shadow.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file contains KASAN runtime code that manages shadow memory for
  4. * generic and software tag-based KASAN modes.
  5. *
  6. * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  7. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  8. *
  9. * Some code borrowed from https://github.com/xairy/kasan-prototype by
  10. * Andrey Konovalov <andreyknvl@gmail.com>
  11. */
  12. #include <linux/init.h>
  13. #include <linux/kasan.h>
  14. #include <linux/kernel.h>
  15. #include <linux/kfence.h>
  16. #include <linux/kmemleak.h>
  17. #include <linux/memory.h>
  18. #include <linux/mm.h>
  19. #include <linux/string.h>
  20. #include <linux/types.h>
  21. #include <linux/vmalloc.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/tlbflush.h>
  24. #include "kasan.h"
  25. bool __kasan_check_read(const volatile void *p, unsigned int size)
  26. {
  27. return kasan_check_range((void *)p, size, false, _RET_IP_);
  28. }
  29. EXPORT_SYMBOL(__kasan_check_read);
  30. bool __kasan_check_write(const volatile void *p, unsigned int size)
  31. {
  32. return kasan_check_range((void *)p, size, true, _RET_IP_);
  33. }
  34. EXPORT_SYMBOL(__kasan_check_write);
  35. #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
  36. /*
  37. * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
  38. * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
  39. * for the sites they want to instrument.
  40. *
  41. * If we have a compiler that can instrument meminstrinsics, never override
  42. * these, so that non-instrumented files can safely consider them as builtins.
  43. */
  44. #undef memset
  45. void *memset(void *addr, int c, size_t len)
  46. {
  47. if (!kasan_check_range(addr, len, true, _RET_IP_))
  48. return NULL;
  49. return __memset(addr, c, len);
  50. }
  51. #ifdef __HAVE_ARCH_MEMMOVE
  52. #undef memmove
  53. void *memmove(void *dest, const void *src, size_t len)
  54. {
  55. if (!kasan_check_range(src, len, false, _RET_IP_) ||
  56. !kasan_check_range(dest, len, true, _RET_IP_))
  57. return NULL;
  58. return __memmove(dest, src, len);
  59. }
  60. #endif
  61. #undef memcpy
  62. void *memcpy(void *dest, const void *src, size_t len)
  63. {
  64. if (!kasan_check_range(src, len, false, _RET_IP_) ||
  65. !kasan_check_range(dest, len, true, _RET_IP_))
  66. return NULL;
  67. return __memcpy(dest, src, len);
  68. }
  69. #endif
  70. void *__asan_memset(void *addr, int c, ssize_t len)
  71. {
  72. if (!kasan_check_range(addr, len, true, _RET_IP_))
  73. return NULL;
  74. return __memset(addr, c, len);
  75. }
  76. EXPORT_SYMBOL(__asan_memset);
  77. #ifdef __HAVE_ARCH_MEMMOVE
  78. void *__asan_memmove(void *dest, const void *src, ssize_t len)
  79. {
  80. if (!kasan_check_range(src, len, false, _RET_IP_) ||
  81. !kasan_check_range(dest, len, true, _RET_IP_))
  82. return NULL;
  83. return __memmove(dest, src, len);
  84. }
  85. EXPORT_SYMBOL(__asan_memmove);
  86. #endif
  87. void *__asan_memcpy(void *dest, const void *src, ssize_t len)
  88. {
  89. if (!kasan_check_range(src, len, false, _RET_IP_) ||
  90. !kasan_check_range(dest, len, true, _RET_IP_))
  91. return NULL;
  92. return __memcpy(dest, src, len);
  93. }
  94. EXPORT_SYMBOL(__asan_memcpy);
  95. #ifdef CONFIG_KASAN_SW_TAGS
  96. void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
  97. EXPORT_SYMBOL(__hwasan_memset);
  98. #ifdef __HAVE_ARCH_MEMMOVE
  99. void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
  100. EXPORT_SYMBOL(__hwasan_memmove);
  101. #endif
  102. void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
  103. EXPORT_SYMBOL(__hwasan_memcpy);
  104. #endif
  105. void kasan_poison(const void *addr, size_t size, u8 value, bool init)
  106. {
  107. void *shadow_start, *shadow_end;
  108. if (!kasan_arch_is_ready())
  109. return;
  110. /*
  111. * Perform shadow offset calculation based on untagged address, as
  112. * some of the callers (e.g. kasan_poison_new_object) pass tagged
  113. * addresses to this function.
