zynq_sdhci.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2013 - 2022, Xilinx, Inc.
  4. * (C) Copyright 2022, Advanced Micro Devices, Inc.
  5. *
  6. * Xilinx Zynq SD Host Controller Interface
  7. */
  8. #include <clk.h>
  9. #include <common.h>
  10. #include <dm.h>
  11. #include <fdtdec.h>
  12. #include <linux/delay.h>
  13. #include "mmc_private.h"
  14. #include <log.h>
  15. #include <reset.h>
  16. #include <asm/arch/sys_proto.h>
  17. #include <dm/device_compat.h>
  18. #include <linux/err.h>
  19. #include <linux/libfdt.h>
  20. #include <linux/iopoll.h>
  21. #include <asm/types.h>
  22. #include <linux/math64.h>
  23. #include <asm/cache.h>
  24. #include <malloc.h>
  25. #include <sdhci.h>
  26. #include <zynqmp_firmware.h>
  27. #define SDHCI_ARASAN_ITAPDLY_REGISTER 0xF0F8
  28. #define SDHCI_ARASAN_ITAPDLY_SEL_MASK GENMASK(7, 0)
  29. #define SDHCI_ARASAN_OTAPDLY_REGISTER 0xF0FC
  30. #define SDHCI_ARASAN_OTAPDLY_SEL_MASK GENMASK(5, 0)
  31. #define SDHCI_ITAPDLY_CHGWIN BIT(9)
  32. #define SDHCI_ITAPDLY_ENABLE BIT(8)
  33. #define SDHCI_OTAPDLY_ENABLE BIT(6)
  34. #define SDHCI_TUNING_LOOP_COUNT 40
  35. #define MMC_BANK2 0x2
  36. #define SD_DLL_CTRL 0xFF180358
  37. #define SD_ITAP_DLY 0xFF180314
  38. #define SD_OTAP_DLY 0xFF180318
  39. #define SD0_DLL_RST BIT(2)
  40. #define SD1_DLL_RST BIT(18)
  41. #define SD0_ITAPCHGWIN BIT(9)
  42. #define SD1_ITAPCHGWIN BIT(25)
  43. #define SD0_ITAPDLYENA BIT(8)
  44. #define SD1_ITAPDLYENA BIT(24)
  45. #define SD0_ITAPDLYSEL_MASK GENMASK(7, 0)
  46. #define SD1_ITAPDLYSEL_MASK GENMASK(23, 16)
  47. #define SD0_OTAPDLYSEL_MASK GENMASK(5, 0)
  48. #define SD1_OTAPDLYSEL_MASK GENMASK(21, 16)
  49. #define MIN_PHY_CLK_HZ 50000000
  50. #define PHY_CTRL_REG1 0x270
  51. #define PHY_CTRL_ITAPDLY_ENA_MASK BIT(0)
  52. #define PHY_CTRL_ITAPDLY_SEL_MASK GENMASK(5, 1)
  53. #define PHY_CTRL_ITAPDLY_SEL_SHIFT 1
  54. #define PHY_CTRL_ITAP_CHG_WIN_MASK BIT(6)
  55. #define PHY_CTRL_OTAPDLY_ENA_MASK BIT(8)
  56. #define PHY_CTRL_OTAPDLY_SEL_MASK GENMASK(15, 12)
  57. #define PHY_CTRL_OTAPDLY_SEL_SHIFT 12
  58. #define PHY_CTRL_STRB_SEL_MASK GENMASK(23, 16)
  59. #define PHY_CTRL_STRB_SEL_SHIFT 16
  60. #define PHY_CTRL_TEST_CTRL_MASK GENMASK(31, 24)
  61. #define PHY_CTRL_REG2 0x274
  62. #define PHY_CTRL_EN_DLL_MASK BIT(0)
  63. #define PHY_CTRL_DLL_RDY_MASK BIT(1)
  64. #define PHY_CTRL_FREQ_SEL_MASK GENMASK(6, 4)
  65. #define PHY_CTRL_FREQ_SEL_SHIFT 4
  66. #define PHY_CTRL_SEL_DLY_TX_MASK BIT(16)
  67. #define PHY_CTRL_SEL_DLY_RX_MASK BIT(17)
  68. #define FREQSEL_200M_170M 0x0
  69. #define FREQSEL_170M_140M 0x1
  70. #define FREQSEL_140M_110M 0x2
  71. #define FREQSEL_110M_80M 0x3
  72. #define FREQSEL_80M_50M 0x4
  73. #define FREQSEL_275M_250M 0x5
  74. #define FREQSEL_250M_225M 0x6
  75. #define FREQSEL_225M_200M 0x7
  76. #define PHY_DLL_TIMEOUT_MS 100
  77. #define VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLY_CHAIN 39
  78. #define VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLL 146
  79. #define VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL 0X77
  80. struct arasan_sdhci_clk_data {
  81. int clk_phase_in[MMC_TIMING_MMC_HS400 + 1];
  82. int clk_phase_out[MMC_TIMING_MMC_HS400 + 1];
  83. };
  84. struct arasan_sdhci_plat {
  85. struct mmc_config cfg;
  86. struct mmc mmc;
  87. };
  88. struct arasan_sdhci_priv {
  89. struct sdhci_host *host;
  90. struct arasan_sdhci_clk_data clk_data;
  91. u32 node_id;
  92. u8 bank;
  93. u8 no_1p8;
  94. bool internal_phy_reg;
  95. struct reset_ctl_bulk resets;
  96. };
  97. /* For Versal platforms zynqmp_mmio_write() won't be available */
  98. __weak int zynqmp_mmio_write(const u32 address, const u32 mask, const u32 value)
  99. {
  100. return 0;
  101. }
  102. __weak int xilinx_pm_request(u32 api_id, u32 arg0, u32 arg1, u32 arg2,
  103. u32 arg3, u32 *ret_payload)
  104. {
  105. return 0;
  106. }
  107. __weak int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
  108. {
  109. return 1;
  110. }
  111. #if defined(CONFIG_ARCH_ZYNQMP) || defined(CONFIG_ARCH_VERSAL) || defined(CONFIG_ARCH_VERSAL_NET)
  112. /* Default settings for ZynqMP Clock Phases */
  113. static const u32 zynqmp_iclk_phases[] = {0, 63, 63, 0, 63, 0,
  114. 0, 183, 54, 0, 0};
  115. static const u32 zynqmp_oclk_phases[] = {0, 72, 60, 0, 60, 72,
  116. 135, 48, 72, 135, 0};
  117. /* Default settings for Versal Clock Phases */
  118. static const u32 versal_iclk_phases[] = {0, 132, 132, 0, 132,
  119. 0, 0, 162, 90, 0, 0};
  120. static const u32 versal_oclk_phases[] = {0, 60, 48, 0, 48, 72,
  121. 90, 36, 60, 90, 0};
  122. /* Default settings for versal-net eMMC Clock Phases */
  123. static const u32 versal_net_emmc_iclk_phases[] = {0, 0, 0, 0, 0, 0, 0, 0, 39,
  124. 0, 0};
  125. static const u32 versal_net_emmc_oclk_phases[] = {0, 113, 0, 0, 0, 0, 0, 0,
  126. 113, 79, 45};
  127. static const u8 mode2timing[] = {
  128. [MMC_LEGACY] = MMC_TIMING_LEGACY,
  129. [MMC_HS] = MMC_TIMING_MMC_HS,
  130. [SD_HS] = MMC_TIMING_SD_HS,
  131. [MMC_HS_52] = MMC_TIMING_MMC_HS,
