bmc150-accel-core.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
  4. * Copyright (c) 2014, Intel Corporation.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/i2c.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/delay.h>
  10. #include <linux/slab.h>
  11. #include <linux/acpi.h>
  12. #include <linux/pm.h>
  13. #include <linux/pm_runtime.h>
  14. #include <linux/property.h>
  15. #include <linux/iio/iio.h>
  16. #include <linux/iio/sysfs.h>
  17. #include <linux/iio/buffer.h>
  18. #include <linux/iio/events.h>
  19. #include <linux/iio/trigger.h>
  20. #include <linux/iio/trigger_consumer.h>
  21. #include <linux/iio/triggered_buffer.h>
  22. #include <linux/regmap.h>
  23. #include <linux/regulator/consumer.h>
  24. #include "bmc150-accel.h"
  25. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  26. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  27. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  28. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  29. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  30. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  31. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  32. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  33. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  34. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  35. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  36. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  37. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  38. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  39. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  40. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  41. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  42. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  43. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  44. /* Default BW: 125Hz */
  45. #define BMC150_ACCEL_REG_PMU_BW 0x10
  46. #define BMC150_ACCEL_DEF_BW 125
  47. #define BMC150_ACCEL_REG_RESET 0x14
  48. #define BMC150_ACCEL_RESET_VAL 0xB6
  49. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  50. #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2)
  51. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  52. #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0)
  53. #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1)
  54. #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2)
  55. #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5)
  56. #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6)
  57. #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7)
  58. #define BMC150_ACCEL_REG_INT_MAP_2 0x1B
  59. #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2)
  60. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  61. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  62. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  63. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  64. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  65. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  66. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  67. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  68. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  69. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  70. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  71. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  72. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  73. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  74. #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2)
  75. #define BMC150_ACCEL_REG_INT_5 0x27
  76. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  77. #define BMC150_ACCEL_REG_INT_6 0x28
  78. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  79. /* Slope duration in terms of number of samples */
  80. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  81. /* in terms of multiples of g's/LSB, based on range */
  82. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  83. #define BMC150_ACCEL_REG_XOUT_L 0x02
  84. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  85. /* Sleep Duration values */
  86. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  87. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  88. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  89. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  90. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  91. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  92. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  93. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  94. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  95. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  96. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  97. #define BMC150_ACCEL_REG_TEMP 0x08
  98. #define BMC150_ACCEL_TEMP_CENTER_VAL 23
  99. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  100. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  101. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  102. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  103. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  104. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  105. #define BMC150_ACCEL_FIFO_LENGTH 32
  106. enum bmc150_accel_axis {
  107. AXIS_X,
  108. AXIS_Y,
  109. AXIS_Z,
  110. AXIS_MAX,
  111. };
  112. enum bmc150_power_modes {
  113. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  114. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  115. BMC150_ACCEL_SLEEP_MODE_LPM,
  116. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  117. };
  118. struct bmc150_scale_info {
  119. int scale;
  120. u8 reg_range;
  121. };
  122. struct bmc150_accel_chip_info {
  123. const char *name;
  124. u8 chip_id;
  125. const struct iio_chan_spec *channels;
  126. int num_channels;
  127. const struct bmc150_scale_info scale_table[4];
  128. };
  129. static const struct {
  130. int val;
  131. int val2;
  132. u8 bw_bits;
  133. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  134. {31, 260000, 0x09},
  135. {62, 500000, 0x0A},
  136. {125, 0, 0x0B},
  137. {250, 0, 0x0C},
  138. {500, 0, 0x0D},
  139. {1000, 0, 0x0E},
  140. {2000, 0, 0x0F} };
  141. static __maybe_unused const struct {
  142. int bw_bits;
  143. int msec;
  144. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  145. {0x09, 32},
  146. {0x0A, 16},
  147. {0x0B, 8},
  148. {0x0C, 4},
  149. {0x0D, 2},
  150. {0x0E, 1},
  151. {0x0F, 1} };
  152. static const struct {
  153. int sleep_dur;
  154. u8 reg_value;
  155. } bmc150_accel_sleep_value_table[] = { {0, 0},
  156. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  157. {1000, BMC150_ACCEL_SLEEP_1_MS},
  158. {2000, BMC150_ACCEL_SLEEP_2_MS},
  159. {4000, BMC150_ACCEL_SLEEP_4_MS},
  160. {6000, BMC150_ACCEL_SLEEP_6_MS},
  161. {10000, BMC150_ACCEL_SLEEP_10_MS},
  162. {25000, BMC150_ACCEL_SLEEP_25_MS},
  163. {50000, BMC150_ACCEL_SLEEP_50_MS},
  164. {100000, BMC150_ACCEL_SLEEP_100_MS},
  165. {500000, BMC150_ACCEL_SLEEP_500_MS},
  166. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  167. const struct regmap_config bmc150_regmap_conf = {
  168. .reg_bits = 8,
  169. .val_bits = 8,
  170. .max_register = 0x3f,
  171. };
  172. EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, IIO_BMC150);
  173. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  174. enum bmc150_power_modes mode,
  175. int dur_us)
  176. {
  177. struct device *dev = regmap_get_device(data->regmap);
  178. int i;
  179. int ret;
  180. u8 lpw_bits;
  181. int dur_val = -1;
  182. if (dur_us > 0) {
  183. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  184. ++i) {
  185. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  186. dur_us)
  187. dur_val =
  188. bmc150_accel_sleep_value_table[i].reg_value;
  189. }
  190. } else {
  191. dur_val = 0;
  192. }
  193. if (dur_val < 0)
  194. return -EINVAL;
  195. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  196. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  197. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  198. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  199. if (ret < 0) {
  200. dev_err(dev, "Error writing reg_pmu_lpw\n");
  201. return ret;
  202. }
  203. return 0;
  204. }
  205. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  206. int val2)
  207. {
  208. int i;
