| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * SLUB: A slab allocator that limits cache line use instead of queuing
- * objects in per cpu and per node lists.
- *
- * The allocator synchronizes using per slab locks or atomic operations
- * and only uses a centralized lock to manage a pool of partial slabs.
- *
- * (C) 2007 SGI, Christoph Lameter
- * (C) 2011 Linux Foundation, Christoph Lameter
- */
- #include <linux/mm.h>
- #include <linux/swap.h> /* mm_account_reclaimed_pages() */
- #include <linux/module.h>
- #include <linux/bit_spinlock.h>
- #include <linux/interrupt.h>
- #include <linux/swab.h>
- #include <linux/bitops.h>
- #include <linux/slab.h>
- #include "slab.h"
- #include <linux/proc_fs.h>
- #include <linux/seq_file.h>
- #include <linux/kasan.h>
- #include <linux/kmsan.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/mempolicy.h>
- #include <linux/ctype.h>
- #include <linux/stackdepot.h>
- #include <linux/debugobjects.h>
- #include <linux/kallsyms.h>
- #include <linux/kfence.h>
- #include <linux/memory.h>
- #include <linux/math64.h>
- #include <linux/fault-inject.h>
- #include <linux/kmemleak.h>
- #include <linux/stacktrace.h>
- #include <linux/prefetch.h>
- #include <linux/memcontrol.h>
- #include <linux/random.h>
- #include <kunit/test.h>
- #include <kunit/test-bug.h>
- #include <linux/sort.h>
- #include <linux/debugfs.h>
- #include <trace/events/kmem.h>
- #include "internal.h"
- /*
- * Lock order:
- * 1. slab_mutex (Global Mutex)
- * 2. node->list_lock (Spinlock)
- * 3. kmem_cache->cpu_slab->lock (Local lock)
- * 4. slab_lock(slab) (Only on some arches)
- * 5. object_map_lock (Only for debugging)
- *
- * slab_mutex
- *
- * The role of the slab_mutex is to protect the list of all the slabs
- * and to synchronize major metadata changes to slab cache structures.
- * Also synchronizes memory hotplug callbacks.
- *
- * slab_lock
- *
- * The slab_lock is a wrapper around the page lock, thus it is a bit
- * spinlock.
- *
- * The slab_lock is only used on arches that do not have the ability
- * to do a cmpxchg_double. It only protects:
- *
- * A. slab->freelist -> List of free objects in a slab
- * B. slab->inuse -> Number of objects in use
- * C. slab->objects -> Number of objects in slab
- * D. slab->frozen -> frozen state
- *
- * Frozen slabs
- *
- * If a slab is frozen then it is exempt from list management. It is
- * the cpu slab which is actively allocated from by the processor that
- * froze it and it is not on any list. The processor that froze the
- * slab is the one who can perform list operations on the slab. Other
- * processors may put objects onto the freelist but the processor that
- * froze the slab is the only one that can retrieve the objects from the
- * slab's freelist.
- *
- * CPU partial slabs
- *
- * The partially empty slabs cached on the CPU partial list are used
- * for performance reasons, which speeds up the allocation process.
- * These slabs are not frozen, but are also exempt from list management,
- * by clearing the PG_workingset flag when moving out of the node
- * partial list. Please see __slab_free() for more details.
- *
- * To sum up, the current scheme is:
- * - node partial slab: PG_Workingset && !frozen
- * - cpu partial slab: !PG_Workingset && !frozen
- * - cpu slab: !PG_Workingset && frozen
- * - full slab: !PG_Workingset && !frozen
- *
- * list_lock
- *
- * The list_lock protects the partial and full list on each node and
- * the partial slab counter. If taken then no new slabs may be added or
- * removed from the lists nor make the number of partial slabs be modified.
- * (Note that the total number of slabs is an atomic value that may be
- * modified without taking the list lock).
- *
- * The list_lock is a centralized lock and thus we avoid taking it as
- * much as possible. As long as SLUB does not have to handle partial
- * slabs, operations can continue without any centralized lock. F.e.
- * allocating a long series of objects that fill up slabs does not require
- * the list lock.
- *
- * For debug caches, all allocations are forced to go through a list_lock
- * protected region to serialize against concurrent validation.
- *
- * cpu_slab->lock local lock
- *
- * This locks protect slowpath manipulation of all kmem_cache_cpu fields
- * except the stat counters. This is a percpu structure manipulated only by
- * the local cpu, so the lock protects against being preempted or interrupted
- * by an irq. Fast path operations rely on lockless operations instead.
- *
- * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
- * which means the lockless fastpath cannot be used as it might interfere with
- * an in-progress slow path operations. In this case the local lock is always
- * taken but it still utilizes the freelist for the common operations.
- *
- * lockless fastpaths
- *
- * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
- * are fully lockless when satisfied from the percpu slab (and when
- * cmpxchg_double is possible to use, otherwise slab_lock is taken).
- * They also don't disable preemption or migration or irqs. They rely on
- * the transaction id (tid) field to detect being preempted or moved to
- * another cpu.
- *
- * irq, preemption, migration considerations
- *
- * Interrupts are disabled as part of list_lock or local_lock operations, or
- * around the slab_lock operation, in order to make the slab allocator safe
- * to use in the context of an irq.
- *
- * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
- * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
- * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
- * doesn't have to be revalidated in each section protected by the local lock.
- *
- * SLUB assigns one slab for allocation to each processor.
- * Allocations only occur from these slabs called cpu slabs.
- *
- * Slabs with free elements are kept on a partial list and during regular
- * operations no list for full slabs is used. If an object in a full slab is
- * freed then the slab will show up again on the partial lists.
- * We track full slabs for debugging purposes though because otherwise we
- * cannot scan all objects.
- *
- * Slabs are freed when they become empty. Teardown and setup is
- * minimal so we rely on the page allocators per cpu caches for
- * fast frees and allocs.
- *
- * slab->frozen The slab is frozen and exempt from list processing.
- * This means that the slab is dedicated to a purpose
- * such as satisfying allocations for a specific
- * processor. Objects may be freed in the slab while
- * it is frozen but slab_free will then skip the usual
- * list operations. It is up to the processor holding
- * the slab to integrate the slab into the slab lists
- * when the slab is no longer needed.
- *
- * One use of this flag is to mark slabs that are
- * used for allocations. Then such a slab becomes a cpu
- * slab. The cpu slab may be equipped with an additional
- * freelist that allows lockless access to
- * free objects in addition to the regular freelist
- * that requires the slab lock.
- *
- * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
- * options set. This moves slab handling out of
- * the fast path and disables lockless freelists.
- */
- /*
- * We could simply use migrate_disable()/enable() but as long as it's a
- * function call even on !PREEMPT_RT, use inline preempt_disable() there.
- */
- #ifndef CONFIG_PREEMPT_RT
- #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
- #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
- #define USE_LOCKLESS_FAST_PATH() (true)
- #else
- #define slub_get_cpu_ptr(var) \
- ({ \
- migrate_disable(); \
- this_cpu_ptr(var); \
- })
- #define slub_put_cpu_ptr(var) \
- do { \
- (void)(var); \
- migrate_enable(); \
- } while (0)
- #define USE_LOCKLESS_FAST_PATH() (false)
- #endif
- #ifndef CONFIG_SLUB_TINY
- #define __fastpath_inline __always_inline
- #else
- #define __fastpath_inline
- #endif
- #ifdef CONFIG_SLUB_DEBUG
- #ifdef CONFIG_SLUB_DEBUG_ON
- DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
- #else
- DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
- #endif
- #endif /* CONFIG_SLUB_DEBUG */
- /* Structure holding parameters for get_partial() call chain */
- struct partial_context {
- gfp_t flags;
- unsigned int orig_size;
- void *object;
- };
- static inline bool kmem_cache_debug(struct kmem_cache *s)
- {
- return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
- }
- static inline bool slub_debug_orig_size(struct kmem_cache *s)
- {
- return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
- (s->flags & SLAB_KMALLOC));
- }
- void *fixup_red_left(struct kmem_cache *s, void *p)
- {
- if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
- p += s->red_left_pad;
- return p;
- }
- static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- return !kmem_cache_debug(s);
- #else
- return false;
- #endif
- }
- /*
- * Issues still to be resolved:
- *
- * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
- *
- * - Variable sizing of the per node arrays
- */
- /* Enable to log cmpxchg failures */
- #undef SLUB_DEBUG_CMPXCHG
- #ifndef CONFIG_SLUB_TINY
- /*
- * Minimum number of partial slabs. These will be left on the partial
- * lists even if they are empty. kmem_cache_shrink may reclaim them.
- */
- #define MIN_PARTIAL 5
- /*
- * Maximum number of desirable partial slabs.
- * The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in use.
- */
- #define MAX_PARTIAL 10
- #else
- #define MIN_PARTIAL 0
- #define MAX_PARTIAL 0
- #endif
- #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_STORE_USER)
- /*
- * These debug flags cannot use CMPXCHG because there might be consistency
- * issues when checking or reading debug information
- */
- #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
- SLAB_TRACE)
- /*
- * Debugging flags that require metadata to be stored in the slab. These get
- * disabled when slab_debug=O is used and a cache's min order increases with
- * metadata.
- */
- #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
- #define OO_SHIFT 16
- #define OO_MASK ((1 << OO_SHIFT) - 1)
- #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
- /* Internal SLUB flags */
- /* Poison object */
- #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
- /* Use cmpxchg_double */
- #ifdef system_has_freelist_aba
- #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
- #else
- #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
- #endif
- /*
- * Tracking user of a slab.
- */
- #define TRACK_ADDRS_COUNT 16
- struct track {
- unsigned long addr; /* Called from address */
- #ifdef CONFIG_STACKDEPOT
- depot_stack_handle_t handle;
- #endif
- int cpu; /* Was running on cpu */
- int pid; /* Pid context */
- unsigned long when; /* When did the operation occur */
- };
- enum track_item { TRACK_ALLOC, TRACK_FREE };
- #ifdef SLAB_SUPPORTS_SYSFS
- static int sysfs_slab_add(struct kmem_cache *);
- static int sysfs_slab_alias(struct kmem_cache *, const char *);
- #else
- static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
- static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
- { return 0; }
- #endif
- #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
- static void debugfs_slab_add(struct kmem_cache *);
- #else
- static inline void debugfs_slab_add(struct kmem_cache *s) { }
- #endif
- enum stat_item {
- ALLOC_FASTPATH, /* Allocation from cpu slab */
- ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
- FREE_FASTPATH, /* Free to cpu slab */
- FREE_SLOWPATH, /* Freeing not to cpu slab */
- FREE_FROZEN, /* Freeing to frozen slab */
- FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
- FREE_REMOVE_PARTIAL, /* Freeing removes last object */
- ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
- ALLOC_SLAB, /* Cpu slab acquired from page allocator */
- ALLOC_REFILL, /* Refill cpu slab from slab freelist */
- ALLOC_NODE_MISMATCH, /* Switching cpu slab */
- FREE_SLAB, /* Slab freed to the page allocator */
- CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
- DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
- DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
- DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
- DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
- DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
- DEACTIVATE_BYPASS, /* Implicit deactivation */
- ORDER_FALLBACK, /* Number of times fallback was necessary */
- CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
- CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
- CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
- CPU_PARTIAL_FREE, /* Refill cpu partial on free */
- CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
- CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
- NR_SLUB_STAT_ITEMS
- };
- #ifndef CONFIG_SLUB_TINY
- /*
- * When changing the layout, make sure freelist and tid are still compatible
- * with this_cpu_cmpxchg_double() alignment requirements.
- */
- struct kmem_cache_cpu {
- union {
- struct {
- void **freelist; /* Pointer to next available object */
- unsigned long tid; /* Globally unique transaction id */
- };
- freelist_aba_t freelist_tid;
- };
- struct slab *slab; /* The slab from which we are allocating */
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- struct slab *partial; /* Partially allocated slabs */
- #endif
- local_lock_t lock; /* Protects the fields above */
- #ifdef CONFIG_SLUB_STATS
- unsigned int stat[NR_SLUB_STAT_ITEMS];
- #endif
- };
- #endif /* CONFIG_SLUB_TINY */
- static inline void stat(const struct kmem_cache *s, enum stat_item si)
- {
- #ifdef CONFIG_SLUB_STATS
- /*
- * The rmw is racy on a preemptible kernel but this is acceptable, so
- * avoid this_cpu_add()'s irq-disable overhead.
- */
- raw_cpu_inc(s->cpu_slab->stat[si]);
- #endif
- }
- static inline
- void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
- {
- #ifdef CONFIG_SLUB_STATS
- raw_cpu_add(s->cpu_slab->stat[si], v);
- #endif
- }
- /*
- * The slab lists for all objects.
- */
- struct kmem_cache_node {
- spinlock_t list_lock;
- unsigned long nr_partial;
- struct list_head partial;
- #ifdef CONFIG_SLUB_DEBUG
- atomic_long_t nr_slabs;
- atomic_long_t total_objects;
- struct list_head full;
- #endif
- };
- static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
- {
- return s->node[node];
- }
- /*
- * Iterator over all nodes. The body will be executed for each node that has
- * a kmem_cache_node structure allocated (which is true for all online nodes)
- */
- #define for_each_kmem_cache_node(__s, __node, __n) \
- for (__node = 0; __node < nr_node_ids; __node++) \
- if ((__n = get_node(__s, __node)))
- /*
- * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
- * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
- * differ during memory hotplug/hotremove operations.
- * Protected by slab_mutex.
- */
- static nodemask_t slab_nodes;
- #ifndef CONFIG_SLUB_TINY
- /*
- * Workqueue used for flush_cpu_slab().
- */
- static struct workqueue_struct *flushwq;
- #endif
- /********************************************************************
- * Core slab cache functions
- *******************************************************************/
- /*
- * Returns freelist pointer (ptr). With hardening, this is obfuscated
- * with an XOR of the address where the pointer is held and a per-cache
- * random number.
- */
- static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
- void *ptr, unsigned long ptr_addr)
- {
- unsigned long encoded;
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
- #else
- encoded = (unsigned long)ptr;
- #endif
- return (freeptr_t){.v = encoded};
- }
- static inline void *freelist_ptr_decode(const struct kmem_cache *s,
- freeptr_t ptr, unsigned long ptr_addr)
- {
- void *decoded;
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
- #else
- decoded = (void *)ptr.v;
- #endif
- return decoded;
- }
- static inline void *get_freepointer(struct kmem_cache *s, void *object)
- {
- unsigned long ptr_addr;
- freeptr_t p;
- object = kasan_reset_tag(object);
- ptr_addr = (unsigned long)object + s->offset;
- p = *(freeptr_t *)(ptr_addr);
- return freelist_ptr_decode(s, p, ptr_addr);
- }
- #ifndef CONFIG_SLUB_TINY
- static void prefetch_freepointer(const struct kmem_cache *s, void *object)
- {
- prefetchw(object + s->offset);
- }
- #endif
- /*
- * When running under KMSAN, get_freepointer_safe() may return an uninitialized
- * pointer value in the case the current thread loses the race for the next
- * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
- * slab_alloc_node() will fail, so the uninitialized value won't be used, but
- * KMSAN will still check all arguments of cmpxchg because of imperfect
- * handling of inline assembly.
- * To work around this problem, we apply __no_kmsan_checks to ensure that
- * get_freepointer_safe() returns initialized memory.
- */
- __no_kmsan_checks
- static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
- {
- unsigned long freepointer_addr;
- freeptr_t p;
- if (!debug_pagealloc_enabled_static())
- return get_freepointer(s, object);
- object = kasan_reset_tag(object);
- freepointer_addr = (unsigned long)object + s->offset;
- copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
- return freelist_ptr_decode(s, p, freepointer_addr);
- }
- static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
- {
- unsigned long freeptr_addr = (unsigned long)object + s->offset;
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- BUG_ON(object == fp); /* naive detection of double free or corruption */
- #endif
- freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
- *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
- }
- /*
- * See comment in calculate_sizes().
- */
- static inline bool freeptr_outside_object(struct kmem_cache *s)
- {
- return s->offset >= s->inuse;
- }
- /*
- * Return offset of the end of info block which is inuse + free pointer if
- * not overlapping with object.
- */
- static inline unsigned int get_info_end(struct kmem_cache *s)
- {
- if (freeptr_outside_object(s))
- return s->inuse + sizeof(void *);
- else
- return s->inuse;
- }
- /* Loop over all objects in a slab */
- #define for_each_object(__p, __s, __addr, __objects) \
- for (__p = fixup_red_left(__s, __addr); \
- __p < (__addr) + (__objects) * (__s)->size; \
- __p += (__s)->size)
- static inline unsigned int order_objects(unsigned int order, unsigned int size)
- {
- return ((unsigned int)PAGE_SIZE << order) / size;
- }
- static inline struct kmem_cache_order_objects oo_make(unsigned int order,
- unsigned int size)
- {
- struct kmem_cache_order_objects x = {
- (order << OO_SHIFT) + order_objects(order, size)
- };
- return x;
- }
- static inline unsigned int oo_order(struct kmem_cache_order_objects x)
- {
- return x.x >> OO_SHIFT;
- }
- static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
- {
- return x.x & OO_MASK;
- }
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
- {
- unsigned int nr_slabs;
- s->cpu_partial = nr_objects;
- /*
- * We take the number of objects but actually limit the number of
- * slabs on the per cpu partial list, in order to limit excessive
- * growth of the list. For simplicity we assume that the slabs will
- * be half-full.
- */
- nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
- s->cpu_partial_slabs = nr_slabs;
- }
- static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
- {
- return s->cpu_partial_slabs;
- }
- #else
- static inline void
- slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
- {
- }
- static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
- {
- return 0;
- }
- #endif /* CONFIG_SLUB_CPU_PARTIAL */
- /*
- * Per slab locking using the pagelock
- */
- static __always_inline void slab_lock(struct slab *slab)
- {
- bit_spin_lock(PG_locked, &slab->__page_flags);
- }
- static __always_inline void slab_unlock(struct slab *slab)
- {
- bit_spin_unlock(PG_locked, &slab->__page_flags);
- }
- static inline bool
- __update_freelist_fast(struct slab *slab,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new)
- {
- #ifdef system_has_freelist_aba
- freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
- freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
- return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
- #else
- return false;
- #endif
- }
- static inline bool
- __update_freelist_slow(struct slab *slab,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new)
- {
- bool ret = false;
- slab_lock(slab);
- if (slab->freelist == freelist_old &&
- slab->counters == counters_old) {
- slab->freelist = freelist_new;
- slab->counters = counters_new;
- ret = true;
- }
- slab_unlock(slab);
- return ret;
- }
- /*
- * Interrupts must be disabled (for the fallback code to work right), typically
- * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
- * part of bit_spin_lock(), is sufficient because the policy is not to allow any
- * allocation/ free operation in hardirq context. Therefore nothing can
- * interrupt the operation.
- */
- static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
- {
- bool ret;
- if (USE_LOCKLESS_FAST_PATH())
- lockdep_assert_irqs_disabled();
- if (s->flags & __CMPXCHG_DOUBLE) {
- ret = __update_freelist_fast(slab, freelist_old, counters_old,
- freelist_new, counters_new);
- } else {
- ret = __update_freelist_slow(slab, freelist_old, counters_old,
- freelist_new, counters_new);
- }
- if (likely(ret))
- return true;
- cpu_relax();
- stat(s, CMPXCHG_DOUBLE_FAIL);
- #ifdef SLUB_DEBUG_CMPXCHG
- pr_info("%s %s: cmpxchg double redo ", n, s->name);
- #endif
- return false;
- }
- static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
- {
- bool ret;
- if (s->flags & __CMPXCHG_DOUBLE) {
- ret = __update_freelist_fast(slab, freelist_old, counters_old,
- freelist_new, counters_new);
- } else {
- unsigned long flags;
- local_irq_save(flags);
- ret = __update_freelist_slow(slab, freelist_old, counters_old,
- freelist_new, counters_new);
- local_irq_restore(flags);
- }
- if (likely(ret))
- return true;
- cpu_relax();
- stat(s, CMPXCHG_DOUBLE_FAIL);
- #ifdef SLUB_DEBUG_CMPXCHG
- pr_info("%s %s: cmpxchg double redo ", n, s->name);
- #endif
- return false;
- }
- /*
- * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
- * family will round up the real request size to these fixed ones, so
- * there could be an extra area than what is requested. Save the original
- * request size in the meta data area, for better debug and sanity check.
- */
- static inline void set_orig_size(struct kmem_cache *s,
- void *object, unsigned int orig_size)
- {
- void *p = kasan_reset_tag(object);
- unsigned int kasan_meta_size;
- if (!slub_debug_orig_size(s))
- return;
- /*
- * KASAN can save its free meta data inside of the object at offset 0.
- * If this meta data size is larger than 'orig_size', it will overlap
- * the data redzone in [orig_size+1, object_size]. Thus, we adjust
- * 'orig_size' to be as at least as big as KASAN's meta data.
- */
- kasan_meta_size = kasan_metadata_size(s, true);
- if (kasan_meta_size > orig_size)
- orig_size = kasan_meta_size;
- p += get_info_end(s);
- p += sizeof(struct track) * 2;
- *(unsigned int *)p = orig_size;
- }
- static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
- {
- void *p = kasan_reset_tag(object);
- if (!slub_debug_orig_size(s))
- return s->object_size;
- p += get_info_end(s);
- p += sizeof(struct track) * 2;
- return *(unsigned int *)p;
- }
- #ifdef CONFIG_SLUB_DEBUG
- static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
- static DEFINE_SPINLOCK(object_map_lock);
- static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
- struct slab *slab)
- {
- void *addr = slab_address(slab);
- void *p;
- bitmap_zero(obj_map, slab->objects);
- for (p = slab->freelist; p; p = get_freepointer(s, p))
- set_bit(__obj_to_index(s, addr, p), obj_map);
- }
- #if IS_ENABLED(CONFIG_KUNIT)
- static bool slab_add_kunit_errors(void)
- {
- struct kunit_resource *resource;
- if (!kunit_get_current_test())
- return false;
- resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
- if (!resource)
- return false;
- (*(int *)resource->data)++;
- kunit_put_resource(resource);
- return true;
- }
- bool slab_in_kunit_test(void)
- {
- struct kunit_resource *resource;
- if (!kunit_get_current_test())
- return false;
- resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
- if (!resource)
- return false;
- kunit_put_resource(resource);
- return true;
- }
- #else
- static inline bool slab_add_kunit_errors(void) { return false; }
- #endif
- static inline unsigned int size_from_object(struct kmem_cache *s)
- {
- if (s->flags & SLAB_RED_ZONE)
- return s->size - s->red_left_pad;
- return s->size;
- }
- static inline void *restore_red_left(struct kmem_cache *s, void *p)
- {
- if (s->flags & SLAB_RED_ZONE)
- p -= s->red_left_pad;
- return p;
- }
- /*
- * Debug settings:
- */
- #if defined(CONFIG_SLUB_DEBUG_ON)
- static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
- #else
- static slab_flags_t slub_debug;
- #endif
- static char *slub_debug_string;
- static int disable_higher_order_debug;
- /*
- * slub is about to manipulate internal object metadata. This memory lies
- * outside the range of the allocated object, so accessing it would normally
- * be reported by kasan as a bounds error. metadata_access_enable() is used
- * to tell kasan that these accesses are OK.