  132. [MMC_DDR_52] = MMC_TIMING_MMC_DDR52,
  133. [UHS_SDR12] = MMC_TIMING_UHS_SDR12,
  134. [UHS_SDR25] = MMC_TIMING_UHS_SDR25,
  135. [UHS_SDR50] = MMC_TIMING_UHS_SDR50,
  136. [UHS_DDR50] = MMC_TIMING_UHS_DDR50,
  137. [UHS_SDR104] = MMC_TIMING_UHS_SDR104,
  138. [MMC_HS_200] = MMC_TIMING_MMC_HS200,
  139. [MMC_HS_400] = MMC_TIMING_MMC_HS400,
  140. };
  141. #if defined(CONFIG_ARCH_VERSAL_NET)
  142. /**
  143. * arasan_phy_set_delaychain - Set eMMC delay chain based Input/Output clock
  144. *
  145. * @host: Pointer to the sdhci_host structure
  146. * @enable: Enable or disable Delay chain based Tx and Rx clock
  147. * Return: None
  148. *
  149. * Enable or disable eMMC delay chain based Input and Output clock in
  150. * PHY_CTRL_REG2
  151. */
  152. static void arasan_phy_set_delaychain(struct sdhci_host *host, bool enable)
  153. {
  154. u32 reg;
  155. reg = sdhci_readw(host, PHY_CTRL_REG2);
  156. if (enable)
  157. reg |= PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK;
  158. else
  159. reg &= ~(PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK);
  160. sdhci_writew(host, reg, PHY_CTRL_REG2);
  161. }
  162. /**
  163. * arasan_phy_set_dll - Set eMMC DLL clock
  164. *
  165. * @host: Pointer to the sdhci_host structure
  166. * @enable: Enable or disable DLL clock
  167. * Return: 0 if success or timeout error
  168. *
  169. * Enable or disable eMMC DLL clock in PHY_CTRL_REG2. When DLL enable is
  170. * set, wait till DLL is locked
  171. */
  172. static int arasan_phy_set_dll(struct sdhci_host *host, bool enable)
  173. {
  174. u32 reg;
  175. reg = sdhci_readw(host, PHY_CTRL_REG2);
  176. if (enable)
  177. reg |= PHY_CTRL_EN_DLL_MASK;
  178. else
  179. reg &= ~PHY_CTRL_EN_DLL_MASK;
  180. sdhci_writew(host, reg, PHY_CTRL_REG2);
  181. /* If DLL is disabled return success */
  182. if (!enable)
  183. return 0;
  184. /* If DLL is enabled wait till DLL loop is locked, which is
  185. * indicated by dll_rdy bit(bit1) in PHY_CTRL_REG2
  186. */
  187. return readl_relaxed_poll_timeout(host->ioaddr + PHY_CTRL_REG2, reg,
  188. (reg & PHY_CTRL_DLL_RDY_MASK),
  189. 1000 * PHY_DLL_TIMEOUT_MS);
  190. }
  191. /**
  192. * arasan_phy_dll_set_freq - Select frequency range of DLL for eMMC
  193. *
  194. * @host: Pointer to the sdhci_host structure
  195. * @clock: clock value
  196. * Return: None
  197. *
  198. * Set frequency range bits based on the selected clock for eMMC
  199. */
  200. static void arasan_phy_dll_set_freq(struct sdhci_host *host, int clock)
  201. {
  202. u32 reg, freq_sel, freq;
  203. freq = DIV_ROUND_CLOSEST(clock, 1000000);
  204. if (freq <= 200 && freq > 170)
  205. freq_sel = FREQSEL_200M_170M;
  206. else if (freq <= 170 && freq > 140)
  207. freq_sel = FREQSEL_170M_140M;
  208. else if (freq <= 140 && freq > 110)
  209. freq_sel = FREQSEL_140M_110M;
  210. else if (freq <= 110 && freq > 80)
  211. freq_sel = FREQSEL_110M_80M;
  212. else
  213. freq_sel = FREQSEL_80M_50M;
  214. reg = sdhci_readw(host, PHY_CTRL_REG2);
  215. reg &= ~PHY_CTRL_FREQ_SEL_MASK;
  216. reg |= (freq_sel << PHY_CTRL_FREQ_SEL_SHIFT);
  217. sdhci_writew(host, reg, PHY_CTRL_REG2);
  218. }
  219. static int arasan_sdhci_config_dll(struct sdhci_host *host, unsigned int clock, bool enable)
  220. {
  221. struct mmc *mmc = (struct mmc *)host->mmc;
  222. struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
  223. if (enable) {
  224. if (priv->internal_phy_reg && clock >= MIN_PHY_CLK_HZ && enable)
  225. arasan_phy_set_dll(host, 1);
  226. return 0;
  227. }
  228. if (priv->internal_phy_reg && clock >= MIN_PHY_CLK_HZ) {
  229. sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
  230. arasan_phy_set_dll(host, 0);
  231. arasan_phy_set_delaychain(host, 0);
  232. arasan_phy_dll_set_freq(host, clock);
  233. return 0;
  234. }
  235. sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
  236. arasan_phy_set_delaychain(host, 1);
  237. return 0;
  238. }
  239. #endif
  240. static inline int arasan_zynqmp_set_in_tapdelay(u32 node_id, u32 itap_delay)
  241. {
  242. int ret;
  243. if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
  244. if (node_id == NODE_SD_0) {
  245. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPCHGWIN,
  246. SD0_ITAPCHGWIN);
  247. if (ret)
  248. return ret;
  249. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPDLYENA,
  250. SD0_ITAPDLYENA);
  251. if (ret)
  252. return ret;
  253. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPDLYSEL_MASK,
  254. itap_delay);
  255. if (ret)
  256. return ret;
  257. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPCHGWIN, 0);
  258. if (ret)
  259. return ret;
  260. }
  261. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPCHGWIN,
  262. SD1_ITAPCHGWIN);
  263. if (ret)
  264. return ret;
  265. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPDLYENA,
  266. SD1_ITAPDLYENA);
  267. if (ret)
  268. return ret;
  269. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPDLYSEL_MASK,
  270. (itap_delay << 16));
  271. if (ret)
  272. return ret;
