imx8_cpu.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2019 NXP
  4. */
  5. #include <common.h>
  6. #include <cpu.h>
  7. #include <dm.h>
  8. #include <thermal.h>
  9. #include <asm/global_data.h>
  10. #include <asm/system.h>
  11. #include <firmware/imx/sci/sci.h>
  12. #include <asm/arch/sys_proto.h>
  13. #include <asm/arch-imx/cpu.h>
  14. #include <asm/armv8/cpu.h>
  15. #include <imx_thermal.h>
  16. #include <linux/bitops.h>
  17. #include <linux/clk-provider.h>
  18. DECLARE_GLOBAL_DATA_PTR;
  19. struct cpu_imx_plat {
  20. const char *name;
  21. const char *rev;
  22. const char *type;
  23. u32 cpu_rsrc;
  24. u32 cpurev;
  25. u32 freq_mhz;
  26. u32 mpidr;
  27. };
  28. static const char *get_imx_type_str(u32 imxtype)
  29. {
  30. switch (imxtype) {
  31. case MXC_CPU_IMX8QXP:
  32. case MXC_CPU_IMX8QXP_A0:
  33. return "8QXP";
  34. case MXC_CPU_IMX8QM:
  35. return "8QM";
  36. case MXC_CPU_IMX93:
  37. return "93(52)";/* iMX93 Dual core with NPU */
  38. case MXC_CPU_IMX9351:
  39. return "93(51)";/* iMX93 Single core with NPU */
  40. case MXC_CPU_IMX9332:
  41. return "93(32)";/* iMX93 Dual core without NPU */
  42. case MXC_CPU_IMX9331:
  43. return "93(31)";/* iMX93 Single core without NPU */
  44. case MXC_CPU_IMX9322:
  45. return "93(22)";/* iMX93 9x9 Dual core */
  46. case MXC_CPU_IMX9321:
  47. return "93(21)";/* iMX93 9x9 Single core */
  48. case MXC_CPU_IMX9312:
  49. return "93(12)";/* iMX93 9x9 Dual core without NPU */
  50. case MXC_CPU_IMX9311:
  51. return "93(11)";/* iMX93 9x9 Single core without NPU */
  52. default:
  53. return "??";
  54. }
  55. }
  56. static const char *get_imx_rev_str(u32 rev)
  57. {
  58. static char revision[4];
  59. if (IS_ENABLED(CONFIG_IMX8)) {
  60. switch (rev) {
  61. case CHIP_REV_A:
  62. return "A";
  63. case CHIP_REV_B:
  64. return "B";
  65. case CHIP_REV_C:
  66. return "C";
  67. default:
  68. return "?";
  69. }
  70. } else {
  71. revision[0] = '1' + (((rev & 0xf0) - CHIP_REV_1_0) >> 4);
  72. revision[1] = '.';
  73. revision[2] = '0' + (rev & 0xf);
  74. revision[3] = '\0';
  75. return revision;
  76. }
  77. }
  78. static void set_core_data(struct udevice *dev)
  79. {
  80. struct cpu_imx_plat *plat = dev_get_plat(dev);
  81. if (device_is_compatible(dev, "arm,cortex-a35")) {
  82. plat->cpu_rsrc = SC_R_A35;
  83. plat->name = "A35";
  84. } else if (device_is_compatible(dev, "arm,cortex-a53")) {
  85. plat->cpu_rsrc = SC_R_A53;
  86. plat->name = "A53";
  87. } else if (device_is_compatible(dev, "arm,cortex-a72")) {
  88. plat->cpu_rsrc = SC_R_A72;
  89. plat->name = "A72";
  90. } else if (device_is_compatible(dev, "arm,cortex-a55")) {
  91. plat->name = "A55";
  92. } else {
  93. plat->cpu_rsrc = SC_R_A53;
  94. plat->name = "?";
  95. }
  96. }
  97. #if IS_ENABLED(CONFIG_DM_THERMAL)
  98. static int cpu_imx_get_temp(struct cpu_imx_plat *plat)
  99. {
  100. struct udevice *thermal_dev;
  101. int cpu_tmp, ret;
  102. int idx = 1; /* use "cpu-thermal0" device */
  103. if (IS_ENABLED(CONFIG_IMX8)) {
  104. if (plat->cpu_rsrc == SC_R_A72)
  105. idx = 2; /* use "cpu-thermal1" device */
  106. } else {
  107. idx = 1;
  108. }
  109. ret = uclass_get_device(UCLASS_THERMAL, idx, &thermal_dev);
  110. if (!ret) {
  111. ret = thermal_get_temp(thermal_dev, &cpu_tmp);
  112. if (ret)
  113. return 0xdeadbeef;
  114. } else {
  115. return 0xdeadbeef;
  116. }
  117. return cpu_tmp;
  118. }
  119. #else
  120. static int cpu_imx_get_temp(struct cpu_imx_plat *plat)
  121. {
  122. return 0;
  123. }
  124. #endif
  125. __weak u32 get_cpu_temp_grade(int *minc, int *maxc)
  126. {
  127. return 0;
  128. }
  129. static int cpu_imx_get_desc(const struct udevice *dev, char *buf, int size)
  130. {
  131. struct cpu_imx_plat *plat = dev_get_plat(dev);
  132. const char *grade;
  133. int ret, temp;
  134. int minc, maxc;
  135. if (size < 100)
  136. return -ENOSPC;
  137. ret = snprintf(buf, size, "NXP i.MX%s Rev%s %s at %u MHz",
  138. plat->type, plat->rev, plat->name, plat->freq_mhz);
