mediatek-cpufreq.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015 Linaro Ltd.
  4. * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/cpu.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/cpumask.h>
  10. #include <linux/minmax.h>
  11. #include <linux/module.h>
  12. #include <linux/of.h>
  13. #include <linux/of_platform.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/pm_opp.h>
  16. #include <linux/regulator/consumer.h>
  17. struct mtk_cpufreq_platform_data {
  18. int min_volt_shift;
  19. int max_volt_shift;
  20. int proc_max_volt;
  21. int sram_min_volt;
  22. int sram_max_volt;
  23. bool ccifreq_supported;
  24. };
  25. /*
  26. * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
  27. * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
  28. * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
  29. * voltage inputs need to be controlled under a hardware limitation:
  30. * 100mV < Vsram - Vproc < 200mV
  31. *
  32. * When scaling the clock frequency of a CPU clock domain, the clock source
  33. * needs to be switched to another stable PLL clock temporarily until
  34. * the original PLL becomes stable at target frequency.
  35. */
  36. struct mtk_cpu_dvfs_info {
  37. struct cpumask cpus;
  38. struct device *cpu_dev;
  39. struct device *cci_dev;
  40. struct regulator *proc_reg;
  41. struct regulator *sram_reg;
  42. struct clk *cpu_clk;
  43. struct clk *inter_clk;
  44. struct list_head list_head;
  45. int intermediate_voltage;
  46. bool need_voltage_tracking;
  47. int vproc_on_boot;
  48. int pre_vproc;
  49. /* Avoid race condition for regulators between notify and policy */
  50. struct mutex reg_lock;
  51. struct notifier_block opp_nb;
  52. unsigned int opp_cpu;
  53. unsigned long current_freq;
  54. const struct mtk_cpufreq_platform_data *soc_data;
  55. int vtrack_max;
  56. bool ccifreq_bound;
  57. };
  58. static struct platform_device *cpufreq_pdev;
  59. static LIST_HEAD(dvfs_info_list);
  60. static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
  61. {
  62. struct mtk_cpu_dvfs_info *info;
  63. list_for_each_entry(info, &dvfs_info_list, list_head) {
  64. if (cpumask_test_cpu(cpu, &info->cpus))
  65. return info;
  66. }
  67. return NULL;
  68. }
  69. static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
  70. int new_vproc)
  71. {
  72. const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
  73. struct regulator *proc_reg = info->proc_reg;
  74. struct regulator *sram_reg = info->sram_reg;
  75. int pre_vproc, pre_vsram, new_vsram, vsram, vproc, ret;
  76. int retry = info->vtrack_max;
  77. pre_vproc = regulator_get_voltage(proc_reg);
  78. if (pre_vproc < 0) {
  79. dev_err(info->cpu_dev,
  80. "invalid Vproc value: %d\n", pre_vproc);
  81. return pre_vproc;
  82. }
  83. pre_vsram = regulator_get_voltage(sram_reg);
  84. if (pre_vsram < 0) {
  85. dev_err(info->cpu_dev, "invalid Vsram value: %d\n", pre_vsram);
  86. return pre_vsram;
  87. }
  88. new_vsram = clamp(new_vproc + soc_data->min_volt_shift,
  89. soc_data->sram_min_volt, soc_data->sram_max_volt);
  90. do {
  91. if (pre_vproc <= new_vproc) {
  92. vsram = clamp(pre_vproc + soc_data->max_volt_shift,
  93. soc_data->sram_min_volt, new_vsram);
  94. ret = regulator_set_voltage(sram_reg, vsram,
  95. soc_data->sram_max_volt);
  96. if (ret)
  97. return ret;
  98. if (vsram == soc_data->sram_max_volt ||
  99. new_vsram == soc_data->sram_min_volt)
  100. vproc = new_vproc;
  101. else
  102. vproc = vsram - soc_data->min_volt_shift;
  103. ret = regulator_set_voltage(proc_reg, vproc,
  104. soc_data->proc_max_volt);
  105. if (ret) {
  106. regulator_set_voltage(sram_reg, pre_vsram,
