phy-rockchip-inno-dsidphy.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
  4. *
  5. * Author: Wyon Bi <bivvy.bi@rock-chips.com>
  6. */
  7. #include <dm.h>
  8. #include <dm/device_compat.h>
  9. #include <dm/devres.h>
  10. #include <div64.h>
  11. #include <generic-phy.h>
  12. #include <linux/kernel.h>
  13. #include <linux/iopoll.h>
  14. #include <linux/clk-provider.h>
  15. #include <linux/delay.h>
  16. #include <linux/math64.h>
  17. #include <phy-mipi-dphy.h>
  18. #include <reset.h>
  19. #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
  20. /*
  21. * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
  22. * is the first address, the other from the bit4 to bit0 is the second address.
  23. * when you configure the registers, you must set both of them. The Clock Lane
  24. * and Data Lane use the same registers with the same second address, but the
  25. * first address is different.
  26. */
  27. #define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
  28. #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
  29. #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
  30. SECOND_ADDRESS(second))
  31. /* Analog Register Part: reg00 */
  32. #define BANDGAP_POWER_MASK BIT(7)
  33. #define BANDGAP_POWER_DOWN BIT(7)
  34. #define BANDGAP_POWER_ON 0
  35. #define LANE_EN_MASK GENMASK(6, 2)
  36. #define LANE_EN_CK BIT(6)
  37. #define LANE_EN_3 BIT(5)
  38. #define LANE_EN_2 BIT(4)
  39. #define LANE_EN_1 BIT(3)
  40. #define LANE_EN_0 BIT(2)
  41. #define POWER_WORK_MASK GENMASK(1, 0)
  42. #define POWER_WORK_ENABLE UPDATE(1, 1, 0)
  43. #define POWER_WORK_DISABLE UPDATE(2, 1, 0)
  44. /* Analog Register Part: reg01 */
  45. #define REG_SYNCRST_MASK BIT(2)
  46. #define REG_SYNCRST_RESET BIT(2)
  47. #define REG_SYNCRST_NORMAL 0
  48. #define REG_LDOPD_MASK BIT(1)
  49. #define REG_LDOPD_POWER_DOWN BIT(1)
  50. #define REG_LDOPD_POWER_ON 0
  51. #define REG_PLLPD_MASK BIT(0)
  52. #define REG_PLLPD_POWER_DOWN BIT(0)
  53. #define REG_PLLPD_POWER_ON 0
  54. /* Analog Register Part: reg03 */
  55. #define REG_FBDIV_HI_MASK BIT(5)
  56. #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
  57. #define REG_PREDIV_MASK GENMASK(4, 0)
  58. #define REG_PREDIV(x) UPDATE(x, 4, 0)
  59. /* Analog Register Part: reg04 */
  60. #define REG_FBDIV_LO_MASK GENMASK(7, 0)
  61. #define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
  62. /* Analog Register Part: reg05 */
  63. #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
  64. #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
  65. #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
  66. #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
  67. /* Analog Register Part: reg06 */
  68. #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
  69. #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
  70. #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
  71. #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
  72. /* Analog Register Part: reg07 */
  73. #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
  74. #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
  75. #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
  76. #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
  77. /* Analog Register Part: reg08 */
  78. #define PLL_POST_DIV_ENABLE_MASK BIT(5)
  79. #define PLL_POST_DIV_ENABLE BIT(5)
  80. #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
  81. #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
  82. #define SAMPLE_CLOCK_DIRECTION_FORWARD 0
  83. #define LOWFRE_EN_MASK BIT(5)
  84. #define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
  85. #define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
  86. /* Analog Register Part: reg0b */
  87. #define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
  88. #define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
  89. #define VOD_MIN_RANGE 0x1
  90. #define VOD_MID_RANGE 0x3
  91. #define VOD_BIG_RANGE 0x7
  92. #define VOD_MAX_RANGE 0xf
  93. /* Analog Register Part: reg1E */
  94. #define PLL_MODE_SEL_MASK GENMASK(6, 5)
  95. #define PLL_MODE_SEL_LVDS_MODE 0
  96. #define PLL_MODE_SEL_MIPI_MODE BIT(5)
  97. /* Digital Register Part: reg00 */
  98. #define REG_DIG_RSTN_MASK BIT(0)
  99. #define REG_DIG_RSTN_NORMAL BIT(0)
  100. #define REG_DIG_RSTN_RESET 0
