hid-ft260.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * hid-ft260.c - FTDI FT260 USB HID to I2C host bridge
  4. *
  5. * Copyright (c) 2021, Michael Zaidman <michaelz@xsightlabs.com>
  6. *
  7. * Data Sheet:
  8. * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT260.pdf
  9. */
  10. #include "hid-ids.h"
  11. #include <linux/hidraw.h>
  12. #include <linux/i2c.h>
  13. #include <linux/module.h>
  14. #include <linux/usb.h>
  15. #ifdef DEBUG
  16. static int ft260_debug = 1;
  17. #else
  18. static int ft260_debug;
  19. #endif
  20. module_param_named(debug, ft260_debug, int, 0600);
  21. MODULE_PARM_DESC(debug, "Toggle FT260 debugging messages");
  22. #define ft260_dbg(format, arg...) \
  23. do { \
  24. if (ft260_debug) \
  25. pr_info("%s: " format, __func__, ##arg); \
  26. } while (0)
  27. #define FT260_REPORT_MAX_LENGTH (64)
  28. #define FT260_I2C_DATA_REPORT_ID(len) (FT260_I2C_REPORT_MIN + (len - 1) / 4)
  29. #define FT260_WAKEUP_NEEDED_AFTER_MS (4800) /* 5s minus 200ms margin */
  30. /*
  31. * The ft260 input report format defines 62 bytes for the data payload, but
  32. * when requested 62 bytes, the controller returns 60 and 2 in separate input
  33. * reports. To achieve better performance with the multi-report read data
  34. * transfers, we set the maximum read payload length to a multiple of 60.
  35. * With a 100 kHz I2C clock, one 240 bytes read takes about 1/27 second,
  36. * which is excessive; On the other hand, some higher layer drivers like at24
  37. * or optoe limit the i2c reads to 128 bytes. To not block other drivers out
  38. * of I2C for potentially troublesome amounts of time, we select the maximum
  39. * read payload length to be 180 bytes.
  40. */
  41. #define FT260_RD_DATA_MAX (180)
  42. #define FT260_WR_DATA_MAX (60)
  43. /*
  44. * Device interface configuration.
  45. * The FT260 has 2 interfaces that are controlled by DCNF0 and DCNF1 pins.
  46. * First implementes USB HID to I2C bridge function and
  47. * second - USB HID to UART bridge function.
  48. */
  49. enum {
  50. FT260_MODE_ALL = 0x00,
  51. FT260_MODE_I2C = 0x01,
  52. FT260_MODE_UART = 0x02,
  53. FT260_MODE_BOTH = 0x03,
  54. };
  55. /* Control pipe */
  56. enum {
  57. FT260_GET_RQST_TYPE = 0xA1,
  58. FT260_GET_REPORT = 0x01,
  59. FT260_SET_RQST_TYPE = 0x21,
  60. FT260_SET_REPORT = 0x09,
  61. FT260_FEATURE = 0x03,
  62. };
  63. /* Report IDs / Feature In */
  64. enum {
  65. FT260_CHIP_VERSION = 0xA0,
  66. FT260_SYSTEM_SETTINGS = 0xA1,
  67. FT260_I2C_STATUS = 0xC0,
  68. FT260_I2C_READ_REQ = 0xC2,
  69. FT260_I2C_REPORT_MIN = 0xD0,
  70. FT260_I2C_REPORT_MAX = 0xDE,
  71. FT260_GPIO = 0xB0,
  72. FT260_UART_INTERRUPT_STATUS = 0xB1,
  73. FT260_UART_STATUS = 0xE0,
  74. FT260_UART_RI_DCD_STATUS = 0xE1,
  75. FT260_UART_REPORT = 0xF0,
  76. };
  77. /* Feature Out */
  78. enum {
  79. FT260_SET_CLOCK = 0x01,
  80. FT260_SET_I2C_MODE = 0x02,
  81. FT260_SET_UART_MODE = 0x03,
  82. FT260_ENABLE_INTERRUPT = 0x05,
  83. FT260_SELECT_GPIO2_FUNC = 0x06,
  84. FT260_ENABLE_UART_DCD_RI = 0x07,
  85. FT260_SELECT_GPIOA_FUNC = 0x08,
  86. FT260_SELECT_GPIOG_FUNC = 0x09,
  87. FT260_SET_INTERRUPT_TRIGGER = 0x0A,
  88. FT260_SET_SUSPEND_OUT_POLAR = 0x0B,
  89. FT260_ENABLE_UART_RI_WAKEUP = 0x0C,
  90. FT260_SET_UART_RI_WAKEUP_CFG = 0x0D,
  91. FT260_SET_I2C_RESET = 0x20,
  92. FT260_SET_I2C_CLOCK_SPEED = 0x22,
  93. FT260_SET_UART_RESET = 0x40,
  94. FT260_SET_UART_CONFIG = 0x41,
  95. FT260_SET_UART_BAUD_RATE = 0x42,
  96. FT260_SET_UART_DATA_BIT = 0x43,
  97. FT260_SET_UART_PARITY = 0x44,
  98. FT260_SET_UART_STOP_BIT = 0x45,
  99. FT260_SET_UART_BREAKING = 0x46,
  100. FT260_SET_UART_XON_XOFF = 0x49,
  101. };
  102. /* Response codes in I2C status report */
  103. enum {
  104. FT260_I2C_STATUS_SUCCESS = 0x00,
  105. FT260_I2C_STATUS_CTRL_BUSY = 0x01,
  106. FT260_I2C_STATUS_ERROR = 0x02,
  107. FT260_I2C_STATUS_ADDR_NO_ACK = 0x04,
  108. FT260_I2C_STATUS_DATA_NO_ACK = 0x08,
  109. FT260_I2C_STATUS_ARBITR_LOST = 0x10,
  110. FT260_I2C_STATUS_CTRL_IDLE = 0x20,
  111. FT260_I2C_STATUS_BUS_BUSY = 0x40,
  112. };
  113. /* I2C Conditions flags */
  114. enum {
  115. FT260_FLAG_NONE = 0x00,