  107. soc_data->sram_max_volt);
  108. return ret;
  109. }
  110. } else if (pre_vproc > new_vproc) {
  111. vproc = max(new_vproc,
  112. pre_vsram - soc_data->max_volt_shift);
  113. ret = regulator_set_voltage(proc_reg, vproc,
  114. soc_data->proc_max_volt);
  115. if (ret)
  116. return ret;
  117. if (vproc == new_vproc)
  118. vsram = new_vsram;
  119. else
  120. vsram = max(new_vsram,
  121. vproc + soc_data->min_volt_shift);
  122. ret = regulator_set_voltage(sram_reg, vsram,
  123. soc_data->sram_max_volt);
  124. if (ret) {
  125. regulator_set_voltage(proc_reg, pre_vproc,
  126. soc_data->proc_max_volt);
  127. return ret;
  128. }
  129. }
  130. pre_vproc = vproc;
  131. pre_vsram = vsram;
  132. if (--retry < 0) {
  133. dev_err(info->cpu_dev,
  134. "over loop count, failed to set voltage\n");
  135. return -EINVAL;
  136. }
  137. } while (vproc != new_vproc || vsram != new_vsram);
  138. return 0;
  139. }
  140. static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
  141. {
  142. const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
  143. int ret;
  144. if (info->need_voltage_tracking)
  145. ret = mtk_cpufreq_voltage_tracking(info, vproc);
  146. else
  147. ret = regulator_set_voltage(info->proc_reg, vproc,
  148. soc_data->proc_max_volt);
  149. if (!ret)
  150. info->pre_vproc = vproc;
  151. return ret;
  152. }
  153. static bool is_ccifreq_ready(struct mtk_cpu_dvfs_info *info)
  154. {
  155. struct device_link *sup_link;
  156. if (info->ccifreq_bound)
  157. return true;
  158. sup_link = device_link_add(info->cpu_dev, info->cci_dev,
  159. DL_FLAG_AUTOREMOVE_CONSUMER);
  160. if (!sup_link) {
  161. dev_err(info->cpu_dev, "cpu%d: sup_link is NULL\n", info->opp_cpu);
  162. return false;
  163. }
  164. if (sup_link->supplier->links.status != DL_DEV_DRIVER_BOUND)
  165. return false;
  166. info->ccifreq_bound = true;
  167. return true;
  168. }
  169. static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
  170. unsigned int index)
  171. {
  172. struct cpufreq_frequency_table *freq_table = policy->freq_table;
  173. struct clk *cpu_clk = policy->clk;
  174. struct clk *armpll = clk_get_parent(cpu_clk);
  175. struct mtk_cpu_dvfs_info *info = policy->driver_data;
  176. struct device *cpu_dev = info->cpu_dev;
  177. struct dev_pm_opp *opp;
  178. long freq_hz, pre_freq_hz;
  179. int vproc, pre_vproc, inter_vproc, target_vproc, ret;
  180. inter_vproc = info->intermediate_voltage;
  181. pre_freq_hz = clk_get_rate(cpu_clk);
  182. mutex_lock(&info->reg_lock);
  183. if (unlikely(info->pre_vproc <= 0))
  184. pre_vproc = regulator_get_voltage(info->proc_reg);
  185. else
  186. pre_vproc = info->pre_vproc;
  187. if (pre_vproc < 0) {
  188. dev_err(cpu_dev, "invalid Vproc value: %d\n", pre_vproc);
  189. ret = pre_vproc;
  190. goto out;
  191. }
  192. freq_hz = freq_table[index].frequency * 1000;
  193. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  194. if (IS_ERR(opp)) {
  195. dev_err(cpu_dev, "cpu%d: failed to find OPP for %ld\n",
  196. policy->cpu, freq_hz);
  197. ret = PTR_ERR(opp);
  198. goto out;
  199. }
  200. vproc = dev_pm_opp_get_voltage(opp);
  201. dev_pm_opp_put(opp);
  202. /*
  203. * If MediaTek cci is supported but is not ready, we will use the value
  204. * of max(target cpu voltage, booting voltage) to prevent high freqeuncy
  205. * low voltage crash.
  206. */
  207. if (info->soc_data->ccifreq_supported && !is_ccifreq_ready(info))
  208. vproc = max(vproc, info->vproc_on_boot);
  209. /*
  210. * If the new voltage or the intermediate voltage is higher than the
  211. * current voltage, scale up voltage first.
