omap-aes-gcm.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Cryptographic API.
  4. *
  5. * Support for OMAP AES GCM HW acceleration.
  6. *
  7. * Copyright (c) 2016 Texas Instruments Incorporated
  8. */
  9. #include <crypto/aes.h>
  10. #include <crypto/engine.h>
  11. #include <crypto/gcm.h>
  12. #include <crypto/internal/aead.h>
  13. #include <crypto/scatterwalk.h>
  14. #include <crypto/skcipher.h>
  15. #include <linux/errno.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/kernel.h>
  20. #include <linux/omap-dma.h>
  21. #include <linux/pm_runtime.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/string.h>
  24. #include "omap-crypto.h"
  25. #include "omap-aes.h"
  26. static int omap_aes_gcm_handle_queue(struct omap_aes_dev *dd,
  27. struct aead_request *req);
  28. static void omap_aes_gcm_finish_req(struct omap_aes_dev *dd, int ret)
  29. {
  30. struct aead_request *req = dd->aead_req;
  31. dd->in_sg = NULL;
  32. dd->out_sg = NULL;
  33. crypto_finalize_aead_request(dd->engine, req, ret);
  34. pm_runtime_mark_last_busy(dd->dev);
  35. pm_runtime_put_autosuspend(dd->dev);
  36. }
  37. static void omap_aes_gcm_done_task(struct omap_aes_dev *dd)
  38. {
  39. u8 *tag;
  40. int alen, clen, i, ret = 0, nsg;
  41. struct omap_aes_reqctx *rctx;
  42. alen = ALIGN(dd->assoc_len, AES_BLOCK_SIZE);
  43. clen = ALIGN(dd->total, AES_BLOCK_SIZE);
  44. rctx = aead_request_ctx(dd->aead_req);
  45. nsg = !!(dd->assoc_len && dd->total);
  46. dma_sync_sg_for_device(dd->dev, dd->out_sg, dd->out_sg_len,
  47. DMA_FROM_DEVICE);
  48. dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
  49. dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len, DMA_FROM_DEVICE);
  50. omap_aes_crypt_dma_stop(dd);
  51. omap_crypto_cleanup(dd->out_sg, dd->orig_out,
  52. dd->aead_req->assoclen, dd->total,
  53. FLAGS_OUT_DATA_ST_SHIFT, dd->flags);
  54. if (dd->flags & FLAGS_ENCRYPT)
  55. scatterwalk_map_and_copy(rctx->auth_tag,
  56. dd->aead_req->dst,
  57. dd->total + dd->aead_req->assoclen,
  58. dd->authsize, 1);
  59. omap_crypto_cleanup(&dd->in_sgl[0], NULL, 0, alen,
  60. FLAGS_ASSOC_DATA_ST_SHIFT, dd->flags);
  61. omap_crypto_cleanup(&dd->in_sgl[nsg], NULL, 0, clen,
  62. FLAGS_IN_DATA_ST_SHIFT, dd->flags);
  63. if (!(dd->flags & FLAGS_ENCRYPT)) {
  64. tag = (u8 *)rctx->auth_tag;
  65. for (i = 0; i < dd->authsize; i++) {
  66. if (tag[i]) {
  67. ret = -EBADMSG;
  68. }
  69. }
  70. }
  71. omap_aes_gcm_finish_req(dd, ret);
  72. }
  73. static int omap_aes_gcm_copy_buffers(struct omap_aes_dev *dd,
  74. struct aead_request *req)
  75. {
  76. int alen, clen, cryptlen, assoclen, ret;
  77. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  78. unsigned int authlen = crypto_aead_authsize(aead);
  79. struct scatterlist *tmp, sg_arr[2];
  80. int nsg;
  81. u16 flags;
  82. assoclen = req->assoclen;
  83. cryptlen = req->cryptlen;
  84. if (dd->flags & FLAGS_RFC4106_GCM)
  85. assoclen -= 8;
  86. if (!(dd->flags & FLAGS_ENCRYPT))
  87. cryptlen -= authlen;
  88. alen = ALIGN(assoclen, AES_BLOCK_SIZE);
  89. clen = ALIGN(cryptlen, AES_BLOCK_SIZE);
  90. nsg = !!(assoclen && cryptlen);
  91. omap_aes_clear_copy_flags(dd);
  92. sg_init_table(dd->in_sgl, nsg + 1);
  93. if (assoclen) {
  94. tmp = req->src;
  95. ret = omap_crypto_align_sg(&tmp, assoclen,
  96. AES_BLOCK_SIZE, dd->in_sgl,
  97. OMAP_CRYPTO_COPY_DATA |
  98. OMAP_CRYPTO_ZERO_BUF |
  99. OMAP_CRYPTO_FORCE_SINGLE_ENTRY,
  100. FLAGS_ASSOC_DATA_ST_SHIFT,
  101. &dd->flags);
  102. if (ret)
  103. return ret;
  104. }