  114. */
  115. addr = kasan_reset_tag(addr);
  116. if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
  117. return;
  118. if (WARN_ON(size & KASAN_GRANULE_MASK))
  119. return;
  120. shadow_start = kasan_mem_to_shadow(addr);
  121. shadow_end = kasan_mem_to_shadow(addr + size);
  122. __memset(shadow_start, value, shadow_end - shadow_start);
  123. }
  124. EXPORT_SYMBOL_GPL(kasan_poison);
  125. #ifdef CONFIG_KASAN_GENERIC
  126. void kasan_poison_last_granule(const void *addr, size_t size)
  127. {
  128. if (!kasan_arch_is_ready())
  129. return;
  130. if (size & KASAN_GRANULE_MASK) {
  131. u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
  132. *shadow = size & KASAN_GRANULE_MASK;
  133. }
  134. }
  135. #endif
  136. void kasan_unpoison(const void *addr, size_t size, bool init)
  137. {
  138. u8 tag = get_tag(addr);
  139. /*
  140. * Perform shadow offset calculation based on untagged address, as
  141. * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
  142. * addresses to this function.
  143. */
  144. addr = kasan_reset_tag(addr);
  145. if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
  146. return;
  147. /* Unpoison all granules that cover the object. */
  148. kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
  149. /* Partially poison the last granule for the generic mode. */
  150. if (IS_ENABLED(CONFIG_KASAN_GENERIC))
  151. kasan_poison_last_granule(addr, size);
  152. }
  153. #ifdef CONFIG_MEMORY_HOTPLUG
  154. static bool shadow_mapped(unsigned long addr)
  155. {
  156. pgd_t *pgd = pgd_offset_k(addr);
  157. p4d_t *p4d;
  158. pud_t *pud;
  159. pmd_t *pmd;
  160. pte_t *pte;
  161. if (pgd_none(*pgd))
  162. return false;
  163. p4d = p4d_offset(pgd, addr);
  164. if (p4d_none(*p4d))
  165. return false;
  166. pud = pud_offset(p4d, addr);
  167. if (pud_none(*pud))
  168. return false;
  169. if (pud_leaf(*pud))
  170. return true;
  171. pmd = pmd_offset(pud, addr);
  172. if (pmd_none(*pmd))
  173. return false;
  174. if (pmd_leaf(*pmd))
  175. return true;
  176. pte = pte_offset_kernel(pmd, addr);
  177. return !pte_none(ptep_get(pte));
  178. }
  179. static int __meminit kasan_mem_notifier(struct notifier_block *nb,
  180. unsigned long action, void *data)
  181. {
  182. struct memory_notify *mem_data = data;
  183. unsigned long nr_shadow_pages, start_kaddr, shadow_start;
  184. unsigned long shadow_end, shadow_size;
  185. nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
  186. start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
  187. shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
  188. shadow_size = nr_shadow_pages << PAGE_SHIFT;
  189. shadow_end = shadow_start + shadow_size;
  190. if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
  191. WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
  192. return NOTIFY_BAD;
  193. switch (action) {
  194. case MEM_GOING_ONLINE: {
  195. void *ret;
  196. /*
  197. * If shadow is mapped already than it must have been mapped
  198. * during the boot. This could happen if we onlining previously
  199. * offlined memory.