  209. int ret;
  210. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  211. if (bmc150_accel_samp_freq_table[i].val == val &&
  212. bmc150_accel_samp_freq_table[i].val2 == val2) {
  213. ret = regmap_write(data->regmap,
  214. BMC150_ACCEL_REG_PMU_BW,
  215. bmc150_accel_samp_freq_table[i].bw_bits);
  216. if (ret < 0)
  217. return ret;
  218. data->bw_bits =
  219. bmc150_accel_samp_freq_table[i].bw_bits;
  220. return 0;
  221. }
  222. }
  223. return -EINVAL;
  224. }
  225. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  226. {
  227. struct device *dev = regmap_get_device(data->regmap);
  228. int ret;
  229. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  230. data->slope_thres);
  231. if (ret < 0) {
  232. dev_err(dev, "Error writing reg_int_6\n");
  233. return ret;
  234. }
  235. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  236. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  237. if (ret < 0) {
  238. dev_err(dev, "Error updating reg_int_5\n");
  239. return ret;
  240. }
  241. dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
  242. return ret;
  243. }
  244. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  245. bool state)
  246. {
  247. if (state)
  248. return bmc150_accel_update_slope(t->data);
  249. return 0;
  250. }
  251. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  252. int *val2)
  253. {
  254. int i;
  255. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  256. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  257. *val = bmc150_accel_samp_freq_table[i].val;
  258. *val2 = bmc150_accel_samp_freq_table[i].val2;
  259. return IIO_VAL_INT_PLUS_MICRO;
  260. }
  261. }
  262. return -EINVAL;
  263. }
  264. #ifdef CONFIG_PM
  265. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  266. {
  267. int i;
  268. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  269. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  270. return bmc150_accel_sample_upd_time[i].msec;
  271. }
  272. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  273. }
  274. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  275. {
  276. struct device *dev = regmap_get_device(data->regmap);
  277. int ret;
  278. if (on) {
  279. ret = pm_runtime_resume_and_get(dev);
  280. } else {
  281. pm_runtime_mark_last_busy(dev);
  282. ret = pm_runtime_put_autosuspend(dev);
  283. }
  284. if (ret < 0) {
  285. dev_err(dev,
  286. "Failed: %s for %d\n", __func__, on);
  287. return ret;
  288. }
  289. return 0;
  290. }
  291. #else
  292. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  293. {
  294. return 0;
  295. }
  296. #endif
  297. #ifdef CONFIG_ACPI
  298. /*
  299. * Support for getting accelerometer information from BOSC0200 ACPI nodes.
  300. *
  301. * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
  302. * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
  303. * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
  304. * contains the mount-matrix for the sensor in the display and ROMK contains
  305. * the mount-matrix for the sensor in the base. On devices using a single
  306. * sensor there is a ROTM ACPI object which contains the mount-matrix.
  307. *
  308. * Here is an incomplete list of devices known to use 1 of these setups:
  309. *
  310. * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
  311. * Lenovo Thinkpad Yoga 11e 3th gen
  312. * Lenovo Thinkpad Yoga 11e 4th gen
  313. *
  314. * Tablets using a single accelerometer using ROTM for the mount-matrix:
  315. * Chuwi Hi8 Pro (CWI513)
  316. * Chuwi Vi8 Plus (CWI519)
  317. * Chuwi Hi13
  318. * Irbis TW90
  319. * Jumper EZpad mini 3
  320. * Onda V80 plus
  321. * Predia Basic Tablet
  322. */
  323. static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
  324. struct iio_mount_matrix *orientation)
  325. {
  326. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  327. acpi_handle handle = ACPI_HANDLE(dev);
  328. char *name, *alt_name, *label;
  329. if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
  330. alt_name = "ROMK";
  331. label = "accel-base";
  332. } else {
  333. alt_name = "ROMS";
  334. label = "accel-display";
  335. }
  336. if (acpi_has_method(handle, "ROTM")) {
  337. name = "ROTM";
  338. } else if (acpi_has_method(handle, alt_name)) {
  339. name = alt_name;
  340. indio_dev->label = label;
  341. } else {
  342. return false;
  343. }
  344. return iio_read_acpi_mount_matrix(dev, orientation, name);
  345. }
  346. static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
  347. struct iio_mount_matrix *orientation)
  348. {
  349. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  350. if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
  351. indio_dev->label = "accel-base";
  352. else
  353. indio_dev->label = "accel-display";
  354. return false; /* DUAL250E fwnodes have no mount matrix info */
  355. }
  356. static bool bmc150_apply_acpi_orientation(struct device *dev,
  357. struct iio_mount_matrix *orientation)
  358. {
  359. struct acpi_device *adev = ACPI_COMPANION(dev);
  360. if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
  361. return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);
  362. if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
  363. return bmc150_apply_dual250e_acpi_orientation(dev, orientation);
  364. return false;
  365. }
  366. #else
  367. static bool bmc150_apply_acpi_orientation(struct device *dev,
  368. struct iio_mount_matrix *orientation)
  369. {
  370. return false;
  371. }
  372. #endif
  373. struct bmc150_accel_interrupt_info {
  374. u8 map_reg;
  375. u8 map_bitmask;
  376. u8 en_reg;
  377. u8 en_bitmask;
  378. };
  379. static const struct bmc150_accel_interrupt_info
  380. bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = {
  381. { /* data ready interrupt */
  382. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  383. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA,
  384. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  385. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  386. },
  387. { /* motion interrupt */
  388. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  389. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE,
  390. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  391. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  392. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  393. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  394. },
  395. { /* fifo watermark interrupt */
  396. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  397. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM,
  398. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  399. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  400. },
  401. };
  402. static const struct bmc150_accel_interrupt_info
  403. bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = {
  404. { /* data ready interrupt */
  405. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  406. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA,
  407. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  408. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  409. },
  410. { /* motion interrupt */
  411. .map_reg = BMC150_ACCEL_REG_INT_MAP_2,
  412. .map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE,
  413. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  414. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  415. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  416. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  417. },
  418. { /* fifo watermark interrupt */
  419. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  420. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM,
  421. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  422. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  423. },
  424. };
  425. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  426. struct bmc150_accel_data *data, int irq)
  427. {
  428. const struct bmc150_accel_interrupt_info *irq_info = NULL;
  429. struct device *dev = regmap_get_device(data->regmap);
  430. int i;
  431. /*
  432. * For now we map all interrupts to the same output pin.
  433. * However, some boards may have just INT2 (and not INT1) connected,
  434. * so we try to detect which IRQ it is based on the interrupt-names.
  435. * Without interrupt-names, we assume the irq belongs to INT1.
