ipu_rproc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * IPU remoteproc driver for various SoCs
  4. *
  5. * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
  6. * Angela Stegmaier <angelabaker@ti.com>
  7. * Venkateswara Rao Mandela <venkat.mandela@ti.com>
  8. * Keerthy <j-keerthy@ti.com>
  9. */
  10. #include <common.h>
  11. #include <hang.h>
  12. #include <cpu_func.h>
  13. #include <dm.h>
  14. #include <dm/device_compat.h>
  15. #include <elf.h>
  16. #include <env.h>
  17. #include <dm/of_access.h>
  18. #include <fs_loader.h>
  19. #include <remoteproc.h>
  20. #include <errno.h>
  21. #include <clk.h>
  22. #include <reset.h>
  23. #include <regmap.h>
  24. #include <syscon.h>
  25. #include <asm/io.h>
  26. #include <misc.h>
  27. #include <power-domain.h>
  28. #include <timer.h>
  29. #include <fs.h>
  30. #include <spl.h>
  31. #include <timer.h>
  32. #include <reset.h>
  33. #include <linux/bitmap.h>
  34. #define IPU1_LOAD_ADDR (0xa17ff000)
  35. #define MAX_REMOTECORE_BIN_SIZE (8 * 0x100000)
  36. enum ipu_num {
  37. IPU1 = 0,
  38. IPU2,
  39. RPROC_END_ENUMS,
  40. };
  41. #define IPU2_LOAD_ADDR (IPU1_LOAD_ADDR + MAX_REMOTECORE_BIN_SIZE)
  42. #define PAGE_SHIFT 12
  43. #define PAGESIZE_1M 0x0
  44. #define PAGESIZE_64K 0x1
  45. #define PAGESIZE_4K 0x2
  46. #define PAGESIZE_16M 0x3
  47. #define LE 0
  48. #define BE 1
  49. #define ELEMSIZE_8 0x0
  50. #define ELEMSIZE_16 0x1
  51. #define ELEMSIZE_32 0x2
  52. #define MIXED_TLB 0x0
  53. #define MIXED_CPU 0x1
  54. #define PGT_SMALLPAGE_SIZE 0x00001000
  55. #define PGT_LARGEPAGE_SIZE 0x00010000
  56. #define PGT_SECTION_SIZE 0x00100000
  57. #define PGT_SUPERSECTION_SIZE 0x01000000
  58. #define PGT_L1_DESC_PAGE 0x00001
  59. #define PGT_L1_DESC_SECTION 0x00002
  60. #define PGT_L1_DESC_SUPERSECTION 0x40002
  61. #define PGT_L1_DESC_PAGE_MASK 0xfffffC00
  62. #define PGT_L1_DESC_SECTION_MASK 0xfff00000
  63. #define PGT_L1_DESC_SUPERSECTION_MASK 0xff000000
  64. #define PGT_L1_DESC_SMALLPAGE_INDEX_SHIFT 12
  65. #define PGT_L1_DESC_LARGEPAGE_INDEX_SHIFT 16
  66. #define PGT_L1_DESC_SECTION_INDEX_SHIFT 20
  67. #define PGT_L1_DESC_SUPERSECTION_INDEX_SHIFT 24
  68. #define PGT_L2_DESC_SMALLPAGE 0x02
  69. #define PGT_L2_DESC_LARGEPAGE 0x01
  70. #define PGT_L2_DESC_SMALLPAGE_MASK 0xfffff000
  71. #define PGT_L2_DESC_LARGEPAGE_MASK 0xffff0000
  72. /*
  73. * The memory for the page tables (256 KB per IPU) is placed just before
  74. * the carveout memories for the remote processors. 16 KB of memory is
  75. * needed for the L1 page table (4096 entries * 4 bytes per 1 MB section).
  76. * Any smaller page (64 KB or 4 KB) entries are supported through L2 page
  77. * tables (1 KB per table). The remaining 240 KB can provide support for
  78. * 240 L2 page tables. Any remoteproc firmware image requiring more than
  79. * 240 L2 page table entries would need more memory to be reserved.