- */
- static inline void metadata_access_enable(void)
- {
- kasan_disable_current();
- kmsan_disable_current();
- }
- static inline void metadata_access_disable(void)
- {
- kmsan_enable_current();
- kasan_enable_current();
- }
- /*
- * Object debugging
- */
- /* Verify that a pointer has an address that is valid within a slab page */
- static inline int check_valid_pointer(struct kmem_cache *s,
- struct slab *slab, void *object)
- {
- void *base;
- if (!object)
- return 1;
- base = slab_address(slab);
- object = kasan_reset_tag(object);
- object = restore_red_left(s, object);
- if (object < base || object >= base + slab->objects * s->size ||
- (object - base) % s->size) {
- return 0;
- }
- return 1;
- }
- static void print_section(char *level, char *text, u8 *addr,
- unsigned int length)
- {
- metadata_access_enable();
- print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
- 16, 1, kasan_reset_tag((void *)addr), length, 1);
- metadata_access_disable();
- }
- static struct track *get_track(struct kmem_cache *s, void *object,
- enum track_item alloc)
- {
- struct track *p;
- p = object + get_info_end(s);
- return kasan_reset_tag(p + alloc);
- }
- #ifdef CONFIG_STACKDEPOT
- static noinline depot_stack_handle_t set_track_prepare(void)
- {
- depot_stack_handle_t handle;
- unsigned long entries[TRACK_ADDRS_COUNT];
- unsigned int nr_entries;
- nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
- handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
- return handle;
- }
- #else
- static inline depot_stack_handle_t set_track_prepare(void)
- {
- return 0;
- }
- #endif
- static void set_track_update(struct kmem_cache *s, void *object,
- enum track_item alloc, unsigned long addr,
- depot_stack_handle_t handle)
- {
- struct track *p = get_track(s, object, alloc);
- #ifdef CONFIG_STACKDEPOT
- p->handle = handle;
- #endif
- p->addr = addr;
- p->cpu = smp_processor_id();
- p->pid = current->pid;
- p->when = jiffies;
- }
- static __always_inline void set_track(struct kmem_cache *s, void *object,
- enum track_item alloc, unsigned long addr)
- {
- depot_stack_handle_t handle = set_track_prepare();
- set_track_update(s, object, alloc, addr, handle);
- }
- static void init_tracking(struct kmem_cache *s, void *object)
- {
- struct track *p;
- if (!(s->flags & SLAB_STORE_USER))
- return;
- p = get_track(s, object, TRACK_ALLOC);
- memset(p, 0, 2*sizeof(struct track));
- }
- static void print_track(const char *s, struct track *t, unsigned long pr_time)
- {
- depot_stack_handle_t handle __maybe_unused;
- if (!t->addr)
- return;
- pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
- s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
- #ifdef CONFIG_STACKDEPOT
- handle = READ_ONCE(t->handle);
- if (handle)
- stack_depot_print(handle);
- else
- pr_err("object allocation/free stack trace missing\n");
- #endif
- }
- void print_tracking(struct kmem_cache *s, void *object)
- {
- unsigned long pr_time = jiffies;
- if (!(s->flags & SLAB_STORE_USER))
- return;
- print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
- print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
- }
- static void print_slab_info(const struct slab *slab)
- {
- pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
- slab, slab->objects, slab->inuse, slab->freelist,
- &slab->__page_flags);
- }
- void skip_orig_size_check(struct kmem_cache *s, const void *object)
- {
- set_orig_size(s, (void *)object, s->object_size);
- }
- static void slab_bug(struct kmem_cache *s, char *fmt, ...)
- {
- struct va_format vaf;
- va_list args;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- pr_err("=============================================================================\n");
- pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
- pr_err("-----------------------------------------------------------------------------\n\n");
- va_end(args);
- }
- __printf(2, 3)
- static void slab_fix(struct kmem_cache *s, char *fmt, ...)
- {
- struct va_format vaf;
- va_list args;
- if (slab_add_kunit_errors())
- return;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- pr_err("FIX %s: %pV\n", s->name, &vaf);
- va_end(args);
- }
- static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
- {
- unsigned int off; /* Offset of last byte */
- u8 *addr = slab_address(slab);
- print_tracking(s, p);
- print_slab_info(slab);
- pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
- p, p - addr, get_freepointer(s, p));
- if (s->flags & SLAB_RED_ZONE)
- print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
- s->red_left_pad);
- else if (p > addr + 16)
- print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
- print_section(KERN_ERR, "Object ", p,
- min_t(unsigned int, s->object_size, PAGE_SIZE));
- if (s->flags & SLAB_RED_ZONE)
- print_section(KERN_ERR, "Redzone ", p + s->object_size,
- s->inuse - s->object_size);
- off = get_info_end(s);
- if (s->flags & SLAB_STORE_USER)
- off += 2 * sizeof(struct track);
- if (slub_debug_orig_size(s))
- off += sizeof(unsigned int);
- off += kasan_metadata_size(s, false);
- if (off != size_from_object(s))
- /* Beginning of the filler is the free pointer */
- print_section(KERN_ERR, "Padding ", p + off,
- size_from_object(s) - off);
- dump_stack();
- }
- static void object_err(struct kmem_cache *s, struct slab *slab,
- u8 *object, char *reason)
- {
- if (slab_add_kunit_errors())
- return;
- slab_bug(s, "%s", reason);
- print_trailer(s, slab, object);
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
- }
- static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
- void **freelist, void *nextfree)
- {
- if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
- !check_valid_pointer(s, slab, nextfree) && freelist) {
- object_err(s, slab, *freelist, "Freechain corrupt");
- *freelist = NULL;
- slab_fix(s, "Isolate corrupted freechain");
- return true;
- }
- return false;
- }
- static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
- const char *fmt, ...)
- {
- va_list args;
- char buf[100];
- if (slab_add_kunit_errors())
- return;
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- va_end(args);
- slab_bug(s, "%s", buf);
- print_slab_info(slab);
- dump_stack();
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
- }
- static void init_object(struct kmem_cache *s, void *object, u8 val)
- {
- u8 *p = kasan_reset_tag(object);
- unsigned int poison_size = s->object_size;
- if (s->flags & SLAB_RED_ZONE) {
- /*
- * Here and below, avoid overwriting the KMSAN shadow. Keeping
- * the shadow makes it possible to distinguish uninit-value
- * from use-after-free.
- */
- memset_no_sanitize_memory(p - s->red_left_pad, val,
- s->red_left_pad);
- if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
- /*
- * Redzone the extra allocated space by kmalloc than
- * requested, and the poison size will be limited to
- * the original request size accordingly.
- */
- poison_size = get_orig_size(s, object);
- }
- }
- if (s->flags & __OBJECT_POISON) {
- memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
- memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
- }
- if (s->flags & SLAB_RED_ZONE)
- memset_no_sanitize_memory(p + poison_size, val,
- s->inuse - poison_size);
- }
- static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
- void *from, void *to)
- {
- slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
- memset(from, data, to - from);
- }
- #ifdef CONFIG_KMSAN
- #define pad_check_attributes noinline __no_kmsan_checks
- #else
- #define pad_check_attributes
- #endif
- static pad_check_attributes int
- check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
- u8 *object, char *what,
- u8 *start, unsigned int value, unsigned int bytes)
- {
- u8 *fault;
- u8 *end;
- u8 *addr = slab_address(slab);
- metadata_access_enable();
- fault = memchr_inv(kasan_reset_tag(start), value, bytes);
- metadata_access_disable();
- if (!fault)
- return 1;
- end = start + bytes;
- while (end > fault && end[-1] == value)
- end--;
- if (slab_add_kunit_errors())
- goto skip_bug_print;
- slab_bug(s, "%s overwritten", what);
- pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
- fault, end - 1, fault - addr,
- fault[0], value);
- skip_bug_print:
- restore_bytes(s, what, value, fault, end);
- return 0;
- }
- /*
- * Object layout:
- *
- * object address
- * Bytes of the object to be managed.
- * If the freepointer may overlay the object then the free
- * pointer is at the middle of the object.
- *
- * Poisoning uses 0x6b (POISON_FREE) and the last byte is
- * 0xa5 (POISON_END)
- *
- * object + s->object_size
- * Padding to reach word boundary. This is also used for Redzoning.
- * Padding is extended by another word if Redzoning is enabled and
- * object_size == inuse.
- *
- * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
- * 0xcc (SLUB_RED_ACTIVE) for objects in use.
- *
- * object + s->inuse
- * Meta data starts here.
- *
- * A. Free pointer (if we cannot overwrite object on free)
- * B. Tracking data for SLAB_STORE_USER
- * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
- * D. Padding to reach required alignment boundary or at minimum
- * one word if debugging is on to be able to detect writes
- * before the word boundary.
- *
- * Padding is done using 0x5a (POISON_INUSE)
- *
- * object + s->size
- * Nothing is used beyond s->size.
- *
- * If slabcaches are merged then the object_size and inuse boundaries are mostly
- * ignored. And therefore no slab options that rely on these boundaries
- * may be used with merged slabcaches.
- */
- static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
- {
- unsigned long off = get_info_end(s); /* The end of info */
- if (s->flags & SLAB_STORE_USER) {
- /* We also have user information there */
- off += 2 * sizeof(struct track);
- if (s->flags & SLAB_KMALLOC)
- off += sizeof(unsigned int);
- }
- off += kasan_metadata_size(s, false);
- if (size_from_object(s) == off)
- return 1;
- return check_bytes_and_report(s, slab, p, "Object padding",
- p + off, POISON_INUSE, size_from_object(s) - off);
- }
- /* Check the pad bytes at the end of a slab page */
- static pad_check_attributes void
- slab_pad_check(struct kmem_cache *s, struct slab *slab)
- {
- u8 *start;
- u8 *fault;
- u8 *end;
- u8 *pad;
- int length;
- int remainder;
- if (!(s->flags & SLAB_POISON))
- return;
- start = slab_address(slab);
- length = slab_size(slab);
- end = start + length;
- remainder = length % s->size;
- if (!remainder)
- return;
- pad = end - remainder;
- metadata_access_enable();
- fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
- metadata_access_disable();
- if (!fault)
- return;
- while (end > fault && end[-1] == POISON_INUSE)
- end--;
- slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
- fault, end - 1, fault - start);
- print_section(KERN_ERR, "Padding ", pad, remainder);
- restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
- }
- static int check_object(struct kmem_cache *s, struct slab *slab,
- void *object, u8 val)
- {
- u8 *p = object;
- u8 *endobject = object + s->object_size;
- unsigned int orig_size, kasan_meta_size;
- int ret = 1;
- if (s->flags & SLAB_RED_ZONE) {
- if (!check_bytes_and_report(s, slab, object, "Left Redzone",
- object - s->red_left_pad, val, s->red_left_pad))
- ret = 0;
- if (!check_bytes_and_report(s, slab, object, "Right Redzone",
- endobject, val, s->inuse - s->object_size))
- ret = 0;
- if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
- orig_size = get_orig_size(s, object);
- if (s->object_size > orig_size &&
- !check_bytes_and_report(s, slab, object,
- "kmalloc Redzone", p + orig_size,
- val, s->object_size - orig_size)) {
- ret = 0;
- }
- }
- } else {
- if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
- if (!check_bytes_and_report(s, slab, p, "Alignment padding",
- endobject, POISON_INUSE,
- s->inuse - s->object_size))
- ret = 0;
- }
- }
- if (s->flags & SLAB_POISON) {
- if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
- /*
- * KASAN can save its free meta data inside of the
- * object at offset 0. Thus, skip checking the part of
- * the redzone that overlaps with the meta data.
- */
- kasan_meta_size = kasan_metadata_size(s, true);
- if (kasan_meta_size < s->object_size - 1 &&
- !check_bytes_and_report(s, slab, p, "Poison",
- p + kasan_meta_size, POISON_FREE,
- s->object_size - kasan_meta_size - 1))
- ret = 0;
- if (kasan_meta_size < s->object_size &&
- !check_bytes_and_report(s, slab, p, "End Poison",
- p + s->object_size - 1, POISON_END, 1))
- ret = 0;
- }
- /*
- * check_pad_bytes cleans up on its own.
- */
- if (!check_pad_bytes(s, slab, p))
- ret = 0;
- }
- /*
- * Cannot check freepointer while object is allocated if
- * object and freepointer overlap.
- */
- if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
- !check_valid_pointer(s, slab, get_freepointer(s, p))) {
- object_err(s, slab, p, "Freepointer corrupt");
- /*
- * No choice but to zap it and thus lose the remainder
- * of the free objects in this slab. May cause
- * another error because the object count is now wrong.
- */
- set_freepointer(s, p, NULL);
- ret = 0;
- }
- if (!ret && !slab_in_kunit_test()) {
- print_trailer(s, slab, object);
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
- }
- return ret;
- }
- static int check_slab(struct kmem_cache *s, struct slab *slab)
- {
- int maxobj;
- if (!folio_test_slab(slab_folio(slab))) {
- slab_err(s, slab, "Not a valid slab page");
- return 0;
- }
- maxobj = order_objects(slab_order(slab), s->size);
- if (slab->objects > maxobj) {
- slab_err(s, slab, "objects %u > max %u",
- slab->objects, maxobj);
- return 0;
- }
- if (slab->inuse > slab->objects) {
- slab_err(s, slab, "inuse %u > max %u",
- slab->inuse, slab->objects);
- return 0;
- }
- if (slab->frozen) {
- slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
- return 0;
- }
- /* Slab_pad_check fixes things up after itself */
- slab_pad_check(s, slab);
- return 1;
- }
- /*
- * Determine if a certain object in a slab is on the freelist. Must hold the
- * slab lock to guarantee that the chains are in a consistent state.
- */
- static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
- {
- int nr = 0;
- void *fp;
- void *object = NULL;
- int max_objects;
- fp = slab->freelist;
- while (fp && nr <= slab->objects) {
- if (fp == search)
- return 1;
- if (!check_valid_pointer(s, slab, fp)) {
- if (object) {
- object_err(s, slab, object,
- "Freechain corrupt");
- set_freepointer(s, object, NULL);
- } else {
- slab_err(s, slab, "Freepointer corrupt");
- slab->freelist = NULL;
- slab->inuse = slab->objects;
- slab_fix(s, "Freelist cleared");
- return 0;
- }
- break;
- }
- object = fp;
- fp = get_freepointer(s, object);
- nr++;
- }
- max_objects = order_objects(slab_order(slab), s->size);
- if (max_objects > MAX_OBJS_PER_PAGE)
- max_objects = MAX_OBJS_PER_PAGE;
- if (slab->objects != max_objects) {
- slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
- slab->objects, max_objects);
- slab->objects = max_objects;
- slab_fix(s, "Number of objects adjusted");
- }
- if (slab->inuse != slab->objects - nr) {
- slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
- slab->inuse, slab->objects - nr);
- slab->inuse = slab->objects - nr;
- slab_fix(s, "Object count adjusted");
- }
- return search == NULL;
- }
- static void trace(struct kmem_cache *s, struct slab *slab, void *object,
- int alloc)
- {
- if (s->flags & SLAB_TRACE) {
- pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
- s->name,
- alloc ? "alloc" : "free",
- object, slab->inuse,
- slab->freelist);
- if (!alloc)
- print_section(KERN_INFO, "Object ", (void *)object,
- s->object_size);
- dump_stack();
- }
- }
- /*
- * Tracking of fully allocated slabs for debugging purposes.
- */
- static void add_full(struct kmem_cache *s,
- struct kmem_cache_node *n, struct slab *slab)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- lockdep_assert_held(&n->list_lock);
- list_add(&slab->slab_list, &n->full);
- }
- static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- lockdep_assert_held(&n->list_lock);
- list_del(&slab->slab_list);
- }
- static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
- {
- return atomic_long_read(&n->nr_slabs);
- }
- static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
- {
- struct kmem_cache_node *n = get_node(s, node);
- atomic_long_inc(&n->nr_slabs);
- atomic_long_add(objects, &n->total_objects);
- }
- static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
- {
- struct kmem_cache_node *n = get_node(s, node);
- atomic_long_dec(&n->nr_slabs);
- atomic_long_sub(objects, &n->total_objects);
- }
- /* Object debug checks for alloc/free paths */
- static void setup_object_debug(struct kmem_cache *s, void *object)
- {
- if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
- return;
- init_object(s, object, SLUB_RED_INACTIVE);
- init_tracking(s, object);
- }
- static
- void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
- {
- if (!kmem_cache_debug_flags(s, SLAB_POISON))
- return;
- metadata_access_enable();
- memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
- metadata_access_disable();
- }
- static inline int alloc_consistency_checks(struct kmem_cache *s,
- struct slab *slab, void *object)
- {
- if (!check_slab(s, slab))
- return 0;
- if (!check_valid_pointer(s, slab, object)) {
- object_err(s, slab, object, "Freelist Pointer check fails");
- return 0;
- }
- if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
- return 0;
- return 1;
- }
- static noinline bool alloc_debug_processing(struct kmem_cache *s,
- struct slab *slab, void *object, int orig_size)
- {
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!alloc_consistency_checks(s, slab, object))
- goto bad;
- }
- /* Success. Perform special debug activities for allocs */
- trace(s, slab, object, 1);
- set_orig_size(s, object, orig_size);
- init_object(s, object, SLUB_RED_ACTIVE);
- return true;
- bad:
- if (folio_test_slab(slab_folio(slab))) {
- /*
- * If this is a slab page then lets do the best we can
- * to avoid issues in the future. Marking all objects
- * as used avoids touching the remaining objects.
- */
- slab_fix(s, "Marking all objects used");
- slab->inuse = slab->objects;
- slab->freelist = NULL;
- slab->frozen = 1; /* mark consistency-failed slab as frozen */
- }
- return false;
- }
- static inline int free_consistency_checks(struct kmem_cache *s,
- struct slab *slab, void *object, unsigned long addr)
- {
- if (!check_valid_pointer(s, slab, object)) {
- slab_err(s, slab, "Invalid object pointer 0x%p", object);
- return 0;
- }
- if (on_freelist(s, slab, object)) {
- object_err(s, slab, object, "Object already free");
- return 0;
- }
- if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
- return 0;
- if (unlikely(s != slab->slab_cache)) {
- if (!folio_test_slab(slab_folio(slab))) {
- slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
- object);
- } else if (!slab->slab_cache) {
- pr_err("SLUB <none>: no slab for object 0x%p.\n",
- object);
- dump_stack();
- } else
- object_err(s, slab, object,
- "page slab pointer corrupt.");
- return 0;
- }
- return 1;
- }
- /*
- * Parse a block of slab_debug options. Blocks are delimited by ';'
- *
- * @str: start of block
- * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
- * @slabs: return start of list of slabs, or NULL when there's no list
- * @init: assume this is initial parsing and not per-kmem-create parsing
- *
- * returns the start of next block if there's any, or NULL
- */
- static char *
- parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
- {
- bool higher_order_disable = false;
- /* Skip any completely empty blocks */
- while (*str && *str == ';')
- str++;
- if (*str == ',') {
- /*
- * No options but restriction on slabs. This means full
- * debugging for slabs matching a pattern.
- */
- *flags = DEBUG_DEFAULT_FLAGS;
- goto check_slabs;
- }
- *flags = 0;
- /* Determine which debug features should be switched on */
- for (; *str && *str != ',' && *str != ';'; str++) {
- switch (tolower(*str)) {
- case '-':
- *flags = 0;
- break;
- case 'f':
- *flags |= SLAB_CONSISTENCY_CHECKS;
- break;
- case 'z':
- *flags |= SLAB_RED_ZONE;
- break;
- case 'p':
- *flags |= SLAB_POISON;
- break;
- case 'u':
- *flags |= SLAB_STORE_USER;
- break;
- case 't':
- *flags |= SLAB_TRACE;
- break;
- case 'a':
- *flags |= SLAB_FAILSLAB;
- break;
- case 'o':
- /*
- * Avoid enabling debugging on caches if its minimum
- * order would increase as a result.
- */
- higher_order_disable = true;
- break;
- default:
- if (init)
- pr_err("slab_debug option '%c' unknown. skipped\n", *str);
- }
- }
- check_slabs:
- if (*str == ',')
- *slabs = ++str;
- else
- *slabs = NULL;
- /* Skip over the slab list */
- while (*str && *str != ';')
- str++;
- /* Skip any completely empty blocks */
- while (*str && *str == ';')
- str++;
- if (init && higher_order_disable)
- disable_higher_order_debug = 1;
- if (*str)
- return str;
- else
- return NULL;
- }
- static int __init setup_slub_debug(char *str)
- {
- slab_flags_t flags;
- slab_flags_t global_flags;
- char *saved_str;
- char *slab_list;
- bool global_slub_debug_changed = false;
- bool slab_list_specified = false;
- global_flags = DEBUG_DEFAULT_FLAGS;
- if (*str++ != '=' || !*str)
- /*
- * No options specified. Switch on full debugging.
- */
- goto out;
- saved_str = str;
- while (str) {
- str = parse_slub_debug_flags(str, &flags, &slab_list, true);
- if (!slab_list) {
- global_flags = flags;
- global_slub_debug_changed = true;
- } else {
- slab_list_specified = true;
- if (flags & SLAB_STORE_USER)
- stack_depot_request_early_init();
- }
- }
- /*
- * For backwards compatibility, a single list of flags with list of
- * slabs means debugging is only changed for those slabs, so the global
- * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
- * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
- * long as there is no option specifying flags without a slab list.