  436. */
  437. irq_info = bmc150_accel_interrupts_int1;
  438. if (data->type == BOSCH_BMC156 ||
  439. irq == fwnode_irq_get_byname(dev_fwnode(dev), "INT2"))
  440. irq_info = bmc150_accel_interrupts_int2;
  441. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  442. data->interrupts[i].info = &irq_info[i];
  443. }
  444. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  445. bool state)
  446. {
  447. struct device *dev = regmap_get_device(data->regmap);
  448. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  449. const struct bmc150_accel_interrupt_info *info = intr->info;
  450. int ret;
  451. if (state) {
  452. if (atomic_inc_return(&intr->users) > 1)
  453. return 0;
  454. } else {
  455. if (atomic_dec_return(&intr->users) > 0)
  456. return 0;
  457. }
  458. /*
  459. * We will expect the enable and disable to do operation in reverse
  460. * order. This will happen here anyway, as our resume operation uses
  461. * sync mode runtime pm calls. The suspend operation will be delayed
  462. * by autosuspend delay.
  463. * So the disable operation will still happen in reverse order of
  464. * enable operation. When runtime pm is disabled the mode is always on,
  465. * so sequence doesn't matter.
  466. */
  467. ret = bmc150_accel_set_power_state(data, state);
  468. if (ret < 0)
  469. return ret;
  470. /* map the interrupt to the appropriate pins */
  471. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  472. (state ? info->map_bitmask : 0));
  473. if (ret < 0) {
  474. dev_err(dev, "Error updating reg_int_map\n");
  475. goto out_fix_power_state;
  476. }
  477. /* enable/disable the interrupt */
  478. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  479. (state ? info->en_bitmask : 0));
  480. if (ret < 0) {
  481. dev_err(dev, "Error updating reg_int_en\n");
  482. goto out_fix_power_state;
  483. }
  484. return 0;
  485. out_fix_power_state:
  486. bmc150_accel_set_power_state(data, false);
  487. return ret;
  488. }
  489. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  490. {
  491. struct device *dev = regmap_get_device(data->regmap);
  492. int ret, i;
  493. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  494. if (data->chip_info->scale_table[i].scale == val) {
  495. ret = regmap_write(data->regmap,
  496. BMC150_ACCEL_REG_PMU_RANGE,
  497. data->chip_info->scale_table[i].reg_range);
  498. if (ret < 0) {
  499. dev_err(dev, "Error writing pmu_range\n");
  500. return ret;
  501. }
  502. data->range = data->chip_info->scale_table[i].reg_range;
  503. return 0;
  504. }
  505. }
  506. return -EINVAL;
  507. }
  508. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  509. {
  510. struct device *dev = regmap_get_device(data->regmap);
  511. int ret;
  512. unsigned int value;
  513. mutex_lock(&data->mutex);
  514. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  515. if (ret < 0) {
  516. dev_err(dev, "Error reading reg_temp\n");
  517. mutex_unlock(&data->mutex);
  518. return ret;
  519. }
  520. *val = sign_extend32(value, 7);
  521. mutex_unlock(&data->mutex);
  522. return IIO_VAL_INT;
  523. }
  524. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  525. struct iio_chan_spec const *chan,
  526. int *val)
  527. {
  528. struct device *dev = regmap_get_device(data->regmap);
  529. int ret;
  530. int axis = chan->scan_index;
  531. __le16 raw_val;
  532. mutex_lock(&data->mutex);
  533. ret = bmc150_accel_set_power_state(data, true);
  534. if (ret < 0) {
  535. mutex_unlock(&data->mutex);
  536. return ret;
  537. }
  538. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  539. &raw_val, sizeof(raw_val));
  540. if (ret < 0) {
  541. dev_err(dev, "Error reading axis %d\n", axis);
  542. bmc150_accel_set_power_state(data, false);
  543. mutex_unlock(&data->mutex);
  544. return ret;
  545. }
  546. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  547. chan->scan_type.realbits - 1);
  548. ret = bmc150_accel_set_power_state(data, false);
  549. mutex_unlock(&data->mutex);
  550. if (ret < 0)
  551. return ret;
  552. return IIO_VAL_INT;
  553. }
  554. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  555. struct iio_chan_spec const *chan,
  556. int *val, int *val2, long mask)
  557. {
  558. struct bmc150_accel_data *data = iio_priv(indio_dev);
  559. int ret;
  560. switch (mask) {
  561. case IIO_CHAN_INFO_RAW:
  562. switch (chan->type) {
  563. case IIO_TEMP:
  564. return bmc150_accel_get_temp(data, val);
  565. case IIO_ACCEL:
  566. if (iio_buffer_enabled(indio_dev))
  567. return -EBUSY;
  568. else
  569. return bmc150_accel_get_axis(data, chan, val);
  570. default:
  571. return -EINVAL;
  572. }
  573. case IIO_CHAN_INFO_OFFSET:
  574. if (chan->type == IIO_TEMP) {
  575. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  576. return IIO_VAL_INT;
  577. } else {
  578. return -EINVAL;
  579. }
  580. case IIO_CHAN_INFO_SCALE:
  581. *val = 0;
  582. switch (chan->type) {
  583. case IIO_TEMP:
  584. *val2 = 500000;
  585. return IIO_VAL_INT_PLUS_MICRO;
  586. case IIO_ACCEL:
  587. {
  588. int i;
  589. const struct bmc150_scale_info *si;
  590. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  591. for (i = 0; i < st_size; ++i) {
  592. si = &data->chip_info->scale_table[i];
  593. if (si->reg_range == data->range) {
  594. *val2 = si->scale;
  595. return IIO_VAL_INT_PLUS_MICRO;
  596. }
  597. }
  598. return -EINVAL;
  599. }
  600. default:
  601. return -EINVAL;
  602. }
  603. case IIO_CHAN_INFO_SAMP_FREQ:
  604. mutex_lock(&data->mutex);
  605. ret = bmc150_accel_get_bw(data, val, val2);
  606. mutex_unlock(&data->mutex);
  607. return ret;
  608. default:
  609. return -EINVAL;
  610. }
  611. }
  612. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  613. struct iio_chan_spec const *chan,
  614. int val, int val2, long mask)
  615. {
  616. struct bmc150_accel_data *data = iio_priv(indio_dev);
  617. int ret;
  618. switch (mask) {
  619. case IIO_CHAN_INFO_SAMP_FREQ:
  620. mutex_lock(&data->mutex);
  621. ret = bmc150_accel_set_bw(data, val, val2);
  622. mutex_unlock(&data->mutex);
  623. break;
  624. case IIO_CHAN_INFO_SCALE:
  625. if (val)
  626. return -EINVAL;
  627. mutex_lock(&data->mutex);
  628. ret = bmc150_accel_set_scale(data, val2);
  629. mutex_unlock(&data->mutex);
  630. return ret;
  631. default:
  632. ret = -EINVAL;
  633. }
  634. return ret;