  101. /* Digital Register Part: reg01 */
  102. #define INVERT_TXCLKESC_MASK BIT(1)
  103. #define INVERT_TXCLKESC_ENABLE BIT(1)
  104. #define INVERT_TXCLKESC_DISABLE 0
  105. #define INVERT_TXBYTECLKHS_MASK BIT(0)
  106. #define INVERT_TXBYTECLKHS_ENABLE BIT(0)
  107. #define INVERT_TXBYTECLKHS_DISABLE 0
  108. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
  109. #define T_LPX_CNT_MASK GENMASK(5, 0)
  110. #define T_LPX_CNT(x) UPDATE(x, 5, 0)
  111. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
  112. #define T_HS_ZERO_CNT_HI_MASK BIT(7)
  113. #define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
  114. #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
  115. #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
  116. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
  117. #define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
  118. #define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
  119. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
  120. #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
  121. #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
  122. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
  123. #define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
  124. #define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
  125. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
  126. #define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
  127. #define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
  128. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
  129. #define LPDT_TX_PPI_SYNC_MASK BIT(2)
  130. #define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
  131. #define LPDT_TX_PPI_SYNC_DISABLE 0
  132. #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
  133. #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
  134. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
  135. #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
  136. #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
  137. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
  138. #define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
  139. #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
  140. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
  141. #define T_CLK_POST_CNT_HI_MASK GENMASK(7, 6)
  142. #define T_CLK_POST_CNT_HI(x) UPDATE(x, 7, 6)
  143. #define T_TA_GO_CNT_MASK GENMASK(5, 0)
  144. #define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
  145. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
  146. #define T_HS_EXIT_CNT_HI_MASK BIT(6)
  147. #define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
  148. #define T_TA_SURE_CNT_MASK GENMASK(5, 0)
  149. #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
  150. /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
  151. #define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
  152. #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
  153. /* LVDS Register Part: reg00 */
  154. #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
  155. #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
  156. #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
  157. /* LVDS Register Part: reg01 */
  158. #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
  159. #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
  160. #define LVDS_DIGITAL_INTERNAL_DISABLE 0
  161. /* LVDS Register Part: reg03 */
  162. #define MODE_ENABLE_MASK GENMASK(2, 0)
  163. #define TTL_MODE_ENABLE BIT(2)
  164. #define LVDS_MODE_ENABLE BIT(1)
  165. #define MIPI_MODE_ENABLE BIT(0)
  166. /* LVDS Register Part: reg0b */
  167. #define LVDS_LANE_EN_MASK GENMASK(7, 3)
  168. #define LVDS_DATA_LANE0_EN BIT(7)
  169. #define LVDS_DATA_LANE1_EN BIT(6)
  170. #define LVDS_DATA_LANE2_EN BIT(5)
  171. #define LVDS_DATA_LANE3_EN BIT(4)
  172. #define LVDS_CLK_LANE_EN BIT(3)
  173. #define LVDS_PLL_POWER_MASK BIT(2)
  174. #define LVDS_PLL_POWER_OFF BIT(2)
  175. #define LVDS_PLL_POWER_ON 0
  176. #define LVDS_BANDGAP_POWER_MASK BIT(0)
  177. #define LVDS_BANDGAP_POWER_DOWN BIT(0)
  178. #define LVDS_BANDGAP_POWER_ON 0
  179. #define DSI_PHY_RSTZ 0xa0
  180. #define PHY_ENABLECLK BIT(2)
  181. #define DSI_PHY_STATUS 0xb0
  182. #define PHY_LOCK BIT(0)
  183. #define PSEC_PER_SEC 1000000000000LL
