tegra194-cpufreq.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
  4. */
  5. #include <linux/cpu.h>
  6. #include <linux/cpufreq.h>
  7. #include <linux/dma-mapping.h>
  8. #include <linux/module.h>
  9. #include <linux/of.h>
  10. #include <linux/of_platform.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/slab.h>
  13. #include <linux/units.h>
  14. #include <asm/smp_plat.h>
  15. #include <soc/tegra/bpmp.h>
  16. #include <soc/tegra/bpmp-abi.h>
  17. #define KHZ 1000
  18. #define REF_CLK_MHZ 408 /* 408 MHz */
  19. #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
  20. #define MAX_CNT ~0U
  21. #define MAX_DELTA_KHZ 115200
  22. #define NDIV_MASK 0x1FF
  23. #define CORE_OFFSET(cpu) (cpu * 8)
  24. #define CMU_CLKS_BASE 0x2000
  25. #define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
  26. #define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000))
  27. #define CLUSTER_ACTMON_BASE(data, cl) \
  28. (data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
  29. #define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
  30. /* cpufreq transisition latency */
  31. #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
  32. struct tegra_cpu_data {
  33. u32 cpuid;
  34. u32 clusterid;
  35. void __iomem *freq_core_reg;
  36. };
  37. struct tegra_cpu_ctr {
  38. u32 cpu;
  39. u32 coreclk_cnt, last_coreclk_cnt;
  40. u32 refclk_cnt, last_refclk_cnt;
  41. };
  42. struct read_counters_work {
  43. struct work_struct work;
  44. struct tegra_cpu_ctr c;
  45. };
  46. struct tegra_cpufreq_ops {
  47. void (*read_counters)(struct tegra_cpu_ctr *c);
  48. void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
  49. void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
  50. int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
  51. };
  52. struct tegra_cpufreq_soc {
  53. struct tegra_cpufreq_ops *ops;
  54. int maxcpus_per_cluster;
  55. unsigned int num_clusters;
  56. phys_addr_t actmon_cntr_base;
  57. u32 refclk_delta_min;
  58. };
  59. struct tegra194_cpufreq_data {
  60. void __iomem *regs;
  61. struct cpufreq_frequency_table **bpmp_luts;
  62. const struct tegra_cpufreq_soc *soc;
  63. bool icc_dram_bw_scaling;
  64. struct tegra_cpu_data *cpu_data;
  65. };
  66. static struct workqueue_struct *read_counters_wq;
  67. static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz)
  68. {
  69. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  70. struct dev_pm_opp *opp;
  71. struct device *dev;
  72. int ret;
  73. dev = get_cpu_device(policy->cpu);
  74. if (!dev)
  75. return -ENODEV;
  76. opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true);
  77. if (IS_ERR(opp))
  78. return PTR_ERR(opp);
  79. ret = dev_pm_opp_set_opp(dev, opp);
  80. if (ret)
  81. data->icc_dram_bw_scaling = false;
  82. dev_pm_opp_put(opp);
  83. return ret;
  84. }
  85. static void tegra_get_cpu_mpidr(void *mpidr)
  86. {
  87. *((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  88. }
  89. static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
  90. {
  91. u64 mpidr;
  92. smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
  93. if (cpuid)
  94. *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  95. if (clusterid)
  96. *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
  97. }
  98. static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
  99. {
  100. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  101. *ndiv = readl(data->cpu_data[cpu].freq_core_reg) & NDIV_MASK;
  102. return 0;
  103. }
  104. static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
  105. {
  106. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  107. u32 cpu;
  108. for_each_cpu(cpu, policy->cpus)
  109. writel(ndiv, data->cpu_data[cpu].freq_core_reg);
  110. }
  111. /*
  112. * This register provides access to two counter values with a single
  113. * 64-bit read. The counter values are used to determine the average
  114. * actual frequency a core has run at over a period of time.
