1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671 |
- /* -*- Mode: C; tab-width: 4 -*-
- *
- * Copyright (c) 2003-2015 Apple Inc. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of Apple Inc. ("Apple") nor the names of its
- * contributors may be used to endorse or promote products derived from this
- * software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /*! @header DNS Service Discovery
- *
- * @discussion This section describes the functions, callbacks, and data structures
- * that make up the DNS Service Discovery API.
- *
- * The DNS Service Discovery API is part of Bonjour, Apple's implementation
- * of zero-configuration networking (ZEROCONF).
- *
- * Bonjour allows you to register a network service, such as a
- * printer or file server, so that it can be found by name or browsed
- * for by service type and domain. Using Bonjour, applications can
- * discover what services are available on the network, along with
- * all the information -- such as name, IP address, and port --
- * necessary to access a particular service.
- *
- * In effect, Bonjour combines the functions of a local DNS server and
- * AppleTalk. Bonjour allows applications to provide user-friendly printer
- * and server browsing, among other things, over standard IP networks.
- * This behavior is a result of combining protocols such as multicast and
- * DNS to add new functionality to the network (such as multicast DNS).
- *
- * Bonjour gives applications easy access to services over local IP
- * networks without requiring the service or the application to support
- * an AppleTalk or a Netbeui stack, and without requiring a DNS server
- * for the local network.
- */
- /* _DNS_SD_H contains the API version number for this header file
- * The API version defined in this header file symbol allows for compile-time
- * checking, so that C code building with earlier versions of the header file
- * can avoid compile errors trying to use functions that aren't even defined
- * in those earlier versions. Similar checks may also be performed at run-time:
- * => weak linking -- to avoid link failures if run with an earlier
- * version of the library that's missing some desired symbol, or
- * => DNSServiceGetProperty(DaemonVersion) -- to verify whether the running daemon
- * ("system service" on Windows) meets some required minimum functionality level.
- */
- #ifndef _DNS_SD_H
- #define _DNS_SD_H 7652004
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* Set to 1 if libdispatch is supported
- * Note: May also be set by project and/or Makefile
- */
- #ifndef _DNS_SD_LIBDISPATCH
- #define _DNS_SD_LIBDISPATCH 0
- #endif /* ndef _DNS_SD_LIBDISPATCH */
- /* standard calling convention under Win32 is __stdcall */
- /* Note: When compiling Intel EFI (Extensible Firmware Interface) under MS Visual Studio, the */
- /* _WIN32 symbol is defined by the compiler even though it's NOT compiling code for Windows32 */
- #if defined(_WIN32) && !defined(EFI32) && !defined(EFI64)
- #define DNSSD_API __stdcall
- #else
- #define DNSSD_API
- #endif
- #if defined(_WIN32)
- #include <winsock2.h>
- typedef SOCKET dnssd_sock_t;
- #else
- typedef int dnssd_sock_t;
- #endif
- /* stdint.h does not exist on FreeBSD 4.x; its types are defined in sys/types.h instead */
- #if defined(__FreeBSD__) && (__FreeBSD__ < 5)
- #include <sys/types.h>
- /* Likewise, on Sun, standard integer types are in sys/types.h */
- #elif defined(__sun__)
- #include <sys/types.h>
- /* EFI does not have stdint.h, or anything else equivalent */
- #elif defined(EFI32) || defined(EFI64) || defined(EFIX64)
- #include "Tiano.h"
- #if !defined(_STDINT_H_)
- typedef UINT8 uint8_t;
- typedef INT8 int8_t;
- typedef UINT16 uint16_t;
- typedef INT16 int16_t;
- typedef UINT32 uint32_t;
- typedef INT32 int32_t;
- #endif
- /* Windows has its own differences */
- #elif defined(_WIN32)
- #include <windows.h>
- #define _UNUSED
- #ifndef _MSL_STDINT_H
- typedef UINT8 uint8_t;
- typedef INT8 int8_t;
- typedef UINT16 uint16_t;
- typedef INT16 int16_t;
- typedef UINT32 uint32_t;
- typedef INT32 int32_t;
- #endif
- /* All other Posix platforms use stdint.h */
- #else
- #include <stdint.h>
- #endif
- #if _DNS_SD_LIBDISPATCH
- #include <dispatch/dispatch.h>
- #endif
- /* DNSServiceRef, DNSRecordRef
- *
- * Opaque internal data types.
- * Note: client is responsible for serializing access to these structures if
- * they are shared between concurrent threads.
- */
- typedef struct _DNSServiceRef_t *DNSServiceRef;
- typedef struct _DNSRecordRef_t *DNSRecordRef;
- struct sockaddr;
- /*! @enum General flags
- * Most DNS-SD API functions and callbacks include a DNSServiceFlags parameter.