  184. #define msleep(a) udelay(a * 1000)
  185. enum phy_max_rate {
  186. MAX_1GHZ,
  187. MAX_2_5GHZ,
  188. };
  189. struct clk_hw {
  190. struct clk_core *core;
  191. struct clk *clk;
  192. const struct clk_init_data *init;
  193. };
  194. struct inno_video_phy_plat_data {
  195. const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
  196. const unsigned int num_timings;
  197. enum phy_max_rate max_rate;
  198. };
  199. struct inno_dsidphy {
  200. struct udevice *dev;
  201. struct clk *ref_clk;
  202. struct clk *pclk_phy;
  203. struct clk *pclk_host;
  204. const struct inno_video_phy_plat_data *pdata;
  205. void __iomem *phy_base;
  206. void __iomem *host_base;
  207. struct reset_ctl *rst;
  208. struct phy_configure_opts_mipi_dphy dphy_cfg;
  209. struct clk *pll_clk;
  210. struct {
  211. struct clk_hw hw;
  212. u8 prediv;
  213. u16 fbdiv;
  214. unsigned long rate;
  215. } pll;
  216. };
  217. enum {
  218. REGISTER_PART_ANALOG,
  219. REGISTER_PART_DIGITAL,
  220. REGISTER_PART_CLOCK_LANE,
  221. REGISTER_PART_DATA0_LANE,
  222. REGISTER_PART_DATA1_LANE,
  223. REGISTER_PART_DATA2_LANE,
  224. REGISTER_PART_DATA3_LANE,
  225. REGISTER_PART_LVDS,
  226. };
  227. struct inno_mipi_dphy_timing {
  228. unsigned long rate;
  229. u8 lpx;
  230. u8 hs_prepare;
  231. u8 clk_lane_hs_zero;
  232. u8 data_lane_hs_zero;
  233. u8 hs_trail;
  234. };
  235. static const
  236. struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
  237. { 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
  238. { 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
  239. { 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
  240. { 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
  241. { 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
  242. { 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
  243. { 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
  244. { 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
  245. { 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
  246. { 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
  247. {1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
  248. };
  249. static const
  250. struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
  251. { 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
  252. { 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
  253. { 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
  254. { 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
  255. { 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
  256. { 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
  257. { 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
  258. { 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
  259. { 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
  260. { 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
  261. {1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
  262. {1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
  263. {1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
  264. {1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
  265. {1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
  266. {2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
  267. {2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
  268. {2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
  269. {2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
  270. };
  271. static void phy_update_bits(struct inno_dsidphy *inno,
  272. u8 first, u8 second, u8 mask, u8 val)
  273. {
  274. u32 reg = PHY_REG(first, second) << 2;
  275. unsigned int tmp, orig;
  276. orig = readl(inno->phy_base + reg);
  277. tmp = orig & ~mask;
  278. tmp |= val & mask;
  279. writel(tmp, inno->phy_base + reg);
  280. }
  281. static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
  282. unsigned long rate)
  283. {
  284. unsigned long prate;
  285. unsigned long best_freq = 0;
  286. unsigned long fref, fout;
  287. u8 min_prediv, max_prediv;
  288. u8 _prediv, best_prediv = 1;
  289. u16 _fbdiv, best_fbdiv = 1;
  290. u32 min_delta = UINT_MAX;
  291. /*
  292. * Upstream Linux tries to read the ref_clk, while the BSP
  293. * U-Boot hard-codes this as 24MHz. Try the first, and if that
  294. * fails do the second.