  273. ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPCHGWIN, 0);
  274. if (ret)
  275. return ret;
  276. } else {
  277. return xilinx_pm_request(PM_IOCTL, node_id,
  278. IOCTL_SET_SD_TAPDELAY,
  279. PM_TAPDELAY_INPUT, itap_delay, NULL);
  280. }
  281. return 0;
  282. }
  283. static inline int arasan_zynqmp_set_out_tapdelay(u32 node_id, u32 otap_delay)
  284. {
  285. if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
  286. if (node_id == NODE_SD_0)
  287. return zynqmp_mmio_write(SD_OTAP_DLY,
  288. SD0_OTAPDLYSEL_MASK,
  289. otap_delay);
  290. return zynqmp_mmio_write(SD_OTAP_DLY, SD1_OTAPDLYSEL_MASK,
  291. (otap_delay << 16));
  292. } else {
  293. return xilinx_pm_request(PM_IOCTL, node_id,
  294. IOCTL_SET_SD_TAPDELAY,
  295. PM_TAPDELAY_OUTPUT, otap_delay, NULL);
  296. }
  297. }
  298. static inline int zynqmp_dll_reset(u32 node_id, u32 type)
  299. {
  300. if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
  301. if (node_id == NODE_SD_0)
  302. return zynqmp_mmio_write(SD_DLL_CTRL, SD0_DLL_RST,
  303. type == PM_DLL_RESET_ASSERT ?
  304. SD0_DLL_RST : 0);
  305. return zynqmp_mmio_write(SD_DLL_CTRL, SD1_DLL_RST,
  306. type == PM_DLL_RESET_ASSERT ?
  307. SD1_DLL_RST : 0);
  308. } else {
  309. return xilinx_pm_request(PM_IOCTL, node_id,
  310. IOCTL_SD_DLL_RESET, type, 0, NULL);
  311. }
  312. }
  313. static int arasan_zynqmp_dll_reset(struct sdhci_host *host, u32 node_id)
  314. {
  315. struct mmc *mmc = (struct mmc *)host->mmc;
  316. struct udevice *dev = mmc->dev;
  317. unsigned long timeout;
  318. int ret;
  319. u16 clk;
  320. clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
  321. clk &= ~(SDHCI_CLOCK_CARD_EN);
  322. sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
  323. /* Issue DLL Reset */
  324. ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_ASSERT);
  325. if (ret) {
  326. dev_err(dev, "dll_reset assert failed with err: %d\n", ret);
  327. return ret;
  328. }
  329. /* Allow atleast 1ms delay for proper DLL reset */
  330. mdelay(1);
  331. ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_RELEASE);
  332. if (ret) {
  333. dev_err(dev, "dll_reset release failed with err: %d\n", ret);
  334. return ret;
  335. }
  336. /* Wait max 20 ms */
  337. timeout = 100;
  338. while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
  339. & SDHCI_CLOCK_INT_STABLE)) {
  340. if (timeout == 0) {
  341. dev_err(dev, ": Internal clock never stabilised.\n");
  342. return -EBUSY;
  343. }
  344. timeout--;
  345. udelay(1000);
  346. }
  347. clk |= SDHCI_CLOCK_CARD_EN;
  348. sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
  349. return 0;
  350. }
  351. static int arasan_sdhci_execute_tuning(struct mmc *mmc, u8 opcode)
  352. {
  353. struct mmc_cmd cmd;
  354. struct mmc_data data;
  355. u32 ctrl;
  356. struct sdhci_host *host;
  357. struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
  358. int tuning_loop_counter = SDHCI_TUNING_LOOP_COUNT;
  359. dev_dbg(mmc->dev, "%s\n", __func__);
  360. host = priv->host;
  361. ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
  362. ctrl |= SDHCI_CTRL_EXEC_TUNING;
  363. sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
  364. mdelay(1);
  365. if (device_is_compatible(mmc->dev, "xlnx,zynqmp-8.9a"))
  366. arasan_zynqmp_dll_reset(host, priv->node_id);
  367. sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
  368. sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
  369. do {
  370. cmd.cmdidx = opcode;
  371. cmd.resp_type = MMC_RSP_R1;
  372. cmd.cmdarg = 0;
  373. data.blocksize = 64;
  374. data.blocks = 1;
  375. data.flags = MMC_DATA_READ;
  376. if (tuning_loop_counter-- == 0)
  377. break;
  378. if (cmd.cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200 &&
  379. mmc->bus_width == 8)
  380. data.blocksize = 128;
  381. sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
  382. data.blocksize),
  383. SDHCI_BLOCK_SIZE);
  384. sdhci_writew(host, data.blocks, SDHCI_BLOCK_COUNT);
  385. sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
  386. mmc_send_cmd(mmc, &cmd, NULL);
  387. ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
  388. if (cmd.cmdidx == MMC_CMD_SEND_TUNING_BLOCK)
  389. udelay(1);
  390. } while (ctrl & SDHCI_CTRL_EXEC_TUNING);
  391. if (tuning_loop_counter < 0) {
  392. ctrl &= ~SDHCI_CTRL_TUNED_CLK;
  393. sdhci_writel(host, ctrl, SDHCI_HOST_CONTROL2);
  394. }
  395. if (!(ctrl & SDHCI_CTRL_TUNED_CLK)) {
  396. printf("%s:Tuning failed\n", __func__);
  397. return -1;
  398. }
  399. udelay(1);
  400. if (device_is_compatible(mmc->dev, "xlnx,zynqmp-8.9a"))
  401. arasan_zynqmp_dll_reset(host, priv->node_id);
  402. /* Enable only interrupts served by the SD controller */
  403. sdhci_writel(host, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK,
  404. SDHCI_INT_ENABLE);
  405. /* Mask all sdhci interrupt sources */
  406. sdhci_writel(host, 0x0, SDHCI_SIGNAL_ENABLE);
  407. return 0;
  408. }
  409. /**
  410. * sdhci_zynqmp_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
  411. *
  412. * @host: Pointer to the sdhci_host structure.