  80. */
  81. #define PAGE_TABLE_SIZE_L1 (0x00004000)
  82. #define PAGE_TABLE_SIZE_L2 (0x400)
  83. #define MAX_NUM_L2_PAGE_TABLES (240)
  84. #define PAGE_TABLE_SIZE_L2_TOTAL (MAX_NUM_L2_PAGE_TABLES * PAGE_TABLE_SIZE_L2)
  85. #define PAGE_TABLE_SIZE (PAGE_TABLE_SIZE_L1 + (PAGE_TABLE_SIZE_L2_TOTAL))
  86. /**
  87. * struct omap_rproc_mem - internal memory structure
  88. * @cpu_addr: MPU virtual address of the memory region
  89. * @bus_addr: bus address used to access the memory region
  90. * @dev_addr: device address of the memory region from DSP view
  91. * @size: size of the memory region
  92. */
  93. struct omap_rproc_mem {
  94. void __iomem *cpu_addr;
  95. phys_addr_t bus_addr;
  96. u32 dev_addr;
  97. size_t size;
  98. };
  99. struct ipu_privdata {
  100. struct omap_rproc_mem mem;
  101. struct list_head mappings;
  102. const char *fw_name;
  103. u32 bootaddr;
  104. int id;
  105. struct udevice *rdev;
  106. };
  107. typedef int (*handle_resource_t) (void *, int offset, int avail);
  108. unsigned int *page_table_l1 = (unsigned int *)0x0;
  109. unsigned int *page_table_l2 = (unsigned int *)0x0;
  110. /*
  111. * Set maximum carveout size to 96 MB
  112. */
  113. #define DRA7_RPROC_MAX_CO_SIZE (96 * 0x100000)
  114. /*
  115. * These global variables are used for deriving the MMU page tables. They
  116. * are initialized for each core with the appropriate values. The length
  117. * of the array mem_bitmap is set as per a 96 MB carveout which the
  118. * maximum set aside in the current memory map.
  119. */
  120. unsigned long mem_base;
  121. unsigned long mem_size;
  122. unsigned long
  123. mem_bitmap[BITS_TO_LONGS(DRA7_RPROC_MAX_CO_SIZE >> PAGE_SHIFT)];
  124. unsigned long mem_count;
  125. unsigned int pgtable_l2_map[MAX_NUM_L2_PAGE_TABLES];
  126. unsigned int pgtable_l2_cnt;
  127. void *ipu_alloc_mem(struct udevice *dev, unsigned long len, unsigned long align)
  128. {
  129. unsigned long mask;
  130. unsigned long pageno;
  131. int count;
  132. count = ((len + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1)) >> PAGE_SHIFT;
  133. mask = (1 << align) - 1;
  134. pageno =
  135. bitmap_find_next_zero_area(mem_bitmap, mem_count, 0, count, mask);
  136. debug("%s: count %d mask %#lx pageno %#lx\n", __func__, count, mask,
  137. pageno);
  138. if (pageno >= mem_count) {
  139. debug("%s: %s Error allocating memory; "
  140. "Please check carveout size\n", __FILE__, __func__);
  141. return NULL;
  142. }
  143. bitmap_set(mem_bitmap, pageno, count);
  144. return (void *)(mem_base + (pageno << PAGE_SHIFT));
  145. }
  146. int find_pagesz(unsigned int virt, unsigned int phys, unsigned int len)
  147. {
  148. int pg_sz_ind = -1;
  149. unsigned int min_align = __ffs(virt);