  635. }
  636. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  637. const struct iio_chan_spec *chan,
  638. enum iio_event_type type,
  639. enum iio_event_direction dir,
  640. enum iio_event_info info,
  641. int *val, int *val2)
  642. {
  643. struct bmc150_accel_data *data = iio_priv(indio_dev);
  644. *val2 = 0;
  645. switch (info) {
  646. case IIO_EV_INFO_VALUE:
  647. *val = data->slope_thres;
  648. break;
  649. case IIO_EV_INFO_PERIOD:
  650. *val = data->slope_dur;
  651. break;
  652. default:
  653. return -EINVAL;
  654. }
  655. return IIO_VAL_INT;
  656. }
  657. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  658. const struct iio_chan_spec *chan,
  659. enum iio_event_type type,
  660. enum iio_event_direction dir,
  661. enum iio_event_info info,
  662. int val, int val2)
  663. {
  664. struct bmc150_accel_data *data = iio_priv(indio_dev);
  665. if (data->ev_enable_state)
  666. return -EBUSY;
  667. switch (info) {
  668. case IIO_EV_INFO_VALUE:
  669. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  670. break;
  671. case IIO_EV_INFO_PERIOD:
  672. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  673. break;
  674. default:
  675. return -EINVAL;
  676. }
  677. return 0;
  678. }
  679. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  680. const struct iio_chan_spec *chan,
  681. enum iio_event_type type,
  682. enum iio_event_direction dir)
  683. {
  684. struct bmc150_accel_data *data = iio_priv(indio_dev);
  685. return data->ev_enable_state;
  686. }
  687. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  688. const struct iio_chan_spec *chan,
  689. enum iio_event_type type,
  690. enum iio_event_direction dir,
  691. int state)
  692. {
  693. struct bmc150_accel_data *data = iio_priv(indio_dev);
  694. int ret;
  695. if (state == data->ev_enable_state)
  696. return 0;
  697. mutex_lock(&data->mutex);
  698. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  699. state);
  700. if (ret < 0) {
  701. mutex_unlock(&data->mutex);
  702. return ret;
  703. }
  704. data->ev_enable_state = state;
  705. mutex_unlock(&data->mutex);
  706. return 0;
  707. }
  708. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  709. struct iio_trigger *trig)
  710. {
  711. struct bmc150_accel_data *data = iio_priv(indio_dev);
  712. int i;
  713. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  714. if (data->triggers[i].indio_trig == trig)
  715. return 0;
  716. }
  717. return -EINVAL;
  718. }
  719. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  720. struct device_attribute *attr,
  721. char *buf)
  722. {
  723. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  724. struct bmc150_accel_data *data = iio_priv(indio_dev);
  725. int wm;
  726. mutex_lock(&data->mutex);
  727. wm = data->watermark;
  728. mutex_unlock(&data->mutex);
  729. return sprintf(buf, "%d\n", wm);
  730. }
  731. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  732. struct device_attribute *attr,
  733. char *buf)
  734. {
  735. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  736. struct bmc150_accel_data *data = iio_priv(indio_dev);
  737. bool state;
  738. mutex_lock(&data->mutex);
  739. state = data->fifo_mode;
  740. mutex_unlock(&data->mutex);
  741. return sprintf(buf, "%d\n", state);
  742. }
  743. static const struct iio_mount_matrix *
  744. bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
  745. const struct iio_chan_spec *chan)
  746. {
  747. struct bmc150_accel_data *data = iio_priv(indio_dev);
  748. return &data->orientation;
  749. }
  750. static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
  751. IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
  752. { }
  753. };
  754. IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1");
  755. IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max,
  756. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  757. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  758. bmc150_accel_get_fifo_state, NULL, 0);
  759. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  760. bmc150_accel_get_fifo_watermark, NULL, 0);
  761. static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = {
  762. &iio_dev_attr_hwfifo_watermark_min,
  763. &iio_dev_attr_hwfifo_watermark_max,
  764. &iio_dev_attr_hwfifo_watermark,
  765. &iio_dev_attr_hwfifo_enabled,
  766. NULL,
  767. };
  768. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  769. {
  770. struct bmc150_accel_data *data = iio_priv(indio_dev);
  771. if (val > BMC150_ACCEL_FIFO_LENGTH)
  772. val = BMC150_ACCEL_FIFO_LENGTH;
  773. mutex_lock(&data->mutex);
  774. data->watermark = val;
  775. mutex_unlock(&data->mutex);
  776. return 0;
  777. }
  778. /*
  779. * We must read at least one full frame in one burst, otherwise the rest of the
  780. * frame data is discarded.
  781. */
  782. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  783. char *buffer, int samples)
  784. {
  785. struct device *dev = regmap_get_device(data->regmap);
  786. int sample_length = 3 * 2;
  787. int ret;
  788. int total_length = samples * sample_length;
  789. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  790. buffer, total_length);
  791. if (ret)
  792. dev_err(dev,
  793. "Error transferring data from fifo: %d\n", ret);
  794. return ret;
  795. }
  796. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  797. unsigned samples, bool irq)
  798. {
  799. struct bmc150_accel_data *data = iio_priv(indio_dev);
  800. struct device *dev = regmap_get_device(data->regmap);
  801. int ret, i;
  802. u8 count;
  803. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  804. int64_t tstamp;
  805. uint64_t sample_period;
  806. unsigned int val;
  807. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  808. if (ret < 0) {
  809. dev_err(dev, "Error reading reg_fifo_status\n");
  810. return ret;
  811. }
  812. count = val & 0x7F;
  813. if (!count)
  814. return 0;
  815. /*
  816. * If we getting called from IRQ handler we know the stored timestamp is
  817. * fairly accurate for the last stored sample. Otherwise, if we are
  818. * called as a result of a read operation from userspace and hence
  819. * before the watermark interrupt was triggered, take a timestamp
  820. * now. We can fall anywhere in between two samples so the error in this
  821. * case is at most one sample period.