  295. */
  296. prate = clk_get_rate(inno->ref_clk);
  297. if (IS_ERR_VALUE(prate))
  298. prate = 24000000;
  299. /*
  300. * The PLL output frequency can be calculated using a simple formula:
  301. * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
  302. * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
  303. */
  304. fref = prate / 2;
  305. if (rate > 1000000000UL)
  306. fout = 1000000000UL;
  307. else
  308. fout = rate;
  309. /* 5Mhz < Fref / prediv < 40MHz */
  310. min_prediv = DIV_ROUND_UP(fref, 40000000);
  311. max_prediv = fref / 5000000;
  312. for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
  313. u64 tmp;
  314. u32 delta;
  315. tmp = (u64)fout * _prediv;
  316. do_div(tmp, fref);
  317. _fbdiv = tmp;
  318. /*
  319. * The possible settings of feedback divider are
  320. * 12, 13, 14, 16, ~ 511
  321. */
  322. if (_fbdiv == 15)
  323. continue;
  324. if (_fbdiv < 12 || _fbdiv > 511)
  325. continue;
  326. tmp = (u64)_fbdiv * fref;
  327. do_div(tmp, _prediv);
  328. delta = abs(fout - tmp);
  329. if (!delta) {
  330. best_prediv = _prediv;
  331. best_fbdiv = _fbdiv;
  332. best_freq = tmp;
  333. break;
  334. } else if (delta < min_delta) {
  335. best_prediv = _prediv;
  336. best_fbdiv = _fbdiv;
  337. best_freq = tmp;
  338. min_delta = delta;
  339. }
  340. }
  341. if (best_freq) {
  342. inno->pll.prediv = best_prediv;
  343. inno->pll.fbdiv = best_fbdiv;
  344. inno->pll.rate = best_freq;
  345. }
  346. return best_freq;
  347. }
  348. static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
  349. {
  350. struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
  351. const struct inno_mipi_dphy_timing *timings;
  352. u32 t_txbyteclkhs, t_txclkesc;
  353. u32 txbyteclkhs, txclkesc, esc_clk_div;
  354. u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
  355. u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
  356. unsigned int i;
  357. timings = inno->pdata->inno_mipi_dphy_timing_table;
  358. inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
  359. /* Select MIPI mode */
  360. phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
  361. MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
  362. /* Configure PLL */
  363. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
  364. REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
  365. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
  366. REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
  367. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
  368. REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
  369. if (inno->pdata->max_rate == MAX_2_5GHZ) {
  370. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
  371. PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
  372. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
  373. CLOCK_LANE_VOD_RANGE_SET_MASK,
  374. CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
  375. }
  376. /* Enable PLL and LDO */
  377. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  378. REG_LDOPD_MASK | REG_PLLPD_MASK,
  379. REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
  380. /* Reset analog */
  381. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  382. REG_SYNCRST_MASK, REG_SYNCRST_RESET);
  383. udelay(1);
  384. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  385. REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
  386. /* Reset digital */
  387. phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
  388. REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
  389. udelay(1);
  390. phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
  391. REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
  392. txbyteclkhs = inno->pll.rate / 8;
  393. t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
  394. esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
  395. txclkesc = txbyteclkhs / esc_clk_div;
  396. t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
  397. /*
  398. * The value of counter for HS Ths-exit
  399. * Ths-exit = Tpin_txbyteclkhs * value
  400. */
  401. hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