  150. if (min_align > __ffs(phys))
  151. min_align = __ffs(phys);
  152. if (min_align >= PGT_L1_DESC_SUPERSECTION_INDEX_SHIFT &&
  153. len >= 0x1000000) {
  154. pg_sz_ind = PAGESIZE_16M;
  155. goto ret_block;
  156. }
  157. if (min_align >= PGT_L1_DESC_SECTION_INDEX_SHIFT &&
  158. len >= 0x100000) {
  159. pg_sz_ind = PAGESIZE_1M;
  160. goto ret_block;
  161. }
  162. if (min_align >= PGT_L1_DESC_LARGEPAGE_INDEX_SHIFT &&
  163. len >= 0x10000) {
  164. pg_sz_ind = PAGESIZE_64K;
  165. goto ret_block;
  166. }
  167. if (min_align >= PGT_L1_DESC_SMALLPAGE_INDEX_SHIFT &&
  168. len >= 0x1000) {
  169. pg_sz_ind = PAGESIZE_4K;
  170. goto ret_block;
  171. }
  172. ret_block:
  173. return pg_sz_ind;
  174. }
  175. int get_l2_pg_tbl_addr(unsigned int virt, unsigned int *pg_tbl_addr)
  176. {
  177. int ret = -1;
  178. int i = 0;
  179. int match_found = 0;
  180. unsigned int tag = (virt & PGT_L1_DESC_SECTION_MASK);
  181. *pg_tbl_addr = 0;
  182. for (i = 0; (i < pgtable_l2_cnt) && (match_found == 0); i++) {
  183. if (tag == pgtable_l2_map[i]) {
  184. *pg_tbl_addr =
  185. ((unsigned int)page_table_l2) +
  186. (i * PAGE_TABLE_SIZE_L2);
  187. match_found = 1;
  188. ret = 0;
  189. }
  190. }
  191. if (match_found == 0 && i < MAX_NUM_L2_PAGE_TABLES) {
  192. pgtable_l2_map[i] = tag;
  193. pgtable_l2_cnt++;
  194. *pg_tbl_addr =
  195. ((unsigned int)page_table_l2) + (i * PAGE_TABLE_SIZE_L2);
  196. ret = 0;
  197. }
  198. return ret;
  199. }
  200. int
  201. config_l2_pagetable(unsigned int virt, unsigned int phys,
  202. unsigned int pg_sz, unsigned int pg_tbl_addr)
  203. {
  204. int ret = -1;
  205. unsigned int desc = 0;
  206. int i = 0;
  207. unsigned int *pg_tbl = (unsigned int *)pg_tbl_addr;
  208. /*
  209. * Pick bit 19:12 of the virtual address as index
  210. */
  211. unsigned int index = (virt & (~PGT_L1_DESC_SECTION_MASK)) >> PAGE_SHIFT;
  212. switch (pg_sz) {
  213. case PAGESIZE_64K:
  214. desc =
  215. (phys & PGT_L2_DESC_LARGEPAGE_MASK) | PGT_L2_DESC_LARGEPAGE;
  216. for (i = 0; i < 16; i++)
  217. pg_tbl[index + i] = desc;
  218. ret = 0;
  219. break;
  220. case PAGESIZE_4K:
  221. desc =
  222. (phys & PGT_L2_DESC_SMALLPAGE_MASK) | PGT_L2_DESC_SMALLPAGE;
  223. pg_tbl[index] = desc;
  224. ret = 0;
  225. break;
  226. default:
  227. break;
  228. }
  229. return ret;
  230. }
  231. unsigned int
  232. ipu_config_pagetable(struct udevice *dev, unsigned int virt, unsigned int phys,
  233. unsigned int len)
  234. {
  235. unsigned int index;
  236. unsigned int l = len;
  237. unsigned int desc;
  238. int pg_sz = 0;
  239. int i = 0, err = 0;
  240. unsigned int pg_tbl_l2_addr = 0;
  241. unsigned int tmp_pgsz;
  242. if ((len & 0x0FFF) != 0)