- */
- if (slab_list_specified) {
- if (!global_slub_debug_changed)
- global_flags = slub_debug;
- slub_debug_string = saved_str;
- }
- out:
- slub_debug = global_flags;
- if (slub_debug & SLAB_STORE_USER)
- stack_depot_request_early_init();
- if (slub_debug != 0 || slub_debug_string)
- static_branch_enable(&slub_debug_enabled);
- else
- static_branch_disable(&slub_debug_enabled);
- if ((static_branch_unlikely(&init_on_alloc) ||
- static_branch_unlikely(&init_on_free)) &&
- (slub_debug & SLAB_POISON))
- pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
- return 1;
- }
- __setup("slab_debug", setup_slub_debug);
- __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
- /*
- * kmem_cache_flags - apply debugging options to the cache
- * @flags: flags to set
- * @name: name of the cache
- *
- * Debug option(s) are applied to @flags. In addition to the debug
- * option(s), if a slab name (or multiple) is specified i.e.
- * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
- * then only the select slabs will receive the debug option(s).
- */
- slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
- {
- char *iter;
- size_t len;
- char *next_block;
- slab_flags_t block_flags;
- slab_flags_t slub_debug_local = slub_debug;
- if (flags & SLAB_NO_USER_FLAGS)
- return flags;
- /*
- * If the slab cache is for debugging (e.g. kmemleak) then
- * don't store user (stack trace) information by default,
- * but let the user enable it via the command line below.
- */
- if (flags & SLAB_NOLEAKTRACE)
- slub_debug_local &= ~SLAB_STORE_USER;
- len = strlen(name);
- next_block = slub_debug_string;
- /* Go through all blocks of debug options, see if any matches our slab's name */
- while (next_block) {
- next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
- if (!iter)
- continue;
- /* Found a block that has a slab list, search it */
- while (*iter) {
- char *end, *glob;
- size_t cmplen;
- end = strchrnul(iter, ',');
- if (next_block && next_block < end)
- end = next_block - 1;
- glob = strnchr(iter, end - iter, '*');
- if (glob)
- cmplen = glob - iter;
- else
- cmplen = max_t(size_t, len, (end - iter));
- if (!strncmp(name, iter, cmplen)) {
- flags |= block_flags;
- return flags;
- }
- if (!*end || *end == ';')
- break;
- iter = end + 1;
- }
- }
- return flags | slub_debug_local;
- }
- #else /* !CONFIG_SLUB_DEBUG */
- static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
- static inline
- void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
- static inline bool alloc_debug_processing(struct kmem_cache *s,
- struct slab *slab, void *object, int orig_size) { return true; }
- static inline bool free_debug_processing(struct kmem_cache *s,
- struct slab *slab, void *head, void *tail, int *bulk_cnt,
- unsigned long addr, depot_stack_handle_t handle) { return true; }
- static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
- static inline int check_object(struct kmem_cache *s, struct slab *slab,
- void *object, u8 val) { return 1; }
- static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
- static inline void set_track(struct kmem_cache *s, void *object,
- enum track_item alloc, unsigned long addr) {}
- static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct slab *slab) {}
- static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct slab *slab) {}
- slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
- {
- return flags;
- }
- #define slub_debug 0
- #define disable_higher_order_debug 0
- static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
- { return 0; }
- static inline void inc_slabs_node(struct kmem_cache *s, int node,
- int objects) {}
- static inline void dec_slabs_node(struct kmem_cache *s, int node,
- int objects) {}
- #ifndef CONFIG_SLUB_TINY
- static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
- void **freelist, void *nextfree)
- {
- return false;
- }
- #endif
- #endif /* CONFIG_SLUB_DEBUG */
- #ifdef CONFIG_SLAB_OBJ_EXT
- #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
- static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
- {
- struct slabobj_ext *slab_exts;
- struct slab *obj_exts_slab;
- obj_exts_slab = virt_to_slab(obj_exts);
- slab_exts = slab_obj_exts(obj_exts_slab);
- if (slab_exts) {
- unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
- obj_exts_slab, obj_exts);
- /* codetag should be NULL */
- WARN_ON(slab_exts[offs].ref.ct);
- set_codetag_empty(&slab_exts[offs].ref);
- }
- }
- static inline void mark_failed_objexts_alloc(struct slab *slab)
- {
- slab->obj_exts = OBJEXTS_ALLOC_FAIL;
- }
- static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
- struct slabobj_ext *vec, unsigned int objects)
- {
- /*
- * If vector previously failed to allocate then we have live
- * objects with no tag reference. Mark all references in this
- * vector as empty to avoid warnings later on.
- */
- if (obj_exts & OBJEXTS_ALLOC_FAIL) {
- unsigned int i;
- for (i = 0; i < objects; i++)
- set_codetag_empty(&vec[i].ref);
- }
- }
- #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
- static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
- static inline void mark_failed_objexts_alloc(struct slab *slab) {}
- static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
- struct slabobj_ext *vec, unsigned int objects) {}
- #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
- /*
- * The allocated objcg pointers array is not accounted directly.
- * Moreover, it should not come from DMA buffer and is not readily
- * reclaimable. So those GFP bits should be masked off.
- */
- #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
- __GFP_ACCOUNT | __GFP_NOFAIL)
- int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
- gfp_t gfp, bool new_slab)
- {
- unsigned int objects = objs_per_slab(s, slab);
- unsigned long new_exts;
- unsigned long old_exts;
- struct slabobj_ext *vec;
- gfp &= ~OBJCGS_CLEAR_MASK;
- /* Prevent recursive extension vector allocation */
- gfp |= __GFP_NO_OBJ_EXT;
- vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
- slab_nid(slab));
- if (!vec) {
- /* Mark vectors which failed to allocate */
- if (new_slab)
- mark_failed_objexts_alloc(slab);
- return -ENOMEM;
- }
- new_exts = (unsigned long)vec;
- #ifdef CONFIG_MEMCG
- new_exts |= MEMCG_DATA_OBJEXTS;
- #endif
- old_exts = READ_ONCE(slab->obj_exts);
- handle_failed_objexts_alloc(old_exts, vec, objects);
- if (new_slab) {
- /*
- * If the slab is brand new and nobody can yet access its
- * obj_exts, no synchronization is required and obj_exts can
- * be simply assigned.
- */
- slab->obj_exts = new_exts;
- } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
- cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
- /*
- * If the slab is already in use, somebody can allocate and
- * assign slabobj_exts in parallel. In this case the existing
- * objcg vector should be reused.
- */
- mark_objexts_empty(vec);
- kfree(vec);
- return 0;
- }
- kmemleak_not_leak(vec);
- return 0;
- }
- static inline void free_slab_obj_exts(struct slab *slab)
- {
- struct slabobj_ext *obj_exts;
- obj_exts = slab_obj_exts(slab);
- if (!obj_exts)
- return;
- /*
- * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
- * corresponding extension will be NULL. alloc_tag_sub() will throw a
- * warning if slab has extensions but the extension of an object is
- * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
- * the extension for obj_exts is expected to be NULL.
- */
- mark_objexts_empty(obj_exts);
- kfree(obj_exts);
- slab->obj_exts = 0;
- }
- static inline bool need_slab_obj_ext(void)
- {
- if (mem_alloc_profiling_enabled())
- return true;
- /*
- * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
- * inside memcg_slab_post_alloc_hook. No other users for now.
- */
- return false;
- }
- #else /* CONFIG_SLAB_OBJ_EXT */
- static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
- gfp_t gfp, bool new_slab)
- {
- return 0;
- }
- static inline void free_slab_obj_exts(struct slab *slab)
- {
- }
- static inline bool need_slab_obj_ext(void)
- {
- return false;
- }
- #endif /* CONFIG_SLAB_OBJ_EXT */
- #ifdef CONFIG_MEM_ALLOC_PROFILING
- static inline struct slabobj_ext *
- prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
- {
- struct slab *slab;
- if (!p)
- return NULL;
- if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
- return NULL;
- if (flags & __GFP_NO_OBJ_EXT)
- return NULL;
- slab = virt_to_slab(p);
- if (!slab_obj_exts(slab) &&
- WARN(alloc_slab_obj_exts(slab, s, flags, false),
- "%s, %s: Failed to create slab extension vector!\n",
- __func__, s->name))
- return NULL;
- return slab_obj_exts(slab) + obj_to_index(s, slab, p);
- }
- static inline void
- alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
- {
- if (need_slab_obj_ext()) {
- struct slabobj_ext *obj_exts;
- obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
- /*
- * Currently obj_exts is used only for allocation profiling.
- * If other users appear then mem_alloc_profiling_enabled()
- * check should be added before alloc_tag_add().
- */
- if (likely(obj_exts))
- alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
- }
- }
- static inline void
- alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
- int objects)
- {
- struct slabobj_ext *obj_exts;
- int i;
- if (!mem_alloc_profiling_enabled())
- return;
- /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
- if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
- return;
- obj_exts = slab_obj_exts(slab);
- if (!obj_exts)
- return;
- for (i = 0; i < objects; i++) {
- unsigned int off = obj_to_index(s, slab, p[i]);
- alloc_tag_sub(&obj_exts[off].ref, s->size);
- }
- }
- #else /* CONFIG_MEM_ALLOC_PROFILING */
- static inline void
- alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
- {
- }
- static inline void
- alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
- int objects)
- {
- }
- #endif /* CONFIG_MEM_ALLOC_PROFILING */
- #ifdef CONFIG_MEMCG
- static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
- static __fastpath_inline
- bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
- gfp_t flags, size_t size, void **p)
- {
- if (likely(!memcg_kmem_online()))
- return true;
- if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
- return true;
- if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
- return true;
- if (likely(size == 1)) {
- memcg_alloc_abort_single(s, *p);
- *p = NULL;
- } else {
- kmem_cache_free_bulk(s, size, p);
- }
- return false;
- }
- static __fastpath_inline
- void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
- int objects)
- {
- struct slabobj_ext *obj_exts;
- if (!memcg_kmem_online())
- return;
- obj_exts = slab_obj_exts(slab);
- if (likely(!obj_exts))
- return;
- __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
- }
- static __fastpath_inline
- bool memcg_slab_post_charge(void *p, gfp_t flags)
- {
- struct slabobj_ext *slab_exts;
- struct kmem_cache *s;
- struct folio *folio;
- struct slab *slab;
- unsigned long off;
- folio = virt_to_folio(p);
- if (!folio_test_slab(folio)) {
- int size;
- if (folio_memcg_kmem(folio))
- return true;
- if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
- folio_order(folio)))
- return false;
- /*
- * This folio has already been accounted in the global stats but
- * not in the memcg stats. So, subtract from the global and use
- * the interface which adds to both global and memcg stats.
- */
- size = folio_size(folio);
- node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
- lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
- return true;
- }
- slab = folio_slab(folio);
- s = slab->slab_cache;
- /*
- * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
- * of slab_obj_exts being allocated from the same slab and thus the slab
- * becoming effectively unfreeable.
- */
- if (is_kmalloc_normal(s))
- return true;
- /* Ignore already charged objects. */
- slab_exts = slab_obj_exts(slab);
- if (slab_exts) {
- off = obj_to_index(s, slab, p);
- if (unlikely(slab_exts[off].objcg))
- return true;
- }
- return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
- }
- #else /* CONFIG_MEMCG */
- static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
- struct list_lru *lru,
- gfp_t flags, size_t size,
- void **p)
- {
- return true;
- }
- static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
- void **p, int objects)
- {
- }
- static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
- {
- return true;
- }
- #endif /* CONFIG_MEMCG */
- #ifdef CONFIG_SLUB_RCU_DEBUG
- static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
- struct rcu_delayed_free {
- struct rcu_head head;
- void *object;
- };
- #endif
- /*
- * Hooks for other subsystems that check memory allocations. In a typical
- * production configuration these hooks all should produce no code at all.
- *
- * Returns true if freeing of the object can proceed, false if its reuse
- * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
- * to KFENCE.
- */
- static __always_inline
- bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
- bool after_rcu_delay)
- {
- /* Are the object contents still accessible? */
- bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
- kmemleak_free_recursive(x, s->flags);
- kmsan_slab_free(s, x);
- debug_check_no_locks_freed(x, s->object_size);
- if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(x, s->object_size);
- /* Use KCSAN to help debug racy use-after-free. */
- if (!still_accessible)
- __kcsan_check_access(x, s->object_size,
- KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
- if (kfence_free(x))
- return false;
- /*
- * Give KASAN a chance to notice an invalid free operation before we
- * modify the object.
- */
- if (kasan_slab_pre_free(s, x))
- return false;
- #ifdef CONFIG_SLUB_RCU_DEBUG
- if (still_accessible) {
- struct rcu_delayed_free *delayed_free;
- delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
- if (delayed_free) {
- /*
- * Let KASAN track our call stack as a "related work
- * creation", just like if the object had been freed
- * normally via kfree_rcu().
- * We have to do this manually because the rcu_head is
- * not located inside the object.
- */
- kasan_record_aux_stack_noalloc(x);
- delayed_free->object = x;
- call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
- return false;
- }
- }
- #endif /* CONFIG_SLUB_RCU_DEBUG */
- /*
- * As memory initialization might be integrated into KASAN,
- * kasan_slab_free and initialization memset's must be
- * kept together to avoid discrepancies in behavior.
- *
- * The initialization memset's clear the object and the metadata,
- * but don't touch the SLAB redzone.
- *
- * The object's freepointer is also avoided if stored outside the
- * object.
- */
- if (unlikely(init)) {
- int rsize;
- unsigned int inuse, orig_size;
- inuse = get_info_end(s);
- orig_size = get_orig_size(s, x);
- if (!kasan_has_integrated_init())
- memset(kasan_reset_tag(x), 0, orig_size);
- rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
- memset((char *)kasan_reset_tag(x) + inuse, 0,
- s->size - inuse - rsize);
- /*
- * Restore orig_size, otherwize kmalloc redzone overwritten
- * would be reported
- */
- set_orig_size(s, x, orig_size);
- }
- /* KASAN might put x into memory quarantine, delaying its reuse. */
- return !kasan_slab_free(s, x, init, still_accessible);
- }
- static __fastpath_inline
- bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
- int *cnt)
- {
- void *object;
- void *next = *head;
- void *old_tail = *tail;
- bool init;
- if (is_kfence_address(next)) {
- slab_free_hook(s, next, false, false);
- return false;
- }
- /* Head and tail of the reconstructed freelist */
- *head = NULL;
- *tail = NULL;
- init = slab_want_init_on_free(s);
- do {
- object = next;
- next = get_freepointer(s, object);
- /* If object's reuse doesn't have to be delayed */
- if (likely(slab_free_hook(s, object, init, false))) {
- /* Move object to the new freelist */
- set_freepointer(s, object, *head);
- *head = object;
- if (!*tail)
- *tail = object;
- } else {
- /*
- * Adjust the reconstructed freelist depth
- * accordingly if object's reuse is delayed.
- */
- --(*cnt);
- }
- } while (object != old_tail);
- return *head != NULL;
- }
- static void *setup_object(struct kmem_cache *s, void *object)
- {
- setup_object_debug(s, object);
- object = kasan_init_slab_obj(s, object);
- if (unlikely(s->ctor)) {
- kasan_unpoison_new_object(s, object);
- s->ctor(object);
- kasan_poison_new_object(s, object);
- }
- return object;
- }
- /*
- * Slab allocation and freeing
- */
- static inline struct slab *alloc_slab_page(gfp_t flags, int node,
- struct kmem_cache_order_objects oo)
- {
- struct folio *folio;
- struct slab *slab;
- unsigned int order = oo_order(oo);
- if (node == NUMA_NO_NODE)
- folio = (struct folio *)alloc_pages(flags, order);
- else
- folio = (struct folio *)__alloc_pages_node(node, flags, order);
- if (!folio)
- return NULL;
- slab = folio_slab(folio);
- __folio_set_slab(folio);
- /* Make the flag visible before any changes to folio->mapping */
- smp_wmb();
- if (folio_is_pfmemalloc(folio))
- slab_set_pfmemalloc(slab);
- return slab;
- }
- #ifdef CONFIG_SLAB_FREELIST_RANDOM
- /* Pre-initialize the random sequence cache */
- static int init_cache_random_seq(struct kmem_cache *s)
- {
- unsigned int count = oo_objects(s->oo);
- int err;
- /* Bailout if already initialised */
- if (s->random_seq)
- return 0;
- err = cache_random_seq_create(s, count, GFP_KERNEL);
- if (err) {
- pr_err("SLUB: Unable to initialize free list for %s\n",
- s->name);
- return err;
- }
- /* Transform to an offset on the set of pages */
- if (s->random_seq) {
- unsigned int i;
- for (i = 0; i < count; i++)
- s->random_seq[i] *= s->size;
- }
- return 0;
- }
- /* Initialize each random sequence freelist per cache */
- static void __init init_freelist_randomization(void)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- init_cache_random_seq(s);
- mutex_unlock(&slab_mutex);
- }
- /* Get the next entry on the pre-computed freelist randomized */
- static void *next_freelist_entry(struct kmem_cache *s,
- unsigned long *pos, void *start,
- unsigned long page_limit,
- unsigned long freelist_count)
- {
- unsigned int idx;
- /*
- * If the target page allocation failed, the number of objects on the
- * page might be smaller than the usual size defined by the cache.
- */
- do {
- idx = s->random_seq[*pos];
- *pos += 1;
- if (*pos >= freelist_count)
- *pos = 0;
- } while (unlikely(idx >= page_limit));
- return (char *)start + idx;
- }
- /* Shuffle the single linked freelist based on a random pre-computed sequence */
- static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
- {
- void *start;
- void *cur;
- void *next;
- unsigned long idx, pos, page_limit, freelist_count;
- if (slab->objects < 2 || !s->random_seq)
- return false;
- freelist_count = oo_objects(s->oo);
- pos = get_random_u32_below(freelist_count);
- page_limit = slab->objects * s->size;
- start = fixup_red_left(s, slab_address(slab));
- /* First entry is used as the base of the freelist */
- cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
- cur = setup_object(s, cur);
- slab->freelist = cur;
- for (idx = 1; idx < slab->objects; idx++) {
- next = next_freelist_entry(s, &pos, start, page_limit,
- freelist_count);
- next = setup_object(s, next);
- set_freepointer(s, cur, next);
- cur = next;
- }
- set_freepointer(s, cur, NULL);
- return true;
- }
- #else
- static inline int init_cache_random_seq(struct kmem_cache *s)
- {
- return 0;
- }
- static inline void init_freelist_randomization(void) { }
- static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
- {
- return false;
- }
- #endif /* CONFIG_SLAB_FREELIST_RANDOM */
- static __always_inline void account_slab(struct slab *slab, int order,
- struct kmem_cache *s, gfp_t gfp)
- {
- if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
- alloc_slab_obj_exts(slab, s, gfp, true);
- mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
- PAGE_SIZE << order);
- }
- static __always_inline void unaccount_slab(struct slab *slab, int order,
- struct kmem_cache *s)
- {
- if (memcg_kmem_online() || need_slab_obj_ext())
- free_slab_obj_exts(slab);
- mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
- -(PAGE_SIZE << order));
- }
- static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- struct slab *slab;
- struct kmem_cache_order_objects oo = s->oo;
- gfp_t alloc_gfp;
- void *start, *p, *next;
- int idx;
- bool shuffle;
- flags &= gfp_allowed_mask;
- flags |= s->allocflags;
- /*
- * Let the initial higher-order allocation fail under memory pressure
- * so we fall-back to the minimum order allocation.
- */
- alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
- if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
- alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
- slab = alloc_slab_page(alloc_gfp, node, oo);
- if (unlikely(!slab)) {
- oo = s->min;
- alloc_gfp = flags;
- /*
- * Allocation may have failed due to fragmentation.
- * Try a lower order alloc if possible
- */
- slab = alloc_slab_page(alloc_gfp, node, oo);
- if (unlikely(!slab))
- return NULL;
- stat(s, ORDER_FALLBACK);
- }
- slab->objects = oo_objects(oo);
- slab->inuse = 0;
- slab->frozen = 0;
- account_slab(slab, oo_order(oo), s, flags);
- slab->slab_cache = s;
- kasan_poison_slab(slab);
- start = slab_address(slab);
- setup_slab_debug(s, slab, start);
- shuffle = shuffle_freelist(s, slab);
- if (!shuffle) {
- start = fixup_red_left(s, start);
- start = setup_object(s, start);
- slab->freelist = start;
- for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
- next = p + s->size;
- next = setup_object(s, next);
- set_freepointer(s, p, next);
- p = next;
- }
- set_freepointer(s, p, NULL);
- }
- return slab;
- }
- static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- if (unlikely(flags & GFP_SLAB_BUG_MASK))
- flags = kmalloc_fix_flags(flags);
- WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
- return allocate_slab(s,
- flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
- }
- static void __free_slab(struct kmem_cache *s, struct slab *slab)
- {
- struct folio *folio = slab_folio(slab);
- int order = folio_order(folio);
- int pages = 1 << order;
- __slab_clear_pfmemalloc(slab);
- folio->mapping = NULL;
- /* Make the mapping reset visible before clearing the flag */
- smp_wmb();
- __folio_clear_slab(folio);
- mm_account_reclaimed_pages(pages);
- unaccount_slab(slab, order, s);
- __free_pages(&folio->page, order);
- }
- static void rcu_free_slab(struct rcu_head *h)
- {
- struct slab *slab = container_of(h, struct slab, rcu_head);
- __free_slab(slab->slab_cache, slab);
- }
- static void free_slab(struct kmem_cache *s, struct slab *slab)
- {
- if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
- void *p;
- slab_pad_check(s, slab);
- for_each_object(p, s, slab_address(slab), slab->objects)
- check_object(s, slab, p, SLUB_RED_INACTIVE);
- }
- if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
- call_rcu(&slab->rcu_head, rcu_free_slab);
- else
- __free_slab(s, slab);
- }
- static void discard_slab(struct kmem_cache *s, struct slab *slab)
- {
- dec_slabs_node(s, slab_nid(slab), slab->objects);
- free_slab(s, slab);
- }
- /*
- * SLUB reuses PG_workingset bit to keep track of whether it's on
- * the per-node partial list.
- */
- static inline bool slab_test_node_partial(const struct slab *slab)
- {
- return folio_test_workingset(slab_folio(slab));
- }
- static inline void slab_set_node_partial(struct slab *slab)
- {
- set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
- }
- static inline void slab_clear_node_partial(struct slab *slab)
- {
- clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
- }
- /*
- * Management of partially allocated slabs.