  116. FT260_FLAG_START = 0x02,
  117. FT260_FLAG_START_REPEATED = 0x03,
  118. FT260_FLAG_STOP = 0x04,
  119. FT260_FLAG_START_STOP = 0x06,
  120. FT260_FLAG_START_STOP_REPEATED = 0x07,
  121. };
  122. #define FT260_SET_REQUEST_VALUE(report_id) ((FT260_FEATURE << 8) | report_id)
  123. /* Feature In reports */
  124. struct ft260_get_chip_version_report {
  125. u8 report; /* FT260_CHIP_VERSION */
  126. u8 chip_code[4]; /* FTDI chip identification code */
  127. u8 reserved[8];
  128. } __packed;
  129. struct ft260_get_system_status_report {
  130. u8 report; /* FT260_SYSTEM_SETTINGS */
  131. u8 chip_mode; /* DCNF0 and DCNF1 status, bits 0-1 */
  132. u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */
  133. u8 suspend_status; /* 0 - not suspended, 1 - suspended */
  134. u8 pwren_status; /* 0 - FT260 is not ready, 1 - ready */
  135. u8 i2c_enable; /* 0 - disabled, 1 - enabled */
  136. u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */
  137. /* 3 - XON_XOFF, 4 - No flow control */
  138. u8 hid_over_i2c_en; /* 0 - disabled, 1 - enabled */
  139. u8 gpio2_function; /* 0 - GPIO, 1 - SUSPOUT, */
  140. /* 2 - PWREN, 4 - TX_LED */
  141. u8 gpioA_function; /* 0 - GPIO, 3 - TX_ACTIVE, 4 - TX_LED */
  142. u8 gpioG_function; /* 0 - GPIO, 2 - PWREN, */
  143. /* 5 - RX_LED, 6 - BCD_DET */
  144. u8 suspend_out_pol; /* 0 - active-high, 1 - active-low */
  145. u8 enable_wakeup_int; /* 0 - disabled, 1 - enabled */
  146. u8 intr_cond; /* Interrupt trigger conditions */
  147. u8 power_saving_en; /* 0 - disabled, 1 - enabled */
  148. u8 reserved[10];
  149. } __packed;
  150. struct ft260_get_i2c_status_report {
  151. u8 report; /* FT260_I2C_STATUS */
  152. u8 bus_status; /* I2C bus status */
  153. __le16 clock; /* I2C bus clock in range 60-3400 KHz */
  154. u8 reserved;
  155. } __packed;
  156. /* Feature Out reports */
  157. struct ft260_set_system_clock_report {
  158. u8 report; /* FT260_SYSTEM_SETTINGS */
  159. u8 request; /* FT260_SET_CLOCK */
  160. u8 clock_ctl; /* 0 - 12MHz, 1 - 24MHz, 2 - 48MHz */
  161. } __packed;
  162. struct ft260_set_i2c_mode_report {
  163. u8 report; /* FT260_SYSTEM_SETTINGS */
  164. u8 request; /* FT260_SET_I2C_MODE */
  165. u8 i2c_enable; /* 0 - disabled, 1 - enabled */
  166. } __packed;
  167. struct ft260_set_uart_mode_report {
  168. u8 report; /* FT260_SYSTEM_SETTINGS */
  169. u8 request; /* FT260_SET_UART_MODE */
  170. u8 uart_mode; /* 0 - OFF; 1 - RTS_CTS, 2 - DTR_DSR, */
  171. /* 3 - XON_XOFF, 4 - No flow control */
  172. } __packed;
  173. struct ft260_set_i2c_reset_report {
  174. u8 report; /* FT260_SYSTEM_SETTINGS */
  175. u8 request; /* FT260_SET_I2C_RESET */
  176. } __packed;
  177. struct ft260_set_i2c_speed_report {
  178. u8 report; /* FT260_SYSTEM_SETTINGS */
  179. u8 request; /* FT260_SET_I2C_CLOCK_SPEED */
  180. __le16 clock; /* I2C bus clock in range 60-3400 KHz */
  181. } __packed;
  182. /* Data transfer reports */
  183. struct ft260_i2c_write_request_report {
  184. u8 report; /* FT260_I2C_REPORT */
  185. u8 address; /* 7-bit I2C address */
  186. u8 flag; /* I2C transaction condition */
  187. u8 length; /* data payload length */
  188. u8 data[FT260_WR_DATA_MAX]; /* data payload */
  189. } __packed;
  190. struct ft260_i2c_read_request_report {
  191. u8 report; /* FT260_I2C_READ_REQ */
  192. u8 address; /* 7-bit I2C address */
  193. u8 flag; /* I2C transaction condition */
  194. __le16 length; /* data payload length */
  195. } __packed;
  196. struct ft260_i2c_input_report {
  197. u8 report; /* FT260_I2C_REPORT */
  198. u8 length; /* data payload length */
  199. u8 data[2]; /* data payload */
  200. } __packed;
  201. static const struct hid_device_id ft260_devices[] = {
  202. { HID_USB_DEVICE(USB_VENDOR_ID_FUTURE_TECHNOLOGY,
  203. USB_DEVICE_ID_FT260) },
  204. { /* END OF LIST */ }
  205. };
  206. MODULE_DEVICE_TABLE(hid, ft260_devices);
  207. struct ft260_device {
  208. struct i2c_adapter adap;
  209. struct hid_device *hdev;
  210. struct completion wait;
  211. struct mutex lock;
  212. u8 write_buf[FT260_REPORT_MAX_LENGTH];
  213. unsigned long need_wakeup_at;
  214. u8 *read_buf;
  215. u16 read_idx;
  216. u16 read_len;