  243. return 0;
  244. while (l > 0) {
  245. pg_sz = find_pagesz(virt, phys, l);
  246. index = virt >> PGT_L1_DESC_SECTION_INDEX_SHIFT;
  247. switch (pg_sz) {
  248. /*
  249. * 16 MB super section
  250. */
  251. case PAGESIZE_16M:
  252. /*
  253. * Program the next 16 descriptors
  254. */
  255. desc =
  256. (phys & PGT_L1_DESC_SUPERSECTION_MASK) |
  257. PGT_L1_DESC_SUPERSECTION;
  258. for (i = 0; i < 16; i++)
  259. page_table_l1[index + i] = desc;
  260. l -= PGT_SUPERSECTION_SIZE;
  261. phys += PGT_SUPERSECTION_SIZE;
  262. virt += PGT_SUPERSECTION_SIZE;
  263. break;
  264. /*
  265. * 1 MB section
  266. */
  267. case PAGESIZE_1M:
  268. desc =
  269. (phys & PGT_L1_DESC_SECTION_MASK) |
  270. PGT_L1_DESC_SECTION;
  271. page_table_l1[index] = desc;
  272. l -= PGT_SECTION_SIZE;
  273. phys += PGT_SECTION_SIZE;
  274. virt += PGT_SECTION_SIZE;
  275. break;
  276. /*
  277. * 64 KB large page
  278. */
  279. case PAGESIZE_64K:
  280. case PAGESIZE_4K:
  281. if (pg_sz == PAGESIZE_64K)
  282. tmp_pgsz = 0x10000;
  283. else
  284. tmp_pgsz = 0x1000;
  285. err = get_l2_pg_tbl_addr(virt, &pg_tbl_l2_addr);
  286. if (err != 0) {
  287. debug
  288. ("Unable to get level 2 PT address\n");
  289. hang();
  290. }
  291. err =
  292. config_l2_pagetable(virt, phys, pg_sz,
  293. pg_tbl_l2_addr);
  294. desc =
  295. (pg_tbl_l2_addr & PGT_L1_DESC_PAGE_MASK) |
  296. PGT_L1_DESC_PAGE;
  297. page_table_l1[index] = desc;
  298. l -= tmp_pgsz;
  299. phys += tmp_pgsz;
  300. virt += tmp_pgsz;
  301. break;
  302. case -1:
  303. default:
  304. return 0;
  305. }
  306. }
  307. return len;
  308. }
  309. int da_to_pa(struct udevice *dev, int da)
  310. {
  311. struct rproc_mem_entry *maps = NULL;
  312. struct ipu_privdata *priv = dev_get_priv(dev);
  313. list_for_each_entry(maps, &priv->mappings, node) {
  314. if (da >= maps->da && da < (maps->da + maps->len))
  315. return maps->dma + (da - maps->da);
  316. }
  317. return 0;
  318. }
  319. u32 ipu_config_mmu(u32 core_id, struct rproc *cfg)
  320. {
  321. u32 i = 0;
  322. u32 reg = 0;
  323. /*
  324. * Clear the entire pagetable location before programming the
  325. * address into the MMU
  326. */
  327. memset((void *)cfg->page_table_addr, 0x00, PAGE_TABLE_SIZE);
  328. for (i = 0; i < cfg->num_iommus; i++) {
  329. u32 mmu_base = cfg->mmu_base_addr[i];
  330. __raw_writel((int)cfg->page_table_addr, mmu_base + 0x4c);
  331. reg = __raw_readl(mmu_base + 0x88);
  332. /*
  333. * enable bus-error back
  334. */
  335. __raw_writel(reg | 0x1, mmu_base + 0x88);
  336. /*
  337. * Enable the MMU IRQs during MMU programming for the
  338. * late attachcase. This is to allow the MMU fault to be
  339. * detected by the kernel.