  413. * @degrees: The clock phase shift between 0 - 359.
  414. * Return: 0
  415. *
  416. * Set the SD Output Clock Tap Delays for Output path
  417. */
  418. static int sdhci_zynqmp_sdcardclk_set_phase(struct sdhci_host *host,
  419. int degrees)
  420. {
  421. struct mmc *mmc = (struct mmc *)host->mmc;
  422. struct udevice *dev = mmc->dev;
  423. struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
  424. u8 tap_delay, tap_max = 0;
  425. int timing = mode2timing[mmc->selected_mode];
  426. int ret;
  427. /*
  428. * This is applicable for SDHCI_SPEC_300 and above
  429. * ZynqMP does not set phase for <=25MHz clock.
  430. * If degrees is zero, no need to do anything.
  431. */
  432. if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
  433. return 0;
  434. switch (timing) {
  435. case MMC_TIMING_MMC_HS:
  436. case MMC_TIMING_SD_HS:
  437. case MMC_TIMING_UHS_SDR25:
  438. case MMC_TIMING_UHS_DDR50:
  439. case MMC_TIMING_MMC_DDR52:
  440. /* For 50MHz clock, 30 Taps are available */
  441. tap_max = 30;
  442. break;
  443. case MMC_TIMING_UHS_SDR50:
  444. /* For 100MHz clock, 15 Taps are available */
  445. tap_max = 15;
  446. break;
  447. case MMC_TIMING_UHS_SDR104:
  448. case MMC_TIMING_MMC_HS200:
  449. /* For 200MHz clock, 8 Taps are available */
  450. tap_max = 8;
  451. default:
  452. break;
  453. }
  454. tap_delay = (degrees * tap_max) / 360;
  455. /* Limit output tap_delay value to 6 bits */
  456. tap_delay &= SDHCI_ARASAN_OTAPDLY_SEL_MASK;
  457. /* Set the Clock Phase */
  458. ret = arasan_zynqmp_set_out_tapdelay(priv->node_id, tap_delay);
  459. if (ret) {
  460. dev_err(dev, "Error setting output Tap Delay\n");
  461. return ret;
  462. }
  463. /* Release DLL Reset */
  464. ret = zynqmp_dll_reset(priv->node_id, PM_DLL_RESET_RELEASE);
  465. if (ret) {
  466. dev_err(dev, "dll_reset release failed with err: %d\n", ret);
  467. return ret;
  468. }
  469. return 0;
  470. }
  471. /**
  472. * sdhci_zynqmp_sampleclk_set_phase - Set the SD Input Clock Tap Delays
  473. *
  474. * @host: Pointer to the sdhci_host structure.
  475. * @degrees: The clock phase shift between 0 - 359.
  476. * Return: 0
  477. *
  478. * Set the SD Input Clock Tap Delays for Input path
  479. */
  480. static int sdhci_zynqmp_sampleclk_set_phase(struct sdhci_host *host,
  481. int degrees)
  482. {
  483. struct mmc *mmc = (struct mmc *)host->mmc;
  484. struct udevice *dev = mmc->dev;
  485. struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
  486. u8 tap_delay, tap_max = 0;
  487. int timing = mode2timing[mmc->selected_mode];
  488. int ret;
  489. /*
  490. * This is applicable for SDHCI_SPEC_300 and above
  491. * ZynqMP does not set phase for <=25MHz clock.
  492. * If degrees is zero, no need to do anything.
  493. */
  494. if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
  495. return 0;
  496. /* Assert DLL Reset */
  497. ret = zynqmp_dll_reset(priv->node_id, PM_DLL_RESET_ASSERT);
  498. if (ret) {
  499. dev_err(dev, "dll_reset assert failed with err: %d\n", ret);
  500. return ret;
  501. }
  502. switch (timing) {
  503. case MMC_TIMING_MMC_HS:
  504. case MMC_TIMING_SD_HS:
  505. case MMC_TIMING_UHS_SDR25:
  506. case MMC_TIMING_UHS_DDR50:
  507. case MMC_TIMING_MMC_DDR52:
  508. /* For 50MHz clock, 120 Taps are available */
  509. tap_max = 120;
  510. break;
  511. case MMC_TIMING_UHS_SDR50:
  512. /* For 100MHz clock, 60 Taps are available */
  513. tap_max = 60;
  514. break;
  515. case MMC_TIMING_UHS_SDR104:
  516. case MMC_TIMING_MMC_HS200:
  517. /* For 200MHz clock, 30 Taps are available */
  518. tap_max = 30;
  519. default:
  520. break;
  521. }
  522. tap_delay = (degrees * tap_max) / 360;
  523. /* Limit input tap_delay value to 8 bits */
  524. tap_delay &= SDHCI_ARASAN_ITAPDLY_SEL_MASK;
  525. ret = arasan_zynqmp_set_in_tapdelay(priv->node_id, tap_delay);
  526. if (ret) {
  527. dev_err(dev, "Error setting Input Tap Delay\n");
  528. return ret;
  529. }
  530. return 0;
  531. }
  532. /**
  533. * sdhci_versal_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
  534. *
  535. * @host: Pointer to the sdhci_host structure.