  217. u16 clock;
  218. };
  219. static int ft260_hid_feature_report_get(struct hid_device *hdev,
  220. unsigned char report_id, u8 *data,
  221. size_t len)
  222. {
  223. u8 *buf;
  224. int ret;
  225. buf = kmalloc(len, GFP_KERNEL);
  226. if (!buf)
  227. return -ENOMEM;
  228. ret = hid_hw_raw_request(hdev, report_id, buf, len, HID_FEATURE_REPORT,
  229. HID_REQ_GET_REPORT);
  230. if (likely(ret == len))
  231. memcpy(data, buf, len);
  232. else if (ret >= 0)
  233. ret = -EIO;
  234. kfree(buf);
  235. return ret;
  236. }
  237. static int ft260_hid_feature_report_set(struct hid_device *hdev, u8 *data,
  238. size_t len)
  239. {
  240. u8 *buf;
  241. int ret;
  242. buf = kmemdup(data, len, GFP_KERNEL);
  243. if (!buf)
  244. return -ENOMEM;
  245. buf[0] = FT260_SYSTEM_SETTINGS;
  246. ret = hid_hw_raw_request(hdev, buf[0], buf, len, HID_FEATURE_REPORT,
  247. HID_REQ_SET_REPORT);
  248. kfree(buf);
  249. return ret;
  250. }
  251. static int ft260_i2c_reset(struct hid_device *hdev)
  252. {
  253. struct ft260_set_i2c_reset_report report;
  254. int ret;
  255. report.request = FT260_SET_I2C_RESET;
  256. ret = ft260_hid_feature_report_set(hdev, (u8 *)&report, sizeof(report));
  257. if (ret < 0) {
  258. hid_err(hdev, "failed to reset I2C controller: %d\n", ret);
  259. return ret;
  260. }
  261. ft260_dbg("done\n");
  262. return ret;
  263. }
  264. static int ft260_xfer_status(struct ft260_device *dev, u8 bus_busy)
  265. {
  266. struct hid_device *hdev = dev->hdev;
  267. struct ft260_get_i2c_status_report report;
  268. int ret;
  269. if (time_is_before_jiffies(dev->need_wakeup_at)) {
  270. ret = ft260_hid_feature_report_get(hdev, FT260_I2C_STATUS,
  271. (u8 *)&report, sizeof(report));
  272. if (unlikely(ret < 0)) {
  273. hid_err(hdev, "failed to retrieve status: %d, no wakeup\n",
  274. ret);
  275. } else {
  276. dev->need_wakeup_at = jiffies +
  277. msecs_to_jiffies(FT260_WAKEUP_NEEDED_AFTER_MS);
  278. ft260_dbg("bus_status %#02x, wakeup\n",
  279. report.bus_status);
  280. }
  281. }
  282. ret = ft260_hid_feature_report_get(hdev, FT260_I2C_STATUS,
  283. (u8 *)&report, sizeof(report));
  284. if (unlikely(ret < 0)) {
  285. hid_err(hdev, "failed to retrieve status: %d\n", ret);
  286. return ret;
  287. }
  288. dev->clock = le16_to_cpu(report.clock);
  289. ft260_dbg("bus_status %#02x, clock %u\n", report.bus_status,
  290. dev->clock);
  291. if (report.bus_status & (FT260_I2C_STATUS_CTRL_BUSY | bus_busy))
  292. return -EAGAIN;
  293. /*
  294. * The error condition (bit 1) is a status bit reflecting any
  295. * error conditions. When any of the bits 2, 3, or 4 are raised
  296. * to 1, bit 1 is also set to 1.
  297. */
  298. if (report.bus_status & FT260_I2C_STATUS_ERROR) {
  299. hid_err(hdev, "i2c bus error: %#02x\n", report.bus_status);
  300. return -EIO;
  301. }
  302. return 0;
  303. }
  304. static int ft260_hid_output_report(struct hid_device *hdev, u8 *data,
  305. size_t len)
  306. {
  307. u8 *buf;
  308. int ret;
  309. buf = kmemdup(data, len, GFP_KERNEL);
  310. if (!buf)
  311. return -ENOMEM;
  312. ret = hid_hw_output_report(hdev, buf, len);
  313. kfree(buf);
  314. return ret;
  315. }
  316. static int ft260_hid_output_report_check_status(struct ft260_device *dev,
  317. u8 *data, int len)
  318. {
  319. u8 bus_busy;
  320. int ret, usec, try = 100;
  321. struct hid_device *hdev = dev->hdev;
  322. struct ft260_i2c_write_request_report *rep =
  323. (struct ft260_i2c_write_request_report *)data;
  324. ret = ft260_hid_output_report(hdev, data, len);
  325. if (ret < 0) {
  326. hid_err(hdev, "%s: failed to start transfer, ret %d\n",
  327. __func__, ret);
  328. ft260_i2c_reset(hdev);
  329. return ret;
  330. }
  331. /* transfer time = 1 / clock(KHz) * 9 bits * bytes */
  332. usec = len * 9000 / dev->clock;
  333. if (usec > 2000) {
  334. usec -= 1500;
  335. usleep_range(usec, usec + 100);
  336. ft260_dbg("wait %d usec, len %d\n", usec, len);
  337. }
  338. /*
  339. * Do not check the busy bit for combined transactions
  340. * since the controller keeps the bus busy between writing
  341. * and reading IOs to ensure an atomic operation.