  200. */
  201. if (shadow_mapped(shadow_start))
  202. return NOTIFY_OK;
  203. ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
  204. shadow_end, GFP_KERNEL,
  205. PAGE_KERNEL, VM_NO_GUARD,
  206. pfn_to_nid(mem_data->start_pfn),
  207. __builtin_return_address(0));
  208. if (!ret)
  209. return NOTIFY_BAD;
  210. kmemleak_ignore(ret);
  211. return NOTIFY_OK;
  212. }
  213. case MEM_CANCEL_ONLINE:
  214. case MEM_OFFLINE: {
  215. struct vm_struct *vm;
  216. /*
  217. * shadow_start was either mapped during boot by kasan_init()
  218. * or during memory online by __vmalloc_node_range().
  219. * In the latter case we can use vfree() to free shadow.
  220. * Non-NULL result of the find_vm_area() will tell us if
  221. * that was the second case.
  222. *
  223. * Currently it's not possible to free shadow mapped
  224. * during boot by kasan_init(). It's because the code
  225. * to do that hasn't been written yet. So we'll just
  226. * leak the memory.
  227. */
  228. vm = find_vm_area((void *)shadow_start);
  229. if (vm)
  230. vfree((void *)shadow_start);
  231. }
  232. }
  233. return NOTIFY_OK;
  234. }
  235. static int __init kasan_memhotplug_init(void)
  236. {
  237. hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
  238. return 0;
  239. }
  240. core_initcall(kasan_memhotplug_init);
  241. #endif
  242. #ifdef CONFIG_KASAN_VMALLOC
  243. void __init __weak kasan_populate_early_vm_area_shadow(void *start,
  244. unsigned long size)
  245. {
  246. }
  247. static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
  248. void *unused)
  249. {
  250. unsigned long page;
  251. pte_t pte;
  252. if (likely(!pte_none(ptep_get(ptep))))
  253. return 0;
  254. page = __get_free_page(GFP_KERNEL);
  255. if (!page)
  256. return -ENOMEM;
  257. __memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
  258. pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
  259. spin_lock(&init_mm.page_table_lock);
  260. if (likely(pte_none(ptep_get(ptep)))) {
  261. set_pte_at(&init_mm, addr, ptep, pte);
  262. page = 0;
  263. }
  264. spin_unlock(&init_mm.page_table_lock);
  265. if (page)
  266. free_page(page);
  267. return 0;
  268. }
  269. int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
  270. {
  271. unsigned long shadow_start, shadow_end;
  272. int ret;
  273. if (!kasan_arch_is_ready())
  274. return 0;
  275. if (!is_vmalloc_or_module_addr((void *)addr))
  276. return 0;
  277. shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
  278. shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
  279. /*
  280. * User Mode Linux maps enough shadow memory for all of virtual memory
  281. * at boot, so doesn't need to allocate more on vmalloc, just clear it.
  282. *
  283. * The remaining CONFIG_UML checks in this file exist for the same
  284. * reason.
  285. */
  286. if (IS_ENABLED(CONFIG_UML)) {
  287. __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
  288. return 0;
  289. }
  290. shadow_start = PAGE_ALIGN_DOWN(shadow_start);
  291. shadow_end = PAGE_ALIGN(shadow_end);
  292. ret = apply_to_page_range(&init_mm, shadow_start,
  293. shadow_end - shadow_start,
  294. kasan_populate_vmalloc_pte, NULL);
  295. if (ret)
  296. return ret;
  297. flush_cache_vmap(shadow_start, shadow_end);
  298. /*
  299. * We need to be careful about inter-cpu effects here. Consider:
  300. *
  301. * CPU#0 CPU#1
  302. * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
  303. * p[99] = 1;
  304. *
  305. * With compiler instrumentation, that ends up looking like this:
  306. *
  307. * CPU#0 CPU#1
  308. * // vmalloc() allocates memory
  309. * // let a = area->addr
  310. * // we reach kasan_populate_vmalloc
  311. * // and call kasan_unpoison:
  312. * STORE shadow(a), unpoison_val
  313. * ...
  314. * STORE shadow(a+99), unpoison_val x = LOAD p
  315. * // rest of vmalloc process <data dependency>
  316. * STORE p, a LOAD shadow(x+99)
  317. *
  318. * If there is no barrier between the end of unpoisoning the shadow
  319. * and the store of the result to p, the stores could be committed
  320. * in a different order by CPU#0, and CPU#1 could erroneously observe
  321. * poison in the shadow.