- */
- static inline void
- __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
- {
- n->nr_partial++;
- if (tail == DEACTIVATE_TO_TAIL)
- list_add_tail(&slab->slab_list, &n->partial);
- else
- list_add(&slab->slab_list, &n->partial);
- slab_set_node_partial(slab);
- }
- static inline void add_partial(struct kmem_cache_node *n,
- struct slab *slab, int tail)
- {
- lockdep_assert_held(&n->list_lock);
- __add_partial(n, slab, tail);
- }
- static inline void remove_partial(struct kmem_cache_node *n,
- struct slab *slab)
- {
- lockdep_assert_held(&n->list_lock);
- list_del(&slab->slab_list);
- slab_clear_node_partial(slab);
- n->nr_partial--;
- }
- /*
- * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
- * slab from the n->partial list. Remove only a single object from the slab, do
- * the alloc_debug_processing() checks and leave the slab on the list, or move
- * it to full list if it was the last free object.
- */
- static void *alloc_single_from_partial(struct kmem_cache *s,
- struct kmem_cache_node *n, struct slab *slab, int orig_size)
- {
- void *object;
- lockdep_assert_held(&n->list_lock);
- object = slab->freelist;
- slab->freelist = get_freepointer(s, object);
- slab->inuse++;
- if (!alloc_debug_processing(s, slab, object, orig_size)) {
- if (folio_test_slab(slab_folio(slab)))
- remove_partial(n, slab);
- return NULL;
- }
- if (slab->inuse == slab->objects) {
- remove_partial(n, slab);
- add_full(s, n, slab);
- }
- return object;
- }
- /*
- * Called only for kmem_cache_debug() caches to allocate from a freshly
- * allocated slab. Allocate a single object instead of whole freelist
- * and put the slab to the partial (or full) list.
- */
- static void *alloc_single_from_new_slab(struct kmem_cache *s,
- struct slab *slab, int orig_size)
- {
- int nid = slab_nid(slab);
- struct kmem_cache_node *n = get_node(s, nid);
- unsigned long flags;
- void *object;
- object = slab->freelist;
- slab->freelist = get_freepointer(s, object);
- slab->inuse = 1;
- if (!alloc_debug_processing(s, slab, object, orig_size))
- /*
- * It's not really expected that this would fail on a
- * freshly allocated slab, but a concurrent memory
- * corruption in theory could cause that.
- */
- return NULL;
- spin_lock_irqsave(&n->list_lock, flags);
- if (slab->inuse == slab->objects)
- add_full(s, n, slab);
- else
- add_partial(n, slab, DEACTIVATE_TO_HEAD);
- inc_slabs_node(s, nid, slab->objects);
- spin_unlock_irqrestore(&n->list_lock, flags);
- return object;
- }
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
- #else
- static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
- int drain) { }
- #endif
- static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
- /*
- * Try to allocate a partial slab from a specific node.
- */
- static struct slab *get_partial_node(struct kmem_cache *s,
- struct kmem_cache_node *n,
- struct partial_context *pc)
- {
- struct slab *slab, *slab2, *partial = NULL;
- unsigned long flags;
- unsigned int partial_slabs = 0;
- /*
- * Racy check. If we mistakenly see no partial slabs then we
- * just allocate an empty slab. If we mistakenly try to get a
- * partial slab and there is none available then get_partial()
- * will return NULL.
- */
- if (!n || !n->nr_partial)
- return NULL;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
- if (!pfmemalloc_match(slab, pc->flags))
- continue;
- if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
- void *object = alloc_single_from_partial(s, n, slab,
- pc->orig_size);
- if (object) {
- partial = slab;
- pc->object = object;
- break;
- }
- continue;
- }
- remove_partial(n, slab);
- if (!partial) {
- partial = slab;
- stat(s, ALLOC_FROM_PARTIAL);
- if ((slub_get_cpu_partial(s) == 0)) {
- break;
- }
- } else {
- put_cpu_partial(s, slab, 0);
- stat(s, CPU_PARTIAL_NODE);
- if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
- break;
- }
- }
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- return partial;
- }
- /*
- * Get a slab from somewhere. Search in increasing NUMA distances.
- */
- static struct slab *get_any_partial(struct kmem_cache *s,
- struct partial_context *pc)
- {
- #ifdef CONFIG_NUMA
- struct zonelist *zonelist;
- struct zoneref *z;
- struct zone *zone;
- enum zone_type highest_zoneidx = gfp_zone(pc->flags);
- struct slab *slab;
- unsigned int cpuset_mems_cookie;
- /*
- * The defrag ratio allows a configuration of the tradeoffs between
- * inter node defragmentation and node local allocations. A lower
- * defrag_ratio increases the tendency to do local allocations
- * instead of attempting to obtain partial slabs from other nodes.
- *
- * If the defrag_ratio is set to 0 then kmalloc() always
- * returns node local objects. If the ratio is higher then kmalloc()
- * may return off node objects because partial slabs are obtained
- * from other nodes and filled up.
- *
- * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
- * (which makes defrag_ratio = 1000) then every (well almost)
- * allocation will first attempt to defrag slab caches on other nodes.
- * This means scanning over all nodes to look for partial slabs which
- * may be expensive if we do it every time we are trying to find a slab
- * with available objects.
- */
- if (!s->remote_node_defrag_ratio ||
- get_cycles() % 1024 > s->remote_node_defrag_ratio)
- return NULL;
- do {
- cpuset_mems_cookie = read_mems_allowed_begin();
- zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
- for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
- struct kmem_cache_node *n;
- n = get_node(s, zone_to_nid(zone));
- if (n && cpuset_zone_allowed(zone, pc->flags) &&
- n->nr_partial > s->min_partial) {
- slab = get_partial_node(s, n, pc);
- if (slab) {
- /*
- * Don't check read_mems_allowed_retry()
- * here - if mems_allowed was updated in
- * parallel, that was a harmless race
- * between allocation and the cpuset
- * update
- */
- return slab;
- }
- }
- }
- } while (read_mems_allowed_retry(cpuset_mems_cookie));
- #endif /* CONFIG_NUMA */
- return NULL;
- }
- /*
- * Get a partial slab, lock it and return it.
- */
- static struct slab *get_partial(struct kmem_cache *s, int node,
- struct partial_context *pc)
- {
- struct slab *slab;
- int searchnode = node;
- if (node == NUMA_NO_NODE)
- searchnode = numa_mem_id();
- slab = get_partial_node(s, get_node(s, searchnode), pc);
- if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
- return slab;
- return get_any_partial(s, pc);
- }
- #ifndef CONFIG_SLUB_TINY
- #ifdef CONFIG_PREEMPTION
- /*
- * Calculate the next globally unique transaction for disambiguation
- * during cmpxchg. The transactions start with the cpu number and are then
- * incremented by CONFIG_NR_CPUS.
- */
- #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
- #else
- /*
- * No preemption supported therefore also no need to check for
- * different cpus.
- */
- #define TID_STEP 1
- #endif /* CONFIG_PREEMPTION */
- static inline unsigned long next_tid(unsigned long tid)
- {
- return tid + TID_STEP;
- }
- #ifdef SLUB_DEBUG_CMPXCHG
- static inline unsigned int tid_to_cpu(unsigned long tid)
- {
- return tid % TID_STEP;
- }
- static inline unsigned long tid_to_event(unsigned long tid)
- {
- return tid / TID_STEP;
- }
- #endif
- static inline unsigned int init_tid(int cpu)
- {
- return cpu;
- }
- static inline void note_cmpxchg_failure(const char *n,
- const struct kmem_cache *s, unsigned long tid)
- {
- #ifdef SLUB_DEBUG_CMPXCHG
- unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
- pr_info("%s %s: cmpxchg redo ", n, s->name);
- #ifdef CONFIG_PREEMPTION
- if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
- pr_warn("due to cpu change %d -> %d\n",
- tid_to_cpu(tid), tid_to_cpu(actual_tid));
- else
- #endif
- if (tid_to_event(tid) != tid_to_event(actual_tid))
- pr_warn("due to cpu running other code. Event %ld->%ld\n",
- tid_to_event(tid), tid_to_event(actual_tid));
- else
- pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
- actual_tid, tid, next_tid(tid));
- #endif
- stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
- }
- static void init_kmem_cache_cpus(struct kmem_cache *s)
- {
- int cpu;
- struct kmem_cache_cpu *c;
- for_each_possible_cpu(cpu) {
- c = per_cpu_ptr(s->cpu_slab, cpu);
- local_lock_init(&c->lock);
- c->tid = init_tid(cpu);
- }
- }
- /*
- * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
- * unfreezes the slabs and puts it on the proper list.
- * Assumes the slab has been already safely taken away from kmem_cache_cpu
- * by the caller.
- */
- static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
- void *freelist)
- {
- struct kmem_cache_node *n = get_node(s, slab_nid(slab));
- int free_delta = 0;
- void *nextfree, *freelist_iter, *freelist_tail;
- int tail = DEACTIVATE_TO_HEAD;
- unsigned long flags = 0;
- struct slab new;
- struct slab old;
- if (READ_ONCE(slab->freelist)) {
- stat(s, DEACTIVATE_REMOTE_FREES);
- tail = DEACTIVATE_TO_TAIL;
- }
- /*
- * Stage one: Count the objects on cpu's freelist as free_delta and
- * remember the last object in freelist_tail for later splicing.
- */
- freelist_tail = NULL;
- freelist_iter = freelist;
- while (freelist_iter) {
- nextfree = get_freepointer(s, freelist_iter);
- /*
- * If 'nextfree' is invalid, it is possible that the object at
- * 'freelist_iter' is already corrupted. So isolate all objects
- * starting at 'freelist_iter' by skipping them.
- */
- if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
- break;
- freelist_tail = freelist_iter;
- free_delta++;
- freelist_iter = nextfree;
- }
- /*
- * Stage two: Unfreeze the slab while splicing the per-cpu
- * freelist to the head of slab's freelist.
- */
- do {
- old.freelist = READ_ONCE(slab->freelist);
- old.counters = READ_ONCE(slab->counters);
- VM_BUG_ON(!old.frozen);
- /* Determine target state of the slab */
- new.counters = old.counters;
- new.frozen = 0;
- if (freelist_tail) {
- new.inuse -= free_delta;
- set_freepointer(s, freelist_tail, old.freelist);
- new.freelist = freelist;
- } else {
- new.freelist = old.freelist;
- }
- } while (!slab_update_freelist(s, slab,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"));
- /*
- * Stage three: Manipulate the slab list based on the updated state.
- */
- if (!new.inuse && n->nr_partial >= s->min_partial) {
- stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, slab);
- stat(s, FREE_SLAB);
- } else if (new.freelist) {
- spin_lock_irqsave(&n->list_lock, flags);
- add_partial(n, slab, tail);
- spin_unlock_irqrestore(&n->list_lock, flags);
- stat(s, tail);
- } else {
- stat(s, DEACTIVATE_FULL);
- }
- }
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
- {
- struct kmem_cache_node *n = NULL, *n2 = NULL;
- struct slab *slab, *slab_to_discard = NULL;
- unsigned long flags = 0;
- while (partial_slab) {
- slab = partial_slab;
- partial_slab = slab->next;
- n2 = get_node(s, slab_nid(slab));
- if (n != n2) {
- if (n)
- spin_unlock_irqrestore(&n->list_lock, flags);
- n = n2;
- spin_lock_irqsave(&n->list_lock, flags);
- }
- if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
- slab->next = slab_to_discard;
- slab_to_discard = slab;
- } else {
- add_partial(n, slab, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- }
- if (n)
- spin_unlock_irqrestore(&n->list_lock, flags);
- while (slab_to_discard) {
- slab = slab_to_discard;
- slab_to_discard = slab_to_discard->next;
- stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, slab);
- stat(s, FREE_SLAB);
- }
- }
- /*
- * Put all the cpu partial slabs to the node partial list.
- */
- static void put_partials(struct kmem_cache *s)
- {
- struct slab *partial_slab;
- unsigned long flags;
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- partial_slab = this_cpu_read(s->cpu_slab->partial);
- this_cpu_write(s->cpu_slab->partial, NULL);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- if (partial_slab)
- __put_partials(s, partial_slab);
- }
- static void put_partials_cpu(struct kmem_cache *s,
- struct kmem_cache_cpu *c)
- {
- struct slab *partial_slab;
- partial_slab = slub_percpu_partial(c);
- c->partial = NULL;
- if (partial_slab)
- __put_partials(s, partial_slab);
- }
- /*
- * Put a slab into a partial slab slot if available.
- *
- * If we did not find a slot then simply move all the partials to the
- * per node partial list.
- */
- static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
- {
- struct slab *oldslab;
- struct slab *slab_to_put = NULL;
- unsigned long flags;
- int slabs = 0;
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- oldslab = this_cpu_read(s->cpu_slab->partial);
- if (oldslab) {
- if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
- /*
- * Partial array is full. Move the existing set to the
- * per node partial list. Postpone the actual unfreezing
- * outside of the critical section.
- */
- slab_to_put = oldslab;
- oldslab = NULL;
- } else {
- slabs = oldslab->slabs;
- }
- }
- slabs++;
- slab->slabs = slabs;
- slab->next = oldslab;
- this_cpu_write(s->cpu_slab->partial, slab);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- if (slab_to_put) {
- __put_partials(s, slab_to_put);
- stat(s, CPU_PARTIAL_DRAIN);
- }
- }
- #else /* CONFIG_SLUB_CPU_PARTIAL */
- static inline void put_partials(struct kmem_cache *s) { }
- static inline void put_partials_cpu(struct kmem_cache *s,
- struct kmem_cache_cpu *c) { }
- #endif /* CONFIG_SLUB_CPU_PARTIAL */
- static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
- {
- unsigned long flags;
- struct slab *slab;
- void *freelist;
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- slab = c->slab;
- freelist = c->freelist;
- c->slab = NULL;
- c->freelist = NULL;
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- if (slab) {
- deactivate_slab(s, slab, freelist);
- stat(s, CPUSLAB_FLUSH);
- }
- }
- static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
- {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- void *freelist = c->freelist;
- struct slab *slab = c->slab;
- c->slab = NULL;
- c->freelist = NULL;
- c->tid = next_tid(c->tid);
- if (slab) {
- deactivate_slab(s, slab, freelist);
- stat(s, CPUSLAB_FLUSH);
- }
- put_partials_cpu(s, c);
- }
- struct slub_flush_work {
- struct work_struct work;
- struct kmem_cache *s;
- bool skip;
- };
- /*
- * Flush cpu slab.
- *
- * Called from CPU work handler with migration disabled.
- */
- static void flush_cpu_slab(struct work_struct *w)
- {
- struct kmem_cache *s;
- struct kmem_cache_cpu *c;
- struct slub_flush_work *sfw;
- sfw = container_of(w, struct slub_flush_work, work);
- s = sfw->s;
- c = this_cpu_ptr(s->cpu_slab);
- if (c->slab)
- flush_slab(s, c);
- put_partials(s);
- }
- static bool has_cpu_slab(int cpu, struct kmem_cache *s)
- {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- return c->slab || slub_percpu_partial(c);
- }
- static DEFINE_MUTEX(flush_lock);
- static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
- static void flush_all_cpus_locked(struct kmem_cache *s)
- {
- struct slub_flush_work *sfw;
- unsigned int cpu;
- lockdep_assert_cpus_held();
- mutex_lock(&flush_lock);
- for_each_online_cpu(cpu) {
- sfw = &per_cpu(slub_flush, cpu);
- if (!has_cpu_slab(cpu, s)) {
- sfw->skip = true;
- continue;
- }
- INIT_WORK(&sfw->work, flush_cpu_slab);
- sfw->skip = false;
- sfw->s = s;
- queue_work_on(cpu, flushwq, &sfw->work);
- }
- for_each_online_cpu(cpu) {
- sfw = &per_cpu(slub_flush, cpu);
- if (sfw->skip)
- continue;
- flush_work(&sfw->work);
- }
- mutex_unlock(&flush_lock);
- }
- static void flush_all(struct kmem_cache *s)
- {
- cpus_read_lock();
- flush_all_cpus_locked(s);
- cpus_read_unlock();
- }
- /*
- * Use the cpu notifier to insure that the cpu slabs are flushed when
- * necessary.
- */
- static int slub_cpu_dead(unsigned int cpu)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- __flush_cpu_slab(s, cpu);
- mutex_unlock(&slab_mutex);
- return 0;
- }
- #else /* CONFIG_SLUB_TINY */
- static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
- static inline void flush_all(struct kmem_cache *s) { }
- static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
- static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
- #endif /* CONFIG_SLUB_TINY */
- /*
- * Check if the objects in a per cpu structure fit numa
- * locality expectations.
- */
- static inline int node_match(struct slab *slab, int node)
- {
- #ifdef CONFIG_NUMA
- if (node != NUMA_NO_NODE && slab_nid(slab) != node)
- return 0;
- #endif
- return 1;
- }
- #ifdef CONFIG_SLUB_DEBUG
- static int count_free(struct slab *slab)
- {
- return slab->objects - slab->inuse;
- }
- static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
- {
- return atomic_long_read(&n->total_objects);
- }
- /* Supports checking bulk free of a constructed freelist */
- static inline bool free_debug_processing(struct kmem_cache *s,
- struct slab *slab, void *head, void *tail, int *bulk_cnt,
- unsigned long addr, depot_stack_handle_t handle)
- {
- bool checks_ok = false;
- void *object = head;
- int cnt = 0;
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!check_slab(s, slab))
- goto out;
- }
- if (slab->inuse < *bulk_cnt) {
- slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
- slab->inuse, *bulk_cnt);
- goto out;
- }
- next_object:
- if (++cnt > *bulk_cnt)
- goto out_cnt;
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!free_consistency_checks(s, slab, object, addr))
- goto out;
- }
- if (s->flags & SLAB_STORE_USER)
- set_track_update(s, object, TRACK_FREE, addr, handle);
- trace(s, slab, object, 0);
- /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
- init_object(s, object, SLUB_RED_INACTIVE);
- /* Reached end of constructed freelist yet? */
- if (object != tail) {
- object = get_freepointer(s, object);
- goto next_object;
- }
- checks_ok = true;
- out_cnt:
- if (cnt != *bulk_cnt) {
- slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
- *bulk_cnt, cnt);
- *bulk_cnt = cnt;
- }
- out:
- if (!checks_ok)
- slab_fix(s, "Object at 0x%p not freed", object);
- return checks_ok;
- }
- #endif /* CONFIG_SLUB_DEBUG */
- #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
- static unsigned long count_partial(struct kmem_cache_node *n,
- int (*get_count)(struct slab *))
- {
- unsigned long flags;
- unsigned long x = 0;
- struct slab *slab;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slab, &n->partial, slab_list)
- x += get_count(slab);
- spin_unlock_irqrestore(&n->list_lock, flags);
- return x;
- }
- #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
- #ifdef CONFIG_SLUB_DEBUG
- #define MAX_PARTIAL_TO_SCAN 10000
- static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
- {
- unsigned long flags;
- unsigned long x = 0;
- struct slab *slab;
- spin_lock_irqsave(&n->list_lock, flags);
- if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
- list_for_each_entry(slab, &n->partial, slab_list)
- x += slab->objects - slab->inuse;
- } else {
- /*
- * For a long list, approximate the total count of objects in
- * it to meet the limit on the number of slabs to scan.
- * Scan from both the list's head and tail for better accuracy.
- */
- unsigned long scanned = 0;
- list_for_each_entry(slab, &n->partial, slab_list) {
- x += slab->objects - slab->inuse;
- if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
- break;
- }
- list_for_each_entry_reverse(slab, &n->partial, slab_list) {
- x += slab->objects - slab->inuse;
- if (++scanned == MAX_PARTIAL_TO_SCAN)
- break;
- }
- x = mult_frac(x, n->nr_partial, scanned);
- x = min(x, node_nr_objs(n));
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- return x;
- }
- static noinline void
- slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
- {
- static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
- int cpu = raw_smp_processor_id();
- int node;
- struct kmem_cache_node *n;
- if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
- return;
- pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
- cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
- pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
- s->name, s->object_size, s->size, oo_order(s->oo),
- oo_order(s->min));
- if (oo_order(s->min) > get_order(s->object_size))
- pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
- s->name);
- for_each_kmem_cache_node(s, node, n) {
- unsigned long nr_slabs;
- unsigned long nr_objs;
- unsigned long nr_free;
- nr_free = count_partial_free_approx(n);
- nr_slabs = node_nr_slabs(n);
- nr_objs = node_nr_objs(n);
- pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
- node, nr_slabs, nr_objs, nr_free);
- }
- }
- #else /* CONFIG_SLUB_DEBUG */
- static inline void
- slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
- #endif
- static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
- {
- if (unlikely(slab_test_pfmemalloc(slab)))
- return gfp_pfmemalloc_allowed(gfpflags);
- return true;
- }
- #ifndef CONFIG_SLUB_TINY
- static inline bool
- __update_cpu_freelist_fast(struct kmem_cache *s,
- void *freelist_old, void *freelist_new,
- unsigned long tid)
- {
- freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
- freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
- return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
- &old.full, new.full);
- }
- /*
- * Check the slab->freelist and either transfer the freelist to the
- * per cpu freelist or deactivate the slab.
- *
- * The slab is still frozen if the return value is not NULL.
- *
- * If this function returns NULL then the slab has been unfrozen.
- */
- static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
- {
- struct slab new;
- unsigned long counters;
- void *freelist;
- lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
- do {
- freelist = slab->freelist;
- counters = slab->counters;
- new.counters = counters;
- new.inuse = slab->objects;
- new.frozen = freelist != NULL;
- } while (!__slab_update_freelist(s, slab,
- freelist, counters,
- NULL, new.counters,
- "get_freelist"));
- return freelist;
- }
- /*
- * Freeze the partial slab and return the pointer to the freelist.
- */
- static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
- {
- struct slab new;
- unsigned long counters;
- void *freelist;
- do {
- freelist = slab->freelist;
- counters = slab->counters;
- new.counters = counters;
- VM_BUG_ON(new.frozen);
- new.inuse = slab->objects;
- new.frozen = 1;
- } while (!slab_update_freelist(s, slab,
- freelist, counters,
- NULL, new.counters,
- "freeze_slab"));
- return freelist;
- }
- /*
- * Slow path. The lockless freelist is empty or we need to perform
- * debugging duties.
- *
- * Processing is still very fast if new objects have been freed to the
- * regular freelist. In that case we simply take over the regular freelist
- * as the lockless freelist and zap the regular freelist.
- *
- * If that is not working then we fall back to the partial lists. We take the
- * first element of the freelist as the object to allocate now and move the
- * rest of the freelist to the lockless freelist.
- *
- * And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is the slowest path since it involves
- * a call to the page allocator and the setup of a new slab.
- *
- * Version of __slab_alloc to use when we know that preemption is
- * already disabled (which is the case for bulk allocation).