  340. *
  341. * MULTIHITFAULT|EMMUMISS|TRANSLATIONFAULT|TABLEWALKFAULT
  342. */
  343. __raw_writel(0x1E, mmu_base + 0x1c);
  344. /*
  345. * emutlbupdate|TWLENABLE|MMUENABLE
  346. */
  347. __raw_writel(0x6, mmu_base + 0x44);
  348. }
  349. return 0;
  350. }
  351. /**
  352. * enum ipu_mem - PRU core memory range identifiers
  353. */
  354. enum ipu_mem {
  355. PRU_MEM_IRAM = 0,
  356. PRU_MEM_CTRL,
  357. PRU_MEM_DEBUG,
  358. PRU_MEM_MAX,
  359. };
  360. static int ipu_start(struct udevice *dev)
  361. {
  362. struct ipu_privdata *priv;
  363. struct reset_ctl reset;
  364. struct rproc *cfg = NULL;
  365. int ret;
  366. priv = dev_get_priv(dev);
  367. cfg = rproc_cfg_arr[priv->id];
  368. if (cfg->config_peripherals)
  369. cfg->config_peripherals(priv->id, cfg);
  370. /*
  371. * Start running the remote core
  372. */
  373. ret = reset_get_by_index(dev, 0, &reset);
  374. if (ret < 0) {
  375. dev_err(dev, "%s: error getting reset index %d\n", __func__, 0);
  376. return ret;
  377. }
  378. ret = reset_deassert(&reset);
  379. if (ret < 0) {
  380. dev_err(dev, "%s: error deasserting reset %d\n", __func__, 0);
  381. return ret;
  382. }
  383. ret = reset_get_by_index(dev, 1, &reset);
  384. if (ret < 0) {
  385. dev_err(dev, "%s: error getting reset index %d\n", __func__, 1);
  386. return ret;
  387. }
  388. ret = reset_deassert(&reset);
  389. if (ret < 0) {
  390. dev_err(dev, "%s: error deasserting reset %d\n", __func__, 1);
  391. return ret;
  392. }
  393. return 0;
  394. }
  395. static int ipu_stop(struct udevice *dev)
  396. {
  397. return 0;
  398. }
  399. /**
  400. * ipu_init() - Initialize the remote processor
  401. * @dev: rproc device pointer
  402. *
  403. * Return: 0 if all went ok, else return appropriate error
  404. */
  405. static int ipu_init(struct udevice *dev)
  406. {
  407. return 0;
  408. }
  409. static int ipu_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
  410. {
  411. struct ipu_privdata *priv = dev_get_priv(dev);
  412. list_add_tail(&mapping->node, &priv->mappings);
  413. return 0;
  414. }
  415. static int ipu_load(struct udevice *dev, ulong addr, ulong size)
  416. {
  417. Elf32_Ehdr *ehdr; /* Elf header structure pointer */
  418. Elf32_Phdr *phdr; /* Program header structure pointer */
  419. Elf32_Phdr proghdr;
  420. int va;
  421. int pa;
  422. int i;
  423. ehdr = (Elf32_Ehdr *)addr;
  424. phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
  425. /*
  426. * Load each program header
  427. */
  428. for (i = 0; i < ehdr->e_phnum; ++i) {
  429. memcpy(&proghdr, phdr, sizeof(Elf32_Phdr));
  430. if (proghdr.p_type != PT_LOAD) {
  431. ++phdr;
  432. continue;
  433. }
  434. va = proghdr.p_paddr;
  435. pa = da_to_pa(dev, va);
  436. if (pa)
  437. proghdr.p_paddr = pa;
  438. void *dst = (void *)(uintptr_t)proghdr.p_paddr;
  439. void *src = (void *)addr + proghdr.p_offset;
  440. debug("Loading phdr %i to 0x%p (%i bytes)\n", i, dst,
  441. proghdr.p_filesz);
  442. if (proghdr.p_filesz)
  443. memcpy(dst, src, proghdr.p_filesz);
  444. flush_cache((unsigned long)dst, proghdr.p_memsz);
  445. ++phdr;
  446. }
  447. return 0;
  448. }
  449. static const struct dm_rproc_ops ipu_ops = {
  450. .init = ipu_init,
  451. .start = ipu_start,
  452. .stop = ipu_stop,
  453. .load = ipu_load,
  454. .add_res = ipu_add_res,
  455. .config_pagetable = ipu_config_pagetable,
  456. .alloc_mem = ipu_alloc_mem,
  457. };
  458. /*
  459. * If the remotecore binary expects any peripherals to be setup before it has
  460. * booted, configure them here.
  461. *
  462. * These functions are left empty by default as their operation is usecase
  463. * specific.