  115. * [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
  116. * [31:0] Core clock counter: Counts on every core clock cycle
  117. */
  118. static void tegra234_read_counters(struct tegra_cpu_ctr *c)
  119. {
  120. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  121. void __iomem *actmon_reg;
  122. u32 delta_refcnt;
  123. int cnt = 0;
  124. u64 val;
  125. actmon_reg = CORE_ACTMON_CNTR_REG(data, data->cpu_data[c->cpu].clusterid,
  126. data->cpu_data[c->cpu].cpuid);
  127. val = readq(actmon_reg);
  128. c->last_refclk_cnt = upper_32_bits(val);
  129. c->last_coreclk_cnt = lower_32_bits(val);
  130. /*
  131. * The sampling window is based on the minimum number of reference
  132. * clock cycles which is known to give a stable value of CPU frequency.
  133. */
  134. do {
  135. val = readq(actmon_reg);
  136. c->refclk_cnt = upper_32_bits(val);
  137. c->coreclk_cnt = lower_32_bits(val);
  138. if (c->refclk_cnt < c->last_refclk_cnt)
  139. delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
  140. else
  141. delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
  142. if (++cnt >= 0xFFFF) {
  143. pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
  144. c->cpu, delta_refcnt, cnt);
  145. break;
  146. }
  147. } while (delta_refcnt < data->soc->refclk_delta_min);
  148. }
  149. static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
  150. .read_counters = tegra234_read_counters,
  151. .get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
  152. .get_cpu_ndiv = tegra234_get_cpu_ndiv,
  153. .set_cpu_ndiv = tegra234_set_cpu_ndiv,
  154. };
  155. static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
  156. .ops = &tegra234_cpufreq_ops,
  157. .actmon_cntr_base = 0x9000,
  158. .maxcpus_per_cluster = 4,
  159. .num_clusters = 3,
  160. .refclk_delta_min = 16000,
  161. };
  162. static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = {
  163. .ops = &tegra234_cpufreq_ops,
  164. .actmon_cntr_base = 0x4000,
  165. .maxcpus_per_cluster = 8,
  166. .num_clusters = 1,
  167. .refclk_delta_min = 16000,
  168. };
  169. static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
  170. {
  171. u64 mpidr;
  172. smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
  173. if (cpuid)
  174. *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  175. if (clusterid)
  176. *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  177. }
  178. /*
  179. * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
  180. * The register provides frequency feedback information to
  181. * determine the average actual frequency a core has run at over
  182. * a period of time.
  183. * [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
  184. * [63:32] Core clock counter: counts on every core clock cycle
  185. * where the core is architecturally clocking
  186. */
  187. static u64 read_freq_feedback(void)
  188. {
  189. u64 val = 0;
  190. asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
  191. return val;
  192. }
  193. static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
  194. *nltbl, u16 ndiv)
  195. {
  196. return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
  197. }
  198. static void tegra194_read_counters(struct tegra_cpu_ctr *c)
  199. {
  200. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  201. u32 delta_refcnt;
  202. int cnt = 0;
  203. u64 val;
  204. val = read_freq_feedback();
  205. c->last_refclk_cnt = lower_32_bits(val);
  206. c->last_coreclk_cnt = upper_32_bits(val);
  207. /*
  208. * The sampling window is based on the minimum number of reference
  209. * clock cycles which is known to give a stable value of CPU frequency.
  210. */
  211. do {
  212. val = read_freq_feedback();
  213. c->refclk_cnt = lower_32_bits(val);
  214. c->coreclk_cnt = upper_32_bits(val);
  215. if (c->refclk_cnt < c->last_refclk_cnt)
  216. delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
  217. else
  218. delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
  219. if (++cnt >= 0xFFFF) {
  220. pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
  221. c->cpu, delta_refcnt, cnt);
  222. break;
  223. }
  224. } while (delta_refcnt < data->soc->refclk_delta_min);
  225. }
  226. static void tegra_read_counters(struct work_struct *work)
  227. {
  228. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  229. struct read_counters_work *read_counters_work;
  230. struct tegra_cpu_ctr *c;
  231. /*
  232. * ref_clk_counter(32 bit counter) runs on constant clk,
  233. * pll_p(408MHz).
  234. * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
  235. * = 10526880 usec = 10.527 sec to overflow
  236. *
  237. * Like wise core_clk_counter(32 bit counter) runs on core clock.