  342. */
  343. if (rep->flag == FT260_FLAG_START)
  344. bus_busy = 0;
  345. else
  346. bus_busy = FT260_I2C_STATUS_BUS_BUSY;
  347. do {
  348. ret = ft260_xfer_status(dev, bus_busy);
  349. if (ret != -EAGAIN)
  350. break;
  351. } while (--try);
  352. if (ret == 0)
  353. return 0;
  354. ft260_i2c_reset(hdev);
  355. return -EIO;
  356. }
  357. static int ft260_i2c_write(struct ft260_device *dev, u8 addr, u8 *data,
  358. int len, u8 flag)
  359. {
  360. int ret, wr_len, idx = 0;
  361. struct hid_device *hdev = dev->hdev;
  362. struct ft260_i2c_write_request_report *rep =
  363. (struct ft260_i2c_write_request_report *)dev->write_buf;
  364. if (len < 1)
  365. return -EINVAL;
  366. rep->flag = FT260_FLAG_START;
  367. do {
  368. if (len <= FT260_WR_DATA_MAX) {
  369. wr_len = len;
  370. if (flag == FT260_FLAG_START_STOP)
  371. rep->flag |= FT260_FLAG_STOP;
  372. } else {
  373. wr_len = FT260_WR_DATA_MAX;
  374. }
  375. rep->report = FT260_I2C_DATA_REPORT_ID(wr_len);
  376. rep->address = addr;
  377. rep->length = wr_len;
  378. memcpy(rep->data, &data[idx], wr_len);
  379. ft260_dbg("rep %#02x addr %#02x off %d len %d wlen %d flag %#x d[0] %#02x\n",
  380. rep->report, addr, idx, len, wr_len,
  381. rep->flag, data[0]);
  382. ret = ft260_hid_output_report_check_status(dev, (u8 *)rep,
  383. wr_len + 4);
  384. if (ret < 0) {
  385. hid_err(hdev, "%s: failed with %d\n", __func__, ret);
  386. return ret;
  387. }
  388. len -= wr_len;
  389. idx += wr_len;
  390. rep->flag = 0;
  391. } while (len > 0);
  392. return 0;
  393. }
  394. static int ft260_smbus_write(struct ft260_device *dev, u8 addr, u8 cmd,
  395. u8 *data, u8 data_len, u8 flag)
  396. {
  397. int ret = 0;
  398. int len = 4;
  399. struct ft260_i2c_write_request_report *rep =
  400. (struct ft260_i2c_write_request_report *)dev->write_buf;
  401. if (data_len >= sizeof(rep->data))
  402. return -EINVAL;
  403. rep->address = addr;
  404. rep->data[0] = cmd;
  405. rep->length = data_len + 1;
  406. rep->flag = flag;
  407. len += rep->length;
  408. rep->report = FT260_I2C_DATA_REPORT_ID(len);
  409. if (data_len > 0)
  410. memcpy(&rep->data[1], data, data_len);
  411. ft260_dbg("rep %#02x addr %#02x cmd %#02x datlen %d replen %d\n",
  412. rep->report, addr, cmd, rep->length, len);
  413. ret = ft260_hid_output_report_check_status(dev, (u8 *)rep, len);
  414. return ret;
  415. }
  416. static int ft260_i2c_read(struct ft260_device *dev, u8 addr, u8 *data,
  417. u16 len, u8 flag)
  418. {
  419. u16 rd_len;
  420. u16 rd_data_max = 60;
  421. int timeout, ret = 0;
  422. struct ft260_i2c_read_request_report rep;
  423. struct hid_device *hdev = dev->hdev;
  424. u8 bus_busy = 0;
  425. if ((flag & FT260_FLAG_START_REPEATED) == FT260_FLAG_START_REPEATED)
  426. flag = FT260_FLAG_START_REPEATED;
  427. else
  428. flag = FT260_FLAG_START;
  429. do {
  430. if (len <= rd_data_max) {
  431. rd_len = len;
  432. flag |= FT260_FLAG_STOP;
  433. } else {
  434. rd_len = rd_data_max;
  435. }
  436. rd_data_max = FT260_RD_DATA_MAX;
  437. rep.report = FT260_I2C_READ_REQ;
  438. rep.length = cpu_to_le16(rd_len);
  439. rep.address = addr;
  440. rep.flag = flag;
  441. ft260_dbg("rep %#02x addr %#02x len %d rlen %d flag %#x\n",
  442. rep.report, rep.address, len, rd_len, flag);
  443. reinit_completion(&dev->wait);
  444. dev->read_idx = 0;
  445. dev->read_buf = data;
  446. dev->read_len = rd_len;
  447. ret = ft260_hid_output_report(hdev, (u8 *)&rep, sizeof(rep));
  448. if (ret < 0) {
  449. hid_err(hdev, "%s: failed with %d\n", __func__, ret);
  450. goto ft260_i2c_read_exit;
  451. }
  452. timeout = msecs_to_jiffies(5000);
  453. if (!wait_for_completion_timeout(&dev->wait, timeout)) {
  454. ret = -ETIMEDOUT;
  455. ft260_i2c_reset(hdev);
  456. goto ft260_i2c_read_exit;
  457. }
  458. dev->read_buf = NULL;
  459. if (flag & FT260_FLAG_STOP)
  460. bus_busy = FT260_I2C_STATUS_BUS_BUSY;
  461. ret = ft260_xfer_status(dev, bus_busy);
  462. if (ret < 0) {
  463. ret = -EIO;
  464. ft260_i2c_reset(hdev);
  465. goto ft260_i2c_read_exit;
  466. }
  467. len -= rd_len;
  468. data += rd_len;
  469. flag = 0;
  470. } while (len > 0);
  471. ft260_i2c_read_exit:
  472. dev->read_buf = NULL;
  473. return ret;
  474. }
  475. /*
  476. * A random read operation is implemented as a dummy write operation, followed
  477. * by a current address read operation. The dummy write operation is used to
  478. * load the target byte address into the current byte address counter, from
  479. * which the subsequent current address read operation then reads.