  536. * @degrees: The clock phase shift between 0 - 359.
  537. * Return: 0
  538. *
  539. * Set the SD Output Clock Tap Delays for Output path
  540. */
  541. static int sdhci_versal_sdcardclk_set_phase(struct sdhci_host *host,
  542. int degrees)
  543. {
  544. struct mmc *mmc = (struct mmc *)host->mmc;
  545. u8 tap_delay, tap_max = 0;
  546. int timing = mode2timing[mmc->selected_mode];
  547. u32 regval;
  548. /*
  549. * This is applicable for SDHCI_SPEC_300 and above
  550. * Versal does not set phase for <=25MHz clock.
  551. * If degrees is zero, no need to do anything.
  552. */
  553. if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
  554. return 0;
  555. switch (timing) {
  556. case MMC_TIMING_MMC_HS:
  557. case MMC_TIMING_SD_HS:
  558. case MMC_TIMING_UHS_SDR25:
  559. case MMC_TIMING_UHS_DDR50:
  560. case MMC_TIMING_MMC_DDR52:
  561. /* For 50MHz clock, 30 Taps are available */
  562. tap_max = 30;
  563. break;
  564. case MMC_TIMING_UHS_SDR50:
  565. /* For 100MHz clock, 15 Taps are available */
  566. tap_max = 15;
  567. break;
  568. case MMC_TIMING_UHS_SDR104:
  569. case MMC_TIMING_MMC_HS200:
  570. /* For 200MHz clock, 8 Taps are available */
  571. tap_max = 8;
  572. default:
  573. break;
  574. }
  575. tap_delay = (degrees * tap_max) / 360;
  576. /* Limit output tap_delay value to 6 bits */
  577. tap_delay &= SDHCI_ARASAN_OTAPDLY_SEL_MASK;
  578. /* Set the Clock Phase */
  579. regval = sdhci_readl(host, SDHCI_ARASAN_OTAPDLY_REGISTER);
  580. regval |= SDHCI_OTAPDLY_ENABLE;
  581. sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
  582. regval &= ~SDHCI_ARASAN_OTAPDLY_SEL_MASK;
  583. regval |= tap_delay;
  584. sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
  585. return 0;
  586. }
  587. /**
  588. * sdhci_versal_sampleclk_set_phase - Set the SD Input Clock Tap Delays
  589. *
  590. * @host: Pointer to the sdhci_host structure.
  591. * @degrees: The clock phase shift between 0 - 359.
  592. * Return: 0
  593. *
  594. * Set the SD Input Clock Tap Delays for Input path
  595. */
  596. static int sdhci_versal_sampleclk_set_phase(struct sdhci_host *host,
  597. int degrees)
  598. {
  599. struct mmc *mmc = (struct mmc *)host->mmc;
  600. u8 tap_delay, tap_max = 0;
  601. int timing = mode2timing[mmc->selected_mode];
  602. u32 regval;
  603. /*
  604. * This is applicable for SDHCI_SPEC_300 and above
  605. * Versal does not set phase for <=25MHz clock.
  606. * If degrees is zero, no need to do anything.
  607. */
  608. if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
  609. return 0;
  610. switch (timing) {
  611. case MMC_TIMING_MMC_HS:
  612. case MMC_TIMING_SD_HS:
  613. case MMC_TIMING_UHS_SDR25:
  614. case MMC_TIMING_UHS_DDR50:
  615. case MMC_TIMING_MMC_DDR52:
  616. /* For 50MHz clock, 120 Taps are available */
  617. tap_max = 120;
  618. break;
  619. case MMC_TIMING_UHS_SDR50:
  620. /* For 100MHz clock, 60 Taps are available */
  621. tap_max = 60;
  622. break;
  623. case MMC_TIMING_UHS_SDR104:
  624. case MMC_TIMING_MMC_HS200:
  625. /* For 200MHz clock, 30 Taps are available */
  626. tap_max = 30;
  627. default:
  628. break;
  629. }
  630. tap_delay = (degrees * tap_max) / 360;
  631. /* Limit input tap_delay value to 8 bits */
  632. tap_delay &= SDHCI_ARASAN_ITAPDLY_SEL_MASK;
  633. /* Set the Clock Phase */
  634. regval = sdhci_readl(host, SDHCI_ARASAN_ITAPDLY_REGISTER);
  635. regval |= SDHCI_ITAPDLY_CHGWIN;
  636. sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
  637. regval |= SDHCI_ITAPDLY_ENABLE;
  638. sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
  639. regval &= ~SDHCI_ARASAN_ITAPDLY_SEL_MASK;
  640. regval |= tap_delay;
  641. sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
  642. regval &= ~SDHCI_ITAPDLY_CHGWIN;
  643. sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
  644. return 0;
  645. }
  646. /**
  647. * sdhci_versal_net_emmc_sdcardclk_set_phase - Set eMMC Output Clock Tap Delays
  648. *
  649. * @host: Pointer to the sdhci_host structure.
  650. * @degrees: The clock phase shift between 0 - 359.
  651. * Return: 0
  652. *
  653. * Set eMMC Output Clock Tap Delays for Output path
  654. */
  655. static int sdhci_versal_net_emmc_sdcardclk_set_phase(struct sdhci_host *host, int degrees)
  656. {
  657. struct mmc *mmc = (struct mmc *)host->mmc;
  658. int timing = mode2timing[mmc->selected_mode];
  659. u8 tap_delay, tap_max = 0;
  660. u32 regval;
  661. switch (timing) {
  662. case MMC_TIMING_MMC_HS:
  663. case MMC_TIMING_MMC_DDR52:
  664. tap_max = 16;
  665. break;
  666. case MMC_TIMING_MMC_HS200:
  667. case MMC_TIMING_MMC_HS400:
  668. /* For 200MHz clock, 32 Taps are available */
  669. tap_max = 32;
  670. break;
  671. default:
  672. break;
  673. }
  674. tap_delay = (degrees * tap_max) / 360;
  675. /* Set the Clock Phase */
  676. if (tap_delay) {
  677. regval = sdhci_readl(host, PHY_CTRL_REG1);
  678. regval |= PHY_CTRL_OTAPDLY_ENA_MASK;
  679. sdhci_writel(host, regval, PHY_CTRL_REG1);
  680. regval &= ~PHY_CTRL_OTAPDLY_SEL_MASK;
  681. regval |= tap_delay << PHY_CTRL_OTAPDLY_SEL_SHIFT;
  682. sdhci_writel(host, regval, PHY_CTRL_REG1);
  683. }
  684. return 0;
  685. }
  686. /**
  687. * sdhci_versal_net_emmc_sampleclk_set_phase - Set eMMC Input Clock Tap Delays
  688. *
  689. * @host: Pointer to the sdhci_host structure.
