only;
  263. * We need to set the max speed of ARM according to fuse map.
  264. */
  265. val >>= OCOTP_CFG3_SPEED_SHIFT;
  266. val &= 0x3;
  267. if (of_machine_is_compatible("fsl,imx6ul"))
  268. if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
  269. imx6x_disable_freq_in_opp(dev, 696000000);
  270. if (of_machine_is_compatible("fsl,imx6ull")) {
  271. if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ)
  272. imx6x_disable_freq_in_opp(dev, 792000000);
  273. if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
  274. imx6x_disable_freq_in_opp(dev, 900000000);
  275. }
  276. return ret;
  277. }
  278. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  279. {
  280. struct device_node *np;
  281. struct dev_pm_opp *opp;
  282. unsigned long min_volt, max_volt;
  283. int num, ret;
  284. const struct property *prop;
  285. const __be32 *val;
  286. u32 nr, i, j;
  287. cpu_dev = get_cpu_device(0);
  288. if (!cpu_dev) {
  289. pr_err("failed to get cpu0 device\n");
  290. return -ENODEV;
  291. }
  292. np = of_node_get(cpu_dev->of_node);
  293. if (!np) {
  294. dev_err(cpu_dev, "failed to find cpu0 node\n");
  295. return -ENOENT;
  296. }
  297. if (of_machine_is_compatible("fsl,imx6ul") ||
  298. of_machine_is_compatible("fsl,imx6ull"))
  299. num_clks = IMX6UL_CPUFREQ_CLK_NUM;
  300. else
  301. num_clks = IMX6Q_CPUFREQ_CLK_NUM;
  302. ret = clk_bulk_get(cpu_dev, num_clks, clks);
  303. if (ret)
  304. goto put_node;
  305. arm_reg = regulator_get(cpu_dev, "arm");
  306. pu_reg = regulator_get_optional(cpu_dev, "pu");
  307. soc_reg = regulator_get(cpu_dev, "soc");
  308. if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
  309. PTR_ERR(soc_reg) == -EPROBE_DEFER ||
  310. PTR_ERR(pu_reg) == -EPROBE_DEFER) {
  311. ret = -EPROBE_DEFER;
  312. dev_dbg(cpu_dev, "regulators not ready, defer\n");
  313. goto put_reg;
  314. }
  315. if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
  316. dev_err(cpu_dev, "failed to get regulators\n");
  317. ret = -ENOENT;
  318. goto put_reg;
  319. }
  320. ret = dev_pm_opp_of_add_table(cpu_dev);
  321. if (ret < 0) {
  322. dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
  323. goto put_reg;
  324. }
  325. if (of_machine_is_compatible("fsl,imx6ul") ||
  326. of_machine_is_compatible("fsl,imx6ull")) {
  327. ret = imx6ul_opp_check_speed_grading(cpu_dev);
  328. } else {
  329. ret = imx6q_opp_check_speed_grading(cpu_dev);
  330. }
  331. if (ret) {
  332. dev_err_probe(cpu_dev, ret, "failed to read ocotp\n");
  333. goto out_free_opp;
  334. }
  335. num = dev_pm_opp_get_opp_count(cpu_dev);
  336. if (num < 0) {
  337. ret = num;
  338. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  339. goto out_free_opp;
  340. }
  341. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  342. if (ret) {
  343. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  344. goto out_free_opp;
  345. }
  346. /* Make imx6_soc_volt array's size same as arm opp number */
  347. imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
  348. GFP_KERNEL);
  349. if (imx6_soc_volt == NULL) {
  350. ret = -ENOMEM;
  351. goto free_freq_table;
  352. }
  353. prop = of_find_property(np, "fsl,soc-operating-points", NULL);
  354. if (!prop || !prop->value)
  355. goto soc_opp_out;
  356. /*
  357. * Each OPP is a set of tuples consisting of frequency and
  358. * voltage like <freq-kHz vol-uV>.
  359. */
  360. nr = prop->length / sizeof(u32);
  361. if (nr % 2 || (nr / 2) < num)
  362. goto soc_opp_out;
  363. for (j = 0; j < num; j++) {
  364. val = prop->value;
  365. for (i = 0; i < nr / 2; i++) {
  366. unsigned long freq = be32_to_cpup(val++);
  367. unsigned long volt = be32_to_cpup(val++);
  368. if (freq_table[j].frequency == freq) {
  369. imx6_soc_volt[soc_opp_count++] = volt;
  370. break;
  371. }
  372. }
  373. }
  374. soc_opp_out:
  375. /* use fixed soc opp volt if no valid soc opp info found in dtb */
  376. if (soc_opp_count != num) {
  377. dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
  378. for (j = 0; j < num; j++)
  379. imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
  380. if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
  381. imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
  382. }
  383. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  384. transition_latency = CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS;
  385. /*
  386. * Calculate the ramp time for max voltage change in the
  387. * VDDSOC and VDDPU regulators.
  388. */
  389. ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  390. if (ret > 0)
  391. transition_latency += ret * 1000;
  392. if (!IS_ERR(pu_reg)) {
  393. ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  394. if (ret > 0)
  395. transition_latency += ret * 1000;
  396. }
  397. /*
  398. * OPP is maintained in order of increasing frequency, and
  399. * freq_table initialised from OPP is therefore sorted in the
  400. * same order.
  401. */
  402. max_freq = freq_table[--num].frequency;
  403. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  404. freq_table[0].frequency * 1000, true);
  405. min_volt = dev_pm_opp_get_voltage(opp);
  406. dev_pm_opp_put(opp);
  407. opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
  408. max_volt = dev_pm_opp_get_voltage(opp);
  409. dev_pm_opp_put(opp);
  410. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  411. if (ret > 0)
  412. transition_latency += ret * 1000;
  413. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  414. if (ret) {
  415. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  416. goto free_freq_table;
  417. }
  418. of_node_put(np);
  419. return 0;
  420. free_freq_table:
  421. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  422. out_free_opp:
  423. dev_pm_opp_of_remove_table(cpu_dev);
  424. put_reg:
  425. if (!IS_ERR(arm_reg))
  426. regulator_put(arm_reg);
  427. if (!IS_ERR(pu_reg))
  428. regulator_put(pu_reg);
  429. if (!IS_ERR(soc_reg))
  430. regulator_put(soc_reg);
  431. clk_bulk_put(num_clks, clks);
  432. put_node:
  433. of_node_put(np);
  434. return ret;
  435. }
  436. static void imx6q_cpufreq_remove(struct platform_device *pdev)
  437. {
  438. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  439. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  440. dev_pm_opp_of_remove_table(cpu_dev);
  441. regulator_put(arm_reg);
  442. if (!IS_ERR(pu_reg))
  443. regulator_put(pu_reg);
  444. regulator_put(soc_reg);
  445. clk_bulk_put(num_clks, clks);
  446. }
  447. static struct platform_driver imx6q_cpufreq_platdrv = {
  448. .driver = {
  449. .name = "imx6q-cpufreq",
  450. },
  451. .probe = imx6q_cpufreq_probe,
  452. .remove_new = imx6q_cpufreq_remove,
  453. };
  454. module_platform_driver(imx6q_cpufreq_platdrv);
  455. MODULE_ALIAS("platform:imx6q-cpufreq");
  456. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  457. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  458. MODULE_LICENSE("GPL");