  139. if (IS_ENABLED(CONFIG_IMX9)) {
  140. switch (get_cpu_temp_grade(&minc, &maxc)) {
  141. case TEMP_AUTOMOTIVE:
  142. grade = "Automotive temperature grade ";
  143. break;
  144. case TEMP_INDUSTRIAL:
  145. grade = "Industrial temperature grade ";
  146. break;
  147. case TEMP_EXTCOMMERCIAL:
  148. grade = "Extended Consumer temperature grade ";
  149. break;
  150. default:
  151. grade = "Consumer temperature grade ";
  152. break;
  153. }
  154. buf = buf + ret;
  155. size = size - ret;
  156. ret = snprintf(buf, size, "\nCPU: %s (%dC to %dC)", grade, minc, maxc);
  157. }
  158. if (IS_ENABLED(CONFIG_DM_THERMAL)) {
  159. temp = cpu_imx_get_temp(plat);
  160. buf = buf + ret;
  161. size = size - ret;
  162. if (temp != 0xdeadbeef)
  163. ret = snprintf(buf, size, " at %dC", temp);
  164. else
  165. ret = snprintf(buf, size, " - invalid sensor data");
  166. }
  167. snprintf(buf + ret, size - ret, "\n");
  168. return 0;
  169. }
  170. static int cpu_imx_get_info(const struct udevice *dev, struct cpu_info *info)
  171. {
  172. struct cpu_imx_plat *plat = dev_get_plat(dev);
  173. info->cpu_freq = plat->freq_mhz * 1000;
  174. info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
  175. return 0;
  176. }
  177. static int cpu_imx_get_count(const struct udevice *dev)
  178. {
  179. ofnode node;
  180. int num = 0;
  181. ofnode_for_each_subnode(node, dev_ofnode(dev->parent)) {
  182. const char *device_type;
  183. if (!ofnode_is_enabled(node))
  184. continue;
  185. device_type = ofnode_read_string(node, "device_type");
  186. if (!device_type)
  187. continue;
  188. if (!strcmp(device_type, "cpu"))
  189. num++;
  190. }
  191. return num;
  192. }
  193. static int cpu_imx_get_vendor(const struct udevice *dev, char *buf, int size)
  194. {
  195. snprintf(buf, size, "NXP");
  196. return 0;
  197. }
  198. static int cpu_imx_is_current(struct udevice *dev)
  199. {
  200. struct cpu_imx_plat *plat = dev_get_plat(dev);
  201. if (plat->mpidr == (read_mpidr() & 0xffff))
  202. return 1;
  203. return 0;
  204. }
  205. static const struct cpu_ops cpu_imx_ops = {
  206. .get_desc = cpu_imx_get_desc,
  207. .get_info = cpu_imx_get_info,
  208. .get_count = cpu_imx_get_count,
  209. .get_vendor = cpu_imx_get_vendor,
  210. .is_current = cpu_imx_is_current,
  211. };
  212. static const struct udevice_id cpu_imx_ids[] = {
  213. { .compatible = "arm,cortex-a35" },
  214. { .compatible = "arm,cortex-a53" },
  215. { .compatible = "arm,cortex-a55" },
  216. { .compatible = "arm,cortex-a72" },
  217. { }
  218. };
  219. static ulong imx_get_cpu_rate(struct udevice *dev)
  220. {
  221. struct cpu_imx_plat *plat = dev_get_plat(dev);
  222. struct clk clk;
  223. ulong rate;
  224. int ret;
  225. if (IS_ENABLED(CONFIG_IMX8)) {
  226. ret = sc_pm_get_clock_rate(-1, plat->cpu_rsrc, SC_PM_CLK_CPU,
  227. (sc_pm_clock_rate_t *)&rate);
  228. } else {
  229. ret = clk_get_by_index(dev, 0, &clk);
  230. if (!ret) {
  231. rate = clk_get_rate(&clk);
  232. if (!rate)
  233. ret = -EOPNOTSUPP;
  234. }
  235. }
  236. if (ret) {
  237. printf("Could not read CPU frequency: %d\n", ret);
  238. return 0;
  239. }
  240. return rate;
  241. }
  242. static int imx_cpu_probe(struct udevice *dev)
  243. {
  244. struct cpu_imx_plat *plat = dev_get_plat(dev);
  245. u32 cpurev;
  246. set_core_data(dev);
  247. cpurev = get_cpu_rev();
  248. plat->cpurev = cpurev;
  249. plat->rev = get_imx_rev_str(cpurev & 0xFFF);
  250. plat->type = get_imx_type_str((cpurev & 0xFF000) >> 12);
  251. plat->freq_mhz = imx_get_cpu_rate(dev) / 1000000;
  252. plat->mpidr = dev_read_addr(dev);
  253. if (plat->mpidr == FDT_ADDR_T_NONE) {
  254. printf("%s: Failed to get CPU reg property\n", __func__);
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. U_BOOT_DRIVER(cpu_imx_drv) = {
  260. .name = "imx_cpu",
  261. .id = UCLASS_CPU,
  262. .of_match = cpu_imx_ids,
  263. .ops = &cpu_imx_ops,
  264. .probe = imx_cpu_probe,
  265. .plat_auto = sizeof(struct cpu_imx_plat),
  266. .flags = DM_FLAG_PRE_RELOC,
  267. };