  322. *
  323. * We need some sort of barrier between the stores.
  324. *
  325. * In the vmalloc() case, this is provided by a smp_wmb() in
  326. * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
  327. * get_vm_area() and friends, the caller gets shadow allocated but
  328. * doesn't have any pages mapped into the virtual address space that
  329. * has been reserved. Mapping those pages in will involve taking and
  330. * releasing a page-table lock, which will provide the barrier.
  331. */
  332. return 0;
  333. }
  334. static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
  335. void *unused)
  336. {
  337. unsigned long page;
  338. page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
  339. spin_lock(&init_mm.page_table_lock);
  340. if (likely(!pte_none(ptep_get(ptep)))) {
  341. pte_clear(&init_mm, addr, ptep);
  342. free_page(page);
  343. }
  344. spin_unlock(&init_mm.page_table_lock);
  345. return 0;
  346. }
  347. /*
  348. * Release the backing for the vmalloc region [start, end), which
  349. * lies within the free region [free_region_start, free_region_end).
  350. *
  351. * This can be run lazily, long after the region was freed. It runs
  352. * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
  353. * infrastructure.
  354. *
  355. * How does this work?
  356. * -------------------
  357. *
  358. * We have a region that is page aligned, labeled as A.
  359. * That might not map onto the shadow in a way that is page-aligned:
  360. *
  361. * start end
  362. * v v
  363. * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
  364. * -------- -------- -------- -------- --------
  365. * | | | | |
  366. * | | | /-------/ |
  367. * \-------\|/------/ |/---------------/
  368. * ||| ||
  369. * |??AAAAAA|AAAAAAAA|AA??????| < shadow
  370. * (1) (2) (3)
  371. *
  372. * First we align the start upwards and the end downwards, so that the
  373. * shadow of the region aligns with shadow page boundaries. In the
  374. * example, this gives us the shadow page (2). This is the shadow entirely
  375. * covered by this allocation.
  376. *
  377. * Then we have the tricky bits. We want to know if we can free the
  378. * partially covered shadow pages - (1) and (3) in the example. For this,
  379. * we are given the start and end of the free region that contains this
  380. * allocation. Extending our previous example, we could have:
  381. *
  382. * free_region_start free_region_end
  383. * | start end |
  384. * v v v v
  385. * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
  386. * -------- -------- -------- -------- --------
  387. * | | | | |
  388. * | | | /-------/ |
  389. * \-------\|/------/ |/---------------/
  390. * ||| ||
  391. * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
  392. * (1) (2) (3)
  393. *
  394. * Once again, we align the start of the free region up, and the end of
  395. * the free region down so that the shadow is page aligned. So we can free
  396. * page (1) - we know no allocation currently uses anything in that page,
  397. * because all of it is in the vmalloc free region. But we cannot free
  398. * page (3), because we can't be sure that the rest of it is unused.
  399. *
  400. * We only consider pages that contain part of the original region for
  401. * freeing: we don't try to free other pages from the free region or we'd
  402. * end up trying to free huge chunks of virtual address space.
  403. *
  404. * Concurrency
  405. * -----------
  406. *
  407. * How do we know that we're not freeing a page that is simultaneously
  408. * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
  409. *
  410. * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
  411. * at the same time. While we run under free_vmap_area_lock, the population
  412. * code does not.
  413. *
  414. * free_vmap_area_lock instead operates to ensure that the larger range
  415. * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
  416. * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
  417. * no space identified as free will become used while we are running. This
  418. * means that so long as we are careful with alignment and only free shadow
  419. * pages entirely covered by the free region, we will not run in to any
  420. * trouble - any simultaneous allocations will be for disjoint regions.