  238. * It's synchronized to crab_clk (cpu_crab_clk) which runs at
  239. * freq of cluster. Assuming max cluster clock ~2000MHz,
  240. * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
  241. * = ~2.147 sec to overflow
  242. */
  243. read_counters_work = container_of(work, struct read_counters_work,
  244. work);
  245. c = &read_counters_work->c;
  246. data->soc->ops->read_counters(c);
  247. }
  248. /*
  249. * Return instantaneous cpu speed
  250. * Instantaneous freq is calculated as -
  251. * -Takes sample on every query of getting the freq.
  252. * - Read core and ref clock counters;
  253. * - Delay for X us
  254. * - Read above cycle counters again
  255. * - Calculates freq by subtracting current and previous counters
  256. * divided by the delay time or eqv. of ref_clk_counter in delta time
  257. * - Return Kcycles/second, freq in KHz
  258. *
  259. * delta time period = x sec
  260. * = delta ref_clk_counter / (408 * 10^6) sec
  261. * freq in Hz = cycles/sec
  262. * = (delta cycles / x sec
  263. * = (delta cycles * 408 * 10^6) / delta ref_clk_counter
  264. * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
  265. *
  266. * @cpu - logical cpu whose freq to be updated
  267. * Returns freq in KHz on success, 0 if cpu is offline
  268. */
  269. static unsigned int tegra194_calculate_speed(u32 cpu)
  270. {
  271. struct read_counters_work read_counters_work;
  272. struct tegra_cpu_ctr c;
  273. u32 delta_refcnt;
  274. u32 delta_ccnt;
  275. u32 rate_mhz;
  276. /*
  277. * Reconstruct cpu frequency over an observation/sampling window.
  278. * Using workqueue to keep interrupts enabled during the interval.
  279. */
  280. read_counters_work.c.cpu = cpu;
  281. INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
  282. queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
  283. flush_work(&read_counters_work.work);
  284. c = read_counters_work.c;
  285. if (c.coreclk_cnt < c.last_coreclk_cnt)
  286. delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
  287. else
  288. delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
  289. if (!delta_ccnt)
  290. return 0;
  291. /* ref clock is 32 bits */
  292. if (c.refclk_cnt < c.last_refclk_cnt)
  293. delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
  294. else
  295. delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
  296. if (!delta_refcnt) {
  297. pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
  298. return 0;
  299. }
  300. rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
  301. return (rate_mhz * KHZ); /* in KHz */
  302. }
  303. static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
  304. {
  305. u64 ndiv_val;
  306. asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
  307. *(u64 *)ndiv = ndiv_val;
  308. }
  309. static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
  310. {
  311. return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
  312. }
  313. static void tegra194_set_cpu_ndiv_sysreg(void *data)
  314. {
  315. u64 ndiv_val = *(u64 *)data;
  316. asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
  317. }
  318. static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
  319. {
  320. on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
  321. }
  322. static unsigned int tegra194_get_speed(u32 cpu)
  323. {
  324. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  325. u32 clusterid = data->cpu_data[cpu].clusterid;
  326. struct cpufreq_frequency_table *pos;
  327. unsigned int rate;
  328. u64 ndiv;
  329. int ret;
  330. /* reconstruct actual cpu freq using counters */
  331. rate = tegra194_calculate_speed(cpu);
  332. /* get last written ndiv value */
  333. ret = data->soc->ops->get_cpu_ndiv(cpu, data->cpu_data[cpu].cpuid, clusterid, &ndiv);
  334. if (WARN_ON_ONCE(ret))
  335. return rate;
  336. /*
  337. * If the reconstructed frequency has acceptable delta from
  338. * the last written value, then return freq corresponding
  339. * to the last written ndiv value from freq_table. This is
  340. * done to return consistent value.