  480. */
  481. static int ft260_i2c_write_read(struct ft260_device *dev, struct i2c_msg *msgs)
  482. {
  483. int ret;
  484. int wr_len = msgs[0].len;
  485. int rd_len = msgs[1].len;
  486. struct hid_device *hdev = dev->hdev;
  487. u8 addr = msgs[0].addr;
  488. u16 read_off = 0;
  489. if (wr_len > 2) {
  490. hid_err(hdev, "%s: invalid wr_len: %d\n", __func__, wr_len);
  491. return -EOPNOTSUPP;
  492. }
  493. if (ft260_debug) {
  494. if (wr_len == 2)
  495. read_off = be16_to_cpu(*(__be16 *)msgs[0].buf);
  496. else
  497. read_off = *msgs[0].buf;
  498. pr_info("%s: off %#x rlen %d wlen %d\n", __func__,
  499. read_off, rd_len, wr_len);
  500. }
  501. ret = ft260_i2c_write(dev, addr, msgs[0].buf, wr_len,
  502. FT260_FLAG_START);
  503. if (ret < 0)
  504. return ret;
  505. ret = ft260_i2c_read(dev, addr, msgs[1].buf, rd_len,
  506. FT260_FLAG_START_STOP_REPEATED);
  507. if (ret < 0)
  508. return ret;
  509. return 0;
  510. }
  511. static int ft260_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
  512. int num)
  513. {
  514. int ret;
  515. struct ft260_device *dev = i2c_get_adapdata(adapter);
  516. struct hid_device *hdev = dev->hdev;
  517. mutex_lock(&dev->lock);
  518. ret = hid_hw_power(hdev, PM_HINT_FULLON);
  519. if (ret < 0) {
  520. hid_err(hdev, "failed to enter FULLON power mode: %d\n", ret);
  521. mutex_unlock(&dev->lock);
  522. return ret;
  523. }
  524. if (num == 1) {
  525. if (msgs->flags & I2C_M_RD)
  526. ret = ft260_i2c_read(dev, msgs->addr, msgs->buf,
  527. msgs->len, FT260_FLAG_START_STOP);
  528. else
  529. ret = ft260_i2c_write(dev, msgs->addr, msgs->buf,
  530. msgs->len, FT260_FLAG_START_STOP);
  531. if (ret < 0)
  532. goto i2c_exit;
  533. } else {
  534. /* Combined write then read message */
  535. ret = ft260_i2c_write_read(dev, msgs);
  536. if (ret < 0)
  537. goto i2c_exit;
  538. }
  539. ret = num;
  540. i2c_exit:
  541. hid_hw_power(hdev, PM_HINT_NORMAL);
  542. mutex_unlock(&dev->lock);
  543. return ret;
  544. }
  545. static int ft260_smbus_xfer(struct i2c_adapter *adapter, u16 addr, u16 flags,
  546. char read_write, u8 cmd, int size,
  547. union i2c_smbus_data *data)
  548. {
  549. int ret;
  550. struct ft260_device *dev = i2c_get_adapdata(adapter);
  551. struct hid_device *hdev = dev->hdev;
  552. ft260_dbg("smbus size %d\n", size);
  553. mutex_lock(&dev->lock);
  554. ret = hid_hw_power(hdev, PM_HINT_FULLON);
  555. if (ret < 0) {
  556. hid_err(hdev, "power management error: %d\n", ret);
  557. mutex_unlock(&dev->lock);
  558. return ret;
  559. }
  560. switch (size) {
  561. case I2C_SMBUS_BYTE:
  562. if (read_write == I2C_SMBUS_READ)
  563. ret = ft260_i2c_read(dev, addr, &data->byte, 1,
  564. FT260_FLAG_START_STOP);
  565. else
  566. ret = ft260_smbus_write(dev, addr, cmd, NULL, 0,
  567. FT260_FLAG_START_STOP);
  568. break;
  569. case I2C_SMBUS_BYTE_DATA:
  570. if (read_write == I2C_SMBUS_READ) {
  571. ret = ft260_smbus_write(dev, addr, cmd, NULL, 0,
  572. FT260_FLAG_START);
  573. if (ret)
  574. goto smbus_exit;
  575. ret = ft260_i2c_read(dev, addr, &data->byte, 1,
  576. FT260_FLAG_START_STOP_REPEATED);
  577. } else {
  578. ret = ft260_smbus_write(dev, addr, cmd, &data->byte, 1,
  579. FT260_FLAG_START_STOP);
  580. }
  581. break;
  582. case I2C_SMBUS_WORD_DATA:
  583. if (read_write == I2C_SMBUS_READ) {
  584. ret = ft260_smbus_write(dev, addr, cmd, NULL, 0,
  585. FT260_FLAG_START);
  586. if (ret)
  587. goto smbus_exit;
  588. ret = ft260_i2c_read(dev, addr, (u8 *)&data->word, 2,
  589. FT260_FLAG_START_STOP_REPEATED);
  590. } else {
  591. ret = ft260_smbus_write(dev, addr, cmd,
  592. (u8 *)&data->word, 2,
  593. FT260_FLAG_START_STOP);
  594. }
  595. break;
  596. case I2C_SMBUS_BLOCK_DATA:
  597. if (read_write == I2C_SMBUS_READ) {
  598. ret = ft260_smbus_write(dev, addr, cmd, NULL, 0,
  599. FT260_FLAG_START);