  402. /*
  403. * The value of counter for HS Tclk-post
  404. * Tclk-post = Tpin_txbyteclkhs * value
  405. */
  406. clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
  407. /*
  408. * The value of counter for HS Tclk-pre
  409. * Tclk-pre = Tpin_txbyteclkhs * value
  410. */
  411. clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
  412. /*
  413. * The value of counter for HS Tta-go
  414. * Tta-go for turnaround
  415. * Tta-go = Ttxclkesc * value
  416. */
  417. ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
  418. /*
  419. * The value of counter for HS Tta-sure
  420. * Tta-sure for turnaround
  421. * Tta-sure = Ttxclkesc * value
  422. */
  423. ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
  424. /*
  425. * The value of counter for HS Tta-wait
  426. * Tta-wait for turnaround
  427. * Tta-wait = Ttxclkesc * value
  428. */
  429. ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
  430. for (i = 0; i < inno->pdata->num_timings; i++)
  431. if (inno->pll.rate <= timings[i].rate)
  432. break;
  433. if (i == inno->pdata->num_timings)
  434. --i;
  435. /*
  436. * The value of counter for HS Tlpx Time
  437. * Tlpx = Tpin_txbyteclkhs * (2 + value)
  438. */
  439. if (inno->pdata->max_rate == MAX_1GHZ) {
  440. lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
  441. if (lpx >= 2)
  442. lpx -= 2;
  443. } else {
  444. lpx = timings[i].lpx;
  445. }
  446. hs_prepare = timings[i].hs_prepare;
  447. hs_trail = timings[i].hs_trail;
  448. clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
  449. data_lane_hs_zero = timings[i].data_lane_hs_zero;
  450. wakeup = 0x3ff;
  451. for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
  452. if (i == REGISTER_PART_CLOCK_LANE)
  453. hs_zero = clk_lane_hs_zero;
  454. else
  455. hs_zero = data_lane_hs_zero;
  456. phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
  457. T_LPX_CNT(lpx));
  458. phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
  459. T_HS_PREPARE_CNT(hs_prepare));
  460. if (inno->pdata->max_rate == MAX_2_5GHZ)
  461. phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
  462. T_HS_ZERO_CNT_HI(hs_zero >> 6));
  463. phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
  464. T_HS_ZERO_CNT_LO(hs_zero));
  465. phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
  466. T_HS_TRAIL_CNT(hs_trail));
  467. if (inno->pdata->max_rate == MAX_2_5GHZ)
  468. phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
  469. T_HS_EXIT_CNT_HI(hs_exit >> 5));
  470. phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
  471. T_HS_EXIT_CNT_LO(hs_exit));
  472. if (inno->pdata->max_rate == MAX_2_5GHZ)
  473. phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
  474. T_CLK_POST_CNT_HI(clk_post >> 4));
  475. phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
  476. T_CLK_POST_CNT_LO(clk_post));
  477. phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
  478. T_CLK_PRE_CNT(clk_pre));
  479. phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
  480. T_WAKEUP_CNT_HI(wakeup >> 8));
  481. phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
  482. T_WAKEUP_CNT_LO(wakeup));
  483. phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
  484. T_TA_GO_CNT(ta_go));
  485. phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
  486. T_TA_SURE_CNT(ta_sure));
  487. phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
  488. T_TA_WAIT_CNT(ta_wait));
  489. }
  490. /* Enable all lanes on analog part */
  491. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  492. LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
  493. LANE_EN_1 | LANE_EN_0);
  494. }
  495. static int inno_dsidphy_power_on(struct phy *phy)
  496. {
  497. struct inno_dsidphy *inno = dev_get_priv(phy->dev);
  498. clk_prepare_enable(inno->pclk_phy);
  499. clk_prepare_enable(inno->ref_clk);
  500. /* Bandgap power on */
  501. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  502. BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
  503. /* Enable power work */
  504. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  505. POWER_WORK_MASK, POWER_WORK_ENABLE);