- */
- static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
- {
- void *freelist;
- struct slab *slab;
- unsigned long flags;
- struct partial_context pc;
- bool try_thisnode = true;
- stat(s, ALLOC_SLOWPATH);
- reread_slab:
- slab = READ_ONCE(c->slab);
- if (!slab) {
- /*
- * if the node is not online or has no normal memory, just
- * ignore the node constraint
- */
- if (unlikely(node != NUMA_NO_NODE &&
- !node_isset(node, slab_nodes)))
- node = NUMA_NO_NODE;
- goto new_slab;
- }
- if (unlikely(!node_match(slab, node))) {
- /*
- * same as above but node_match() being false already
- * implies node != NUMA_NO_NODE
- */
- if (!node_isset(node, slab_nodes)) {
- node = NUMA_NO_NODE;
- } else {
- stat(s, ALLOC_NODE_MISMATCH);
- goto deactivate_slab;
- }
- }
- /*
- * By rights, we should be searching for a slab page that was
- * PFMEMALLOC but right now, we are losing the pfmemalloc
- * information when the page leaves the per-cpu allocator
- */
- if (unlikely(!pfmemalloc_match(slab, gfpflags)))
- goto deactivate_slab;
- /* must check again c->slab in case we got preempted and it changed */
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- if (unlikely(slab != c->slab)) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- goto reread_slab;
- }
- freelist = c->freelist;
- if (freelist)
- goto load_freelist;
- freelist = get_freelist(s, slab);
- if (!freelist) {
- c->slab = NULL;
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- stat(s, DEACTIVATE_BYPASS);
- goto new_slab;
- }
- stat(s, ALLOC_REFILL);
- load_freelist:
- lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
- /*
- * freelist is pointing to the list of objects to be used.
- * slab is pointing to the slab from which the objects are obtained.
- * That slab must be frozen for per cpu allocations to work.
- */
- VM_BUG_ON(!c->slab->frozen);
- c->freelist = get_freepointer(s, freelist);
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- return freelist;
- deactivate_slab:
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- if (slab != c->slab) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- goto reread_slab;
- }
- freelist = c->freelist;
- c->slab = NULL;
- c->freelist = NULL;
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- deactivate_slab(s, slab, freelist);
- new_slab:
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- while (slub_percpu_partial(c)) {
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- if (unlikely(c->slab)) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- goto reread_slab;
- }
- if (unlikely(!slub_percpu_partial(c))) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- /* we were preempted and partial list got empty */
- goto new_objects;
- }
- slab = slub_percpu_partial(c);
- slub_set_percpu_partial(c, slab);
- if (likely(node_match(slab, node) &&
- pfmemalloc_match(slab, gfpflags))) {
- c->slab = slab;
- freelist = get_freelist(s, slab);
- VM_BUG_ON(!freelist);
- stat(s, CPU_PARTIAL_ALLOC);
- goto load_freelist;
- }
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- slab->next = NULL;
- __put_partials(s, slab);
- }
- #endif
- new_objects:
- pc.flags = gfpflags;
- /*
- * When a preferred node is indicated but no __GFP_THISNODE
- *
- * 1) try to get a partial slab from target node only by having
- * __GFP_THISNODE in pc.flags for get_partial()
- * 2) if 1) failed, try to allocate a new slab from target node with
- * GPF_NOWAIT | __GFP_THISNODE opportunistically
- * 3) if 2) failed, retry with original gfpflags which will allow
- * get_partial() try partial lists of other nodes before potentially
- * allocating new page from other nodes
- */
- if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
- && try_thisnode))
- pc.flags = GFP_NOWAIT | __GFP_THISNODE;
- pc.orig_size = orig_size;
- slab = get_partial(s, node, &pc);
- if (slab) {
- if (kmem_cache_debug(s)) {
- freelist = pc.object;
- /*
- * For debug caches here we had to go through
- * alloc_single_from_partial() so just store the
- * tracking info and return the object.
- */
- if (s->flags & SLAB_STORE_USER)
- set_track(s, freelist, TRACK_ALLOC, addr);
- return freelist;
- }
- freelist = freeze_slab(s, slab);
- goto retry_load_slab;
- }
- slub_put_cpu_ptr(s->cpu_slab);
- slab = new_slab(s, pc.flags, node);
- c = slub_get_cpu_ptr(s->cpu_slab);
- if (unlikely(!slab)) {
- if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
- && try_thisnode) {
- try_thisnode = false;
- goto new_objects;
- }
- slab_out_of_memory(s, gfpflags, node);
- return NULL;
- }
- stat(s, ALLOC_SLAB);
- if (kmem_cache_debug(s)) {
- freelist = alloc_single_from_new_slab(s, slab, orig_size);
- if (unlikely(!freelist))
- goto new_objects;
- if (s->flags & SLAB_STORE_USER)
- set_track(s, freelist, TRACK_ALLOC, addr);
- return freelist;
- }
- /*
- * No other reference to the slab yet so we can
- * muck around with it freely without cmpxchg
- */
- freelist = slab->freelist;
- slab->freelist = NULL;
- slab->inuse = slab->objects;
- slab->frozen = 1;
- inc_slabs_node(s, slab_nid(slab), slab->objects);
- if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
- /*
- * For !pfmemalloc_match() case we don't load freelist so that
- * we don't make further mismatched allocations easier.
- */
- deactivate_slab(s, slab, get_freepointer(s, freelist));
- return freelist;
- }
- retry_load_slab:
- local_lock_irqsave(&s->cpu_slab->lock, flags);
- if (unlikely(c->slab)) {
- void *flush_freelist = c->freelist;
- struct slab *flush_slab = c->slab;
- c->slab = NULL;
- c->freelist = NULL;
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
- deactivate_slab(s, flush_slab, flush_freelist);
- stat(s, CPUSLAB_FLUSH);
- goto retry_load_slab;
- }
- c->slab = slab;
- goto load_freelist;
- }
- /*
- * A wrapper for ___slab_alloc() for contexts where preemption is not yet
- * disabled. Compensates for possible cpu changes by refetching the per cpu area
- * pointer.
- */
- static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
- {
- void *p;
- #ifdef CONFIG_PREEMPT_COUNT
- /*
- * We may have been preempted and rescheduled on a different
- * cpu before disabling preemption. Need to reload cpu area
- * pointer.
- */
- c = slub_get_cpu_ptr(s->cpu_slab);
- #endif
- p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
- #ifdef CONFIG_PREEMPT_COUNT
- slub_put_cpu_ptr(s->cpu_slab);
- #endif
- return p;
- }
- static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
- gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
- {
- struct kmem_cache_cpu *c;
- struct slab *slab;
- unsigned long tid;
- void *object;
- redo:
- /*
- * Must read kmem_cache cpu data via this cpu ptr. Preemption is
- * enabled. We may switch back and forth between cpus while
- * reading from one cpu area. That does not matter as long
- * as we end up on the original cpu again when doing the cmpxchg.
- *
- * We must guarantee that tid and kmem_cache_cpu are retrieved on the
- * same cpu. We read first the kmem_cache_cpu pointer and use it to read
- * the tid. If we are preempted and switched to another cpu between the
- * two reads, it's OK as the two are still associated with the same cpu
- * and cmpxchg later will validate the cpu.
- */
- c = raw_cpu_ptr(s->cpu_slab);
- tid = READ_ONCE(c->tid);
- /*
- * Irqless object alloc/free algorithm used here depends on sequence
- * of fetching cpu_slab's data. tid should be fetched before anything
- * on c to guarantee that object and slab associated with previous tid
- * won't be used with current tid. If we fetch tid first, object and
- * slab could be one associated with next tid and our alloc/free
- * request will be failed. In this case, we will retry. So, no problem.
- */
- barrier();
- /*
- * The transaction ids are globally unique per cpu and per operation on
- * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
- * occurs on the right processor and that there was no operation on the
- * linked list in between.
- */
- object = c->freelist;
- slab = c->slab;
- if (!USE_LOCKLESS_FAST_PATH() ||
- unlikely(!object || !slab || !node_match(slab, node))) {
- object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
- } else {
- void *next_object = get_freepointer_safe(s, object);
- /*
- * The cmpxchg will only match if there was no additional
- * operation and if we are on the right processor.
- *
- * The cmpxchg does the following atomically (without lock
- * semantics!)
- * 1. Relocate first pointer to the current per cpu area.
- * 2. Verify that tid and freelist have not been changed
- * 3. If they were not changed replace tid and freelist
- *
- * Since this is without lock semantics the protection is only
- * against code executing on this cpu *not* from access by
- * other cpus.
- */
- if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
- note_cmpxchg_failure("slab_alloc", s, tid);
- goto redo;
- }
- prefetch_freepointer(s, next_object);
- stat(s, ALLOC_FASTPATH);
- }
- return object;
- }
- #else /* CONFIG_SLUB_TINY */
- static void *__slab_alloc_node(struct kmem_cache *s,
- gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
- {
- struct partial_context pc;
- struct slab *slab;
- void *object;
- pc.flags = gfpflags;
- pc.orig_size = orig_size;
- slab = get_partial(s, node, &pc);
- if (slab)
- return pc.object;
- slab = new_slab(s, gfpflags, node);
- if (unlikely(!slab)) {
- slab_out_of_memory(s, gfpflags, node);
- return NULL;
- }
- object = alloc_single_from_new_slab(s, slab, orig_size);
- return object;
- }
- #endif /* CONFIG_SLUB_TINY */
- /*
- * If the object has been wiped upon free, make sure it's fully initialized by
- * zeroing out freelist pointer.
- *
- * Note that we also wipe custom freelist pointers.
- */
- static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
- void *obj)
- {
- if (unlikely(slab_want_init_on_free(s)) && obj &&
- !freeptr_outside_object(s))
- memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
- 0, sizeof(void *));
- }
- static __fastpath_inline
- struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
- {
- flags &= gfp_allowed_mask;
- might_alloc(flags);
- if (unlikely(should_failslab(s, flags)))
- return NULL;
- return s;
- }
- static __fastpath_inline
- bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
- gfp_t flags, size_t size, void **p, bool init,
- unsigned int orig_size)
- {
- unsigned int zero_size = s->object_size;
- bool kasan_init = init;
- size_t i;
- gfp_t init_flags = flags & gfp_allowed_mask;
- /*
- * For kmalloc object, the allocated memory size(object_size) is likely
- * larger than the requested size(orig_size). If redzone check is
- * enabled for the extra space, don't zero it, as it will be redzoned
- * soon. The redzone operation for this extra space could be seen as a
- * replacement of current poisoning under certain debug option, and
- * won't break other sanity checks.
- */
- if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
- (s->flags & SLAB_KMALLOC))
- zero_size = orig_size;
- /*
- * When slab_debug is enabled, avoid memory initialization integrated
- * into KASAN and instead zero out the memory via the memset below with
- * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
- * cause false-positive reports. This does not lead to a performance
- * penalty on production builds, as slab_debug is not intended to be
- * enabled there.
- */
- if (__slub_debug_enabled())
- kasan_init = false;
- /*
- * As memory initialization might be integrated into KASAN,
- * kasan_slab_alloc and initialization memset must be
- * kept together to avoid discrepancies in behavior.
- *
- * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
- */
- for (i = 0; i < size; i++) {
- p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
- if (p[i] && init && (!kasan_init ||
- !kasan_has_integrated_init()))
- memset(p[i], 0, zero_size);
- kmemleak_alloc_recursive(p[i], s->object_size, 1,
- s->flags, init_flags);
- kmsan_slab_alloc(s, p[i], init_flags);
- alloc_tagging_slab_alloc_hook(s, p[i], flags);
- }
- return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
- }
- /*
- * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
- * have the fastpath folded into their functions. So no function call
- * overhead for requests that can be satisfied on the fastpath.
- *
- * The fastpath works by first checking if the lockless freelist can be used.
- * If not then __slab_alloc is called for slow processing.
- *
- * Otherwise we can simply pick the next object from the lockless free list.
- */
- static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
- gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
- {
- void *object;
- bool init = false;
- s = slab_pre_alloc_hook(s, gfpflags);
- if (unlikely(!s))
- return NULL;
- object = kfence_alloc(s, orig_size, gfpflags);
- if (unlikely(object))
- goto out;
- object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
- maybe_wipe_obj_freeptr(s, object);
- init = slab_want_init_on_alloc(gfpflags, s);
- out:
- /*
- * When init equals 'true', like for kzalloc() family, only
- * @orig_size bytes might be zeroed instead of s->object_size
- * In case this fails due to memcg_slab_post_alloc_hook(),
- * object is set to NULL
- */
- slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
- return object;
- }
- void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
- {
- void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
- s->object_size);
- trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_noprof);
- void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
- gfp_t gfpflags)
- {
- void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
- s->object_size);
- trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
- bool kmem_cache_charge(void *objp, gfp_t gfpflags)
- {
- if (!memcg_kmem_online())
- return true;
- return memcg_slab_post_charge(objp, gfpflags);
- }
- EXPORT_SYMBOL(kmem_cache_charge);
- /**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @s: The cache to allocate from.
- * @gfpflags: See kmalloc().
- * @node: node number of the target node.
- *
- * Identical to kmem_cache_alloc but it will allocate memory on the given
- * node, which can improve the performance for cpu bound structures.
- *
- * Fallback to other node is possible if __GFP_THISNODE is not set.
- *
- * Return: pointer to the new object or %NULL in case of error
- */
- void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
- {
- void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
- trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
- /*
- * To avoid unnecessary overhead, we pass through large allocation requests
- * directly to the page allocator. We use __GFP_COMP, because we will need to
- * know the allocation order to free the pages properly in kfree.
- */
- static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
- {
- struct folio *folio;
- void *ptr = NULL;
- unsigned int order = get_order(size);
- if (unlikely(flags & GFP_SLAB_BUG_MASK))
- flags = kmalloc_fix_flags(flags);
- flags |= __GFP_COMP;
- folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
- if (folio) {
- ptr = folio_address(folio);
- lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
- PAGE_SIZE << order);
- }
- ptr = kasan_kmalloc_large(ptr, size, flags);
- /* As ptr might get tagged, call kmemleak hook after KASAN. */
- kmemleak_alloc(ptr, size, 1, flags);
- kmsan_kmalloc_large(ptr, size, flags);
- return ptr;
- }
- void *__kmalloc_large_noprof(size_t size, gfp_t flags)
- {
- void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
- trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
- flags, NUMA_NO_NODE);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc_large_noprof);
- void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
- {
- void *ret = ___kmalloc_large_node(size, flags, node);
- trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
- flags, node);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc_large_node_noprof);
- static __always_inline
- void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
- unsigned long caller)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = __kmalloc_large_node_noprof(size, flags, node);
- trace_kmalloc(caller, ret, size,
- PAGE_SIZE << get_order(size), flags, node);
- return ret;
- }
- if (unlikely(!size))
- return ZERO_SIZE_PTR;
- s = kmalloc_slab(size, b, flags, caller);
- ret = slab_alloc_node(s, NULL, flags, node, caller, size);
- ret = kasan_kmalloc(s, ret, size, flags);
- trace_kmalloc(caller, ret, size, s->size, flags, node);
- return ret;
- }
- void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
- {
- return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
- }
- EXPORT_SYMBOL(__kmalloc_node_noprof);
- void *__kmalloc_noprof(size_t size, gfp_t flags)
- {
- return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
- }
- EXPORT_SYMBOL(__kmalloc_noprof);
- void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
- int node, unsigned long caller)
- {
- return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
- }
- EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
- void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
- {
- void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
- _RET_IP_, size);
- trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
- ret = kasan_kmalloc(s, ret, size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc_cache_noprof);
- void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
- int node, size_t size)
- {
- void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
- trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
- ret = kasan_kmalloc(s, ret, size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
- static noinline void free_to_partial_list(
- struct kmem_cache *s, struct slab *slab,
- void *head, void *tail, int bulk_cnt,
- unsigned long addr)
- {
- struct kmem_cache_node *n = get_node(s, slab_nid(slab));
- struct slab *slab_free = NULL;
- int cnt = bulk_cnt;
- unsigned long flags;
- depot_stack_handle_t handle = 0;
- if (s->flags & SLAB_STORE_USER)
- handle = set_track_prepare();
- spin_lock_irqsave(&n->list_lock, flags);
- if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
- void *prior = slab->freelist;
- /* Perform the actual freeing while we still hold the locks */
- slab->inuse -= cnt;
- set_freepointer(s, tail, prior);
- slab->freelist = head;
- /*
- * If the slab is empty, and node's partial list is full,
- * it should be discarded anyway no matter it's on full or
- * partial list.
- */
- if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
- slab_free = slab;
- if (!prior) {
- /* was on full list */
- remove_full(s, n, slab);
- if (!slab_free) {
- add_partial(n, slab, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- } else if (slab_free) {
- remove_partial(n, slab);
- stat(s, FREE_REMOVE_PARTIAL);
- }
- }
- if (slab_free) {
- /*
- * Update the counters while still holding n->list_lock to
- * prevent spurious validation warnings
- */
- dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- if (slab_free) {
- stat(s, FREE_SLAB);
- free_slab(s, slab_free);
- }
- }
- /*
- * Slow path handling. This may still be called frequently since objects
- * have a longer lifetime than the cpu slabs in most processing loads.
- *
- * So we still attempt to reduce cache line usage. Just take the slab
- * lock and free the item. If there is no additional partial slab
- * handling required then we can return immediately.
- */
- static void __slab_free(struct kmem_cache *s, struct slab *slab,
- void *head, void *tail, int cnt,
- unsigned long addr)
- {
- void *prior;
- int was_frozen;
- struct slab new;
- unsigned long counters;
- struct kmem_cache_node *n = NULL;
- unsigned long flags;
- bool on_node_partial;
- stat(s, FREE_SLOWPATH);
- if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
- free_to_partial_list(s, slab, head, tail, cnt, addr);
- return;
- }
- do {
- if (unlikely(n)) {
- spin_unlock_irqrestore(&n->list_lock, flags);
- n = NULL;
- }
- prior = slab->freelist;
- counters = slab->counters;
- set_freepointer(s, tail, prior);
- new.counters = counters;
- was_frozen = new.frozen;
- new.inuse -= cnt;
- if ((!new.inuse || !prior) && !was_frozen) {
- /* Needs to be taken off a list */
- if (!kmem_cache_has_cpu_partial(s) || prior) {
- n = get_node(s, slab_nid(slab));
- /*
- * Speculatively acquire the list_lock.
- * If the cmpxchg does not succeed then we may
- * drop the list_lock without any processing.
- *
- * Otherwise the list_lock will synchronize with
- * other processors updating the list of slabs.
- */
- spin_lock_irqsave(&n->list_lock, flags);
- on_node_partial = slab_test_node_partial(slab);
- }
- }
- } while (!slab_update_freelist(s, slab,
- prior, counters,
- head, new.counters,
- "__slab_free"));
- if (likely(!n)) {
- if (likely(was_frozen)) {
- /*
- * The list lock was not taken therefore no list
- * activity can be necessary.
- */
- stat(s, FREE_FROZEN);
- } else if (kmem_cache_has_cpu_partial(s) && !prior) {
- /*
- * If we started with a full slab then put it onto the
- * per cpu partial list.
- */
- put_cpu_partial(s, slab, 1);
- stat(s, CPU_PARTIAL_FREE);
- }
- return;
- }
- /*
- * This slab was partially empty but not on the per-node partial list,
- * in which case we shouldn't manipulate its list, just return.
- */
- if (prior && !on_node_partial) {
- spin_unlock_irqrestore(&n->list_lock, flags);
- return;
- }
- if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
- goto slab_empty;
- /*
- * Objects left in the slab. If it was not on the partial list before
- * then add it.
- */
- if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
- add_partial(n, slab, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- return;
- slab_empty:
- if (prior) {
- /*
- * Slab on the partial list.
- */
- remove_partial(n, slab);
- stat(s, FREE_REMOVE_PARTIAL);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- stat(s, FREE_SLAB);
- discard_slab(s, slab);
- }
- #ifndef CONFIG_SLUB_TINY
- /*
- * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
- * can perform fastpath freeing without additional function calls.
- *
- * The fastpath is only possible if we are freeing to the current cpu slab
- * of this processor. This typically the case if we have just allocated
- * the item before.
- *
- * If fastpath is not possible then fall back to __slab_free where we deal
- * with all sorts of special processing.
- *
- * Bulk free of a freelist with several objects (all pointing to the
- * same slab) possible by specifying head and tail ptr, plus objects
- * count (cnt). Bulk free indicated by tail pointer being set.
- */
- static __always_inline void do_slab_free(struct kmem_cache *s,
- struct slab *slab, void *head, void *tail,
- int cnt, unsigned long addr)
- {
- struct kmem_cache_cpu *c;
- unsigned long tid;
- void **freelist;
- redo:
- /*
- * Determine the currently cpus per cpu slab.
- * The cpu may change afterward. However that does not matter since
- * data is retrieved via this pointer. If we are on the same cpu
- * during the cmpxchg then the free will succeed.
- */
- c = raw_cpu_ptr(s->cpu_slab);
- tid = READ_ONCE(c->tid);
- /* Same with comment on barrier() in __slab_alloc_node() */
- barrier();
- if (unlikely(slab != c->slab)) {
- __slab_free(s, slab, head, tail, cnt, addr);
- return;
- }
- if (USE_LOCKLESS_FAST_PATH()) {
- freelist = READ_ONCE(c->freelist);
- set_freepointer(s, tail, freelist);
- if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
- note_cmpxchg_failure("slab_free", s, tid);
- goto redo;
- }
- } else {
- /* Update the free list under the local lock */
- local_lock(&s->cpu_slab->lock);
- c = this_cpu_ptr(s->cpu_slab);
- if (unlikely(slab != c->slab)) {
- local_unlock(&s->cpu_slab->lock);
- goto redo;
- }
- tid = c->tid;
- freelist = c->freelist;
- set_freepointer(s, tail, freelist);
- c->freelist = head;
- c->tid = next_tid(tid);
- local_unlock(&s->cpu_slab->lock);
- }
- stat_add(s, FREE_FASTPATH, cnt);
- }
- #else /* CONFIG_SLUB_TINY */
- static void do_slab_free(struct kmem_cache *s,
- struct slab *slab, void *head, void *tail,
- int cnt, unsigned long addr)
- {
- __slab_free(s, slab, head, tail, cnt, addr);
- }
- #endif /* CONFIG_SLUB_TINY */
- static __fastpath_inline
- void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
- unsigned long addr)
- {
- memcg_slab_free_hook(s, slab, &object, 1);
- alloc_tagging_slab_free_hook(s, slab, &object, 1);
- if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
- do_slab_free(s, slab, object, object, 1, addr);
- }
- #ifdef CONFIG_MEMCG
- /* Do not inline the rare memcg charging failed path into the allocation path */
- static noinline
- void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
- {
- if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
- do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
- }
- #endif
- static __fastpath_inline
- void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
- void *tail, void **p, int cnt, unsigned long addr)
- {
- memcg_slab_free_hook(s, slab, p, cnt);
- alloc_tagging_slab_free_hook(s, slab, p, cnt);
- /*
- * With KASAN enabled slab_free_freelist_hook modifies the freelist
- * to remove objects, whose reuse must be delayed.