  822. */
  823. if (!irq) {
  824. data->old_timestamp = data->timestamp;
  825. data->timestamp = iio_get_time_ns(indio_dev);
  826. }
  827. /*
  828. * Approximate timestamps for each of the sample based on the sampling
  829. * frequency, timestamp for last sample and number of samples.
  830. *
  831. * Note that we can't use the current bandwidth settings to compute the
  832. * sample period because the sample rate varies with the device
  833. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  834. * small variation adds when we store a large number of samples and
  835. * creates significant jitter between the last and first samples in
  836. * different batches (e.g. 32ms vs 21ms).
  837. *
  838. * To avoid this issue we compute the actual sample period ourselves
  839. * based on the timestamp delta between the last two flush operations.
  840. */
  841. sample_period = (data->timestamp - data->old_timestamp);
  842. do_div(sample_period, count);
  843. tstamp = data->timestamp - (count - 1) * sample_period;
  844. if (samples && count > samples)
  845. count = samples;
  846. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  847. if (ret)
  848. return ret;
  849. /*
  850. * Ideally we want the IIO core to handle the demux when running in fifo
  851. * mode but not when running in triggered buffer mode. Unfortunately
  852. * this does not seem to be possible, so stick with driver demux for
  853. * now.
  854. */
  855. for (i = 0; i < count; i++) {
  856. int j, bit;
  857. j = 0;
  858. iio_for_each_active_channel(indio_dev, bit)
  859. memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
  860. sizeof(data->scan.channels[0]));
  861. iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
  862. tstamp);
  863. tstamp += sample_period;
  864. }
  865. return count;
  866. }
  867. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  868. {
  869. struct bmc150_accel_data *data = iio_priv(indio_dev);
  870. int ret;
  871. mutex_lock(&data->mutex);
  872. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  873. mutex_unlock(&data->mutex);
  874. return ret;
  875. }
  876. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  877. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  878. static struct attribute *bmc150_accel_attributes[] = {
  879. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  880. NULL,
  881. };
  882. static const struct attribute_group bmc150_accel_attrs_group = {
  883. .attrs = bmc150_accel_attributes,
  884. };
  885. static const struct iio_event_spec bmc150_accel_event = {
  886. .type = IIO_EV_TYPE_ROC,
  887. .dir = IIO_EV_DIR_EITHER,
  888. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  889. BIT(IIO_EV_INFO_ENABLE) |
  890. BIT(IIO_EV_INFO_PERIOD)
  891. };
  892. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  893. .type = IIO_ACCEL, \
  894. .modified = 1, \
  895. .channel2 = IIO_MOD_##_axis, \
  896. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  897. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  898. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  899. .scan_index = AXIS_##_axis, \
  900. .scan_type = { \
  901. .sign = 's', \
  902. .realbits = (bits), \
  903. .storagebits = 16, \
  904. .shift = 16 - (bits), \
  905. .endianness = IIO_LE, \
  906. }, \
  907. .ext_info = bmc150_accel_ext_info, \
  908. .event_spec = &bmc150_accel_event, \
  909. .num_event_specs = 1 \
  910. }
  911. #define BMC150_ACCEL_CHANNELS(bits) { \
  912. { \
  913. .type = IIO_TEMP, \
  914. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  915. BIT(IIO_CHAN_INFO_SCALE) | \
  916. BIT(IIO_CHAN_INFO_OFFSET), \
  917. .scan_index = -1, \
  918. }, \
  919. BMC150_ACCEL_CHANNEL(X, bits), \
  920. BMC150_ACCEL_CHANNEL(Y, bits), \
  921. BMC150_ACCEL_CHANNEL(Z, bits), \
  922. IIO_CHAN_SOFT_TIMESTAMP(3), \
  923. }
  924. static const struct iio_chan_spec bma222e_accel_channels[] =
  925. BMC150_ACCEL_CHANNELS(8);
  926. static const struct iio_chan_spec bma250e_accel_channels[] =
  927. BMC150_ACCEL_CHANNELS(10);
  928. static const struct iio_chan_spec bmc150_accel_channels[] =
  929. BMC150_ACCEL_CHANNELS(12);
  930. static const struct iio_chan_spec bma280_accel_channels[] =
  931. BMC150_ACCEL_CHANNELS(14);
  932. /*
  933. * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
  934. * over the amount of bits (see above). The scale table can be calculated using
  935. * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
  936. * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
  937. * Multiply 10^6 and round to get the values listed below.
  938. */
  939. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  940. {
  941. .name = "BMA222",
  942. .chip_id = 0x03,
  943. .channels = bma222e_accel_channels,
  944. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  945. .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
  946. {306458, BMC150_ACCEL_DEF_RANGE_4G},
  947. {612916, BMC150_ACCEL_DEF_RANGE_8G},
  948. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  949. },
  950. {
  951. .name = "BMA222E",
  952. .chip_id = 0xF8,
  953. .channels = bma222e_accel_channels,
  954. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  955. .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
  956. {306458, BMC150_ACCEL_DEF_RANGE_4G},
  957. {612916, BMC150_ACCEL_DEF_RANGE_8G},
  958. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  959. },
  960. {
  961. .name = "BMA250E",
  962. .chip_id = 0xF9,
  963. .channels = bma250e_accel_channels,
  964. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  965. .scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
  966. {76614, BMC150_ACCEL_DEF_RANGE_4G},
  967. {153229, BMC150_ACCEL_DEF_RANGE_8G},
  968. {306458, BMC150_ACCEL_DEF_RANGE_16G} },
  969. },
  970. {
  971. .name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
  972. .chip_id = 0xFA,
  973. .channels = bmc150_accel_channels,
  974. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  975. .scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
  976. {19154, BMC150_ACCEL_DEF_RANGE_4G},
  977. {38307, BMC150_ACCEL_DEF_RANGE_8G},
  978. {76614, BMC150_ACCEL_DEF_RANGE_16G} },
  979. },
  980. {
  981. .name = "BMA280",
  982. .chip_id = 0xFB,
  983. .channels = bma280_accel_channels,
  984. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  985. .scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
  986. {4788, BMC150_ACCEL_DEF_RANGE_4G},
  987. {9577, BMC150_ACCEL_DEF_RANGE_8G},
  988. {19154, BMC150_ACCEL_DEF_RANGE_16G} },
  989. },
  990. };
  991. static const struct iio_info bmc150_accel_info = {
  992. .attrs = &bmc150_accel_attrs_group,
  993. .read_raw = bmc150_accel_read_raw,
  994. .write_raw = bmc150_accel_write_raw,
  995. .read_event_value = bmc150_accel_read_event,
  996. .write_event_value = bmc150_accel_write_event,
  997. .write_event_config = bmc150_accel_write_event_config,
  998. .read_event_config = bmc150_accel_read_event_config,
  999. };
  1000. static const struct iio_info bmc150_accel_info_fifo = {