  421. */
  422. void kasan_release_vmalloc(unsigned long start, unsigned long end,
  423. unsigned long free_region_start,
  424. unsigned long free_region_end,
  425. unsigned long flags)
  426. {
  427. void *shadow_start, *shadow_end;
  428. unsigned long region_start, region_end;
  429. unsigned long size;
  430. if (!kasan_arch_is_ready())
  431. return;
  432. region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
  433. region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
  434. free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
  435. if (start != region_start &&
  436. free_region_start < region_start)
  437. region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
  438. free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
  439. if (end != region_end &&
  440. free_region_end > region_end)
  441. region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
  442. shadow_start = kasan_mem_to_shadow((void *)region_start);
  443. shadow_end = kasan_mem_to_shadow((void *)region_end);
  444. if (shadow_end > shadow_start) {
  445. size = shadow_end - shadow_start;
  446. if (IS_ENABLED(CONFIG_UML)) {
  447. __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
  448. return;
  449. }
  450. if (flags & KASAN_VMALLOC_PAGE_RANGE)
  451. apply_to_existing_page_range(&init_mm,
  452. (unsigned long)shadow_start,
  453. size, kasan_depopulate_vmalloc_pte,
  454. NULL);
  455. if (flags & KASAN_VMALLOC_TLB_FLUSH)
  456. flush_tlb_kernel_range((unsigned long)shadow_start,
  457. (unsigned long)shadow_end);
  458. }
  459. }
  460. void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
  461. kasan_vmalloc_flags_t flags)
  462. {
  463. /*
  464. * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
  465. * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
  466. * Software KASAN modes can't optimize zeroing memory by combining it
  467. * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
  468. */
  469. if (!kasan_arch_is_ready())
  470. return (void *)start;
  471. if (!is_vmalloc_or_module_addr(start))
  472. return (void *)start;
  473. /*
  474. * Don't tag executable memory with the tag-based mode.
  475. * The kernel doesn't tolerate having the PC register tagged.
  476. */
  477. if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
  478. !(flags & KASAN_VMALLOC_PROT_NORMAL))
  479. return (void *)start;
  480. start = set_tag(start, kasan_random_tag());
  481. kasan_unpoison(start, size, false);
  482. return (void *)start;
  483. }
  484. /*
  485. * Poison the shadow for a vmalloc region. Called as part of the
  486. * freeing process at the time the region is freed.
  487. */
  488. void __kasan_poison_vmalloc(const void *start, unsigned long size)
  489. {
  490. if (!kasan_arch_is_ready())
  491. return;
  492. if (!is_vmalloc_or_module_addr(start))
  493. return;
  494. size = round_up(size, KASAN_GRANULE_SIZE);
  495. kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
  496. }
  497. #else /* CONFIG_KASAN_VMALLOC */
  498. int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
  499. {
  500. void *ret;
  501. size_t scaled_size;
  502. size_t shadow_size;
  503. unsigned long shadow_start;
  504. shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
  505. scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
  506. KASAN_SHADOW_SCALE_SHIFT;
  507. shadow_size = round_up(scaled_size, PAGE_SIZE);
  508. if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
  509. return -EINVAL;
  510. if (IS_ENABLED(CONFIG_UML)) {
  511. __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
  512. return 0;
  513. }
  514. ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
  515. shadow_start + shadow_size,
  516. GFP_KERNEL,
  517. PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
  518. __builtin_return_address(0));
  519. if (ret) {
  520. struct vm_struct *vm = find_vm_area(addr);
  521. __memset(ret, KASAN_SHADOW_INIT, shadow_size);
  522. vm->flags |= VM_KASAN;
  523. kmemleak_ignore(ret);
  524. if (vm->flags & VM_DEFER_KMEMLEAK)
  525. kmemleak_vmalloc(vm, size, gfp_mask);
  526. return 0;
  527. }
  528. return -ENOMEM;
  529. }
  530. void kasan_free_module_shadow(const struct vm_struct *vm)
  531. {
  532. if (IS_ENABLED(CONFIG_UML))
  533. return;
  534. if (vm->flags & VM_KASAN)
  535. vfree(kasan_mem_to_shadow(vm->addr));
  536. }
  537. #endif