sparse-vmemmap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Virtual Memory Map support
  4. *
  5. * (C) 2007 sgi. Christoph Lameter.
  6. *
  7. * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8. * virt_to_page, page_address() to be implemented as a base offset
  9. * calculation without memory access.
  10. *
  11. * However, virtual mappings need a page table and TLBs. Many Linux
  12. * architectures already map their physical space using 1-1 mappings
  13. * via TLBs. For those arches the virtual memory map is essentially
  14. * for free if we use the same page size as the 1-1 mappings. In that
  15. * case the overhead consists of a few additional pages that are
  16. * allocated to create a view of memory for vmemmap.
  17. *
  18. * The architecture is expected to provide a vmemmap_populate() function
  19. * to instantiate the mapping.
  20. */
  21. #include <linux/mm.h>
  22. #include <linux/mmzone.h>
  23. #include <linux/memblock.h>
  24. #include <linux/memremap.h>
  25. #include <linux/highmem.h>
  26. #include <linux/slab.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/sched.h>
  30. #include <linux/pgalloc.h>
  31. #include <asm/dma.h>
  32. /*
  33. * Allocate a block of memory to be used to back the virtual memory map
  34. * or to back the page tables that are used to create the mapping.
  35. * Uses the main allocators if they are available, else bootmem.
  36. */
  37. static void * __ref __earlyonly_bootmem_alloc(int node,
  38. unsigned long size,
  39. unsigned long align,
  40. unsigned long goal)
  41. {
  42. return memblock_alloc_try_nid_raw(size, align, goal,
  43. MEMBLOCK_ALLOC_ACCESSIBLE, node);
  44. }
  45. void * __meminit vmemmap_alloc_block(unsigned long size, int node)
  46. {
  47. /* If the main allocator is up use that, fallback to bootmem. */
  48. if (slab_is_available()) {
  49. gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
  50. int order = get_order(size);
  51. static bool warned;
  52. struct page *page;
  53. page = alloc_pages_node(node, gfp_mask, order);
  54. if (page)
  55. return page_address(page);
  56. if (!warned) {
  57. warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
  58. "vmemmap alloc failure: order:%u", order);
  59. warned = true;
  60. }
  61. return NULL;
  62. } else
  63. return __earlyonly_bootmem_alloc(node, size, size,
  64. __pa(MAX_DMA_ADDRESS));
  65. }
  66. static void * __meminit altmap_alloc_block_buf(unsigned long size,
  67. struct vmem_altmap *altmap);
  68. /* need to make sure size is all the same during early stage */
  69. void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
  70. struct vmem_altmap *altmap)
  71. {
  72. void *ptr;
  73. if (altmap)
  74. return altmap_alloc_block_buf(size, altmap);
  75. ptr = sparse_buffer_alloc(size);
  76. if (!ptr)
  77. ptr = vmemmap_alloc_block(size, node);
  78. return ptr;
  79. }
  80. static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
  81. {
  82. return altmap->base_pfn + altmap->reserve + altmap->alloc
  83. + altmap->align;
  84. }
  85. static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
  86. {
  87. unsigned long allocated = altmap->alloc + altmap->align;
  88. if (altmap->free > allocated)
  89. return altmap->free - allocated;
  90. return 0;
  91. }
  92. static void * __meminit altmap_alloc_block_buf(unsigned long size,
  93. struct vmem_altmap *altmap)
  94. {
  95. unsigned long pfn, nr_pfns, nr_align;
  96. if (size & ~PAGE_MASK) {
  97. pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
  98. __func__, size);
  99. return NULL;
  100. }
  101. pfn = vmem_altmap_next_pfn(altmap);
  102. nr_pfns = size >> PAGE_SHIFT;
  103. nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
  104. nr_align = ALIGN(pfn, nr_align) - pfn;
  105. if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
  106. return NULL;
  107. altmap->alloc += nr_pfns;
  108. altmap->align += nr_align;
  109. pfn += nr_align;
  110. pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
  111. __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
  112. return __va(__pfn_to_phys(pfn));
  113. }
  114. void __meminit vmemmap_verify(pte_t *pte, int node,
  115. unsigned long start, unsigned long end)
  116. {
  117. unsigned long pfn = pte_pfn(ptep_get(pte));
  118. int actual_node = early_pfn_to_nid(pfn);
  119. if (node_distance(actual_node, node) > LOCAL_DISTANCE)
  120. pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
  121. start, end - 1);
  122. }
  123. pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
  124. struct vmem_altmap *altmap,
  125. struct page *reuse)
  126. {
  127. pte_t *pte = pte_offset_kernel(pmd, addr);
  128. if (pte_none(ptep_get(pte))) {
  129. pte_t entry;
  130. void *p;
  131. if (!reuse) {
  132. p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
  133. if (!p)
  134. return NULL;
  135. } else {
  136. /*
  137. * When a PTE/PMD entry is freed from the init_mm
  138. * there's a free_pages() call to this page allocated
  139. * above. Thus this get_page() is paired with the
  140. * put_page_testzero() on the freeing path.