  1001. .attrs = &bmc150_accel_attrs_group,
  1002. .read_raw = bmc150_accel_read_raw,
  1003. .write_raw = bmc150_accel_write_raw,
  1004. .read_event_value = bmc150_accel_read_event,
  1005. .write_event_value = bmc150_accel_write_event,
  1006. .write_event_config = bmc150_accel_write_event_config,
  1007. .read_event_config = bmc150_accel_read_event_config,
  1008. .validate_trigger = bmc150_accel_validate_trigger,
  1009. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  1010. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  1011. };
  1012. static const unsigned long bmc150_accel_scan_masks[] = {
  1013. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  1014. 0};
  1015. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  1016. {
  1017. struct iio_poll_func *pf = p;
  1018. struct iio_dev *indio_dev = pf->indio_dev;
  1019. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1020. int ret;
  1021. mutex_lock(&data->mutex);
  1022. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  1023. data->buffer, AXIS_MAX * 2);
  1024. mutex_unlock(&data->mutex);
  1025. if (ret < 0)
  1026. goto err_read;
  1027. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  1028. pf->timestamp);
  1029. err_read:
  1030. iio_trigger_notify_done(indio_dev->trig);
  1031. return IRQ_HANDLED;
  1032. }
  1033. static void bmc150_accel_trig_reen(struct iio_trigger *trig)
  1034. {
  1035. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1036. struct bmc150_accel_data *data = t->data;
  1037. struct device *dev = regmap_get_device(data->regmap);
  1038. int ret;
  1039. /* new data interrupts don't need ack */
  1040. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  1041. return;
  1042. mutex_lock(&data->mutex);
  1043. /* clear any latched interrupt */
  1044. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1045. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1046. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1047. mutex_unlock(&data->mutex);
  1048. if (ret < 0)
  1049. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1050. }
  1051. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  1052. bool state)
  1053. {
  1054. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1055. struct bmc150_accel_data *data = t->data;
  1056. int ret;
  1057. mutex_lock(&data->mutex);
  1058. if (t->enabled == state) {
  1059. mutex_unlock(&data->mutex);
  1060. return 0;
  1061. }
  1062. if (t->setup) {
  1063. ret = t->setup(t, state);
  1064. if (ret < 0) {
  1065. mutex_unlock(&data->mutex);
  1066. return ret;
  1067. }
  1068. }
  1069. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1070. if (ret < 0) {
  1071. mutex_unlock(&data->mutex);
  1072. return ret;
  1073. }
  1074. t->enabled = state;
  1075. mutex_unlock(&data->mutex);
  1076. return ret;
  1077. }
  1078. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1079. .set_trigger_state = bmc150_accel_trigger_set_state,
  1080. .reenable = bmc150_accel_trig_reen,
  1081. };
  1082. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1083. {
  1084. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1085. struct device *dev = regmap_get_device(data->regmap);
  1086. int dir;
  1087. int ret;
  1088. unsigned int val;
  1089. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1090. if (ret < 0) {
  1091. dev_err(dev, "Error reading reg_int_status_2\n");
  1092. return ret;
  1093. }
  1094. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1095. dir = IIO_EV_DIR_FALLING;
  1096. else
  1097. dir = IIO_EV_DIR_RISING;
  1098. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1099. iio_push_event(indio_dev,
  1100. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1101. 0,
  1102. IIO_MOD_X,
  1103. IIO_EV_TYPE_ROC,
  1104. dir),
  1105. data->timestamp);
  1106. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1107. iio_push_event(indio_dev,
  1108. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1109. 0,
  1110. IIO_MOD_Y,
  1111. IIO_EV_TYPE_ROC,
  1112. dir),
  1113. data->timestamp);
  1114. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1115. iio_push_event(indio_dev,
  1116. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1117. 0,
  1118. IIO_MOD_Z,
  1119. IIO_EV_TYPE_ROC,
  1120. dir),
  1121. data->timestamp);
  1122. return ret;
  1123. }
  1124. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1125. {
  1126. struct iio_dev *indio_dev = private;
  1127. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1128. struct device *dev = regmap_get_device(data->regmap);
  1129. bool ack = false;
  1130. int ret;
  1131. mutex_lock(&data->mutex);
  1132. if (data->fifo_mode) {
  1133. ret = __bmc150_accel_fifo_flush(indio_dev,
  1134. BMC150_ACCEL_FIFO_LENGTH, true);
  1135. if (ret > 0)
  1136. ack = true;
  1137. }
  1138. if (data->ev_enable_state) {
  1139. ret = bmc150_accel_handle_roc_event(indio_dev);
  1140. if (ret > 0)
  1141. ack = true;
  1142. }
  1143. if (ack) {
  1144. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1145. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1146. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1147. if (ret)
  1148. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1149. ret = IRQ_HANDLED;
  1150. } else {
  1151. ret = IRQ_NONE;
  1152. }
  1153. mutex_unlock(&data->mutex);
  1154. return ret;
  1155. }
  1156. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1157. {
  1158. struct iio_dev *indio_dev = private;
  1159. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1160. bool ack = false;
  1161. int i;
  1162. data->old_timestamp = data->timestamp;
  1163. data->timestamp = iio_get_time_ns(indio_dev);
  1164. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1165. if (data->triggers[i].enabled) {
  1166. iio_trigger_poll(data->triggers[i].indio_trig);
  1167. ack = true;
  1168. break;
  1169. }
  1170. }
  1171. if (data->ev_enable_state || data->fifo_mode)
  1172. return IRQ_WAKE_THREAD;
  1173. if (ack)
  1174. return IRQ_HANDLED;
  1175. return IRQ_NONE;
  1176. }
  1177. static const struct {
  1178. int intr;
  1179. const char *name;
  1180. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1181. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1182. {
  1183. .intr = 0,
  1184. .name = "%s-dev%d",
  1185. },
  1186. {
  1187. .intr = 1,
  1188. .name = "%s-any-motion-dev%d",
  1189. .setup = bmc150_accel_any_motion_setup,
  1190. },
  1191. };
  1192. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1193. int from)
  1194. {
  1195. int i;
  1196. for (i = from; i >= 0; i--) {
  1197. if (data->triggers[i].indio_trig) {
  1198. iio_trigger_unregister(data->triggers[i].indio_trig);
  1199. data->triggers[i].indio_trig = NULL;
  1200. }
  1201. }
  1202. }
  1203. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1204. struct bmc150_accel_data *data)
  1205. {
  1206. struct device *dev = regmap_get_device(data->regmap);
  1207. int i, ret;
  1208. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1209. struct bmc150_accel_trigger *t = &data->triggers[i];