  105. if (cryptlen) {
  106. tmp = scatterwalk_ffwd(sg_arr, req->src, req->assoclen);
  107. if (nsg)
  108. sg_unmark_end(dd->in_sgl);
  109. ret = omap_crypto_align_sg(&tmp, cryptlen,
  110. AES_BLOCK_SIZE, &dd->in_sgl[nsg],
  111. OMAP_CRYPTO_COPY_DATA |
  112. OMAP_CRYPTO_ZERO_BUF |
  113. OMAP_CRYPTO_FORCE_SINGLE_ENTRY,
  114. FLAGS_IN_DATA_ST_SHIFT,
  115. &dd->flags);
  116. if (ret)
  117. return ret;
  118. }
  119. dd->in_sg = dd->in_sgl;
  120. dd->total = cryptlen;
  121. dd->assoc_len = assoclen;
  122. dd->authsize = authlen;
  123. dd->out_sg = req->dst;
  124. dd->orig_out = req->dst;
  125. dd->out_sg = scatterwalk_ffwd(sg_arr, req->dst, req->assoclen);
  126. flags = 0;
  127. if (req->src == req->dst || dd->out_sg == sg_arr)
  128. flags |= OMAP_CRYPTO_FORCE_COPY;
  129. if (cryptlen) {
  130. ret = omap_crypto_align_sg(&dd->out_sg, cryptlen,
  131. AES_BLOCK_SIZE, &dd->out_sgl,
  132. flags,
  133. FLAGS_OUT_DATA_ST_SHIFT, &dd->flags);
  134. if (ret)
  135. return ret;
  136. }
  137. dd->in_sg_len = sg_nents_for_len(dd->in_sg, alen + clen);
  138. dd->out_sg_len = sg_nents_for_len(dd->out_sg, clen);
  139. return 0;
  140. }
  141. static int do_encrypt_iv(struct aead_request *req, u32 *tag, u32 *iv)
  142. {
  143. struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  144. aes_encrypt(&ctx->actx, (u8 *)tag, (u8 *)iv);
  145. return 0;
  146. }
  147. void omap_aes_gcm_dma_out_callback(void *data)
  148. {
  149. struct omap_aes_dev *dd = data;
  150. struct omap_aes_reqctx *rctx;
  151. int i, val;
  152. u32 *auth_tag, tag[4];
  153. if (!(dd->flags & FLAGS_ENCRYPT))
  154. scatterwalk_map_and_copy(tag, dd->aead_req->src,
  155. dd->total + dd->aead_req->assoclen,
  156. dd->authsize, 0);
  157. rctx = aead_request_ctx(dd->aead_req);
  158. auth_tag = (u32 *)rctx->auth_tag;
  159. for (i = 0; i < 4; i++) {
  160. val = omap_aes_read(dd, AES_REG_TAG_N(dd, i));
  161. auth_tag[i] = val ^ auth_tag[i];
  162. if (!(dd->flags & FLAGS_ENCRYPT))
  163. auth_tag[i] = auth_tag[i] ^ tag[i];
  164. }
  165. omap_aes_gcm_done_task(dd);
  166. }
  167. static int omap_aes_gcm_handle_queue(struct omap_aes_dev *dd,
  168. struct aead_request *req)
  169. {
  170. if (req)
  171. return crypto_transfer_aead_request_to_engine(dd->engine, req);
  172. return 0;
  173. }
  174. static int omap_aes_gcm_prepare_req(struct aead_request *req,
  175. struct omap_aes_dev *dd)
  176. {
  177. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  178. struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  179. int err;
  180. dd->aead_req = req;
  181. rctx->mode &= FLAGS_MODE_MASK;
  182. dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
  183. err = omap_aes_gcm_copy_buffers(dd, req);
  184. if (err)
  185. return err;
  186. dd->ctx = &ctx->octx;
  187. return omap_aes_write_ctrl(dd);
  188. }
  189. static int omap_aes_gcm_crypt(struct aead_request *req, unsigned long mode)
  190. {
  191. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  192. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  193. unsigned int authlen = crypto_aead_authsize(aead);
  194. struct omap_aes_dev *dd;
  195. __be32 counter = cpu_to_be32(1);
  196. int err, assoclen;
  197. memset(rctx->auth_tag, 0, sizeof(rctx->auth_tag));
  198. memcpy(rctx->iv + GCM_AES_IV_SIZE, &counter, 4);
  199. err = do_encrypt_iv(req, (u32 *)rctx->auth_tag, (u32 *)rctx->iv);
  200. if (err)
  201. return err;
  202. if (mode & FLAGS_RFC4106_GCM)
  203. assoclen = req->assoclen - 8;
  204. else
  205. assoclen = req->assoclen;