- * As a general rule, any given bit in the 32-bit flags field has a specific fixed meaning,
- * regardless of the function or callback being used. For any given function or callback,
- * typically only a subset of the possible flags are meaningful, and all others should be zero.
- * The discussion section for each API call describes which flags are valid for that call
- * and callback. In some cases, for a particular call, it may be that no flags are currently
- * defined, in which case the DNSServiceFlags parameter exists purely to allow future expansion.
- * In all cases, developers should expect that in future releases, it is possible that new flag
- * values will be defined, and write code with this in mind. For example, code that tests
- * if (flags == kDNSServiceFlagsAdd) ...
- * will fail if, in a future release, another bit in the 32-bit flags field is also set.
- * The reliable way to test whether a particular bit is set is not with an equality test,
- * but with a bitwise mask:
- * if (flags & kDNSServiceFlagsAdd) ...
- * With the exception of kDNSServiceFlagsValidate, each flag can be valid(be set)
- * EITHER only as an input to one of the DNSService*() APIs OR only as an output
- * (provide status) through any of the callbacks used. For example, kDNSServiceFlagsAdd
- * can be set only as an output in the callback, whereas the kDNSServiceFlagsIncludeP2P
- * can be set only as an input to the DNSService*() APIs. See comments on kDNSServiceFlagsValidate
- * defined in enum below.
- */
- enum
- {
- kDNSServiceFlagsMoreComing = 0x1,
- /* MoreComing indicates to a callback that at least one more result is
- * queued and will be delivered following immediately after this one.
- * When the MoreComing flag is set, applications should not immediately
- * update their UI, because this can result in a great deal of ugly flickering
- * on the screen, and can waste a great deal of CPU time repeatedly updating
- * the screen with content that is then immediately erased, over and over.
- * Applications should wait until MoreComing is not set, and then
- * update their UI when no more changes are imminent.
- * When MoreComing is not set, that doesn't mean there will be no more
- * answers EVER, just that there are no more answers immediately
- * available right now at this instant. If more answers become available
- * in the future they will be delivered as usual.
- */
- kDNSServiceFlagsAutoTrigger = 0x1,
- /* Valid for browses using kDNSServiceInterfaceIndexAny.
- * Will auto trigger the browse over AWDL as well once the service is discoveryed
- * over BLE.
- * This flag is an input value to DNSServiceBrowse(), which is why we can
- * use the same value as kDNSServiceFlagsMoreComing, which is an output flag
- * for various client callbacks.
- */
- kDNSServiceFlagsAdd = 0x2,
- kDNSServiceFlagsDefault = 0x4,
- /* Flags for domain enumeration and browse/query reply callbacks.
- * "Default" applies only to enumeration and is only valid in
- * conjunction with "Add". An enumeration callback with the "Add"
- * flag NOT set indicates a "Remove", i.e. the domain is no longer
- * valid.
- */
- kDNSServiceFlagsNoAutoRename = 0x8,
- /* Flag for specifying renaming behavior on name conflict when registering
- * non-shared records. By default, name conflicts are automatically handled
- * by renaming the service. NoAutoRename overrides this behavior - with this
- * flag set, name conflicts will result in a callback. The NoAutorename flag
- * is only valid if a name is explicitly specified when registering a service
- * (i.e. the default name is not used.)
- */
- kDNSServiceFlagsShared = 0x10,
- kDNSServiceFlagsUnique = 0x20,
- /* Flag for registering individual records on a connected
- * DNSServiceRef. Shared indicates that there may be multiple records
- * with this name on the network (e.g. PTR records). Unique indicates that the
- * record's name is to be unique on the network (e.g. SRV records).
- */
- kDNSServiceFlagsBrowseDomains = 0x40,
- kDNSServiceFlagsRegistrationDomains = 0x80,
- /* Flags for specifying domain enumeration type in DNSServiceEnumerateDomains.
- * BrowseDomains enumerates domains recommended for browsing, RegistrationDomains
- * enumerates domains recommended for registration.
- */
- kDNSServiceFlagsLongLivedQuery = 0x100,
- /* Flag for creating a long-lived unicast query for the DNSServiceQueryRecord call. */
- kDNSServiceFlagsAllowRemoteQuery = 0x200,
- /* Flag for creating a record for which we will answer remote queries
- * (queries from hosts more than one hop away; hosts not directly connected to the local link).
- */
- kDNSServiceFlagsForceMulticast = 0x400,
- /* Flag for signifying that a query or registration should be performed exclusively via multicast
- * DNS, even for a name in a domain (e.g. foo.apple.com.) that would normally imply unicast DNS.