  600. if (ret)
  601. goto smbus_exit;
  602. ret = ft260_i2c_read(dev, addr, data->block,
  603. data->block[0] + 1,
  604. FT260_FLAG_START_STOP_REPEATED);
  605. } else {
  606. ret = ft260_smbus_write(dev, addr, cmd, data->block,
  607. data->block[0] + 1,
  608. FT260_FLAG_START_STOP);
  609. }
  610. break;
  611. case I2C_SMBUS_I2C_BLOCK_DATA:
  612. if (read_write == I2C_SMBUS_READ) {
  613. ret = ft260_smbus_write(dev, addr, cmd, NULL, 0,
  614. FT260_FLAG_START);
  615. if (ret)
  616. goto smbus_exit;
  617. ret = ft260_i2c_read(dev, addr, data->block + 1,
  618. data->block[0],
  619. FT260_FLAG_START_STOP_REPEATED);
  620. } else {
  621. ret = ft260_smbus_write(dev, addr, cmd, data->block + 1,
  622. data->block[0],
  623. FT260_FLAG_START_STOP);
  624. }
  625. break;
  626. default:
  627. hid_err(hdev, "unsupported smbus transaction size %d\n", size);
  628. ret = -EOPNOTSUPP;
  629. }
  630. smbus_exit:
  631. hid_hw_power(hdev, PM_HINT_NORMAL);
  632. mutex_unlock(&dev->lock);
  633. return ret;
  634. }
  635. static u32 ft260_functionality(struct i2c_adapter *adap)
  636. {
  637. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE |
  638. I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
  639. I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_I2C_BLOCK;
  640. }
  641. static const struct i2c_adapter_quirks ft260_i2c_quirks = {
  642. .flags = I2C_AQ_COMB_WRITE_THEN_READ,
  643. .max_comb_1st_msg_len = 2,
  644. };
  645. static const struct i2c_algorithm ft260_i2c_algo = {
  646. .master_xfer = ft260_i2c_xfer,
  647. .smbus_xfer = ft260_smbus_xfer,
  648. .functionality = ft260_functionality,
  649. };
  650. static int ft260_get_system_config(struct hid_device *hdev,
  651. struct ft260_get_system_status_report *cfg)
  652. {
  653. int ret;
  654. int len = sizeof(struct ft260_get_system_status_report);
  655. ret = ft260_hid_feature_report_get(hdev, FT260_SYSTEM_SETTINGS,
  656. (u8 *)cfg, len);
  657. if (ret < 0) {
  658. hid_err(hdev, "failed to retrieve system status\n");
  659. return ret;
  660. }
  661. return 0;
  662. }
  663. static int ft260_is_interface_enabled(struct hid_device *hdev)
  664. {
  665. struct ft260_get_system_status_report cfg;
  666. struct usb_interface *usbif = to_usb_interface(hdev->dev.parent);
  667. int interface = usbif->cur_altsetting->desc.bInterfaceNumber;
  668. int ret;
  669. ret = ft260_get_system_config(hdev, &cfg);
  670. if (ret < 0)
  671. return ret;
  672. ft260_dbg("interface: 0x%02x\n", interface);
  673. ft260_dbg("chip mode: 0x%02x\n", cfg.chip_mode);
  674. ft260_dbg("clock_ctl: 0x%02x\n", cfg.clock_ctl);
  675. ft260_dbg("i2c_enable: 0x%02x\n", cfg.i2c_enable);
  676. ft260_dbg("uart_mode: 0x%02x\n", cfg.uart_mode);
  677. switch (cfg.chip_mode) {
  678. case FT260_MODE_ALL:
  679. case FT260_MODE_BOTH:
  680. if (interface == 1)
  681. hid_info(hdev, "uart interface is not supported\n");
  682. else
  683. ret = 1;
  684. break;
  685. case FT260_MODE_UART:
  686. hid_info(hdev, "uart interface is not supported\n");
  687. break;
  688. case FT260_MODE_I2C:
  689. ret = 1;
  690. break;
  691. }
  692. return ret;
  693. }
  694. static int ft260_byte_show(struct hid_device *hdev, int id, u8 *cfg, int len,
  695. u8 *field, u8 *buf)
  696. {
  697. int ret;
  698. ret = ft260_hid_feature_report_get(hdev, id, cfg, len);
  699. if (ret < 0)
  700. return ret;
  701. return scnprintf(buf, PAGE_SIZE, "%d\n", *field);
  702. }
  703. static int ft260_word_show(struct hid_device *hdev, int id, u8 *cfg, int len,
  704. __le16 *field, u8 *buf)
  705. {
  706. int ret;
  707. ret = ft260_hid_feature_report_get(hdev, id, cfg, len);
  708. if (ret < 0)
  709. return ret;
  710. return scnprintf(buf, PAGE_SIZE, "%d\n", le16_to_cpu(*field));
  711. }
  712. #define FT260_ATTR_SHOW(name, reptype, id, type, func) \