  212. */
  213. target_vproc = max(inter_vproc, vproc);
  214. if (pre_vproc <= target_vproc) {
  215. ret = mtk_cpufreq_set_voltage(info, target_vproc);
  216. if (ret) {
  217. dev_err(cpu_dev,
  218. "cpu%d: failed to scale up voltage!\n", policy->cpu);
  219. mtk_cpufreq_set_voltage(info, pre_vproc);
  220. goto out;
  221. }
  222. }
  223. /* Reparent the CPU clock to intermediate clock. */
  224. ret = clk_set_parent(cpu_clk, info->inter_clk);
  225. if (ret) {
  226. dev_err(cpu_dev,
  227. "cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
  228. mtk_cpufreq_set_voltage(info, pre_vproc);
  229. goto out;
  230. }
  231. /* Set the original PLL to target rate. */
  232. ret = clk_set_rate(armpll, freq_hz);
  233. if (ret) {
  234. dev_err(cpu_dev,
  235. "cpu%d: failed to scale cpu clock rate!\n", policy->cpu);
  236. clk_set_parent(cpu_clk, armpll);
  237. mtk_cpufreq_set_voltage(info, pre_vproc);
  238. goto out;
  239. }
  240. /* Set parent of CPU clock back to the original PLL. */
  241. ret = clk_set_parent(cpu_clk, armpll);
  242. if (ret) {
  243. dev_err(cpu_dev,
  244. "cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
  245. mtk_cpufreq_set_voltage(info, inter_vproc);
  246. goto out;
  247. }
  248. /*
  249. * If the new voltage is lower than the intermediate voltage or the
  250. * original voltage, scale down to the new voltage.
  251. */
  252. if (vproc < inter_vproc || vproc < pre_vproc) {
  253. ret = mtk_cpufreq_set_voltage(info, vproc);
  254. if (ret) {
  255. dev_err(cpu_dev,
  256. "cpu%d: failed to scale down voltage!\n", policy->cpu);
  257. clk_set_parent(cpu_clk, info->inter_clk);
  258. clk_set_rate(armpll, pre_freq_hz);
  259. clk_set_parent(cpu_clk, armpll);
  260. goto out;
  261. }
  262. }
  263. info->current_freq = freq_hz;
  264. out:
  265. mutex_unlock(&info->reg_lock);
  266. return ret;
  267. }
  268. static int mtk_cpufreq_opp_notifier(struct notifier_block *nb,
  269. unsigned long event, void *data)
  270. {
  271. struct dev_pm_opp *opp = data;
  272. struct dev_pm_opp *new_opp;
  273. struct mtk_cpu_dvfs_info *info;
  274. unsigned long freq, volt;
  275. struct cpufreq_policy *policy;
  276. int ret = 0;
  277. info = container_of(nb, struct mtk_cpu_dvfs_info, opp_nb);
  278. if (event == OPP_EVENT_ADJUST_VOLTAGE) {
  279. freq = dev_pm_opp_get_freq(opp);
  280. mutex_lock(&info->reg_lock);
  281. if (info->current_freq == freq) {
  282. volt = dev_pm_opp_get_voltage(opp);
  283. ret = mtk_cpufreq_set_voltage(info, volt);
  284. if (ret)
  285. dev_err(info->cpu_dev,
  286. "failed to scale voltage: %d\n", ret);
  287. }
  288. mutex_unlock(&info->reg_lock);
  289. } else if (event == OPP_EVENT_DISABLE) {
  290. freq = dev_pm_opp_get_freq(opp);
  291. /* case of current opp item is disabled */
  292. if (info->current_freq == freq) {
  293. freq = 1;
  294. new_opp = dev_pm_opp_find_freq_ceil(info->cpu_dev,
  295. &freq);
  296. if (IS_ERR(new_opp)) {
  297. dev_err(info->cpu_dev,
  298. "all opp items are disabled\n");
  299. ret = PTR_ERR(new_opp);
  300. return notifier_from_errno(ret);
  301. }
  302. dev_pm_opp_put(new_opp);
  303. policy = cpufreq_cpu_get(info->opp_cpu);
  304. if (policy) {
  305. cpufreq_driver_target(policy, freq / 1000,
  306. CPUFREQ_RELATION_L);
  307. cpufreq_cpu_put(policy);
  308. }
  309. }
  310. }
  311. return notifier_from_errno(ret);
  312. }
  313. static struct device *of_get_cci(struct device *cpu_dev)
  314. {
  315. struct device_node *np;