  690. * @degrees: The clock phase shift between 0 - 359.
  691. * Return: 0
  692. *
  693. * Set eMMC Input Clock Tap Delays for Input path. If HS400 is selected,
  694. * set strobe90 and strobe180 in PHY_CTRL_REG1.
  695. */
  696. static int sdhci_versal_net_emmc_sampleclk_set_phase(struct sdhci_host *host, int degrees)
  697. {
  698. struct mmc *mmc = (struct mmc *)host->mmc;
  699. int timing = mode2timing[mmc->selected_mode];
  700. u8 tap_delay, tap_max = 0;
  701. u32 regval;
  702. switch (timing) {
  703. case MMC_TIMING_MMC_HS:
  704. case MMC_TIMING_MMC_DDR52:
  705. tap_max = 32;
  706. break;
  707. case MMC_TIMING_MMC_HS400:
  708. /* Strobe select tap point for strb90 and strb180 */
  709. regval = sdhci_readl(host, PHY_CTRL_REG1);
  710. regval &= ~PHY_CTRL_STRB_SEL_MASK;
  711. regval |= VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL << PHY_CTRL_STRB_SEL_SHIFT;
  712. sdhci_writel(host, regval, PHY_CTRL_REG1);
  713. break;
  714. default:
  715. break;
  716. }
  717. tap_delay = (degrees * tap_max) / 360;
  718. /* Set the Clock Phase */
  719. if (tap_delay) {
  720. regval = sdhci_readl(host, PHY_CTRL_REG1);
  721. regval |= PHY_CTRL_ITAP_CHG_WIN_MASK;
  722. sdhci_writel(host, regval, PHY_CTRL_REG1);
  723. regval |= PHY_CTRL_ITAPDLY_ENA_MASK;
  724. sdhci_writel(host, regval, PHY_CTRL_REG1);
  725. regval &= ~PHY_CTRL_ITAPDLY_SEL_MASK;
  726. regval |= tap_delay << PHY_CTRL_ITAPDLY_SEL_SHIFT;
  727. sdhci_writel(host, regval, PHY_CTRL_REG1);
  728. regval &= ~PHY_CTRL_ITAP_CHG_WIN_MASK;
  729. sdhci_writel(host, regval, PHY_CTRL_REG1);
  730. }
  731. return 0;
  732. }
  733. static int arasan_sdhci_set_tapdelay(struct sdhci_host *host)
  734. {
  735. struct arasan_sdhci_priv *priv = dev_get_priv(host->mmc->dev);
  736. struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
  737. struct mmc *mmc = (struct mmc *)host->mmc;
  738. struct udevice *dev = mmc->dev;
  739. u8 timing = mode2timing[mmc->selected_mode];
  740. u32 iclk_phase = clk_data->clk_phase_in[timing];
  741. u32 oclk_phase = clk_data->clk_phase_out[timing];
  742. int ret;
  743. dev_dbg(dev, "%s, host:%s, mode:%d\n", __func__, host->name, timing);
  744. if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) &&
  745. device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
  746. ret = sdhci_zynqmp_sampleclk_set_phase(host, iclk_phase);
  747. if (ret)
  748. return ret;
  749. ret = sdhci_zynqmp_sdcardclk_set_phase(host, oclk_phase);
  750. if (ret)
  751. return ret;
  752. } else if (IS_ENABLED(CONFIG_ARCH_VERSAL) &&
  753. device_is_compatible(dev, "xlnx,versal-8.9a")) {
  754. ret = sdhci_versal_sampleclk_set_phase(host, iclk_phase);
  755. if (ret)
  756. return ret;
  757. ret = sdhci_versal_sdcardclk_set_phase(host, oclk_phase);
  758. if (ret)
  759. return ret;
  760. } else if (IS_ENABLED(CONFIG_ARCH_VERSAL_NET) &&
  761. device_is_compatible(dev, "xlnx,versal-net-emmc")) {
  762. if (mmc->clock >= MIN_PHY_CLK_HZ)
  763. if (iclk_phase == VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLY_CHAIN)
  764. iclk_phase = VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLL;
  765. ret = sdhci_versal_net_emmc_sampleclk_set_phase(host, iclk_phase);
  766. if (ret)
  767. return ret;
  768. ret = sdhci_versal_net_emmc_sdcardclk_set_phase(host, oclk_phase);
  769. if (ret)
  770. return ret;
  771. }
  772. return 0;
  773. }
  774. static void arasan_dt_read_clk_phase(struct udevice *dev, unsigned char timing,
  775. const char *prop)
  776. {
  777. struct arasan_sdhci_priv *priv = dev_get_priv(dev);
  778. struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
  779. u32 clk_phase[2] = {0};
  780. /*
  781. * Read Tap Delay values from DT, if the DT does not contain the
  782. * Tap Values then use the pre-defined values
  783. */
  784. if (dev_read_u32_array(dev, prop, &clk_phase[0], 2)) {
  785. dev_dbg(dev, "Using predefined clock phase for %s = %d %d\n",
  786. prop, clk_data->clk_phase_in[timing],
  787. clk_data->clk_phase_out[timing]);
  788. return;
  789. }
  790. /* The values read are Input and Output Clock Delays in order */
  791. clk_data->clk_phase_in[timing] = clk_phase[0];
  792. clk_data->clk_phase_out[timing] = clk_phase[1];
  793. }
  794. /**
  795. * arasan_dt_parse_clk_phases - Read Tap Delay values from DT
  796. *
  797. * @dev: Pointer to our struct udevice.