  341. */
  342. cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) {
  343. if (pos->driver_data != ndiv)
  344. continue;
  345. if (abs(pos->frequency - rate) > MAX_DELTA_KHZ) {
  346. pr_warn("cpufreq: cpu%d,cur:%u,set:%u,delta:%d,set ndiv:%llu\n",
  347. cpu, rate, pos->frequency, abs(rate - pos->frequency), ndiv);
  348. } else {
  349. rate = pos->frequency;
  350. }
  351. break;
  352. }
  353. return rate;
  354. }
  355. static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy,
  356. struct cpufreq_frequency_table *bpmp_lut,
  357. struct cpufreq_frequency_table **opp_table)
  358. {
  359. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  360. struct cpufreq_frequency_table *freq_table = NULL;
  361. struct cpufreq_frequency_table *pos;
  362. struct device *cpu_dev;
  363. struct dev_pm_opp *opp;
  364. unsigned long rate;
  365. int ret, max_opps;
  366. int j = 0;
  367. cpu_dev = get_cpu_device(policy->cpu);
  368. if (!cpu_dev) {
  369. pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu);
  370. return -ENODEV;
  371. }
  372. /* Initialize OPP table mentioned in operating-points-v2 property in DT */
  373. ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0);
  374. if (!ret) {
  375. max_opps = dev_pm_opp_get_opp_count(cpu_dev);
  376. if (max_opps <= 0) {
  377. dev_err(cpu_dev, "Failed to add OPPs\n");
  378. return max_opps;
  379. }
  380. /* Disable all opps and cross-validate against LUT later */
  381. for (rate = 0; ; rate++) {
  382. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
  383. if (IS_ERR(opp))
  384. break;
  385. dev_pm_opp_put(opp);
  386. dev_pm_opp_disable(cpu_dev, rate);
  387. }
  388. } else {
  389. dev_err(cpu_dev, "Invalid or empty opp table in device tree\n");
  390. data->icc_dram_bw_scaling = false;
  391. return ret;
  392. }
  393. freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL);
  394. if (!freq_table)
  395. return -ENOMEM;
  396. /*
  397. * Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT.
  398. * Enable only those DT OPP's which are present in LUT also.
  399. */
  400. cpufreq_for_each_valid_entry(pos, bpmp_lut) {
  401. opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false);
  402. if (IS_ERR(opp))
  403. continue;
  404. dev_pm_opp_put(opp);
  405. ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ);
  406. if (ret < 0)
  407. return ret;
  408. freq_table[j].driver_data = pos->driver_data;
  409. freq_table[j].frequency = pos->frequency;
  410. j++;
  411. }
  412. freq_table[j].driver_data = pos->driver_data;
  413. freq_table[j].frequency = CPUFREQ_TABLE_END;
  414. *opp_table = &freq_table[0];
  415. dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
  416. return ret;
  417. }
  418. static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
  419. {
  420. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  421. int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
  422. u32 clusterid = data->cpu_data[policy->cpu].clusterid;
  423. struct cpufreq_frequency_table *freq_table;
  424. struct cpufreq_frequency_table *bpmp_lut;
  425. u32 start_cpu, cpu;
  426. int ret;
  427. if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid])
  428. return -EINVAL;
  429. start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
  430. /* set same policy for all cpus in a cluster */
  431. for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
  432. if (cpu_possible(cpu))
  433. cpumask_set_cpu(cpu, policy->cpus);
  434. }
  435. policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
  436. bpmp_lut = data->bpmp_luts[clusterid];
  437. if (data->icc_dram_bw_scaling) {
  438. ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table);
  439. if (!ret) {
  440. policy->freq_table = freq_table;
  441. return 0;
  442. }
  443. }
  444. data->icc_dram_bw_scaling = false;
  445. policy->freq_table = bpmp_lut;
  446. pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n");
  447. return 0;
  448. }
  449. static int tegra194_cpufreq_online(struct cpufreq_policy *policy)
  450. {
  451. /* We did light-weight tear down earlier, nothing to do here */
  452. return 0;
  453. }
  454. static int tegra194_cpufreq_offline(struct cpufreq_policy *policy)
  455. {
  456. /*
  457. * Preserve policy->driver_data and don't free resources on light-weight
  458. * tear down.
  459. */
  460. return 0;
  461. }
  462. static void tegra194_cpufreq_exit(struct cpufreq_policy *policy)
  463. {
  464. struct device *cpu_dev = get_cpu_device(policy->cpu);
  465. dev_pm_opp_remove_all_dynamic(cpu_dev);
  466. dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
  467. }
  468. static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
  469. unsigned int index)
  470. {
  471. struct cpufreq_frequency_table *tbl = policy->freq_table + index;
  472. struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
  473. /*
  474. * Each core writes frequency in per core register. Then both cores
  475. * in a cluster run at same frequency which is the maximum frequency
  476. * request out of the values requested by both cores in that cluster.