  316. struct platform_device *pdev;
  317. np = of_parse_phandle(cpu_dev->of_node, "mediatek,cci", 0);
  318. if (!np)
  319. return ERR_PTR(-ENODEV);
  320. pdev = of_find_device_by_node(np);
  321. of_node_put(np);
  322. if (!pdev)
  323. return ERR_PTR(-ENODEV);
  324. return &pdev->dev;
  325. }
  326. static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
  327. {
  328. struct device *cpu_dev;
  329. struct dev_pm_opp *opp;
  330. unsigned long rate;
  331. int ret;
  332. cpu_dev = get_cpu_device(cpu);
  333. if (!cpu_dev)
  334. return dev_err_probe(cpu_dev, -ENODEV, "failed to get cpu%d device\n", cpu);
  335. info->cpu_dev = cpu_dev;
  336. info->ccifreq_bound = false;
  337. if (info->soc_data->ccifreq_supported) {
  338. info->cci_dev = of_get_cci(info->cpu_dev);
  339. if (IS_ERR(info->cci_dev))
  340. return dev_err_probe(cpu_dev, PTR_ERR(info->cci_dev),
  341. "cpu%d: failed to get cci device\n",
  342. cpu);
  343. }
  344. info->cpu_clk = clk_get(cpu_dev, "cpu");
  345. if (IS_ERR(info->cpu_clk))
  346. return dev_err_probe(cpu_dev, PTR_ERR(info->cpu_clk),
  347. "cpu%d: failed to get cpu clk\n", cpu);
  348. info->inter_clk = clk_get(cpu_dev, "intermediate");
  349. if (IS_ERR(info->inter_clk)) {
  350. ret = PTR_ERR(info->inter_clk);
  351. dev_err_probe(cpu_dev, ret,
  352. "cpu%d: failed to get intermediate clk\n", cpu);
  353. goto out_free_mux_clock;
  354. }
  355. info->proc_reg = regulator_get_optional(cpu_dev, "proc");
  356. if (IS_ERR(info->proc_reg)) {
  357. ret = PTR_ERR(info->proc_reg);
  358. dev_err_probe(cpu_dev, ret,
  359. "cpu%d: failed to get proc regulator\n", cpu);
  360. goto out_free_inter_clock;
  361. }
  362. ret = regulator_enable(info->proc_reg);
  363. if (ret) {
  364. dev_err_probe(cpu_dev, ret, "cpu%d: failed to enable vproc\n", cpu);
  365. goto out_free_proc_reg;
  366. }
  367. /* Both presence and absence of sram regulator are valid cases. */
  368. info->sram_reg = regulator_get_optional(cpu_dev, "sram");
  369. if (IS_ERR(info->sram_reg)) {
  370. ret = PTR_ERR(info->sram_reg);
  371. if (ret == -EPROBE_DEFER) {
  372. dev_err_probe(cpu_dev, ret,
  373. "cpu%d: Failed to get sram regulator\n", cpu);
  374. goto out_disable_proc_reg;
  375. }
  376. info->sram_reg = NULL;
  377. } else {
  378. ret = regulator_enable(info->sram_reg);
  379. if (ret) {
  380. dev_err_probe(cpu_dev, ret, "cpu%d: failed to enable vsram\n", cpu);
  381. goto out_free_sram_reg;
  382. }
  383. }
  384. /* Get OPP-sharing information from "operating-points-v2" bindings */
  385. ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
  386. if (ret) {
  387. dev_err_probe(cpu_dev, ret,
  388. "cpu%d: failed to get OPP-sharing information\n", cpu);
  389. goto out_disable_sram_reg;
  390. }
  391. ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
  392. if (ret) {
  393. dev_err_probe(cpu_dev, ret, "cpu%d: no OPP table\n", cpu);
  394. goto out_disable_sram_reg;
  395. }
  396. ret = clk_prepare_enable(info->cpu_clk);
  397. if (ret) {
  398. dev_err_probe(cpu_dev, ret, "cpu%d: failed to enable cpu clk\n", cpu);
  399. goto out_free_opp_table;
  400. }
  401. ret = clk_prepare_enable(info->inter_clk);
  402. if (ret) {
  403. dev_err_probe(cpu_dev, ret, "cpu%d: failed to enable inter clk\n", cpu);
  404. goto out_disable_mux_clock;
  405. }
  406. if (info->soc_data->ccifreq_supported) {
  407. info->vproc_on_boot = regulator_get_voltage(info->proc_reg);
  408. if (info->vproc_on_boot < 0) {