- */
- if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
- do_slab_free(s, slab, head, tail, cnt, addr);
- }
- #ifdef CONFIG_SLUB_RCU_DEBUG
- static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
- {
- struct rcu_delayed_free *delayed_free =
- container_of(rcu_head, struct rcu_delayed_free, head);
- void *object = delayed_free->object;
- struct slab *slab = virt_to_slab(object);
- struct kmem_cache *s;
- kfree(delayed_free);
- if (WARN_ON(is_kfence_address(object)))
- return;
- /* find the object and the cache again */
- if (WARN_ON(!slab))
- return;
- s = slab->slab_cache;
- if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
- return;
- /* resume freeing */
- if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
- do_slab_free(s, slab, object, object, 1, _THIS_IP_);
- }
- #endif /* CONFIG_SLUB_RCU_DEBUG */
- #ifdef CONFIG_KASAN_GENERIC
- void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
- {
- do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
- }
- #endif
- static inline struct kmem_cache *virt_to_cache(const void *obj)
- {
- struct slab *slab;
- slab = virt_to_slab(obj);
- if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
- return NULL;
- return slab->slab_cache;
- }
- static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
- {
- struct kmem_cache *cachep;
- if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
- !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
- return s;
- cachep = virt_to_cache(x);
- if (WARN(cachep && cachep != s,
- "%s: Wrong slab cache. %s but object is from %s\n",
- __func__, s->name, cachep->name))
- print_tracking(cachep, x);
- return cachep;
- }
- /**
- * kmem_cache_free - Deallocate an object
- * @s: The cache the allocation was from.
- * @x: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
- void kmem_cache_free(struct kmem_cache *s, void *x)
- {
- s = cache_from_obj(s, x);
- if (!s)
- return;
- trace_kmem_cache_free(_RET_IP_, x, s);
- slab_free(s, virt_to_slab(x), x, _RET_IP_);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- static void free_large_kmalloc(struct folio *folio, void *object)
- {
- unsigned int order = folio_order(folio);
- if (WARN_ON_ONCE(order == 0))
- pr_warn_once("object pointer: 0x%p\n", object);
- kmemleak_free(object);
- kasan_kfree_large(object);
- kmsan_kfree_large(object);
- lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
- -(PAGE_SIZE << order));
- folio_put(folio);
- }
- /**
- * kfree - free previously allocated memory
- * @object: pointer returned by kmalloc() or kmem_cache_alloc()
- *
- * If @object is NULL, no operation is performed.
- */
- void kfree(const void *object)
- {
- struct folio *folio;
- struct slab *slab;
- struct kmem_cache *s;
- void *x = (void *)object;
- trace_kfree(_RET_IP_, object);
- if (unlikely(ZERO_OR_NULL_PTR(object)))
- return;
- folio = virt_to_folio(object);
- if (unlikely(!folio_test_slab(folio))) {
- free_large_kmalloc(folio, (void *)object);
- return;
- }
- slab = folio_slab(folio);
- s = slab->slab_cache;
- slab_free(s, slab, x, _RET_IP_);
- }
- EXPORT_SYMBOL(kfree);
- struct detached_freelist {
- struct slab *slab;
- void *tail;
- void *freelist;
- int cnt;
- struct kmem_cache *s;
- };
- /*
- * This function progressively scans the array with free objects (with
- * a limited look ahead) and extract objects belonging to the same
- * slab. It builds a detached freelist directly within the given
- * slab/objects. This can happen without any need for
- * synchronization, because the objects are owned by running process.
- * The freelist is build up as a single linked list in the objects.
- * The idea is, that this detached freelist can then be bulk
- * transferred to the real freelist(s), but only requiring a single
- * synchronization primitive. Look ahead in the array is limited due
- * to performance reasons.
- */
- static inline
- int build_detached_freelist(struct kmem_cache *s, size_t size,
- void **p, struct detached_freelist *df)
- {
- int lookahead = 3;
- void *object;
- struct folio *folio;
- size_t same;
- object = p[--size];
- folio = virt_to_folio(object);
- if (!s) {
- /* Handle kalloc'ed objects */
- if (unlikely(!folio_test_slab(folio))) {
- free_large_kmalloc(folio, object);
- df->slab = NULL;
- return size;
- }
- /* Derive kmem_cache from object */
- df->slab = folio_slab(folio);
- df->s = df->slab->slab_cache;
- } else {
- df->slab = folio_slab(folio);
- df->s = cache_from_obj(s, object); /* Support for memcg */
- }
- /* Start new detached freelist */
- df->tail = object;
- df->freelist = object;
- df->cnt = 1;
- if (is_kfence_address(object))
- return size;
- set_freepointer(df->s, object, NULL);
- same = size;
- while (size) {
- object = p[--size];
- /* df->slab is always set at this point */
- if (df->slab == virt_to_slab(object)) {
- /* Opportunity build freelist */
- set_freepointer(df->s, object, df->freelist);
- df->freelist = object;
- df->cnt++;
- same--;
- if (size != same)
- swap(p[size], p[same]);
- continue;
- }
- /* Limit look ahead search */
- if (!--lookahead)
- break;
- }
- return same;
- }
- /*
- * Internal bulk free of objects that were not initialised by the post alloc
- * hooks and thus should not be processed by the free hooks
- */
- static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
- {
- if (!size)
- return;
- do {
- struct detached_freelist df;
- size = build_detached_freelist(s, size, p, &df);
- if (!df.slab)
- continue;
- if (kfence_free(df.freelist))
- continue;
- do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
- _RET_IP_);
- } while (likely(size));
- }
- /* Note that interrupts must be enabled when calling this function. */
- void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
- {
- if (!size)
- return;
- do {
- struct detached_freelist df;
- size = build_detached_freelist(s, size, p, &df);
- if (!df.slab)
- continue;
- slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
- df.cnt, _RET_IP_);
- } while (likely(size));
- }
- EXPORT_SYMBOL(kmem_cache_free_bulk);
- #ifndef CONFIG_SLUB_TINY
- static inline
- int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
- void **p)
- {
- struct kmem_cache_cpu *c;
- unsigned long irqflags;
- int i;
- /*
- * Drain objects in the per cpu slab, while disabling local
- * IRQs, which protects against PREEMPT and interrupts
- * handlers invoking normal fastpath.
- */
- c = slub_get_cpu_ptr(s->cpu_slab);
- local_lock_irqsave(&s->cpu_slab->lock, irqflags);
- for (i = 0; i < size; i++) {
- void *object = kfence_alloc(s, s->object_size, flags);
- if (unlikely(object)) {
- p[i] = object;
- continue;
- }
- object = c->freelist;
- if (unlikely(!object)) {
- /*
- * We may have removed an object from c->freelist using
- * the fastpath in the previous iteration; in that case,
- * c->tid has not been bumped yet.
- * Since ___slab_alloc() may reenable interrupts while
- * allocating memory, we should bump c->tid now.
- */
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
- /*
- * Invoking slow path likely have side-effect
- * of re-populating per CPU c->freelist
- */
- p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
- _RET_IP_, c, s->object_size);
- if (unlikely(!p[i]))
- goto error;
- c = this_cpu_ptr(s->cpu_slab);
- maybe_wipe_obj_freeptr(s, p[i]);
- local_lock_irqsave(&s->cpu_slab->lock, irqflags);
- continue; /* goto for-loop */
- }
- c->freelist = get_freepointer(s, object);
- p[i] = object;
- maybe_wipe_obj_freeptr(s, p[i]);
- stat(s, ALLOC_FASTPATH);
- }
- c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
- slub_put_cpu_ptr(s->cpu_slab);
- return i;
- error:
- slub_put_cpu_ptr(s->cpu_slab);
- __kmem_cache_free_bulk(s, i, p);
- return 0;
- }
- #else /* CONFIG_SLUB_TINY */
- static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
- size_t size, void **p)
- {
- int i;
- for (i = 0; i < size; i++) {
- void *object = kfence_alloc(s, s->object_size, flags);
- if (unlikely(object)) {
- p[i] = object;
- continue;
- }
- p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
- _RET_IP_, s->object_size);
- if (unlikely(!p[i]))
- goto error;
- maybe_wipe_obj_freeptr(s, p[i]);
- }
- return i;
- error:
- __kmem_cache_free_bulk(s, i, p);
- return 0;
- }
- #endif /* CONFIG_SLUB_TINY */
- /* Note that interrupts must be enabled when calling this function. */
- int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
- void **p)
- {
- int i;
- if (!size)
- return 0;
- s = slab_pre_alloc_hook(s, flags);
- if (unlikely(!s))
- return 0;
- i = __kmem_cache_alloc_bulk(s, flags, size, p);
- if (unlikely(i == 0))
- return 0;
- /*
- * memcg and kmem_cache debug support and memory initialization.
- * Done outside of the IRQ disabled fastpath loop.
- */
- if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
- slab_want_init_on_alloc(flags, s), s->object_size))) {
- return 0;
- }
- return i;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
- /*
- * Object placement in a slab is made very easy because we always start at
- * offset 0. If we tune the size of the object to the alignment then we can
- * get the required alignment by putting one properly sized object after
- * another.
- *
- * Notice that the allocation order determines the sizes of the per cpu
- * caches. Each processor has always one slab available for allocations.
- * Increasing the allocation order reduces the number of times that slabs
- * must be moved on and off the partial lists and is therefore a factor in
- * locking overhead.
- */
- /*
- * Minimum / Maximum order of slab pages. This influences locking overhead
- * and slab fragmentation. A higher order reduces the number of partial slabs
- * and increases the number of allocations possible without having to
- * take the list_lock.
- */
- static unsigned int slub_min_order;
- static unsigned int slub_max_order =
- IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
- static unsigned int slub_min_objects;
- /*
- * Calculate the order of allocation given an slab object size.
- *
- * The order of allocation has significant impact on performance and other
- * system components. Generally order 0 allocations should be preferred since
- * order 0 does not cause fragmentation in the page allocator. Larger objects
- * be problematic to put into order 0 slabs because there may be too much
- * unused space left. We go to a higher order if more than 1/16th of the slab
- * would be wasted.
- *
- * In order to reach satisfactory performance we must ensure that a minimum
- * number of objects is in one slab. Otherwise we may generate too much
- * activity on the partial lists which requires taking the list_lock. This is
- * less a concern for large slabs though which are rarely used.
- *
- * slab_max_order specifies the order where we begin to stop considering the
- * number of objects in a slab as critical. If we reach slab_max_order then
- * we try to keep the page order as low as possible. So we accept more waste
- * of space in favor of a small page order.
- *
- * Higher order allocations also allow the placement of more objects in a
- * slab and thereby reduce object handling overhead. If the user has
- * requested a higher minimum order then we start with that one instead of
- * the smallest order which will fit the object.
- */
- static inline unsigned int calc_slab_order(unsigned int size,
- unsigned int min_order, unsigned int max_order,
- unsigned int fract_leftover)
- {
- unsigned int order;
- for (order = min_order; order <= max_order; order++) {
- unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
- unsigned int rem;
- rem = slab_size % size;
- if (rem <= slab_size / fract_leftover)
- break;
- }
- return order;
- }
- static inline int calculate_order(unsigned int size)
- {
- unsigned int order;
- unsigned int min_objects;
- unsigned int max_objects;
- unsigned int min_order;
- min_objects = slub_min_objects;
- if (!min_objects) {
- /*
- * Some architectures will only update present cpus when
- * onlining them, so don't trust the number if it's just 1. But
- * we also don't want to use nr_cpu_ids always, as on some other
- * architectures, there can be many possible cpus, but never
- * onlined. Here we compromise between trying to avoid too high
- * order on systems that appear larger than they are, and too
- * low order on systems that appear smaller than they are.
- */
- unsigned int nr_cpus = num_present_cpus();
- if (nr_cpus <= 1)
- nr_cpus = nr_cpu_ids;
- min_objects = 4 * (fls(nr_cpus) + 1);
- }
- /* min_objects can't be 0 because get_order(0) is undefined */
- max_objects = max(order_objects(slub_max_order, size), 1U);
- min_objects = min(min_objects, max_objects);
- min_order = max_t(unsigned int, slub_min_order,
- get_order(min_objects * size));
- if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
- return get_order(size * MAX_OBJS_PER_PAGE) - 1;
- /*
- * Attempt to find best configuration for a slab. This works by first
- * attempting to generate a layout with the best possible configuration
- * and backing off gradually.
- *
- * We start with accepting at most 1/16 waste and try to find the
- * smallest order from min_objects-derived/slab_min_order up to
- * slab_max_order that will satisfy the constraint. Note that increasing
- * the order can only result in same or less fractional waste, not more.
- *
- * If that fails, we increase the acceptable fraction of waste and try
- * again. The last iteration with fraction of 1/2 would effectively
- * accept any waste and give us the order determined by min_objects, as
- * long as at least single object fits within slab_max_order.
- */
- for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
- order = calc_slab_order(size, min_order, slub_max_order,
- fraction);
- if (order <= slub_max_order)
- return order;
- }
- /*
- * Doh this slab cannot be placed using slab_max_order.
- */
- order = get_order(size);
- if (order <= MAX_PAGE_ORDER)
- return order;
- return -ENOSYS;
- }
- static void
- init_kmem_cache_node(struct kmem_cache_node *n)
- {
- n->nr_partial = 0;
- spin_lock_init(&n->list_lock);
- INIT_LIST_HEAD(&n->partial);
- #ifdef CONFIG_SLUB_DEBUG
- atomic_long_set(&n->nr_slabs, 0);
- atomic_long_set(&n->total_objects, 0);
- INIT_LIST_HEAD(&n->full);
- #endif
- }
- #ifndef CONFIG_SLUB_TINY
- static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
- {
- BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
- NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
- sizeof(struct kmem_cache_cpu));
- /*
- * Must align to double word boundary for the double cmpxchg
- * instructions to work; see __pcpu_double_call_return_bool().
- */
- s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
- 2 * sizeof(void *));
- if (!s->cpu_slab)
- return 0;
- init_kmem_cache_cpus(s);
- return 1;
- }
- #else
- static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
- {
- return 1;
- }
- #endif /* CONFIG_SLUB_TINY */
- static struct kmem_cache *kmem_cache_node;
- /*
- * No kmalloc_node yet so do it by hand. We know that this is the first
- * slab on the node for this slabcache. There are no concurrent accesses
- * possible.
- *
- * Note that this function only works on the kmem_cache_node
- * when allocating for the kmem_cache_node. This is used for bootstrapping
- * memory on a fresh node that has no slab structures yet.
- */
- static void early_kmem_cache_node_alloc(int node)
- {
- struct slab *slab;
- struct kmem_cache_node *n;
- BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
- slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
- BUG_ON(!slab);
- if (slab_nid(slab) != node) {
- pr_err("SLUB: Unable to allocate memory from node %d\n", node);
- pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
- }
- n = slab->freelist;
- BUG_ON(!n);
- #ifdef CONFIG_SLUB_DEBUG
- init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
- #endif
- n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
- slab->freelist = get_freepointer(kmem_cache_node, n);
- slab->inuse = 1;
- kmem_cache_node->node[node] = n;
- init_kmem_cache_node(n);
- inc_slabs_node(kmem_cache_node, node, slab->objects);
- /*
- * No locks need to be taken here as it has just been
- * initialized and there is no concurrent access.
- */
- __add_partial(n, slab, DEACTIVATE_TO_HEAD);
- }
- static void free_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- s->node[node] = NULL;
- kmem_cache_free(kmem_cache_node, n);
- }
- }
- void __kmem_cache_release(struct kmem_cache *s)
- {
- cache_random_seq_destroy(s);
- #ifndef CONFIG_SLUB_TINY
- free_percpu(s->cpu_slab);
- #endif
- free_kmem_cache_nodes(s);
- }
- static int init_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- for_each_node_mask(node, slab_nodes) {
- struct kmem_cache_node *n;
- if (slab_state == DOWN) {
- early_kmem_cache_node_alloc(node);
- continue;
- }
- n = kmem_cache_alloc_node(kmem_cache_node,
- GFP_KERNEL, node);
- if (!n) {
- free_kmem_cache_nodes(s);
- return 0;
- }
- init_kmem_cache_node(n);
- s->node[node] = n;
- }
- return 1;
- }
- static void set_cpu_partial(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- unsigned int nr_objects;
- /*
- * cpu_partial determined the maximum number of objects kept in the
- * per cpu partial lists of a processor.
- *
- * Per cpu partial lists mainly contain slabs that just have one
- * object freed. If they are used for allocation then they can be
- * filled up again with minimal effort. The slab will never hit the
- * per node partial lists and therefore no locking will be required.
- *
- * For backwards compatibility reasons, this is determined as number
- * of objects, even though we now limit maximum number of pages, see
- * slub_set_cpu_partial()
- */
- if (!kmem_cache_has_cpu_partial(s))
- nr_objects = 0;
- else if (s->size >= PAGE_SIZE)
- nr_objects = 6;
- else if (s->size >= 1024)
- nr_objects = 24;
- else if (s->size >= 256)
- nr_objects = 52;
- else
- nr_objects = 120;
- slub_set_cpu_partial(s, nr_objects);
- #endif
- }
- /*
- * calculate_sizes() determines the order and the distribution of data within
- * a slab object.
- */
- static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
- {
- slab_flags_t flags = s->flags;
- unsigned int size = s->object_size;
- unsigned int order;
- /*
- * Round up object size to the next word boundary. We can only
- * place the free pointer at word boundaries and this determines
- * the possible location of the free pointer.
- */
- size = ALIGN(size, sizeof(void *));
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * Determine if we can poison the object itself. If the user of
- * the slab may touch the object after free or before allocation
- * then we should never poison the object itself.
- */
- if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
- !s->ctor)
- s->flags |= __OBJECT_POISON;
- else
- s->flags &= ~__OBJECT_POISON;
- /*
- * If we are Redzoning then check if there is some space between the
- * end of the object and the free pointer. If not then add an
- * additional word to have some bytes to store Redzone information.
- */
- if ((flags & SLAB_RED_ZONE) && size == s->object_size)
- size += sizeof(void *);
- #endif
- /*
- * With that we have determined the number of bytes in actual use
- * by the object and redzoning.
- */
- s->inuse = size;
- if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
- (flags & SLAB_POISON) || s->ctor ||
- ((flags & SLAB_RED_ZONE) &&
- (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
- /*
- * Relocate free pointer after the object if it is not
- * permitted to overwrite the first word of the object on
- * kmem_cache_free.
- *
- * This is the case if we do RCU, have a constructor or
- * destructor, are poisoning the objects, or are
- * redzoning an object smaller than sizeof(void *) or are
- * redzoning an object with slub_debug_orig_size() enabled,
- * in which case the right redzone may be extended.
- *
- * The assumption that s->offset >= s->inuse means free
- * pointer is outside of the object is used in the
- * freeptr_outside_object() function. If that is no
- * longer true, the function needs to be modified.
- */
- s->offset = size;
- size += sizeof(void *);
- } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
- s->offset = args->freeptr_offset;
- } else {
- /*
- * Store freelist pointer near middle of object to keep
- * it away from the edges of the object to avoid small
- * sized over/underflows from neighboring allocations.
- */
- s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
- }
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_STORE_USER) {
- /*
- * Need to store information about allocs and frees after
- * the object.
- */
- size += 2 * sizeof(struct track);
- /* Save the original kmalloc request size */
- if (flags & SLAB_KMALLOC)
- size += sizeof(unsigned int);
- }
- #endif
- kasan_cache_create(s, &size, &s->flags);
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_RED_ZONE) {
- /*
- * Add some empty padding so that we can catch
- * overwrites from earlier objects rather than let
- * tracking information or the free pointer be
- * corrupted if a user writes before the start
- * of the object.
- */
- size += sizeof(void *);
- s->red_left_pad = sizeof(void *);
- s->red_left_pad = ALIGN(s->red_left_pad, s->align);
- size += s->red_left_pad;
- }
- #endif
- /*
- * SLUB stores one object immediately after another beginning from
- * offset 0. In order to align the objects we have to simply size
- * each object to conform to the alignment.
- */
- size = ALIGN(size, s->align);
- s->size = size;
- s->reciprocal_size = reciprocal_value(size);
- order = calculate_order(size);
- if ((int)order < 0)
- return 0;
- s->allocflags = __GFP_COMP;
- if (s->flags & SLAB_CACHE_DMA)
- s->allocflags |= GFP_DMA;
- if (s->flags & SLAB_CACHE_DMA32)
- s->allocflags |= GFP_DMA32;
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- s->allocflags |= __GFP_RECLAIMABLE;
- /*
- * Determine the number of objects per slab
- */
- s->oo = oo_make(order, size);
- s->min = oo_make(get_order(size), size);
- return !!oo_objects(s->oo);
- }
- static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
- const char *text)
- {
- #ifdef CONFIG_SLUB_DEBUG
- void *addr = slab_address(slab);
- void *p;
- slab_err(s, slab, text, s->name);
- spin_lock(&object_map_lock);
- __fill_map(object_map, s, slab);
- for_each_object(p, s, addr, slab->objects) {
- if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
- if (slab_add_kunit_errors())
- continue;
- pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
- print_tracking(s, p);
- }
- }
- spin_unlock(&object_map_lock);
- #endif
- }
- /*
- * Attempt to free all partial slabs on a node.
- * This is called from __kmem_cache_shutdown(). We must take list_lock
- * because sysfs file might still access partial list after the shutdowning.
- */
- static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
- {
- LIST_HEAD(discard);
- struct slab *slab, *h;
- BUG_ON(irqs_disabled());
- spin_lock_irq(&n->list_lock);
- list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
- if (!slab->inuse) {
- remove_partial(n, slab);
- list_add(&slab->slab_list, &discard);
- } else {
- list_slab_objects(s, slab,
- "Objects remaining in %s on __kmem_cache_shutdown()");
- }
- }
- spin_unlock_irq(&n->list_lock);
- list_for_each_entry_safe(slab, h, &discard, slab_list)
- discard_slab(s, slab);
- }
- bool __kmem_cache_empty(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n)
- if (n->nr_partial || node_nr_slabs(n))
- return false;
- return true;
- }
- /*
- * Release all resources used by a slab cache.