  477. */
  478. data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
  479. if (data->icc_dram_bw_scaling)
  480. tegra_cpufreq_set_bw(policy, tbl->frequency);
  481. return 0;
  482. }
  483. static struct cpufreq_driver tegra194_cpufreq_driver = {
  484. .name = "tegra194",
  485. .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
  486. CPUFREQ_IS_COOLING_DEV,
  487. .verify = cpufreq_generic_frequency_table_verify,
  488. .target_index = tegra194_cpufreq_set_target,
  489. .get = tegra194_get_speed,
  490. .init = tegra194_cpufreq_init,
  491. .exit = tegra194_cpufreq_exit,
  492. .online = tegra194_cpufreq_online,
  493. .offline = tegra194_cpufreq_offline,
  494. .attr = cpufreq_generic_attr,
  495. };
  496. static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
  497. .read_counters = tegra194_read_counters,
  498. .get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
  499. .get_cpu_ndiv = tegra194_get_cpu_ndiv,
  500. .set_cpu_ndiv = tegra194_set_cpu_ndiv,
  501. };
  502. static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
  503. .ops = &tegra194_cpufreq_ops,
  504. .maxcpus_per_cluster = 2,
  505. .num_clusters = 4,
  506. .refclk_delta_min = 16000,
  507. };
  508. static void tegra194_cpufreq_free_resources(void)
  509. {
  510. destroy_workqueue(read_counters_wq);
  511. }
  512. static struct cpufreq_frequency_table *
  513. tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp,
  514. unsigned int cluster_id)
  515. {
  516. struct cpufreq_frequency_table *freq_table;
  517. struct mrq_cpu_ndiv_limits_response resp;
  518. unsigned int num_freqs, ndiv, delta_ndiv;
  519. struct mrq_cpu_ndiv_limits_request req;
  520. struct tegra_bpmp_message msg;
  521. u16 freq_table_step_size;
  522. int err, index;
  523. memset(&req, 0, sizeof(req));
  524. req.cluster_id = cluster_id;
  525. memset(&msg, 0, sizeof(msg));
  526. msg.mrq = MRQ_CPU_NDIV_LIMITS;
  527. msg.tx.data = &req;
  528. msg.tx.size = sizeof(req);
  529. msg.rx.data = &resp;
  530. msg.rx.size = sizeof(resp);
  531. err = tegra_bpmp_transfer(bpmp, &msg);
  532. if (err)
  533. return ERR_PTR(err);
  534. if (msg.rx.ret == -BPMP_EINVAL) {
  535. /* Cluster not available */
  536. return NULL;
  537. }
  538. if (msg.rx.ret)
  539. return ERR_PTR(-EINVAL);
  540. /*
  541. * Make sure frequency table step is a multiple of mdiv to match
  542. * vhint table granularity.
  543. */
  544. freq_table_step_size = resp.mdiv *
  545. DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
  546. dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
  547. cluster_id, freq_table_step_size);
  548. delta_ndiv = resp.ndiv_max - resp.ndiv_min;
  549. if (unlikely(delta_ndiv == 0)) {
  550. num_freqs = 1;
  551. } else {
  552. /* We store both ndiv_min and ndiv_max hence the +1 */
  553. num_freqs = delta_ndiv / freq_table_step_size + 1;
  554. }
  555. num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
  556. freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
  557. sizeof(*freq_table), GFP_KERNEL);
  558. if (!freq_table)
  559. return ERR_PTR(-ENOMEM);
  560. for (index = 0, ndiv = resp.ndiv_min;
  561. ndiv < resp.ndiv_max;
  562. index++, ndiv += freq_table_step_size) {
  563. freq_table[index].driver_data = ndiv;
  564. freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
  565. }
  566. freq_table[index].driver_data = resp.ndiv_max;
  567. freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
  568. freq_table[index].frequency = CPUFREQ_TABLE_END;
  569. return freq_table;
  570. }
  571. static int tegra194_cpufreq_store_physids(unsigned int cpu, struct tegra194_cpufreq_data *data)
  572. {
  573. int num_cpus = data->soc->maxcpus_per_cluster * data->soc->num_clusters;
  574. u32 cpuid, clusterid;
  575. u64 mpidr_id;
  576. if (cpu > (num_cpus - 1)) {
  577. pr_err("cpufreq: wrong num of cpus or clusters in soc data\n");
  578. return -EINVAL;
  579. }
  580. data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