  409. ret = dev_err_probe(info->cpu_dev, info->vproc_on_boot,
  410. "invalid Vproc value\n");
  411. goto out_disable_inter_clock;
  412. }
  413. }
  414. /* Search a safe voltage for intermediate frequency. */
  415. rate = clk_get_rate(info->inter_clk);
  416. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
  417. if (IS_ERR(opp)) {
  418. ret = dev_err_probe(cpu_dev, PTR_ERR(opp),
  419. "cpu%d: failed to get intermediate opp\n", cpu);
  420. goto out_disable_inter_clock;
  421. }
  422. info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
  423. dev_pm_opp_put(opp);
  424. mutex_init(&info->reg_lock);
  425. info->current_freq = clk_get_rate(info->cpu_clk);
  426. info->opp_cpu = cpu;
  427. info->opp_nb.notifier_call = mtk_cpufreq_opp_notifier;
  428. ret = dev_pm_opp_register_notifier(cpu_dev, &info->opp_nb);
  429. if (ret) {
  430. dev_err_probe(cpu_dev, ret, "cpu%d: failed to register opp notifier\n", cpu);
  431. goto out_disable_inter_clock;
  432. }
  433. /*
  434. * If SRAM regulator is present, software "voltage tracking" is needed
  435. * for this CPU power domain.
  436. */
  437. info->need_voltage_tracking = (info->sram_reg != NULL);
  438. /*
  439. * We assume min voltage is 0 and tracking target voltage using
  440. * min_volt_shift for each iteration.
  441. * The vtrack_max is 3 times of expeted iteration count.
  442. */
  443. info->vtrack_max = 3 * DIV_ROUND_UP(max(info->soc_data->sram_max_volt,
  444. info->soc_data->proc_max_volt),
  445. info->soc_data->min_volt_shift);
  446. return 0;
  447. out_disable_inter_clock:
  448. clk_disable_unprepare(info->inter_clk);
  449. out_disable_mux_clock:
  450. clk_disable_unprepare(info->cpu_clk);
  451. out_free_opp_table:
  452. dev_pm_opp_of_cpumask_remove_table(&info->cpus);
  453. out_disable_sram_reg:
  454. if (info->sram_reg)
  455. regulator_disable(info->sram_reg);
  456. out_free_sram_reg:
  457. if (info->sram_reg)
  458. regulator_put(info->sram_reg);
  459. out_disable_proc_reg:
  460. regulator_disable(info->proc_reg);
  461. out_free_proc_reg:
  462. regulator_put(info->proc_reg);
  463. out_free_inter_clock:
  464. clk_put(info->inter_clk);
  465. out_free_mux_clock:
  466. clk_put(info->cpu_clk);
  467. return ret;
  468. }
  469. static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
  470. {
  471. regulator_disable(info->proc_reg);
  472. regulator_put(info->proc_reg);
  473. if (info->sram_reg) {
  474. regulator_disable(info->sram_reg);
  475. regulator_put(info->sram_reg);
  476. }
  477. clk_disable_unprepare(info->cpu_clk);
  478. clk_put(info->cpu_clk);
  479. clk_disable_unprepare(info->inter_clk);
  480. clk_put(info->inter_clk);
  481. dev_pm_opp_of_cpumask_remove_table(&info->cpus);
  482. dev_pm_opp_unregister_notifier(info->cpu_dev, &info->opp_nb);
  483. }
  484. static int mtk_cpufreq_init(struct cpufreq_policy *policy)
  485. {
  486. struct mtk_cpu_dvfs_info *info;
  487. struct cpufreq_frequency_table *freq_table;
  488. int ret;
  489. info = mtk_cpu_dvfs_info_lookup(policy->cpu);
  490. if (!info) {
  491. pr_err("dvfs info for cpu%d is not initialized.\n",
  492. policy->cpu);
  493. return -EINVAL;
  494. }
  495. ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
  496. if (ret) {
  497. dev_err(info->cpu_dev,
  498. "failed to init cpufreq table for cpu%d: %d\n",
  499. policy->cpu, ret);
  500. return ret;
  501. }
  502. cpumask_copy(policy->cpus, &info->cpus);
  503. policy->freq_table = freq_table;
  504. policy->driver_data = info;