  464. */
  465. u32 ipu1_config_peripherals(u32 core_id, struct rproc *cfg)
  466. {
  467. return 0;
  468. }
  469. u32 ipu2_config_peripherals(u32 core_id, struct rproc *cfg)
  470. {
  471. return 0;
  472. }
  473. struct rproc_intmem_to_l3_mapping ipu1_intmem_to_l3_mapping = {
  474. .num_entries = 1,
  475. .mappings = {
  476. /*
  477. * L2 SRAM
  478. */
  479. {
  480. .priv_addr = 0x55020000,
  481. .l3_addr = 0x58820000,
  482. .len = (64 * 1024)},
  483. }
  484. };
  485. struct rproc_intmem_to_l3_mapping ipu2_intmem_to_l3_mapping = {
  486. .num_entries = 1,
  487. .mappings = {
  488. /*
  489. * L2 SRAM
  490. */
  491. {
  492. .priv_addr = 0x55020000,
  493. .l3_addr = 0x55020000,
  494. .len = (64 * 1024)},
  495. }
  496. };
  497. struct rproc ipu1_config = {
  498. .num_iommus = 1,
  499. .mmu_base_addr = {0x58882000, 0},
  500. .load_addr = IPU1_LOAD_ADDR,
  501. .core_name = "IPU1",
  502. .firmware_name = "dra7-ipu1-fw.xem4",
  503. .config_mmu = ipu_config_mmu,
  504. .config_peripherals = ipu1_config_peripherals,
  505. .intmem_to_l3_mapping = &ipu1_intmem_to_l3_mapping
  506. };
  507. struct rproc ipu2_config = {
  508. .num_iommus = 1,
  509. .mmu_base_addr = {0x55082000, 0},
  510. .load_addr = IPU2_LOAD_ADDR,
  511. .core_name = "IPU2",
  512. .firmware_name = "dra7-ipu2-fw.xem4",
  513. .config_mmu = ipu_config_mmu,
  514. .config_peripherals = ipu2_config_peripherals,
  515. .intmem_to_l3_mapping = &ipu2_intmem_to_l3_mapping
  516. };
  517. struct rproc *rproc_cfg_arr[2] = {
  518. [IPU2] = &ipu2_config,
  519. [IPU1] = &ipu1_config,
  520. };
  521. u32 spl_pre_boot_core(struct udevice *dev, u32 core_id)
  522. {
  523. struct rproc *cfg = NULL;
  524. unsigned long load_elf_status = 0;
  525. int tablesz;
  526. cfg = rproc_cfg_arr[core_id];
  527. /*
  528. * Check for valid elf image
  529. */
  530. if (!valid_elf_image(cfg->load_addr))
  531. return 1;
  532. if (rproc_find_resource_table(dev, cfg->load_addr, &tablesz))
  533. cfg->has_rsc_table = 1;
  534. else
  535. cfg->has_rsc_table = 0;
  536. /*
  537. * Configure the MMU
  538. */
  539. if (cfg->config_mmu && cfg->has_rsc_table)
  540. cfg->config_mmu(core_id, cfg);
  541. /*
  542. * Load the remote core. Fill the page table of the first(possibly
  543. * only) IOMMU during ELF loading. Copy the page table to the second
  544. * IOMMU before running the remote core.