  506. inno_dsidphy_mipi_mode_enable(inno);
  507. return 0;
  508. }
  509. static int inno_dsidphy_power_off(struct phy *phy)
  510. {
  511. struct inno_dsidphy *inno = dev_get_priv(phy->dev);
  512. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
  513. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
  514. REG_LDOPD_MASK | REG_PLLPD_MASK,
  515. REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
  516. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  517. POWER_WORK_MASK, POWER_WORK_DISABLE);
  518. phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
  519. BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
  520. phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
  521. phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
  522. LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
  523. LVDS_DIGITAL_INTERNAL_DISABLE);
  524. phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
  525. LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
  526. LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
  527. clk_disable_unprepare(inno->ref_clk);
  528. clk_disable_unprepare(inno->pclk_phy);
  529. return 0;
  530. }
  531. static int inno_dsidphy_configure(struct phy *phy, void *params)
  532. {
  533. struct inno_dsidphy *inno = dev_get_priv(phy->dev);
  534. struct phy_configure_opts_mipi_dphy *config = params;
  535. int ret;
  536. ret = phy_mipi_dphy_config_validate(config);
  537. if (ret)
  538. return ret;
  539. memcpy(&inno->dphy_cfg, config, sizeof(inno->dphy_cfg));
  540. return 0;
  541. }
  542. static const struct phy_ops inno_dsidphy_ops = {
  543. .configure = inno_dsidphy_configure,
  544. .power_on = inno_dsidphy_power_on,
  545. .power_off = inno_dsidphy_power_off,
  546. };
  547. static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
  548. .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
  549. .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
  550. .max_rate = MAX_1GHZ,
  551. };
  552. static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
  553. .inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
  554. .num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
  555. .max_rate = MAX_2_5GHZ,
  556. };
  557. static int inno_dsidphy_probe(struct udevice *dev)
  558. {
  559. struct inno_dsidphy *inno = dev_get_priv(dev);
  560. int ret;
  561. inno->dev = dev;
  562. inno->pdata = (const struct inno_video_phy_plat_data *)dev_get_driver_data(dev);
  563. inno->phy_base = dev_read_addr_ptr(dev);
  564. if (IS_ERR(inno->phy_base))
  565. return PTR_ERR(inno->phy_base);
  566. inno->ref_clk = devm_clk_get(dev, "ref");
  567. if (IS_ERR(inno->ref_clk)) {
  568. ret = PTR_ERR(inno->ref_clk);
  569. dev_err(dev, "failed to get ref clock: %d\n", ret);
  570. return ret;
  571. }
  572. inno->pclk_phy = devm_clk_get(dev, "pclk");
  573. if (IS_ERR(inno->pclk_phy)) {
  574. ret = PTR_ERR(inno->pclk_phy);
  575. dev_err(dev, "failed to get phy pclk: %d\n", ret);
  576. return ret;
  577. }
  578. inno->rst = devm_reset_control_get(dev, "apb");
  579. if (IS_ERR(inno->rst)) {
  580. ret = PTR_ERR(inno->rst);
  581. dev_err(dev, "failed to get system reset control: %d\n", ret);
  582. return ret;
  583. }
  584. return 0;
  585. }
  586. static const struct udevice_id inno_dsidphy_of_match[] = {
  587. {
  588. .compatible = "rockchip,px30-dsi-dphy",
  589. .data = (long)&max_1ghz_video_phy_plat_data,
  590. }, {
  591. .compatible = "rockchip,rk3128-dsi-dphy",
  592. .data = (long)&max_1ghz_video_phy_plat_data,
  593. }, {
  594. .compatible = "rockchip,rk3368-dsi-dphy",
  595. .data = (long)&max_1ghz_video_phy_plat_data,
  596. }, {
  597. .compatible = "rockchip,rk3568-dsi-dphy",
  598. .data = (long)&max_2_5ghz_video_phy_plat_data,
  599. },
  600. {}
  601. };
  602. U_BOOT_DRIVER(rockchip_inno_dsidphy) = {
  603. .name = "rockchip-inno-dsidphy",
  604. .id = UCLASS_PHY,
  605. .of_match = inno_dsidphy_of_match,
  606. .probe = inno_dsidphy_probe,
  607. .ops = &inno_dsidphy_ops,
  608. .priv_auto = sizeof(struct inno_dsidphy),
  609. };