  505. policy->clk = info->cpu_clk;
  506. return 0;
  507. }
  508. static void mtk_cpufreq_exit(struct cpufreq_policy *policy)
  509. {
  510. struct mtk_cpu_dvfs_info *info = policy->driver_data;
  511. dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
  512. }
  513. static struct cpufreq_driver mtk_cpufreq_driver = {
  514. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
  515. CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
  516. CPUFREQ_IS_COOLING_DEV,
  517. .verify = cpufreq_generic_frequency_table_verify,
  518. .target_index = mtk_cpufreq_set_target,
  519. .get = cpufreq_generic_get,
  520. .init = mtk_cpufreq_init,
  521. .exit = mtk_cpufreq_exit,
  522. .register_em = cpufreq_register_em_with_opp,
  523. .name = "mtk-cpufreq",
  524. .attr = cpufreq_generic_attr,
  525. };
  526. static int mtk_cpufreq_probe(struct platform_device *pdev)
  527. {
  528. const struct mtk_cpufreq_platform_data *data;
  529. struct mtk_cpu_dvfs_info *info, *tmp;
  530. int cpu, ret;
  531. data = dev_get_platdata(&pdev->dev);
  532. if (!data)
  533. return dev_err_probe(&pdev->dev, -ENODEV,
  534. "failed to get mtk cpufreq platform data\n");
  535. for_each_possible_cpu(cpu) {
  536. info = mtk_cpu_dvfs_info_lookup(cpu);
  537. if (info)
  538. continue;
  539. info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
  540. if (!info) {
  541. ret = dev_err_probe(&pdev->dev, -ENOMEM,
  542. "Failed to allocate dvfs_info\n");
  543. goto release_dvfs_info_list;
  544. }
  545. info->soc_data = data;
  546. ret = mtk_cpu_dvfs_info_init(info, cpu);
  547. if (ret)
  548. goto release_dvfs_info_list;
  549. list_add(&info->list_head, &dvfs_info_list);
  550. }
  551. ret = cpufreq_register_driver(&mtk_cpufreq_driver);
  552. if (ret) {
  553. dev_err_probe(&pdev->dev, ret, "failed to register mtk cpufreq driver\n");
  554. goto release_dvfs_info_list;
  555. }
  556. return 0;
  557. release_dvfs_info_list:
  558. list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
  559. mtk_cpu_dvfs_info_release(info);
  560. list_del(&info->list_head);
  561. }
  562. return ret;
  563. }
  564. static struct platform_driver mtk_cpufreq_platdrv = {
  565. .driver = {
  566. .name = "mtk-cpufreq",
  567. },
  568. .probe = mtk_cpufreq_probe,
  569. };
  570. static const struct mtk_cpufreq_platform_data mt2701_platform_data = {
  571. .min_volt_shift = 100000,
  572. .max_volt_shift = 200000,
  573. .proc_max_volt = 1150000,
  574. .sram_min_volt = 0,
  575. .sram_max_volt = 1150000,
  576. .ccifreq_supported = false,
  577. };
  578. static const struct mtk_cpufreq_platform_data mt7622_platform_data = {
  579. .min_volt_shift = 100000,
  580. .max_volt_shift = 200000,
  581. .proc_max_volt = 1350000,
  582. .sram_min_volt = 0,
  583. .sram_max_volt = 1350000,
  584. .ccifreq_supported = false,
  585. };
  586. static const struct mtk_cpufreq_platform_data mt7623_platform_data = {
  587. .min_volt_shift = 100000,
  588. .max_volt_shift = 200000,
  589. .proc_max_volt = 1300000,
  590. .ccifreq_supported = false,
  591. };
  592. static const struct mtk_cpufreq_platform_data mt7988_platform_data = {
  593. .min_volt_shift = 100000,
  594. .max_volt_shift = 200000,
  595. .proc_max_volt = 900000,
  596. .sram_min_volt = 0,
  597. .sram_max_volt = 1150000,
  598. .ccifreq_supported = true,
  599. };
  600. static const struct mtk_cpufreq_platform_data mt8183_platform_data = {
  601. .min_volt_shift = 100000,
  602. .max_volt_shift = 200000,