  713. static ssize_t name##_show(struct device *kdev, \
  714. struct device_attribute *attr, char *buf) \
  715. { \
  716. struct reptype rep; \
  717. struct hid_device *hdev = to_hid_device(kdev); \
  718. type *field = &rep.name; \
  719. int len = sizeof(rep); \
  720. \
  721. return func(hdev, id, (u8 *)&rep, len, field, buf); \
  722. }
  723. #define FT260_SSTAT_ATTR_SHOW(name) \
  724. FT260_ATTR_SHOW(name, ft260_get_system_status_report, \
  725. FT260_SYSTEM_SETTINGS, u8, ft260_byte_show)
  726. #define FT260_I2CST_ATTR_SHOW(name) \
  727. FT260_ATTR_SHOW(name, ft260_get_i2c_status_report, \
  728. FT260_I2C_STATUS, __le16, ft260_word_show)
  729. #define FT260_ATTR_STORE(name, reptype, id, req, type, ctype, func) \
  730. static ssize_t name##_store(struct device *kdev, \
  731. struct device_attribute *attr, \
  732. const char *buf, size_t count) \
  733. { \
  734. struct reptype rep; \
  735. struct hid_device *hdev = to_hid_device(kdev); \
  736. type name; \
  737. int ret; \
  738. \
  739. if (!func(buf, 10, (ctype *)&name)) { \
  740. rep.name = name; \
  741. rep.report = id; \
  742. rep.request = req; \
  743. ret = ft260_hid_feature_report_set(hdev, (u8 *)&rep, \
  744. sizeof(rep)); \
  745. if (!ret) \
  746. ret = count; \
  747. } else { \
  748. ret = -EINVAL; \
  749. } \
  750. return ret; \
  751. }
  752. #define FT260_BYTE_ATTR_STORE(name, reptype, req) \
  753. FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \
  754. u8, u8, kstrtou8)
  755. #define FT260_WORD_ATTR_STORE(name, reptype, req) \
  756. FT260_ATTR_STORE(name, reptype, FT260_SYSTEM_SETTINGS, req, \
  757. __le16, u16, kstrtou16)
  758. FT260_SSTAT_ATTR_SHOW(chip_mode);
  759. static DEVICE_ATTR_RO(chip_mode);
  760. FT260_SSTAT_ATTR_SHOW(pwren_status);
  761. static DEVICE_ATTR_RO(pwren_status);
  762. FT260_SSTAT_ATTR_SHOW(suspend_status);
  763. static DEVICE_ATTR_RO(suspend_status);
  764. FT260_SSTAT_ATTR_SHOW(hid_over_i2c_en);
  765. static DEVICE_ATTR_RO(hid_over_i2c_en);
  766. FT260_SSTAT_ATTR_SHOW(power_saving_en);
  767. static DEVICE_ATTR_RO(power_saving_en);
  768. FT260_SSTAT_ATTR_SHOW(i2c_enable);
  769. FT260_BYTE_ATTR_STORE(i2c_enable, ft260_set_i2c_mode_report,
  770. FT260_SET_I2C_MODE);
  771. static DEVICE_ATTR_RW(i2c_enable);
  772. FT260_SSTAT_ATTR_SHOW(uart_mode);
  773. FT260_BYTE_ATTR_STORE(uart_mode, ft260_set_uart_mode_report,
  774. FT260_SET_UART_MODE);
  775. static DEVICE_ATTR_RW(uart_mode);
  776. FT260_SSTAT_ATTR_SHOW(clock_ctl);
  777. FT260_BYTE_ATTR_STORE(clock_ctl, ft260_set_system_clock_report,
  778. FT260_SET_CLOCK);
  779. static DEVICE_ATTR_RW(clock_ctl);
  780. FT260_I2CST_ATTR_SHOW(clock);
  781. FT260_WORD_ATTR_STORE(clock, ft260_set_i2c_speed_report,
  782. FT260_SET_I2C_CLOCK_SPEED);
  783. static DEVICE_ATTR_RW(clock);
  784. static ssize_t i2c_reset_store(struct device *kdev,
  785. struct device_attribute *attr, const char *buf,
  786. size_t count)
  787. {
  788. struct hid_device *hdev = to_hid_device(kdev);
  789. int ret = ft260_i2c_reset(hdev);
  790. if (ret)
  791. return ret;
  792. return count;
  793. }
  794. static DEVICE_ATTR_WO(i2c_reset);
  795. static const struct attribute_group ft260_attr_group = {
  796. .attrs = (struct attribute *[]) {
  797. &dev_attr_chip_mode.attr,
  798. &dev_attr_pwren_status.attr,
  799. &dev_attr_suspend_status.attr,
  800. &dev_attr_hid_over_i2c_en.attr,
  801. &dev_attr_power_saving_en.attr,
  802. &dev_attr_i2c_enable.attr,
  803. &dev_attr_uart_mode.attr,
  804. &dev_attr_clock_ctl.attr,
  805. &dev_attr_i2c_reset.attr,
  806. &dev_attr_clock.attr,
  807. NULL
  808. }
  809. };
  810. static int ft260_probe(struct hid_device *hdev, const struct hid_device_id *id)
  811. {
  812. struct ft260_device *dev;
  813. struct ft260_get_chip_version_report version;
  814. int ret;
  815. if (!hid_is_usb(hdev))
  816. return -EINVAL;