  141. * This can only called by certain ZONE_DEVICE path,
  142. * and through vmemmap_populate_compound_pages() when
  143. * slab is available.
  144. */
  145. get_page(reuse);
  146. p = page_to_virt(reuse);
  147. }
  148. entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
  149. set_pte_at(&init_mm, addr, pte, entry);
  150. }
  151. return pte;
  152. }
  153. static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
  154. {
  155. void *p = vmemmap_alloc_block(size, node);
  156. if (!p)
  157. return NULL;
  158. memset(p, 0, size);
  159. return p;
  160. }
  161. void __weak __meminit kernel_pte_init(void *addr)
  162. {
  163. }
  164. pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
  165. {
  166. pmd_t *pmd = pmd_offset(pud, addr);
  167. if (pmd_none(*pmd)) {
  168. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  169. if (!p)
  170. return NULL;
  171. kernel_pte_init(p);
  172. pmd_populate_kernel(&init_mm, pmd, p);
  173. }
  174. return pmd;
  175. }
  176. void __weak __meminit pmd_init(void *addr)
  177. {
  178. }
  179. pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
  180. {
  181. pud_t *pud = pud_offset(p4d, addr);
  182. if (pud_none(*pud)) {
  183. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  184. if (!p)
  185. return NULL;
  186. pmd_init(p);
  187. pud_populate(&init_mm, pud, p);
  188. }
  189. return pud;
  190. }
  191. void __weak __meminit pud_init(void *addr)
  192. {
  193. }
  194. p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
  195. {
  196. p4d_t *p4d = p4d_offset(pgd, addr);
  197. if (p4d_none(*p4d)) {
  198. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  199. if (!p)
  200. return NULL;
  201. pud_init(p);
  202. p4d_populate_kernel(addr, p4d, p);
  203. }
  204. return p4d;
  205. }
  206. pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
  207. {
  208. pgd_t *pgd = pgd_offset_k(addr);
  209. if (pgd_none(*pgd)) {
  210. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  211. if (!p)
  212. return NULL;
  213. pgd_populate_kernel(addr, pgd, p);
  214. }
  215. return pgd;
  216. }
  217. static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
  218. struct vmem_altmap *altmap,
  219. struct page *reuse)
  220. {
  221. pgd_t *pgd;
  222. p4d_t *p4d;
  223. pud_t *pud;
  224. pmd_t *pmd;
  225. pte_t *pte;
  226. pgd = vmemmap_pgd_populate(addr, node);
  227. if (!pgd)
  228. return NULL;
  229. p4d = vmemmap_p4d_populate(pgd, addr, node);
  230. if (!p4d)
  231. return NULL;
  232. pud = vmemmap_pud_populate(p4d, addr, node);
  233. if (!pud)
  234. return NULL;
  235. pmd = vmemmap_pmd_populate(pud, addr, node);
  236. if (!pmd)
  237. return NULL;
  238. pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
  239. if (!pte)
  240. return NULL;
  241. vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
  242. return pte;
  243. }
  244. static int __meminit vmemmap_populate_range(unsigned long start,
  245. unsigned long end, int node,
  246. struct vmem_altmap *altmap,
  247. struct page *reuse)
  248. {
  249. unsigned long addr = start;
  250. pte_t *pte;
  251. for (; addr < end; addr += PAGE_SIZE) {
  252. pte = vmemmap_populate_address(addr, node, altmap, reuse);
  253. if (!pte)
  254. return -ENOMEM;
  255. }
  256. return 0;
  257. }
  258. int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
  259. int node, struct vmem_altmap *altmap)
  260. {
  261. return vmemmap_populate_range(start, end, node, altmap, NULL);
  262. }
  263. void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
  264. unsigned long addr, unsigned long next)
  265. {
  266. }
  267. int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
  268. unsigned long addr, unsigned long next)
  269. {
  270. return 0;
  271. }
  272. int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
  273. int node, struct vmem_altmap *altmap)
  274. {
  275. unsigned long addr;
  276. unsigned long next;
  277. pgd_t *pgd;
  278. p4d_t *p4d;
  279. pud_t *pud;
  280. pmd_t *pmd;
  281. for (addr = start; addr < end; addr = next) {
  282. next = pmd_addr_end(addr, end);
  283. pgd = vmemmap_pgd_populate(addr, node);
  284. if (!pgd)
  285. return -ENOMEM;
  286. p4d = vmemmap_p4d_populate(pgd, addr, node);
  287. if (!p4d)
  288. return -ENOMEM;
  289. pud = vmemmap_pud_populate(p4d, addr, node);
  290. if (!pud)
  291. return -ENOMEM;
  292. pmd = pmd_offset(pud, addr);
  293. if (pmd_none(READ_ONCE(*pmd))) {
  294. void *p;
  295. p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
  296. if (p) {
  297. vmemmap_set_pmd(pmd, p, node, addr, next);
  298. continue;
  299. } else if (altmap) {
  300. /*
  301. * No fallback: In any case we care about, the
  302. * altmap should be reasonably sized and aligned
  303. * such that vmemmap_alloc_block_buf() will always
  304. * succeed. For consistency with the PTE case,
  305. * return an error here as failure could indicate
  306. * a configuration issue with the size of the altmap.