  798. *
  799. * Called at initialization to parse the values of Tap Delays.
  800. */
  801. static void arasan_dt_parse_clk_phases(struct udevice *dev)
  802. {
  803. struct arasan_sdhci_priv *priv = dev_get_priv(dev);
  804. struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
  805. int i;
  806. if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) &&
  807. device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
  808. for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
  809. clk_data->clk_phase_in[i] = zynqmp_iclk_phases[i];
  810. clk_data->clk_phase_out[i] = zynqmp_oclk_phases[i];
  811. }
  812. if (priv->bank == MMC_BANK2) {
  813. clk_data->clk_phase_out[MMC_TIMING_UHS_SDR104] = 90;
  814. clk_data->clk_phase_out[MMC_TIMING_MMC_HS200] = 90;
  815. }
  816. }
  817. if (IS_ENABLED(CONFIG_ARCH_VERSAL) &&
  818. device_is_compatible(dev, "xlnx,versal-8.9a")) {
  819. for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
  820. clk_data->clk_phase_in[i] = versal_iclk_phases[i];
  821. clk_data->clk_phase_out[i] = versal_oclk_phases[i];
  822. }
  823. }
  824. if (IS_ENABLED(CONFIG_ARCH_VERSAL_NET) &&
  825. device_is_compatible(dev, "xlnx,versal-net-emmc")) {
  826. for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
  827. clk_data->clk_phase_in[i] = versal_net_emmc_iclk_phases[i];
  828. clk_data->clk_phase_out[i] = versal_net_emmc_oclk_phases[i];
  829. }
  830. }
  831. arasan_dt_read_clk_phase(dev, MMC_TIMING_LEGACY,
  832. "clk-phase-legacy");
  833. arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS,
  834. "clk-phase-mmc-hs");
  835. arasan_dt_read_clk_phase(dev, MMC_TIMING_SD_HS,
  836. "clk-phase-sd-hs");
  837. arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR12,
  838. "clk-phase-uhs-sdr12");
  839. arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR25,
  840. "clk-phase-uhs-sdr25");
  841. arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR50,
  842. "clk-phase-uhs-sdr50");
  843. arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR104,
  844. "clk-phase-uhs-sdr104");
  845. arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_DDR50,
  846. "clk-phase-uhs-ddr50");
  847. arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_DDR52,
  848. "clk-phase-mmc-ddr52");
  849. arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS200,
  850. "clk-phase-mmc-hs200");
  851. arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS400,
  852. "clk-phase-mmc-hs400");
  853. }
  854. static const struct sdhci_ops arasan_ops = {
  855. .platform_execute_tuning = &arasan_sdhci_execute_tuning,
  856. .set_delay = &arasan_sdhci_set_tapdelay,
  857. .set_control_reg = &sdhci_set_control_reg,
  858. #if defined(CONFIG_ARCH_VERSAL_NET)
  859. .config_dll = &arasan_sdhci_config_dll,
  860. #endif
  861. };
  862. #endif
  863. #if defined(CONFIG_ARCH_ZYNQMP) && defined(CONFIG_ZYNQMP_FIRMWARE)
  864. static int sdhci_zynqmp_set_dynamic_config(struct arasan_sdhci_priv *priv,
  865. struct udevice *dev)
  866. {
  867. int ret;
  868. struct clk clk;
  869. unsigned long clock, mhz;
  870. ret = xilinx_pm_request(PM_REQUEST_NODE, priv->node_id,
  871. ZYNQMP_PM_CAPABILITY_ACCESS, ZYNQMP_PM_MAX_QOS,
  872. ZYNQMP_PM_REQUEST_ACK_NO, NULL);
  873. if (ret) {
  874. dev_err(dev, "Request node failed for %d\n", priv->node_id);
  875. return ret;
  876. }
  877. ret = reset_get_bulk(dev, &priv->resets);
  878. if (ret == -ENOTSUPP || ret == -ENOENT) {
  879. dev_err(dev, "Reset not found\n");
  880. return 0;
  881. } else if (ret) {
  882. dev_err(dev, "Reset failed\n");
  883. return ret;
  884. }
  885. ret = reset_assert_bulk(&priv->resets);
  886. if (ret) {
  887. dev_err(dev, "Reset assert failed\n");
  888. return ret;
  889. }
  890. ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_FIXED, 0);
  891. if (ret) {
  892. dev_err(dev, "SD_CONFIG_FIXED failed\n");
  893. return ret;
  894. }
  895. ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_EMMC_SEL,
  896. dev_read_bool(dev, "non-removable"));
  897. if (ret) {
  898. dev_err(dev, "SD_CONFIG_EMMC_SEL failed\n");
  899. return ret;
  900. }
  901. ret = clk_get_by_index(dev, 0, &clk);
  902. if (ret < 0) {
  903. dev_err(dev, "failed to get clock\n");
  904. return ret;
  905. }
  906. clock = clk_get_rate(&clk);
  907. if (IS_ERR_VALUE(clock)) {
  908. dev_err(dev, "failed to get rate\n");
  909. return clock;
  910. }
  911. mhz = DIV64_U64_ROUND_UP(clock, 1000000);
  912. if (mhz > 100 && mhz <= 200)
  913. mhz = 200;
  914. else if (mhz > 50 && mhz <= 100)
  915. mhz = 100;
  916. else if (mhz > 25 && mhz <= 50)
  917. mhz = 50;
  918. else
  919. mhz = 25;
  920. ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_BASECLK, mhz);
  921. if (ret) {
  922. dev_err(dev, "SD_CONFIG_BASECLK failed\n");
  923. return ret;
  924. }
  925. ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_8BIT,