- */
- int __kmem_cache_shutdown(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- flush_all_cpus_locked(s);
- /* Attempt to free all objects */
- for_each_kmem_cache_node(s, node, n) {
- free_partial(s, n);
- if (n->nr_partial || node_nr_slabs(n))
- return 1;
- }
- return 0;
- }
- #ifdef CONFIG_PRINTK
- void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
- {
- void *base;
- int __maybe_unused i;
- unsigned int objnr;
- void *objp;
- void *objp0;
- struct kmem_cache *s = slab->slab_cache;
- struct track __maybe_unused *trackp;
- kpp->kp_ptr = object;
- kpp->kp_slab = slab;
- kpp->kp_slab_cache = s;
- base = slab_address(slab);
- objp0 = kasan_reset_tag(object);
- #ifdef CONFIG_SLUB_DEBUG
- objp = restore_red_left(s, objp0);
- #else
- objp = objp0;
- #endif
- objnr = obj_to_index(s, slab, objp);
- kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
- objp = base + s->size * objnr;
- kpp->kp_objp = objp;
- if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
- || (objp - base) % s->size) ||
- !(s->flags & SLAB_STORE_USER))
- return;
- #ifdef CONFIG_SLUB_DEBUG
- objp = fixup_red_left(s, objp);
- trackp = get_track(s, objp, TRACK_ALLOC);
- kpp->kp_ret = (void *)trackp->addr;
- #ifdef CONFIG_STACKDEPOT
- {
- depot_stack_handle_t handle;
- unsigned long *entries;
- unsigned int nr_entries;
- handle = READ_ONCE(trackp->handle);
- if (handle) {
- nr_entries = stack_depot_fetch(handle, &entries);
- for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
- kpp->kp_stack[i] = (void *)entries[i];
- }
- trackp = get_track(s, objp, TRACK_FREE);
- handle = READ_ONCE(trackp->handle);
- if (handle) {
- nr_entries = stack_depot_fetch(handle, &entries);
- for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
- kpp->kp_free_stack[i] = (void *)entries[i];
- }
- }
- #endif
- #endif
- }
- #endif
- /********************************************************************
- * Kmalloc subsystem
- *******************************************************************/
- static int __init setup_slub_min_order(char *str)
- {
- get_option(&str, (int *)&slub_min_order);
- if (slub_min_order > slub_max_order)
- slub_max_order = slub_min_order;
- return 1;
- }
- __setup("slab_min_order=", setup_slub_min_order);
- __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
- static int __init setup_slub_max_order(char *str)
- {
- get_option(&str, (int *)&slub_max_order);
- slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
- if (slub_min_order > slub_max_order)
- slub_min_order = slub_max_order;
- return 1;
- }
- __setup("slab_max_order=", setup_slub_max_order);
- __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
- static int __init setup_slub_min_objects(char *str)
- {
- get_option(&str, (int *)&slub_min_objects);
- return 1;
- }
- __setup("slab_min_objects=", setup_slub_min_objects);
- __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
- #ifdef CONFIG_HARDENED_USERCOPY
- /*
- * Rejects incorrectly sized objects and objects that are to be copied
- * to/from userspace but do not fall entirely within the containing slab
- * cache's usercopy region.
- *
- * Returns NULL if check passes, otherwise const char * to name of cache
- * to indicate an error.
- */
- void __check_heap_object(const void *ptr, unsigned long n,
- const struct slab *slab, bool to_user)
- {
- struct kmem_cache *s;
- unsigned int offset;
- bool is_kfence = is_kfence_address(ptr);
- ptr = kasan_reset_tag(ptr);
- /* Find object and usable object size. */
- s = slab->slab_cache;
- /* Reject impossible pointers. */
- if (ptr < slab_address(slab))
- usercopy_abort("SLUB object not in SLUB page?!", NULL,
- to_user, 0, n);
- /* Find offset within object. */
- if (is_kfence)
- offset = ptr - kfence_object_start(ptr);
- else
- offset = (ptr - slab_address(slab)) % s->size;
- /* Adjust for redzone and reject if within the redzone. */
- if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
- if (offset < s->red_left_pad)
- usercopy_abort("SLUB object in left red zone",
- s->name, to_user, offset, n);
- offset -= s->red_left_pad;
- }
- /* Allow address range falling entirely within usercopy region. */
- if (offset >= s->useroffset &&
- offset - s->useroffset <= s->usersize &&
- n <= s->useroffset - offset + s->usersize)
- return;
- usercopy_abort("SLUB object", s->name, to_user, offset, n);
- }
- #endif /* CONFIG_HARDENED_USERCOPY */
- #define SHRINK_PROMOTE_MAX 32
- /*
- * kmem_cache_shrink discards empty slabs and promotes the slabs filled
- * up most to the head of the partial lists. New allocations will then
- * fill those up and thus they can be removed from the partial lists.
- *
- * The slabs with the least items are placed last. This results in them
- * being allocated from last increasing the chance that the last objects
- * are freed in them.
- */
- static int __kmem_cache_do_shrink(struct kmem_cache *s)
- {
- int node;
- int i;
- struct kmem_cache_node *n;
- struct slab *slab;
- struct slab *t;
- struct list_head discard;
- struct list_head promote[SHRINK_PROMOTE_MAX];
- unsigned long flags;
- int ret = 0;
- for_each_kmem_cache_node(s, node, n) {
- INIT_LIST_HEAD(&discard);
- for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
- INIT_LIST_HEAD(promote + i);
- spin_lock_irqsave(&n->list_lock, flags);
- /*
- * Build lists of slabs to discard or promote.
- *
- * Note that concurrent frees may occur while we hold the
- * list_lock. slab->inuse here is the upper limit.
- */
- list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
- int free = slab->objects - slab->inuse;
- /* Do not reread slab->inuse */
- barrier();
- /* We do not keep full slabs on the list */
- BUG_ON(free <= 0);
- if (free == slab->objects) {
- list_move(&slab->slab_list, &discard);
- slab_clear_node_partial(slab);
- n->nr_partial--;
- dec_slabs_node(s, node, slab->objects);
- } else if (free <= SHRINK_PROMOTE_MAX)
- list_move(&slab->slab_list, promote + free - 1);
- }
- /*
- * Promote the slabs filled up most to the head of the
- * partial list.
- */
- for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
- list_splice(promote + i, &n->partial);
- spin_unlock_irqrestore(&n->list_lock, flags);
- /* Release empty slabs */
- list_for_each_entry_safe(slab, t, &discard, slab_list)
- free_slab(s, slab);
- if (node_nr_slabs(n))
- ret = 1;
- }
- return ret;
- }
- int __kmem_cache_shrink(struct kmem_cache *s)
- {
- flush_all(s);
- return __kmem_cache_do_shrink(s);
- }
- static int slab_mem_going_offline_callback(void *arg)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- flush_all_cpus_locked(s);
- __kmem_cache_do_shrink(s);
- }
- mutex_unlock(&slab_mutex);
- return 0;
- }
- static void slab_mem_offline_callback(void *arg)
- {
- struct memory_notify *marg = arg;
- int offline_node;
- offline_node = marg->status_change_nid_normal;
- /*
- * If the node still has available memory. we need kmem_cache_node
- * for it yet.
- */
- if (offline_node < 0)
- return;
- mutex_lock(&slab_mutex);
- node_clear(offline_node, slab_nodes);
- /*
- * We no longer free kmem_cache_node structures here, as it would be
- * racy with all get_node() users, and infeasible to protect them with
- * slab_mutex.
- */
- mutex_unlock(&slab_mutex);
- }
- static int slab_mem_going_online_callback(void *arg)
- {
- struct kmem_cache_node *n;
- struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int nid = marg->status_change_nid_normal;
- int ret = 0;
- /*
- * If the node's memory is already available, then kmem_cache_node is
- * already created. Nothing to do.
- */
- if (nid < 0)
- return 0;
- /*
- * We are bringing a node online. No memory is available yet. We must
- * allocate a kmem_cache_node structure in order to bring the node
- * online.
- */
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- /*
- * The structure may already exist if the node was previously
- * onlined and offlined.
- */
- if (get_node(s, nid))
- continue;
- /*
- * XXX: kmem_cache_alloc_node will fallback to other nodes
- * since memory is not yet available from the node that
- * is brought up.
- */
- n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
- if (!n) {
- ret = -ENOMEM;
- goto out;
- }
- init_kmem_cache_node(n);
- s->node[nid] = n;
- }
- /*
- * Any cache created after this point will also have kmem_cache_node
- * initialized for the new node.
- */
- node_set(nid, slab_nodes);
- out:
- mutex_unlock(&slab_mutex);
- return ret;
- }
- static int slab_memory_callback(struct notifier_block *self,
- unsigned long action, void *arg)
- {
- int ret = 0;
- switch (action) {
- case MEM_GOING_ONLINE:
- ret = slab_mem_going_online_callback(arg);
- break;
- case MEM_GOING_OFFLINE:
- ret = slab_mem_going_offline_callback(arg);
- break;
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- slab_mem_offline_callback(arg);
- break;
- case MEM_ONLINE:
- case MEM_CANCEL_OFFLINE:
- break;
- }
- if (ret)
- ret = notifier_from_errno(ret);
- else
- ret = NOTIFY_OK;
- return ret;
- }
- /********************************************************************
- * Basic setup of slabs
- *******************************************************************/
- /*
- * Used for early kmem_cache structures that were allocated using
- * the page allocator. Allocate them properly then fix up the pointers
- * that may be pointing to the wrong kmem_cache structure.
- */
- static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
- {
- int node;
- struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
- struct kmem_cache_node *n;
- memcpy(s, static_cache, kmem_cache->object_size);
- /*
- * This runs very early, and only the boot processor is supposed to be
- * up. Even if it weren't true, IRQs are not up so we couldn't fire
- * IPIs around.
- */
- __flush_cpu_slab(s, smp_processor_id());
- for_each_kmem_cache_node(s, node, n) {
- struct slab *p;
- list_for_each_entry(p, &n->partial, slab_list)
- p->slab_cache = s;
- #ifdef CONFIG_SLUB_DEBUG
- list_for_each_entry(p, &n->full, slab_list)
- p->slab_cache = s;
- #endif
- }
- list_add(&s->list, &slab_caches);
- return s;
- }
- void __init kmem_cache_init(void)
- {
- static __initdata struct kmem_cache boot_kmem_cache,
- boot_kmem_cache_node;
- int node;
- if (debug_guardpage_minorder())
- slub_max_order = 0;
- /* Print slub debugging pointers without hashing */
- if (__slub_debug_enabled())
- no_hash_pointers_enable(NULL);
- kmem_cache_node = &boot_kmem_cache_node;
- kmem_cache = &boot_kmem_cache;
- /*
- * Initialize the nodemask for which we will allocate per node
- * structures. Here we don't need taking slab_mutex yet.
- */
- for_each_node_state(node, N_NORMAL_MEMORY)
- node_set(node, slab_nodes);
- create_boot_cache(kmem_cache_node, "kmem_cache_node",
- sizeof(struct kmem_cache_node),
- SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
- hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
- /* Able to allocate the per node structures */
- slab_state = PARTIAL;
- create_boot_cache(kmem_cache, "kmem_cache",
- offsetof(struct kmem_cache, node) +
- nr_node_ids * sizeof(struct kmem_cache_node *),
- SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
- kmem_cache = bootstrap(&boot_kmem_cache);
- kmem_cache_node = bootstrap(&boot_kmem_cache_node);
- /* Now we can use the kmem_cache to allocate kmalloc slabs */
- setup_kmalloc_cache_index_table();
- create_kmalloc_caches();
- /* Setup random freelists for each cache */
- init_freelist_randomization();
- cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
- slub_cpu_dead);
- pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
- cache_line_size(),
- slub_min_order, slub_max_order, slub_min_objects,
- nr_cpu_ids, nr_node_ids);
- }
- void __init kmem_cache_init_late(void)
- {
- #ifndef CONFIG_SLUB_TINY
- flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
- WARN_ON(!flushwq);
- #endif
- }
- struct kmem_cache *
- __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
- slab_flags_t flags, void (*ctor)(void *))
- {
- struct kmem_cache *s;
- s = find_mergeable(size, align, flags, name, ctor);
- if (s) {
- if (sysfs_slab_alias(s, name))
- return NULL;
- s->refcount++;
- /*
- * Adjust the object sizes so that we clear
- * the complete object on kzalloc.
- */
- s->object_size = max(s->object_size, size);
- s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
- }
- return s;
- }
- int do_kmem_cache_create(struct kmem_cache *s, const char *name,
- unsigned int size, struct kmem_cache_args *args,
- slab_flags_t flags)
- {
- int err = -EINVAL;
- s->name = name;
- s->size = s->object_size = size;
- s->flags = kmem_cache_flags(flags, s->name);
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- s->random = get_random_long();
- #endif
- s->align = args->align;
- s->ctor = args->ctor;
- #ifdef CONFIG_HARDENED_USERCOPY
- s->useroffset = args->useroffset;
- s->usersize = args->usersize;
- #endif
- if (!calculate_sizes(args, s))
- goto out;
- if (disable_higher_order_debug) {
- /*
- * Disable debugging flags that store metadata if the min slab
- * order increased.
- */
- if (get_order(s->size) > get_order(s->object_size)) {
- s->flags &= ~DEBUG_METADATA_FLAGS;
- s->offset = 0;
- if (!calculate_sizes(args, s))
- goto out;
- }
- }
- #ifdef system_has_freelist_aba
- if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
- /* Enable fast mode */
- s->flags |= __CMPXCHG_DOUBLE;
- }
- #endif
- /*
- * The larger the object size is, the more slabs we want on the partial
- * list to avoid pounding the page allocator excessively.
- */
- s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
- s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
- set_cpu_partial(s);
- #ifdef CONFIG_NUMA
- s->remote_node_defrag_ratio = 1000;
- #endif
- /* Initialize the pre-computed randomized freelist if slab is up */
- if (slab_state >= UP) {
- if (init_cache_random_seq(s))
- goto out;
- }
- if (!init_kmem_cache_nodes(s))
- goto out;
- if (!alloc_kmem_cache_cpus(s))
- goto out;
- /* Mutex is not taken during early boot */
- if (slab_state <= UP) {
- err = 0;
- goto out;
- }
- err = sysfs_slab_add(s);
- if (err)
- goto out;
- if (s->flags & SLAB_STORE_USER)
- debugfs_slab_add(s);
- out:
- if (err)
- __kmem_cache_release(s);
- return err;
- }
- #ifdef SLAB_SUPPORTS_SYSFS
- static int count_inuse(struct slab *slab)
- {
- return slab->inuse;
- }
- static int count_total(struct slab *slab)
- {
- return slab->objects;
- }
- #endif
- #ifdef CONFIG_SLUB_DEBUG
- static void validate_slab(struct kmem_cache *s, struct slab *slab,
- unsigned long *obj_map)
- {
- void *p;
- void *addr = slab_address(slab);
- if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
- return;
- /* Now we know that a valid freelist exists */
- __fill_map(obj_map, s, slab);
- for_each_object(p, s, addr, slab->objects) {
- u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
- SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
- if (!check_object(s, slab, p, val))
- break;
- }
- }
- static int validate_slab_node(struct kmem_cache *s,
- struct kmem_cache_node *n, unsigned long *obj_map)
- {
- unsigned long count = 0;
- struct slab *slab;
- unsigned long flags;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slab, &n->partial, slab_list) {
- validate_slab(s, slab, obj_map);
- count++;
- }
- if (count != n->nr_partial) {
- pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
- s->name, count, n->nr_partial);
- slab_add_kunit_errors();
- }
- if (!(s->flags & SLAB_STORE_USER))
- goto out;
- list_for_each_entry(slab, &n->full, slab_list) {
- validate_slab(s, slab, obj_map);
- count++;
- }
- if (count != node_nr_slabs(n)) {
- pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
- s->name, count, node_nr_slabs(n));
- slab_add_kunit_errors();
- }
- out:
- spin_unlock_irqrestore(&n->list_lock, flags);
- return count;
- }
- long validate_slab_cache(struct kmem_cache *s)
- {
- int node;
- unsigned long count = 0;
- struct kmem_cache_node *n;
- unsigned long *obj_map;
- obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
- if (!obj_map)
- return -ENOMEM;
- flush_all(s);
- for_each_kmem_cache_node(s, node, n)
- count += validate_slab_node(s, n, obj_map);
- bitmap_free(obj_map);
- return count;
- }
- EXPORT_SYMBOL(validate_slab_cache);
- #ifdef CONFIG_DEBUG_FS
- /*
- * Generate lists of code addresses where slabcache objects are allocated
- * and freed.
- */
- struct location {
- depot_stack_handle_t handle;
- unsigned long count;
- unsigned long addr;
- unsigned long waste;
- long long sum_time;
- long min_time;
- long max_time;
- long min_pid;
- long max_pid;
- DECLARE_BITMAP(cpus, NR_CPUS);
- nodemask_t nodes;
- };
- struct loc_track {
- unsigned long max;
- unsigned long count;
- struct location *loc;
- loff_t idx;
- };
- static struct dentry *slab_debugfs_root;
- static void free_loc_track(struct loc_track *t)
- {
- if (t->max)
- free_pages((unsigned long)t->loc,
- get_order(sizeof(struct location) * t->max));
- }
- static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
- {
- struct location *l;
- int order;
- order = get_order(sizeof(struct location) * max);
- l = (void *)__get_free_pages(flags, order);
- if (!l)
- return 0;
- if (t->count) {
- memcpy(l, t->loc, sizeof(struct location) * t->count);
- free_loc_track(t);
- }
- t->max = max;
- t->loc = l;
- return 1;
- }
- static int add_location(struct loc_track *t, struct kmem_cache *s,
- const struct track *track,
- unsigned int orig_size)
- {
- long start, end, pos;
- struct location *l;
- unsigned long caddr, chandle, cwaste;
- unsigned long age = jiffies - track->when;
- depot_stack_handle_t handle = 0;
- unsigned int waste = s->object_size - orig_size;
- #ifdef CONFIG_STACKDEPOT
- handle = READ_ONCE(track->handle);
- #endif
- start = -1;
- end = t->count;
- for ( ; ; ) {
- pos = start + (end - start + 1) / 2;
- /*
- * There is nothing at "end". If we end up there
- * we need to add something to before end.
- */
- if (pos == end)
- break;
- l = &t->loc[pos];
- caddr = l->addr;
- chandle = l->handle;
- cwaste = l->waste;
- if ((track->addr == caddr) && (handle == chandle) &&
- (waste == cwaste)) {
- l->count++;
- if (track->when) {
- l->sum_time += age;
- if (age < l->min_time)
- l->min_time = age;
- if (age > l->max_time)
- l->max_time = age;
- if (track->pid < l->min_pid)
- l->min_pid = track->pid;
- if (track->pid > l->max_pid)
- l->max_pid = track->pid;
- cpumask_set_cpu(track->cpu,
- to_cpumask(l->cpus));
- }
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- if (track->addr < caddr)
- end = pos;
- else if (track->addr == caddr && handle < chandle)
- end = pos;
- else if (track->addr == caddr && handle == chandle &&
- waste < cwaste)
- end = pos;
- else
- start = pos;
- }
- /*
- * Not found. Insert new tracking element.
- */
- if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
- return 0;
- l = t->loc + pos;
- if (pos < t->count)
- memmove(l + 1, l,
- (t->count - pos) * sizeof(struct location));
- t->count++;
- l->count = 1;
- l->addr = track->addr;
- l->sum_time = age;
- l->min_time = age;
- l->max_time = age;
- l->min_pid = track->pid;
- l->max_pid = track->pid;
- l->handle = handle;
- l->waste = waste;
- cpumask_clear(to_cpumask(l->cpus));
- cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
- nodes_clear(l->nodes);
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- static void process_slab(struct loc_track *t, struct kmem_cache *s,
- struct slab *slab, enum track_item alloc,
- unsigned long *obj_map)
- {
- void *addr = slab_address(slab);
- bool is_alloc = (alloc == TRACK_ALLOC);
- void *p;
- __fill_map(obj_map, s, slab);
- for_each_object(p, s, addr, slab->objects)
- if (!test_bit(__obj_to_index(s, addr, p), obj_map))
- add_location(t, s, get_track(s, p, alloc),
- is_alloc ? get_orig_size(s, p) :
- s->object_size);
- }
- #endif /* CONFIG_DEBUG_FS */
- #endif /* CONFIG_SLUB_DEBUG */
- #ifdef SLAB_SUPPORTS_SYSFS
- enum slab_stat_type {
- SL_ALL, /* All slabs */
- SL_PARTIAL, /* Only partially allocated slabs */
- SL_CPU, /* Only slabs used for cpu caches */
- SL_OBJECTS, /* Determine allocated objects not slabs */
- SL_TOTAL /* Determine object capacity not slabs */
- };
- #define SO_ALL (1 << SL_ALL)
- #define SO_PARTIAL (1 << SL_PARTIAL)
- #define SO_CPU (1 << SL_CPU)
- #define SO_OBJECTS (1 << SL_OBJECTS)
- #define SO_TOTAL (1 << SL_TOTAL)
- static ssize_t show_slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
- {
- unsigned long total = 0;
- int node;
- int x;
- unsigned long *nodes;
- int len = 0;
- nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
- if (!nodes)
- return -ENOMEM;
- if (flags & SO_CPU) {
- int cpu;
- for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
- cpu);
- int node;
- struct slab *slab;
- slab = READ_ONCE(c->slab);
- if (!slab)
- continue;
- node = slab_nid(slab);
- if (flags & SO_TOTAL)
- x = slab->objects;
- else if (flags & SO_OBJECTS)
- x = slab->inuse;
- else
- x = 1;
- total += x;
- nodes[node] += x;
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- slab = slub_percpu_partial_read_once(c);
- if (slab) {
- node = slab_nid(slab);
- if (flags & SO_TOTAL)
- WARN_ON_ONCE(1);
- else if (flags & SO_OBJECTS)
- WARN_ON_ONCE(1);
- else
- x = data_race(slab->slabs);
- total += x;
- nodes[node] += x;
- }
- #endif
- }
- }
- /*
- * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
- * already held which will conflict with an existing lock order:
- *
- * mem_hotplug_lock->slab_mutex->kernfs_mutex
- *
- * We don't really need mem_hotplug_lock (to hold off
- * slab_mem_going_offline_callback) here because slab's memory hot
- * unplug code doesn't destroy the kmem_cache->node[] data.