  307. */
  308. return -ENOMEM;
  309. }
  310. } else if (vmemmap_check_pmd(pmd, node, addr, next))
  311. continue;
  312. if (vmemmap_populate_basepages(addr, next, node, altmap))
  313. return -ENOMEM;
  314. }
  315. return 0;
  316. }
  317. #ifndef vmemmap_populate_compound_pages
  318. /*
  319. * For compound pages bigger than section size (e.g. x86 1G compound
  320. * pages with 2M subsection size) fill the rest of sections as tail
  321. * pages.
  322. *
  323. * Note that memremap_pages() resets @nr_range value and will increment
  324. * it after each range successful onlining. Thus the value or @nr_range
  325. * at section memmap populate corresponds to the in-progress range
  326. * being onlined here.
  327. */
  328. static bool __meminit reuse_compound_section(unsigned long start_pfn,
  329. struct dev_pagemap *pgmap)
  330. {
  331. unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
  332. unsigned long offset = start_pfn -
  333. PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
  334. return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
  335. }
  336. static pte_t * __meminit compound_section_tail_page(unsigned long addr)
  337. {
  338. pte_t *pte;
  339. addr -= PAGE_SIZE;
  340. /*
  341. * Assuming sections are populated sequentially, the previous section's
  342. * page data can be reused.
  343. */
  344. pte = pte_offset_kernel(pmd_off_k(addr), addr);
  345. if (!pte)
  346. return NULL;
  347. return pte;
  348. }
  349. static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
  350. unsigned long start,
  351. unsigned long end, int node,
  352. struct dev_pagemap *pgmap)
  353. {
  354. unsigned long size, addr;
  355. pte_t *pte;
  356. int rc;
  357. if (reuse_compound_section(start_pfn, pgmap)) {
  358. pte = compound_section_tail_page(start);
  359. if (!pte)
  360. return -ENOMEM;
  361. /*
  362. * Reuse the page that was populated in the prior iteration
  363. * with just tail struct pages.
  364. */
  365. return vmemmap_populate_range(start, end, node, NULL,
  366. pte_page(ptep_get(pte)));
  367. }
  368. size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
  369. for (addr = start; addr < end; addr += size) {
  370. unsigned long next, last = addr + size;
  371. /* Populate the head page vmemmap page */
  372. pte = vmemmap_populate_address(addr, node, NULL, NULL);
  373. if (!pte)
  374. return -ENOMEM;
  375. /* Populate the tail pages vmemmap page */
  376. next = addr + PAGE_SIZE;
  377. pte = vmemmap_populate_address(next, node, NULL, NULL);
  378. if (!pte)
  379. return -ENOMEM;
  380. /*
  381. * Reuse the previous page for the rest of tail pages
  382. * See layout diagram in Documentation/mm/vmemmap_dedup.rst
  383. */
  384. next += PAGE_SIZE;
  385. rc = vmemmap_populate_range(next, last, node, NULL,
  386. pte_page(ptep_get(pte)));
  387. if (rc)
  388. return -ENOMEM;
  389. }
  390. return 0;
  391. }
  392. #endif
  393. struct page * __meminit __populate_section_memmap(unsigned long pfn,
  394. unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
  395. struct dev_pagemap *pgmap)
  396. {
  397. unsigned long start = (unsigned long) pfn_to_page(pfn);
  398. unsigned long end = start + nr_pages * sizeof(struct page);
  399. int r;
  400. if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
  401. !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
  402. return NULL;
  403. if (vmemmap_can_optimize(altmap, pgmap))
  404. r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
  405. else
  406. r = vmemmap_populate(start, end, nid, altmap);
  407. if (r < 0)
  408. return NULL;
  409. return pfn_to_page(pfn);
  410. }