  1210. t->indio_trig = devm_iio_trigger_alloc(dev,
  1211. bmc150_accel_triggers[i].name,
  1212. indio_dev->name,
  1213. iio_device_id(indio_dev));
  1214. if (!t->indio_trig) {
  1215. ret = -ENOMEM;
  1216. break;
  1217. }
  1218. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1219. t->intr = bmc150_accel_triggers[i].intr;
  1220. t->data = data;
  1221. t->setup = bmc150_accel_triggers[i].setup;
  1222. iio_trigger_set_drvdata(t->indio_trig, t);
  1223. ret = iio_trigger_register(t->indio_trig);
  1224. if (ret)
  1225. break;
  1226. }
  1227. if (ret)
  1228. bmc150_accel_unregister_triggers(data, i - 1);
  1229. return ret;
  1230. }
  1231. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1232. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1233. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1234. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1235. {
  1236. struct device *dev = regmap_get_device(data->regmap);
  1237. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1238. int ret;
  1239. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1240. if (ret < 0) {
  1241. dev_err(dev, "Error writing reg_fifo_config1\n");
  1242. return ret;
  1243. }
  1244. if (!data->fifo_mode)
  1245. return 0;
  1246. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1247. data->watermark);
  1248. if (ret < 0)
  1249. dev_err(dev, "Error writing reg_fifo_config0\n");
  1250. return ret;
  1251. }
  1252. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1253. {
  1254. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1255. return bmc150_accel_set_power_state(data, true);
  1256. }
  1257. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1258. {
  1259. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1260. int ret = 0;
  1261. if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
  1262. return 0;
  1263. mutex_lock(&data->mutex);
  1264. if (!data->watermark)
  1265. goto out;
  1266. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1267. true);
  1268. if (ret)
  1269. goto out;
  1270. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1271. ret = bmc150_accel_fifo_set_mode(data);
  1272. if (ret) {
  1273. data->fifo_mode = 0;
  1274. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1275. false);
  1276. }
  1277. out:
  1278. mutex_unlock(&data->mutex);
  1279. return ret;
  1280. }
  1281. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1282. {
  1283. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1284. if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
  1285. return 0;
  1286. mutex_lock(&data->mutex);
  1287. if (!data->fifo_mode)
  1288. goto out;
  1289. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1290. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1291. data->fifo_mode = 0;
  1292. bmc150_accel_fifo_set_mode(data);
  1293. out:
  1294. mutex_unlock(&data->mutex);
  1295. return 0;
  1296. }
  1297. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1298. {
  1299. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1300. return bmc150_accel_set_power_state(data, false);
  1301. }
  1302. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1303. .preenable = bmc150_accel_buffer_preenable,
  1304. .postenable = bmc150_accel_buffer_postenable,
  1305. .predisable = bmc150_accel_buffer_predisable,
  1306. .postdisable = bmc150_accel_buffer_postdisable,
  1307. };
  1308. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1309. {
  1310. struct device *dev = regmap_get_device(data->regmap);
  1311. int ret, i;
  1312. unsigned int val;
  1313. /*
  1314. * Reset chip to get it in a known good state. A delay of 1.8ms after
  1315. * reset is required according to the data sheets of supported chips.
  1316. */
  1317. regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
  1318. BMC150_ACCEL_RESET_VAL);
  1319. usleep_range(1800, 2500);
  1320. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1321. if (ret < 0) {
  1322. dev_err(dev, "Error: Reading chip id\n");
  1323. return ret;
  1324. }
  1325. dev_dbg(dev, "Chip Id %x\n", val);
  1326. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1327. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1328. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1329. break;
  1330. }
  1331. }
  1332. if (!data->chip_info) {
  1333. dev_err(dev, "Invalid chip %x\n", val);
  1334. return -ENODEV;
  1335. }
  1336. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1337. if (ret < 0)
  1338. return ret;
  1339. /* Set Bandwidth */
  1340. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1341. if (ret < 0)
  1342. return ret;
  1343. /* Set Default Range */
  1344. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1345. BMC150_ACCEL_DEF_RANGE_4G);
  1346. if (ret < 0) {
  1347. dev_err(dev, "Error writing reg_pmu_range\n");
  1348. return ret;
  1349. }
  1350. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1351. /* Set default slope duration and thresholds */
  1352. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1353. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1354. ret = bmc150_accel_update_slope(data);
  1355. if (ret < 0)
  1356. return ret;
  1357. /* Set default as latched interrupts */
  1358. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1359. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1360. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1361. if (ret < 0) {
  1362. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1363. return ret;
  1364. }
  1365. return 0;
  1366. }
  1367. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1368. enum bmc150_type type, const char *name,
  1369. bool block_supported)
  1370. {
  1371. const struct iio_dev_attr **fifo_attrs;
  1372. struct bmc150_accel_data *data;
  1373. struct iio_dev *indio_dev;
  1374. int ret;
  1375. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1376. if (!indio_dev)
  1377. return -ENOMEM;
  1378. data = iio_priv(indio_dev);
  1379. dev_set_drvdata(dev, indio_dev);
  1380. data->regmap = regmap;
  1381. data->type = type;
  1382. if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
  1383. ret = iio_read_mount_matrix(dev, &data->orientation);
  1384. if (ret)
  1385. return ret;
  1386. }
  1387. /*
  1388. * VDD is the analog and digital domain voltage supply
  1389. * VDDIO is the digital I/O voltage supply
  1390. */
  1391. data->regulators[0].supply = "vdd";
  1392. data->regulators[1].supply = "vddio";
  1393. ret = devm_regulator_bulk_get(dev,
  1394. ARRAY_SIZE(data->regulators),
  1395. data->regulators);
  1396. if (ret)
  1397. return dev_err_probe(dev, ret, "failed to get regulators\n");
  1398. ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
  1399. data->regulators);
  1400. if (ret) {
  1401. dev_err(dev, "failed to enable regulators: %d\n", ret);
  1402. return ret;
  1403. }
  1404. /*
  1405. * 2ms or 3ms power-on time according to datasheets, let's better
  1406. * be safe than sorry and set this delay to 5ms.