  581. mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
  582. data->cpu_data[cpu].cpuid = cpuid;
  583. data->cpu_data[cpu].clusterid = clusterid;
  584. data->cpu_data[cpu].freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
  585. return 0;
  586. }
  587. static int tegra194_cpufreq_probe(struct platform_device *pdev)
  588. {
  589. const struct tegra_cpufreq_soc *soc;
  590. struct tegra194_cpufreq_data *data;
  591. struct tegra_bpmp *bpmp;
  592. struct device *cpu_dev;
  593. int err, i;
  594. u32 cpu;
  595. data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
  596. if (!data)
  597. return -ENOMEM;
  598. soc = of_device_get_match_data(&pdev->dev);
  599. if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters && soc->refclk_delta_min) {
  600. data->soc = soc;
  601. } else {
  602. dev_err(&pdev->dev, "soc data missing\n");
  603. return -EINVAL;
  604. }
  605. data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters,
  606. sizeof(*data->bpmp_luts), GFP_KERNEL);
  607. if (!data->bpmp_luts)
  608. return -ENOMEM;
  609. if (soc->actmon_cntr_base) {
  610. /* mmio registers are used for frequency request and re-construction */
  611. data->regs = devm_platform_ioremap_resource(pdev, 0);
  612. if (IS_ERR(data->regs))
  613. return PTR_ERR(data->regs);
  614. }
  615. data->cpu_data = devm_kcalloc(&pdev->dev, data->soc->num_clusters *
  616. data->soc->maxcpus_per_cluster,
  617. sizeof(*data->cpu_data), GFP_KERNEL);
  618. if (!data->cpu_data)
  619. return -ENOMEM;
  620. platform_set_drvdata(pdev, data);
  621. bpmp = tegra_bpmp_get(&pdev->dev);
  622. if (IS_ERR(bpmp))
  623. return PTR_ERR(bpmp);
  624. read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
  625. if (!read_counters_wq) {
  626. dev_err(&pdev->dev, "fail to create_workqueue\n");
  627. err = -EINVAL;
  628. goto put_bpmp;
  629. }
  630. for (i = 0; i < data->soc->num_clusters; i++) {
  631. data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i);
  632. if (IS_ERR(data->bpmp_luts[i])) {
  633. err = PTR_ERR(data->bpmp_luts[i]);
  634. goto err_free_res;
  635. }
  636. }
  637. for_each_possible_cpu(cpu) {
  638. err = tegra194_cpufreq_store_physids(cpu, data);
  639. if (err)
  640. goto err_free_res;
  641. }
  642. tegra194_cpufreq_driver.driver_data = data;
  643. /* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */
  644. cpu_dev = get_cpu_device(0);
  645. if (!cpu_dev) {
  646. err = -EPROBE_DEFER;
  647. goto err_free_res;
  648. }
  649. if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) {
  650. err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
  651. if (!err)
  652. data->icc_dram_bw_scaling = true;
  653. }
  654. err = cpufreq_register_driver(&tegra194_cpufreq_driver);
  655. if (!err)
  656. goto put_bpmp;
  657. err_free_res:
  658. tegra194_cpufreq_free_resources();
  659. put_bpmp:
  660. tegra_bpmp_put(bpmp);
  661. return err;
  662. }
  663. static void tegra194_cpufreq_remove(struct platform_device *pdev)
  664. {
  665. cpufreq_unregister_driver(&tegra194_cpufreq_driver);
  666. tegra194_cpufreq_free_resources();
  667. }
  668. static const struct of_device_id tegra194_cpufreq_of_match[] = {
  669. { .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
  670. { .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
  671. { .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc },
  672. { /* sentinel */ }
  673. };
  674. MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
  675. static struct platform_driver tegra194_ccplex_driver = {
  676. .driver = {
  677. .name = "tegra194-cpufreq",
  678. .of_match_table = tegra194_cpufreq_of_match,
  679. },
  680. .probe = tegra194_cpufreq_probe,
  681. .remove_new = tegra194_cpufreq_remove,
  682. };
  683. module_platform_driver(tegra194_ccplex_driver);
  684. MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
  685. MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
  686. MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
  687. MODULE_LICENSE("GPL v2");