  603. .proc_max_volt = 1150000,
  604. .sram_min_volt = 0,
  605. .sram_max_volt = 1150000,
  606. .ccifreq_supported = true,
  607. };
  608. static const struct mtk_cpufreq_platform_data mt8186_platform_data = {
  609. .min_volt_shift = 100000,
  610. .max_volt_shift = 250000,
  611. .proc_max_volt = 1118750,
  612. .sram_min_volt = 850000,
  613. .sram_max_volt = 1118750,
  614. .ccifreq_supported = true,
  615. };
  616. static const struct mtk_cpufreq_platform_data mt8516_platform_data = {
  617. .min_volt_shift = 100000,
  618. .max_volt_shift = 200000,
  619. .proc_max_volt = 1310000,
  620. .sram_min_volt = 0,
  621. .sram_max_volt = 1310000,
  622. .ccifreq_supported = false,
  623. };
  624. /* List of machines supported by this driver */
  625. static const struct of_device_id mtk_cpufreq_machines[] __initconst __maybe_unused = {
  626. { .compatible = "mediatek,mt2701", .data = &mt2701_platform_data },
  627. { .compatible = "mediatek,mt2712", .data = &mt2701_platform_data },
  628. { .compatible = "mediatek,mt7622", .data = &mt7622_platform_data },
  629. { .compatible = "mediatek,mt7623", .data = &mt7623_platform_data },
  630. { .compatible = "mediatek,mt7988a", .data = &mt7988_platform_data },
  631. { .compatible = "mediatek,mt8167", .data = &mt8516_platform_data },
  632. { .compatible = "mediatek,mt817x", .data = &mt2701_platform_data },
  633. { .compatible = "mediatek,mt8173", .data = &mt2701_platform_data },
  634. { .compatible = "mediatek,mt8176", .data = &mt2701_platform_data },
  635. { .compatible = "mediatek,mt8183", .data = &mt8183_platform_data },
  636. { .compatible = "mediatek,mt8186", .data = &mt8186_platform_data },
  637. { .compatible = "mediatek,mt8365", .data = &mt2701_platform_data },
  638. { .compatible = "mediatek,mt8516", .data = &mt8516_platform_data },
  639. { }
  640. };
  641. MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
  642. static int __init mtk_cpufreq_driver_init(void)
  643. {
  644. struct device_node *np;
  645. const struct of_device_id *match;
  646. const struct mtk_cpufreq_platform_data *data;
  647. int err;
  648. np = of_find_node_by_path("/");
  649. if (!np)
  650. return -ENODEV;
  651. match = of_match_node(mtk_cpufreq_machines, np);
  652. of_node_put(np);
  653. if (!match) {
  654. pr_debug("Machine is not compatible with mtk-cpufreq\n");
  655. return -ENODEV;
  656. }
  657. data = match->data;
  658. err = platform_driver_register(&mtk_cpufreq_platdrv);
  659. if (err)
  660. return err;
  661. /*
  662. * Since there's no place to hold device registration code and no
  663. * device tree based way to match cpufreq driver yet, both the driver
  664. * and the device registration codes are put here to handle defer
  665. * probing.
  666. */
  667. cpufreq_pdev = platform_device_register_data(NULL, "mtk-cpufreq", -1,
  668. data, sizeof(*data));
  669. if (IS_ERR(cpufreq_pdev)) {
  670. pr_err("failed to register mtk-cpufreq platform device\n");
  671. platform_driver_unregister(&mtk_cpufreq_platdrv);
  672. return PTR_ERR(cpufreq_pdev);
  673. }
  674. return 0;
  675. }
  676. module_init(mtk_cpufreq_driver_init)
  677. static void __exit mtk_cpufreq_driver_exit(void)
  678. {
  679. platform_device_unregister(cpufreq_pdev);
  680. platform_driver_unregister(&mtk_cpufreq_platdrv);
  681. }
  682. module_exit(mtk_cpufreq_driver_exit)
  683. MODULE_DESCRIPTION("MediaTek CPUFreq driver");
  684. MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
  685. MODULE_LICENSE("GPL v2");