  206. if (assoclen + req->cryptlen == 0) {
  207. scatterwalk_map_and_copy(rctx->auth_tag, req->dst, 0, authlen,
  208. 1);
  209. return 0;
  210. }
  211. dd = omap_aes_find_dev(rctx);
  212. if (!dd)
  213. return -ENODEV;
  214. rctx->mode = mode;
  215. return omap_aes_gcm_handle_queue(dd, req);
  216. }
  217. int omap_aes_gcm_encrypt(struct aead_request *req)
  218. {
  219. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  220. memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
  221. return omap_aes_gcm_crypt(req, FLAGS_ENCRYPT | FLAGS_GCM);
  222. }
  223. int omap_aes_gcm_decrypt(struct aead_request *req)
  224. {
  225. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  226. memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
  227. return omap_aes_gcm_crypt(req, FLAGS_GCM);
  228. }
  229. int omap_aes_4106gcm_encrypt(struct aead_request *req)
  230. {
  231. struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  232. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  233. memcpy(rctx->iv, ctx->octx.nonce, 4);
  234. memcpy(rctx->iv + 4, req->iv, 8);
  235. return crypto_ipsec_check_assoclen(req->assoclen) ?:
  236. omap_aes_gcm_crypt(req, FLAGS_ENCRYPT | FLAGS_GCM |
  237. FLAGS_RFC4106_GCM);
  238. }
  239. int omap_aes_4106gcm_decrypt(struct aead_request *req)
  240. {
  241. struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  242. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  243. memcpy(rctx->iv, ctx->octx.nonce, 4);
  244. memcpy(rctx->iv + 4, req->iv, 8);
  245. return crypto_ipsec_check_assoclen(req->assoclen) ?:
  246. omap_aes_gcm_crypt(req, FLAGS_GCM | FLAGS_RFC4106_GCM);
  247. }
  248. int omap_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  249. unsigned int keylen)
  250. {
  251. struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  252. int ret;
  253. ret = aes_expandkey(&ctx->actx, key, keylen);
  254. if (ret)
  255. return ret;
  256. memcpy(ctx->octx.key, key, keylen);
  257. ctx->octx.keylen = keylen;
  258. return 0;
  259. }
  260. int omap_aes_4106gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  261. unsigned int keylen)
  262. {
  263. struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  264. int ret;
  265. if (keylen < 4)
  266. return -EINVAL;
  267. keylen -= 4;
  268. ret = aes_expandkey(&ctx->actx, key, keylen);
  269. if (ret)
  270. return ret;
  271. memcpy(ctx->octx.key, key, keylen);
  272. memcpy(ctx->octx.nonce, key + keylen, 4);
  273. ctx->octx.keylen = keylen;
  274. return 0;
  275. }
  276. int omap_aes_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
  277. {
  278. return crypto_gcm_check_authsize(authsize);
  279. }
  280. int omap_aes_4106gcm_setauthsize(struct crypto_aead *parent,
  281. unsigned int authsize)
  282. {
  283. return crypto_rfc4106_check_authsize(authsize);
  284. }
  285. int omap_aes_gcm_crypt_req(struct crypto_engine *engine, void *areq)
  286. {
  287. struct aead_request *req = container_of(areq, struct aead_request,
  288. base);
  289. struct omap_aes_reqctx *rctx = aead_request_ctx(req);
  290. struct omap_aes_dev *dd = rctx->dd;
  291. int ret;
  292. if (!dd)
  293. return -ENODEV;
  294. ret = omap_aes_gcm_prepare_req(req, dd);
  295. if (ret)
  296. return ret;
  297. if (dd->in_sg_len)
  298. ret = omap_aes_crypt_dma_start(dd);
  299. else
  300. omap_aes_gcm_dma_out_callback(dd);
  301. return ret;
  302. }
  303. int omap_aes_gcm_cra_init(struct crypto_aead *tfm)
  304. {
  305. crypto_aead_set_reqsize(tfm, sizeof(struct omap_aes_reqctx));
  306. return 0;
  307. }