  817. dev = devm_kzalloc(&hdev->dev, sizeof(*dev), GFP_KERNEL);
  818. if (!dev)
  819. return -ENOMEM;
  820. ret = hid_parse(hdev);
  821. if (ret) {
  822. hid_err(hdev, "failed to parse HID\n");
  823. return ret;
  824. }
  825. ret = hid_hw_start(hdev, 0);
  826. if (ret) {
  827. hid_err(hdev, "failed to start HID HW\n");
  828. return ret;
  829. }
  830. ret = hid_hw_open(hdev);
  831. if (ret) {
  832. hid_err(hdev, "failed to open HID HW\n");
  833. goto err_hid_stop;
  834. }
  835. ret = ft260_hid_feature_report_get(hdev, FT260_CHIP_VERSION,
  836. (u8 *)&version, sizeof(version));
  837. if (ret < 0) {
  838. hid_err(hdev, "failed to retrieve chip version\n");
  839. goto err_hid_close;
  840. }
  841. hid_info(hdev, "chip code: %02x%02x %02x%02x\n",
  842. version.chip_code[0], version.chip_code[1],
  843. version.chip_code[2], version.chip_code[3]);
  844. ret = ft260_is_interface_enabled(hdev);
  845. if (ret <= 0)
  846. goto err_hid_close;
  847. hid_info(hdev, "USB HID v%x.%02x Device [%s] on %s\n",
  848. hdev->version >> 8, hdev->version & 0xff, hdev->name,
  849. hdev->phys);
  850. hid_set_drvdata(hdev, dev);
  851. dev->hdev = hdev;
  852. dev->adap.owner = THIS_MODULE;
  853. dev->adap.class = I2C_CLASS_HWMON;
  854. dev->adap.algo = &ft260_i2c_algo;
  855. dev->adap.quirks = &ft260_i2c_quirks;
  856. dev->adap.dev.parent = &hdev->dev;
  857. snprintf(dev->adap.name, sizeof(dev->adap.name),
  858. "FT260 usb-i2c bridge");
  859. mutex_init(&dev->lock);
  860. init_completion(&dev->wait);
  861. ret = ft260_xfer_status(dev, FT260_I2C_STATUS_BUS_BUSY);
  862. if (ret)
  863. ft260_i2c_reset(hdev);
  864. i2c_set_adapdata(&dev->adap, dev);
  865. ret = i2c_add_adapter(&dev->adap);
  866. if (ret) {
  867. hid_err(hdev, "failed to add i2c adapter\n");
  868. goto err_hid_close;
  869. }
  870. ret = sysfs_create_group(&hdev->dev.kobj, &ft260_attr_group);
  871. if (ret < 0) {
  872. hid_err(hdev, "failed to create sysfs attrs\n");
  873. goto err_i2c_free;
  874. }
  875. return 0;
  876. err_i2c_free:
  877. i2c_del_adapter(&dev->adap);
  878. err_hid_close:
  879. hid_hw_close(hdev);
  880. err_hid_stop:
  881. hid_hw_stop(hdev);
  882. return ret;
  883. }
  884. static void ft260_remove(struct hid_device *hdev)
  885. {
  886. struct ft260_device *dev = hid_get_drvdata(hdev);
  887. if (!dev)
  888. return;
  889. sysfs_remove_group(&hdev->dev.kobj, &ft260_attr_group);
  890. i2c_del_adapter(&dev->adap);
  891. hid_hw_close(hdev);
  892. hid_hw_stop(hdev);
  893. }
  894. static int ft260_raw_event(struct hid_device *hdev, struct hid_report *report,
  895. u8 *data, int size)
  896. {
  897. struct ft260_device *dev = hid_get_drvdata(hdev);
  898. struct ft260_i2c_input_report *xfer = (void *)data;
  899. if (xfer->report >= FT260_I2C_REPORT_MIN &&
  900. xfer->report <= FT260_I2C_REPORT_MAX) {
  901. ft260_dbg("i2c resp: rep %#02x len %d\n", xfer->report,
  902. xfer->length);
  903. if ((dev->read_buf == NULL) ||
  904. (xfer->length > dev->read_len - dev->read_idx)) {
  905. hid_err(hdev, "unexpected report %#02x, length %d\n",
  906. xfer->report, xfer->length);
  907. return -1;
  908. }
  909. memcpy(&dev->read_buf[dev->read_idx], &xfer->data,
  910. xfer->length);
  911. dev->read_idx += xfer->length;
  912. if (dev->read_idx == dev->read_len)
  913. complete(&dev->wait);
  914. } else {
  915. hid_err(hdev, "unhandled report %#02x\n", xfer->report);
  916. }
  917. return 0;
  918. }
  919. static struct hid_driver ft260_driver = {
  920. .name = "ft260",
  921. .id_table = ft260_devices,
  922. .probe = ft260_probe,
  923. .remove = ft260_remove,
  924. .raw_event = ft260_raw_event,
  925. };
  926. module_hid_driver(ft260_driver);
  927. MODULE_DESCRIPTION("FTDI FT260 USB HID to I2C host bridge");
  928. MODULE_AUTHOR("Michael Zaidman <michael.zaidman@gmail.com>");
  929. MODULE_LICENSE("GPL v2");