  545. */
  546. page_table_l1 = (unsigned int *)cfg->page_table_addr;
  547. page_table_l2 =
  548. (unsigned int *)(cfg->page_table_addr + PAGE_TABLE_SIZE_L1);
  549. mem_base = cfg->cma_base;
  550. mem_size = cfg->cma_size;
  551. memset(mem_bitmap, 0x00, sizeof(mem_bitmap));
  552. mem_count = (cfg->cma_size >> PAGE_SHIFT);
  553. /*
  554. * Clear variables used for level 2 page table allocation
  555. */
  556. memset(pgtable_l2_map, 0x00, sizeof(pgtable_l2_map));
  557. pgtable_l2_cnt = 0;
  558. load_elf_status = rproc_parse_resource_table(dev, cfg);
  559. if (load_elf_status == 0) {
  560. debug("load_elf_image_phdr returned error for core %s\n",
  561. cfg->core_name);
  562. return 1;
  563. }
  564. flush_cache(cfg->page_table_addr, PAGE_TABLE_SIZE);
  565. return 0;
  566. }
  567. static fdt_addr_t ipu_parse_mem_nodes(struct udevice *dev, char *name,
  568. int privid, fdt_size_t *sizep)
  569. {
  570. int ret;
  571. u32 sp;
  572. ofnode mem_node;
  573. ret = ofnode_read_u32(dev_ofnode(dev), name, &sp);
  574. if (ret) {
  575. dev_err(dev, "memory-region node fetch failed %d\n", ret);
  576. return ret;
  577. }
  578. mem_node = ofnode_get_by_phandle(sp);
  579. if (!ofnode_valid(mem_node))
  580. return -EINVAL;
  581. return ofnode_get_addr_size_index(mem_node, 0, sizep);
  582. }
  583. /**
  584. * ipu_probe() - Basic probe
  585. * @dev: corresponding k3 remote processor device
  586. *
  587. * Return: 0 if all goes good, else appropriate error message.
  588. */
  589. static int ipu_probe(struct udevice *dev)
  590. {
  591. struct ipu_privdata *priv;
  592. struct rproc *cfg = NULL;
  593. struct reset_ctl reset;
  594. static const char *const ipu_mem_names[] = { "l2ram" };
  595. int ret;
  596. fdt_size_t sizep;
  597. priv = dev_get_priv(dev);
  598. priv->mem.bus_addr =
  599. devfdt_get_addr_size_name(dev,
  600. ipu_mem_names[0],
  601. (fdt_addr_t *)&priv->mem.size);
  602. ret = reset_get_by_index(dev, 2, &reset);
  603. if (ret < 0) {
  604. dev_err(dev, "%s: error getting reset index %d\n", __func__, 2);
  605. return ret;
  606. }
  607. ret = reset_deassert(&reset);
  608. if (ret < 0) {
  609. dev_err(dev, "%s: error deasserting reset %d\n", __func__, 2);
  610. return ret;
  611. }
  612. if (priv->mem.bus_addr == FDT_ADDR_T_NONE) {
  613. dev_err(dev, "%s bus address not found\n", ipu_mem_names[0]);
  614. return -EINVAL;
  615. }
  616. priv->mem.cpu_addr = map_physmem(priv->mem.bus_addr,
  617. priv->mem.size, MAP_NOCACHE);
  618. if (devfdt_get_addr(dev) == 0x58820000)
  619. priv->id = 0;
  620. else
  621. priv->id = 1;
  622. cfg = rproc_cfg_arr[priv->id];
  623. cfg->cma_base = ipu_parse_mem_nodes(dev, "memory-region", priv->id,
  624. &sizep);
  625. cfg->cma_size = sizep;
  626. cfg->page_table_addr = ipu_parse_mem_nodes(dev, "pg-tbl", priv->id,
  627. &sizep);
  628. dev_info(dev,
  629. "ID %d memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
  630. priv->id, ipu_mem_names[0], &priv->mem.bus_addr,
  631. priv->mem.size, priv->mem.cpu_addr, priv->mem.dev_addr);
  632. INIT_LIST_HEAD(&priv->mappings);
  633. if (spl_pre_boot_core(dev, priv->id))
  634. return -EINVAL;
  635. return 0;
  636. }
  637. static const struct udevice_id ipu_ids[] = {
  638. {.compatible = "ti,dra7-ipu"},
  639. {}
  640. };
  641. U_BOOT_DRIVER(ipu) = {
  642. .name = "ipu",
  643. .of_match = ipu_ids,
  644. .id = UCLASS_REMOTEPROC,
  645. .ops = &ipu_ops,
  646. .probe = ipu_probe,
  647. .priv_auto = sizeof(struct ipu_privdata),
  648. };