  1407. */
  1408. msleep(5);
  1409. ret = bmc150_accel_chip_init(data);
  1410. if (ret < 0)
  1411. goto err_disable_regulators;
  1412. mutex_init(&data->mutex);
  1413. indio_dev->channels = data->chip_info->channels;
  1414. indio_dev->num_channels = data->chip_info->num_channels;
  1415. indio_dev->name = name ? name : data->chip_info->name;
  1416. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1417. indio_dev->modes = INDIO_DIRECT_MODE;
  1418. indio_dev->info = &bmc150_accel_info;
  1419. if (block_supported) {
  1420. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1421. indio_dev->info = &bmc150_accel_info_fifo;
  1422. fifo_attrs = bmc150_accel_fifo_attributes;
  1423. } else {
  1424. fifo_attrs = NULL;
  1425. }
  1426. ret = iio_triggered_buffer_setup_ext(indio_dev,
  1427. &iio_pollfunc_store_time,
  1428. bmc150_accel_trigger_handler,
  1429. IIO_BUFFER_DIRECTION_IN,
  1430. &bmc150_accel_buffer_ops,
  1431. fifo_attrs);
  1432. if (ret < 0) {
  1433. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1434. goto err_disable_regulators;
  1435. }
  1436. if (irq > 0) {
  1437. ret = devm_request_threaded_irq(dev, irq,
  1438. bmc150_accel_irq_handler,
  1439. bmc150_accel_irq_thread_handler,
  1440. IRQF_TRIGGER_RISING,
  1441. BMC150_ACCEL_IRQ_NAME,
  1442. indio_dev);
  1443. if (ret)
  1444. goto err_buffer_cleanup;
  1445. /*
  1446. * Set latched mode interrupt. While certain interrupts are
  1447. * non-latched regardless of this settings (e.g. new data) we
  1448. * want to use latch mode when we can to prevent interrupt
  1449. * flooding.
  1450. */
  1451. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1452. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1453. if (ret < 0) {
  1454. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1455. goto err_buffer_cleanup;
  1456. }
  1457. bmc150_accel_interrupts_setup(indio_dev, data, irq);
  1458. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1459. if (ret)
  1460. goto err_buffer_cleanup;
  1461. }
  1462. ret = pm_runtime_set_active(dev);
  1463. if (ret)
  1464. goto err_trigger_unregister;
  1465. pm_runtime_enable(dev);
  1466. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1467. pm_runtime_use_autosuspend(dev);
  1468. ret = iio_device_register(indio_dev);
  1469. if (ret < 0) {
  1470. dev_err(dev, "Unable to register iio device\n");
  1471. goto err_pm_cleanup;
  1472. }
  1473. return 0;
  1474. err_pm_cleanup:
  1475. pm_runtime_dont_use_autosuspend(dev);
  1476. pm_runtime_disable(dev);
  1477. err_trigger_unregister:
  1478. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1479. err_buffer_cleanup:
  1480. iio_triggered_buffer_cleanup(indio_dev);
  1481. err_disable_regulators:
  1482. regulator_bulk_disable(ARRAY_SIZE(data->regulators),
  1483. data->regulators);
  1484. return ret;
  1485. }
  1486. EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, IIO_BMC150);
  1487. void bmc150_accel_core_remove(struct device *dev)
  1488. {
  1489. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1490. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1491. iio_device_unregister(indio_dev);
  1492. pm_runtime_disable(dev);
  1493. pm_runtime_set_suspended(dev);
  1494. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1495. iio_triggered_buffer_cleanup(indio_dev);
  1496. mutex_lock(&data->mutex);
  1497. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1498. mutex_unlock(&data->mutex);
  1499. regulator_bulk_disable(ARRAY_SIZE(data->regulators),
  1500. data->regulators);
  1501. }
  1502. EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, IIO_BMC150);
  1503. #ifdef CONFIG_PM_SLEEP
  1504. static int bmc150_accel_suspend(struct device *dev)
  1505. {
  1506. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1507. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1508. mutex_lock(&data->mutex);
  1509. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1510. mutex_unlock(&data->mutex);
  1511. return 0;
  1512. }
  1513. static int bmc150_accel_resume(struct device *dev)
  1514. {
  1515. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1516. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1517. mutex_lock(&data->mutex);
  1518. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1519. bmc150_accel_fifo_set_mode(data);
  1520. mutex_unlock(&data->mutex);
  1521. if (data->resume_callback)
  1522. data->resume_callback(dev);
  1523. return 0;
  1524. }
  1525. #endif
  1526. #ifdef CONFIG_PM
  1527. static int bmc150_accel_runtime_suspend(struct device *dev)
  1528. {
  1529. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1530. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1531. int ret;
  1532. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1533. if (ret < 0)
  1534. return -EAGAIN;
  1535. return 0;
  1536. }
  1537. static int bmc150_accel_runtime_resume(struct device *dev)
  1538. {
  1539. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1540. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1541. int ret;
  1542. int sleep_val;
  1543. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1544. if (ret < 0)
  1545. return ret;
  1546. ret = bmc150_accel_fifo_set_mode(data);
  1547. if (ret < 0)
  1548. return ret;
  1549. sleep_val = bmc150_accel_get_startup_times(data);
  1550. if (sleep_val < 20)
  1551. usleep_range(sleep_val * 1000, 20000);
  1552. else
  1553. msleep_interruptible(sleep_val);
  1554. return 0;
  1555. }
  1556. #endif
  1557. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1558. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1559. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1560. bmc150_accel_runtime_resume, NULL)
  1561. };
  1562. EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, IIO_BMC150);
  1563. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1564. MODULE_LICENSE("GPL v2");
  1565. MODULE_DESCRIPTION("BMC150 accelerometer driver");