- */
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SO_ALL) {
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- if (flags & SO_TOTAL)
- x = node_nr_objs(n);
- else if (flags & SO_OBJECTS)
- x = node_nr_objs(n) - count_partial(n, count_free);
- else
- x = node_nr_slabs(n);
- total += x;
- nodes[node] += x;
- }
- } else
- #endif
- if (flags & SO_PARTIAL) {
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- if (flags & SO_TOTAL)
- x = count_partial(n, count_total);
- else if (flags & SO_OBJECTS)
- x = count_partial(n, count_inuse);
- else
- x = n->nr_partial;
- total += x;
- nodes[node] += x;
- }
- }
- len += sysfs_emit_at(buf, len, "%lu", total);
- #ifdef CONFIG_NUMA
- for (node = 0; node < nr_node_ids; node++) {
- if (nodes[node])
- len += sysfs_emit_at(buf, len, " N%d=%lu",
- node, nodes[node]);
- }
- #endif
- len += sysfs_emit_at(buf, len, "\n");
- kfree(nodes);
- return len;
- }
- #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
- #define to_slab(n) container_of(n, struct kmem_cache, kobj)
- struct slab_attribute {
- struct attribute attr;
- ssize_t (*show)(struct kmem_cache *s, char *buf);
- ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
- };
- #define SLAB_ATTR_RO(_name) \
- static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
- #define SLAB_ATTR(_name) \
- static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
- static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", s->size);
- }
- SLAB_ATTR_RO(slab_size);
- static ssize_t align_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", s->align);
- }
- SLAB_ATTR_RO(align);
- static ssize_t object_size_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", s->object_size);
- }
- SLAB_ATTR_RO(object_size);
- static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
- }
- SLAB_ATTR_RO(objs_per_slab);
- static ssize_t order_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", oo_order(s->oo));
- }
- SLAB_ATTR_RO(order);
- static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%lu\n", s->min_partial);
- }
- static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- unsigned long min;
- int err;
- err = kstrtoul(buf, 10, &min);
- if (err)
- return err;
- s->min_partial = min;
- return length;
- }
- SLAB_ATTR(min_partial);
- static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
- {
- unsigned int nr_partial = 0;
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- nr_partial = s->cpu_partial;
- #endif
- return sysfs_emit(buf, "%u\n", nr_partial);
- }
- static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- unsigned int objects;
- int err;
- err = kstrtouint(buf, 10, &objects);
- if (err)
- return err;
- if (objects && !kmem_cache_has_cpu_partial(s))
- return -EINVAL;
- slub_set_cpu_partial(s, objects);
- flush_all(s);
- return length;
- }
- SLAB_ATTR(cpu_partial);
- static ssize_t ctor_show(struct kmem_cache *s, char *buf)
- {
- if (!s->ctor)
- return 0;
- return sysfs_emit(buf, "%pS\n", s->ctor);
- }
- SLAB_ATTR_RO(ctor);
- static ssize_t aliases_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
- }
- SLAB_ATTR_RO(aliases);
- static ssize_t partial_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_PARTIAL);
- }
- SLAB_ATTR_RO(partial);
- static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_CPU);
- }
- SLAB_ATTR_RO(cpu_slabs);
- static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects_partial);
- static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
- {
- int objects = 0;
- int slabs = 0;
- int cpu __maybe_unused;
- int len = 0;
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- for_each_online_cpu(cpu) {
- struct slab *slab;
- slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
- if (slab)
- slabs += data_race(slab->slabs);
- }
- #endif
- /* Approximate half-full slabs, see slub_set_cpu_partial() */
- objects = (slabs * oo_objects(s->oo)) / 2;
- len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- for_each_online_cpu(cpu) {
- struct slab *slab;
- slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
- if (slab) {
- slabs = data_race(slab->slabs);
- objects = (slabs * oo_objects(s->oo)) / 2;
- len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
- cpu, objects, slabs);
- }
- }
- #endif
- len += sysfs_emit_at(buf, len, "\n");
- return len;
- }
- SLAB_ATTR_RO(slabs_cpu_partial);
- static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
- }
- SLAB_ATTR_RO(reclaim_account);
- static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
- }
- SLAB_ATTR_RO(hwcache_align);
- #ifdef CONFIG_ZONE_DMA
- static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
- }
- SLAB_ATTR_RO(cache_dma);
- #endif
- #ifdef CONFIG_HARDENED_USERCOPY
- static ssize_t usersize_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", s->usersize);
- }
- SLAB_ATTR_RO(usersize);
- #endif
- static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
- }
- SLAB_ATTR_RO(destroy_by_rcu);
- #ifdef CONFIG_SLUB_DEBUG
- static ssize_t slabs_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL);
- }
- SLAB_ATTR_RO(slabs);
- static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
- }
- SLAB_ATTR_RO(total_objects);
- static ssize_t objects_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects);
- static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
- }
- SLAB_ATTR_RO(sanity_checks);
- static ssize_t trace_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
- }
- SLAB_ATTR_RO(trace);
- static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
- }
- SLAB_ATTR_RO(red_zone);
- static ssize_t poison_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
- }
- SLAB_ATTR_RO(poison);
- static ssize_t store_user_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
- }
- SLAB_ATTR_RO(store_user);
- static ssize_t validate_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t validate_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- int ret = -EINVAL;
- if (buf[0] == '1' && kmem_cache_debug(s)) {
- ret = validate_slab_cache(s);
- if (ret >= 0)
- ret = length;
- }
- return ret;
- }
- SLAB_ATTR(validate);
- #endif /* CONFIG_SLUB_DEBUG */
- #ifdef CONFIG_FAILSLAB
- static ssize_t failslab_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
- }
- static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- if (s->refcount > 1)
- return -EINVAL;
- if (buf[0] == '1')
- WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
- else
- WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
- return length;
- }
- SLAB_ATTR(failslab);
- #endif
- static ssize_t shrink_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t shrink_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (buf[0] == '1')
- kmem_cache_shrink(s);
- else
- return -EINVAL;
- return length;
- }
- SLAB_ATTR(shrink);
- #ifdef CONFIG_NUMA
- static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
- }
- static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- unsigned int ratio;
- int err;
- err = kstrtouint(buf, 10, &ratio);
- if (err)
- return err;
- if (ratio > 100)
- return -ERANGE;
- s->remote_node_defrag_ratio = ratio * 10;
- return length;
- }
- SLAB_ATTR(remote_node_defrag_ratio);
- #endif
- #ifdef CONFIG_SLUB_STATS
- static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
- {
- unsigned long sum = 0;
- int cpu;
- int len = 0;
- int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
- if (!data)
- return -ENOMEM;
- for_each_online_cpu(cpu) {
- unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
- data[cpu] = x;
- sum += x;
- }
- len += sysfs_emit_at(buf, len, "%lu", sum);
- #ifdef CONFIG_SMP
- for_each_online_cpu(cpu) {
- if (data[cpu])
- len += sysfs_emit_at(buf, len, " C%d=%u",
- cpu, data[cpu]);
- }
- #endif
- kfree(data);
- len += sysfs_emit_at(buf, len, "\n");
- return len;
- }
- static void clear_stat(struct kmem_cache *s, enum stat_item si)
- {
- int cpu;
- for_each_online_cpu(cpu)
- per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
- }
- #define STAT_ATTR(si, text) \
- static ssize_t text##_show(struct kmem_cache *s, char *buf) \
- { \
- return show_stat(s, buf, si); \
- } \
- static ssize_t text##_store(struct kmem_cache *s, \
- const char *buf, size_t length) \
- { \
- if (buf[0] != '0') \
- return -EINVAL; \
- clear_stat(s, si); \
- return length; \
- } \
- SLAB_ATTR(text); \
- STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
- STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
- STAT_ATTR(FREE_FASTPATH, free_fastpath);
- STAT_ATTR(FREE_SLOWPATH, free_slowpath);
- STAT_ATTR(FREE_FROZEN, free_frozen);
- STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
- STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
- STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
- STAT_ATTR(ALLOC_SLAB, alloc_slab);
- STAT_ATTR(ALLOC_REFILL, alloc_refill);
- STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
- STAT_ATTR(FREE_SLAB, free_slab);
- STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
- STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
- STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
- STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
- STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
- STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
- STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
- STAT_ATTR(ORDER_FALLBACK, order_fallback);
- STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
- STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
- STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
- STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
- STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
- STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
- #endif /* CONFIG_SLUB_STATS */
- #ifdef CONFIG_KFENCE
- static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
- {
- return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
- }
- static ssize_t skip_kfence_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- int ret = length;
- if (buf[0] == '0')
- s->flags &= ~SLAB_SKIP_KFENCE;
- else if (buf[0] == '1')
- s->flags |= SLAB_SKIP_KFENCE;
- else
- ret = -EINVAL;
- return ret;
- }
- SLAB_ATTR(skip_kfence);
- #endif
- static struct attribute *slab_attrs[] = {
- &slab_size_attr.attr,
- &object_size_attr.attr,
- &objs_per_slab_attr.attr,
- &order_attr.attr,
- &min_partial_attr.attr,
- &cpu_partial_attr.attr,
- &objects_partial_attr.attr,
- &partial_attr.attr,
- &cpu_slabs_attr.attr,
- &ctor_attr.attr,
- &aliases_attr.attr,
- &align_attr.attr,
- &hwcache_align_attr.attr,
- &reclaim_account_attr.attr,
- &destroy_by_rcu_attr.attr,
- &shrink_attr.attr,
- &slabs_cpu_partial_attr.attr,
- #ifdef CONFIG_SLUB_DEBUG
- &total_objects_attr.attr,
- &objects_attr.attr,
- &slabs_attr.attr,
- &sanity_checks_attr.attr,
- &trace_attr.attr,
- &red_zone_attr.attr,
- &poison_attr.attr,
- &store_user_attr.attr,
- &validate_attr.attr,
- #endif
- #ifdef CONFIG_ZONE_DMA
- &cache_dma_attr.attr,
- #endif
- #ifdef CONFIG_NUMA
- &remote_node_defrag_ratio_attr.attr,
- #endif
- #ifdef CONFIG_SLUB_STATS
- &alloc_fastpath_attr.attr,
- &alloc_slowpath_attr.attr,
- &free_fastpath_attr.attr,
- &free_slowpath_attr.attr,
- &free_frozen_attr.attr,
- &free_add_partial_attr.attr,
- &free_remove_partial_attr.attr,
- &alloc_from_partial_attr.attr,
- &alloc_slab_attr.attr,
- &alloc_refill_attr.attr,
- &alloc_node_mismatch_attr.attr,
- &free_slab_attr.attr,
- &cpuslab_flush_attr.attr,
- &deactivate_full_attr.attr,
- &deactivate_empty_attr.attr,
- &deactivate_to_head_attr.attr,
- &deactivate_to_tail_attr.attr,
- &deactivate_remote_frees_attr.attr,
- &deactivate_bypass_attr.attr,
- &order_fallback_attr.attr,
- &cmpxchg_double_fail_attr.attr,
- &cmpxchg_double_cpu_fail_attr.attr,
- &cpu_partial_alloc_attr.attr,
- &cpu_partial_free_attr.attr,
- &cpu_partial_node_attr.attr,
- &cpu_partial_drain_attr.attr,
- #endif
- #ifdef CONFIG_FAILSLAB
- &failslab_attr.attr,
- #endif
- #ifdef CONFIG_HARDENED_USERCOPY
- &usersize_attr.attr,
- #endif
- #ifdef CONFIG_KFENCE
- &skip_kfence_attr.attr,
- #endif
- NULL
- };
- static const struct attribute_group slab_attr_group = {
- .attrs = slab_attrs,
- };
- static ssize_t slab_attr_show(struct kobject *kobj,
- struct attribute *attr,
- char *buf)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->show)
- return -EIO;
- return attribute->show(s, buf);
- }
- static ssize_t slab_attr_store(struct kobject *kobj,
- struct attribute *attr,
- const char *buf, size_t len)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->store)
- return -EIO;
- return attribute->store(s, buf, len);
- }
- static void kmem_cache_release(struct kobject *k)
- {
- slab_kmem_cache_release(to_slab(k));
- }
- static const struct sysfs_ops slab_sysfs_ops = {
- .show = slab_attr_show,
- .store = slab_attr_store,
- };
- static const struct kobj_type slab_ktype = {
- .sysfs_ops = &slab_sysfs_ops,
- .release = kmem_cache_release,
- };
- static struct kset *slab_kset;
- static inline struct kset *cache_kset(struct kmem_cache *s)
- {
- return slab_kset;
- }
- #define ID_STR_LENGTH 32
- /* Create a unique string id for a slab cache:
- *
- * Format :[flags-]size
- */
- static char *create_unique_id(struct kmem_cache *s)
- {
- char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
- char *p = name;
- if (!name)
- return ERR_PTR(-ENOMEM);
- *p++ = ':';
- /*
- * First flags affecting slabcache operations. We will only
- * get here for aliasable slabs so we do not need to support
- * too many flags. The flags here must cover all flags that
- * are matched during merging to guarantee that the id is
- * unique.
- */
- if (s->flags & SLAB_CACHE_DMA)
- *p++ = 'd';
- if (s->flags & SLAB_CACHE_DMA32)
- *p++ = 'D';
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- *p++ = 'a';
- if (s->flags & SLAB_CONSISTENCY_CHECKS)
- *p++ = 'F';
- if (s->flags & SLAB_ACCOUNT)
- *p++ = 'A';
- if (p != name + 1)
- *p++ = '-';
- p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
- if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
- kfree(name);
- return ERR_PTR(-EINVAL);
- }
- kmsan_unpoison_memory(name, p - name);
- return name;
- }
- static int sysfs_slab_add(struct kmem_cache *s)
- {
- int err;
- const char *name;
- struct kset *kset = cache_kset(s);
- int unmergeable = slab_unmergeable(s);
- if (!unmergeable && disable_higher_order_debug &&
- (slub_debug & DEBUG_METADATA_FLAGS))
- unmergeable = 1;
- if (unmergeable) {
- /*
- * Slabcache can never be merged so we can use the name proper.
- * This is typically the case for debug situations. In that
- * case we can catch duplicate names easily.
- */
- sysfs_remove_link(&slab_kset->kobj, s->name);
- name = s->name;
- } else {
- /*
- * Create a unique name for the slab as a target
- * for the symlinks.
- */
- name = create_unique_id(s);
- if (IS_ERR(name))
- return PTR_ERR(name);
- }
- s->kobj.kset = kset;
- err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
- if (err)
- goto out;
- err = sysfs_create_group(&s->kobj, &slab_attr_group);
- if (err)
- goto out_del_kobj;
- if (!unmergeable) {
- /* Setup first alias */
- sysfs_slab_alias(s, s->name);
- }
- out:
- if (!unmergeable)
- kfree(name);
- return err;
- out_del_kobj:
- kobject_del(&s->kobj);
- goto out;
- }
- void sysfs_slab_unlink(struct kmem_cache *s)
- {
- kobject_del(&s->kobj);
- }
- void sysfs_slab_release(struct kmem_cache *s)
- {
- kobject_put(&s->kobj);
- }
- /*
- * Need to buffer aliases during bootup until sysfs becomes
- * available lest we lose that information.
- */
- struct saved_alias {
- struct kmem_cache *s;
- const char *name;
- struct saved_alias *next;
- };
- static struct saved_alias *alias_list;
- static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
- {
- struct saved_alias *al;
- if (slab_state == FULL) {
- /*
- * If we have a leftover link then remove it.
- */
- sysfs_remove_link(&slab_kset->kobj, name);
- return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
- }
- al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
- if (!al)
- return -ENOMEM;
- al->s = s;
- al->name = name;
- al->next = alias_list;
- alias_list = al;
- kmsan_unpoison_memory(al, sizeof(*al));
- return 0;
- }
- static int __init slab_sysfs_init(void)
- {
- struct kmem_cache *s;
- int err;
- mutex_lock(&slab_mutex);
- slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
- if (!slab_kset) {
- mutex_unlock(&slab_mutex);
- pr_err("Cannot register slab subsystem.\n");
- return -ENOMEM;
- }
- slab_state = FULL;
- list_for_each_entry(s, &slab_caches, list) {
- err = sysfs_slab_add(s);
- if (err)
- pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
- s->name);
- }
- while (alias_list) {
- struct saved_alias *al = alias_list;
- alias_list = alias_list->next;
- err = sysfs_slab_alias(al->s, al->name);
- if (err)
- pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
- al->name);
- kfree(al);
- }
- mutex_unlock(&slab_mutex);
- return 0;
- }
- late_initcall(slab_sysfs_init);
- #endif /* SLAB_SUPPORTS_SYSFS */
- #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
- static int slab_debugfs_show(struct seq_file *seq, void *v)
- {
- struct loc_track *t = seq->private;
- struct location *l;
- unsigned long idx;
- idx = (unsigned long) t->idx;
- if (idx < t->count) {
- l = &t->loc[idx];
- seq_printf(seq, "%7ld ", l->count);
- if (l->addr)
- seq_printf(seq, "%pS", (void *)l->addr);
- else
- seq_puts(seq, "<not-available>");
- if (l->waste)
- seq_printf(seq, " waste=%lu/%lu",
- l->count * l->waste, l->waste);
- if (l->sum_time != l->min_time) {
- seq_printf(seq, " age=%ld/%llu/%ld",
- l->min_time, div_u64(l->sum_time, l->count),
- l->max_time);
- } else
- seq_printf(seq, " age=%ld", l->min_time);
- if (l->min_pid != l->max_pid)
- seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
- else
- seq_printf(seq, " pid=%ld",
- l->min_pid);
- if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
- seq_printf(seq, " cpus=%*pbl",
- cpumask_pr_args(to_cpumask(l->cpus)));
- if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
- seq_printf(seq, " nodes=%*pbl",
- nodemask_pr_args(&l->nodes));
- #ifdef CONFIG_STACKDEPOT
- {
- depot_stack_handle_t handle;
- unsigned long *entries;
- unsigned int nr_entries, j;
- handle = READ_ONCE(l->handle);
- if (handle) {
- nr_entries = stack_depot_fetch(handle, &entries);
- seq_puts(seq, "\n");
- for (j = 0; j < nr_entries; j++)
- seq_printf(seq, " %pS\n", (void *)entries[j]);
- }
- }
- #endif
- seq_puts(seq, "\n");
- }
- if (!idx && !t->count)
- seq_puts(seq, "No data\n");
- return 0;
- }
- static void slab_debugfs_stop(struct seq_file *seq, void *v)
- {
- }
- static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
- {
- struct loc_track *t = seq->private;
- t->idx = ++(*ppos);
- if (*ppos <= t->count)
- return ppos;
- return NULL;
- }
- static int cmp_loc_by_count(const void *a, const void *b, const void *data)
- {
- struct location *loc1 = (struct location *)a;
- struct location *loc2 = (struct location *)b;
- if (loc1->count > loc2->count)
- return -1;
- else
- return 1;
- }
- static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
- {
- struct loc_track *t = seq->private;
- t->idx = *ppos;
- return ppos;
- }
- static const struct seq_operations slab_debugfs_sops = {
- .start = slab_debugfs_start,
- .next = slab_debugfs_next,
- .stop = slab_debugfs_stop,
- .show = slab_debugfs_show,
- };
- static int slab_debug_trace_open(struct inode *inode, struct file *filep)
- {
- struct kmem_cache_node *n;
- enum track_item alloc;
- int node;
- struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
- sizeof(struct loc_track));
- struct kmem_cache *s = file_inode(filep)->i_private;
- unsigned long *obj_map;
- if (!t)
- return -ENOMEM;
- obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
- if (!obj_map) {
- seq_release_private(inode, filep);
- return -ENOMEM;
- }
- if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
- alloc = TRACK_ALLOC;
- else
- alloc = TRACK_FREE;
- if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
- bitmap_free(obj_map);
- seq_release_private(inode, filep);
- return -ENOMEM;
- }
- for_each_kmem_cache_node(s, node, n) {
- unsigned long flags;
- struct slab *slab;
- if (!node_nr_slabs(n))
- continue;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slab, &n->partial, slab_list)
- process_slab(t, s, slab, alloc, obj_map);
- list_for_each_entry(slab, &n->full, slab_list)
- process_slab(t, s, slab, alloc, obj_map);
- spin_unlock_irqrestore(&n->list_lock, flags);
- }
- /* Sort locations by count */
- sort_r(t->loc, t->count, sizeof(struct location),
- cmp_loc_by_count, NULL, NULL);
- bitmap_free(obj_map);
- return 0;
- }
- static int slab_debug_trace_release(struct inode *inode, struct file *file)
- {
- struct seq_file *seq = file->private_data;
- struct loc_track *t = seq->private;
- free_loc_track(t);
- return seq_release_private(inode, file);
- }
- static const struct file_operations slab_debugfs_fops = {
- .open = slab_debug_trace_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = slab_debug_trace_release,
- };
- static void debugfs_slab_add(struct kmem_cache *s)
- {
- struct dentry *slab_cache_dir;
- if (unlikely(!slab_debugfs_root))
- return;
- slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
- debugfs_create_file("alloc_traces", 0400,
- slab_cache_dir, s, &slab_debugfs_fops);
- debugfs_create_file("free_traces", 0400,
- slab_cache_dir, s, &slab_debugfs_fops);
- }
- void debugfs_slab_release(struct kmem_cache *s)
- {
- debugfs_lookup_and_remove(s->name, slab_debugfs_root);
- }
- static int __init slab_debugfs_init(void)
- {
- struct kmem_cache *s;
- slab_debugfs_root = debugfs_create_dir("slab", NULL);
- list_for_each_entry(s, &slab_caches, list)
- if (s->flags & SLAB_STORE_USER)
- debugfs_slab_add(s);
- return 0;
- }
- __initcall(slab_debugfs_init);
- #endif
- /*
- * The /proc/slabinfo ABI
- */
- #ifdef CONFIG_SLUB_DEBUG
- void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
- {
- unsigned long nr_slabs = 0;
- unsigned long nr_objs = 0;
- unsigned long nr_free = 0;
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- nr_slabs += node_nr_slabs(n);
- nr_objs += node_nr_objs(n);
- nr_free += count_partial_free_approx(n);
- }
- sinfo->active_objs = nr_objs - nr_free;
- sinfo->num_objs = nr_objs;
- sinfo->active_slabs = nr_slabs;
- sinfo->num_slabs = nr_slabs;
- sinfo->objects_per_slab = oo_objects(s->oo);
- sinfo->cache_order = oo_order(s->oo);
- }
- #endif /* CONFIG_SLUB_DEBUG */
|