  926. (dev_read_u32_default(dev, "bus-width", 1) == 8));
  927. if (ret) {
  928. dev_err(dev, "SD_CONFIG_8BIT failed\n");
  929. return ret;
  930. }
  931. ret = reset_deassert_bulk(&priv->resets);
  932. if (ret) {
  933. dev_err(dev, "Reset release failed\n");
  934. return ret;
  935. }
  936. return 0;
  937. }
  938. #endif
  939. static int arasan_sdhci_probe(struct udevice *dev)
  940. {
  941. struct arasan_sdhci_plat *plat = dev_get_plat(dev);
  942. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  943. struct arasan_sdhci_priv *priv = dev_get_priv(dev);
  944. struct sdhci_host *host;
  945. struct clk clk;
  946. unsigned long clock;
  947. int ret;
  948. host = priv->host;
  949. #if defined(CONFIG_ARCH_ZYNQMP) && defined(CONFIG_ZYNQMP_FIRMWARE)
  950. if (device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
  951. ret = zynqmp_pm_is_function_supported(PM_IOCTL,
  952. IOCTL_SET_SD_CONFIG);
  953. if (!ret) {
  954. ret = sdhci_zynqmp_set_dynamic_config(priv, dev);
  955. if (ret)
  956. return ret;
  957. }
  958. }
  959. #endif
  960. if (device_is_compatible(dev, "xlnx,versal-net-emmc"))
  961. priv->internal_phy_reg = true;
  962. ret = clk_get_by_index(dev, 0, &clk);
  963. if (ret < 0) {
  964. dev_err(dev, "failed to get clock\n");
  965. return ret;
  966. }
  967. clock = clk_get_rate(&clk);
  968. if (IS_ERR_VALUE(clock)) {
  969. dev_err(dev, "failed to get rate\n");
  970. return clock;
  971. }
  972. dev_dbg(dev, "%s: CLK %ld\n", __func__, clock);
  973. ret = clk_enable(&clk);
  974. if (ret) {
  975. dev_err(dev, "failed to enable clock\n");
  976. return ret;
  977. }
  978. host->quirks = SDHCI_QUIRK_WAIT_SEND_CMD |
  979. SDHCI_QUIRK_BROKEN_R1B;
  980. #ifdef CONFIG_ZYNQ_HISPD_BROKEN
  981. host->quirks |= SDHCI_QUIRK_BROKEN_HISPD_MODE;
  982. #endif
  983. if (priv->no_1p8)
  984. host->quirks |= SDHCI_QUIRK_NO_1_8_V;
  985. if (CONFIG_IS_ENABLED(ARCH_VERSAL_NET) &&
  986. device_is_compatible(dev, "xlnx,versal-net-emmc"))
  987. host->quirks |= SDHCI_QUIRK_CAPS_BIT63_FOR_HS400;
  988. plat->cfg.f_max = CONFIG_ZYNQ_SDHCI_MAX_FREQ;
  989. ret = mmc_of_parse(dev, &plat->cfg);
  990. if (ret)
  991. return ret;
  992. host->max_clk = clock;
  993. host->mmc = &plat->mmc;
  994. host->mmc->dev = dev;
  995. host->mmc->priv = host;
  996. ret = sdhci_setup_cfg(&plat->cfg, host, plat->cfg.f_max,
  997. CONFIG_ZYNQ_SDHCI_MIN_FREQ);
  998. if (ret)
  999. return ret;
  1000. upriv->mmc = host->mmc;
  1001. /*
  1002. * WORKAROUND: Versal platforms have an issue with card detect state.
  1003. * Due to this, host controller is switching off voltage to sd card
  1004. * causing sd card timeout error. Workaround this by adding a wait for
  1005. * 1000msec till the card detect state gets stable.
  1006. */
  1007. if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) || IS_ENABLED(CONFIG_ARCH_VERSAL)) {
  1008. u32 timeout = 1000000;
  1009. while (((sdhci_readl(host, SDHCI_PRESENT_STATE) &
  1010. SDHCI_CARD_STATE_STABLE) == 0) && timeout) {
  1011. udelay(1);
  1012. timeout--;
  1013. }
  1014. if (!timeout) {
  1015. dev_err(dev, "Sdhci card detect state not stable\n");
  1016. return -ETIMEDOUT;
  1017. }
  1018. }
  1019. return sdhci_probe(dev);
  1020. }
  1021. static int arasan_sdhci_of_to_plat(struct udevice *dev)
  1022. {
  1023. struct arasan_sdhci_priv *priv = dev_get_priv(dev);
  1024. u32 pm_info[2];
  1025. priv->host = calloc(1, sizeof(struct sdhci_host));
  1026. if (!priv->host)
  1027. return -1;
  1028. priv->host->name = dev->name;
  1029. #if defined(CONFIG_ARCH_ZYNQMP) || defined(CONFIG_ARCH_VERSAL) || defined(CONFIG_ARCH_VERSAL_NET)
  1030. priv->host->ops = &arasan_ops;
  1031. arasan_dt_parse_clk_phases(dev);
  1032. #endif
  1033. priv->host->ioaddr = dev_read_addr_ptr(dev);
  1034. if (!priv->host->ioaddr)
  1035. return -EINVAL;
  1036. priv->bank = dev_read_u32_default(dev, "xlnx,mio-bank", 0);
  1037. priv->no_1p8 = dev_read_bool(dev, "no-1-8-v");
  1038. priv->node_id = 0;
  1039. if (!dev_read_u32_array(dev, "power-domains", pm_info, ARRAY_SIZE(pm_info)))
  1040. priv->node_id = pm_info[1];
  1041. return 0;
  1042. }
  1043. static int arasan_sdhci_bind(struct udevice *dev)
  1044. {
  1045. struct arasan_sdhci_plat *plat = dev_get_plat(dev);
  1046. return sdhci_bind(dev, &plat->mmc, &plat->cfg);
  1047. }
  1048. static const struct udevice_id arasan_sdhci_ids[] = {
  1049. { .compatible = "arasan,sdhci-8.9a" },
  1050. { .compatible = "xlnx,versal-net-emmc" },
  1051. { }
  1052. };
  1053. U_BOOT_DRIVER(arasan_sdhci_drv) = {
  1054. .name = "arasan_sdhci",
  1055. .id = UCLASS_MMC,
  1056. .of_match = arasan_sdhci_ids,
  1057. .of_to_plat = arasan_sdhci_of_to_plat,
  1058. .ops = &sdhci_ops,
  1059. .bind = arasan_sdhci_bind,
  1060. .probe = arasan_sdhci_probe,
  1061. .priv_auto = sizeof(struct arasan_sdhci_priv),
  1062. .plat_auto = sizeof(struct arasan_sdhci_plat),
  1063. };