- */
- kDNSServiceFlagsForce = 0x800, // This flag is deprecated.
- kDNSServiceFlagsKnownUnique = 0x800,
- /*
- * Client guarantees that record names are unique, so we can skip sending out initial
- * probe messages. Standard name conflict resolution is still done if a conflict is discovered.
- * Currently only valid for a DNSServiceRegister call.
- */
- kDNSServiceFlagsReturnIntermediates = 0x1000,
- /* Flag for returning intermediate results.
- * For example, if a query results in an authoritative NXDomain (name does not exist)
- * then that result is returned to the client. However the query is not implicitly
- * cancelled -- it remains active and if the answer subsequently changes
- * (e.g. because a VPN tunnel is subsequently established) then that positive
- * result will still be returned to the client.
- * Similarly, if a query results in a CNAME record, then in addition to following
- * the CNAME referral, the intermediate CNAME result is also returned to the client.
- * When this flag is not set, NXDomain errors are not returned, and CNAME records
- * are followed silently without informing the client of the intermediate steps.
- * (In earlier builds this flag was briefly calledkDNSServiceFlagsReturnCNAME)
- */
- kDNSServiceFlagsNonBrowsable = 0x2000,
- /* A service registered with the NonBrowsable flag set can be resolved using
- * DNSServiceResolve(), but will not be discoverable using DNSServiceBrowse().
- * This is for cases where the name is actually a GUID; it is found by other means;
- * there is no end-user benefit to browsing to find a long list of opaque GUIDs.
- * Using the NonBrowsable flag creates SRV+TXT without the cost of also advertising
- * an associated PTR record.
- */
- kDNSServiceFlagsShareConnection = 0x4000,
- /* For efficiency, clients that perform many concurrent operations may want to use a
- * single Unix Domain Socket connection with the background daemon, instead of having a
- * separate connection for each independent operation. To use this mode, clients first
- * call DNSServiceCreateConnection(&MainRef) to initialize the main DNSServiceRef.
- * For each subsequent operation that is to share that same connection, the client copies
- * the MainRef, and then passes the address of that copy, setting the ShareConnection flag
- * to tell the library that this DNSServiceRef is not a typical uninitialized DNSServiceRef;
- * it's a copy of an existing DNSServiceRef whose connection information should be reused.
- *
- * For example:
- *
- * DNSServiceErrorType error;
- * DNSServiceRef MainRef;
- * error = DNSServiceCreateConnection(&MainRef);
- * if (error) ...
- * DNSServiceRef BrowseRef = MainRef; // Important: COPY the primary DNSServiceRef first...
- * error = DNSServiceBrowse(&BrowseRef, kDNSServiceFlagsShareConnection, ...); // then use the copy
- * if (error) ...
- * ...
- * DNSServiceRefDeallocate(BrowseRef); // Terminate the browse operation
- * DNSServiceRefDeallocate(MainRef); // Terminate the shared connection
- * Also see Point 4.(Don't Double-Deallocate if the MainRef has been Deallocated) in Notes below:
- *
- * Notes:
- *
- * 1. Collective kDNSServiceFlagsMoreComing flag
- * When callbacks are invoked using a shared DNSServiceRef, the
- * kDNSServiceFlagsMoreComing flag applies collectively to *all* active
- * operations sharing the same parent DNSServiceRef. If the MoreComing flag is
- * set it means that there are more results queued on this parent DNSServiceRef,
- * but not necessarily more results for this particular callback function.
- * The implication of this for client programmers is that when a callback
- * is invoked with the MoreComing flag set, the code should update its
- * internal data structures with the new result, and set a variable indicating
- * that its UI needs to be updated. Then, later when a callback is eventually
- * invoked with the MoreComing flag not set, the code should update *all*
- * stale UI elements related to that shared parent DNSServiceRef that need
- * updating, not just the UI elements related to the particular callback
- * that happened to be the last one to be invoked.
- *
- * 2. Canceling operations and kDNSServiceFlagsMoreComing
- * Whenever you cancel any operation for which you had deferred UI updates
- * waiting because of a kDNSServiceFlagsMoreComing flag, you should perform
- * those deferred UI updates. This is because, after cancelling the operation,
- * you can no longer wait for a callback *without* MoreComing set, to tell
- * you do perform your deferred UI updates (the operation has been canceled,
- * so there will be no more callbacks). An implication of the collective
- * kDNSServiceFlagsMoreComing flag for shared connections is that this
- * guideline applies more broadly -- any time you cancel an operation on
- * a shared connection, you should perform all deferred UI updates for all
- * operations sharing that connection. This is because the MoreComing flag
- * might have been referring to events coming for the operation you canceled,
- * which will now not be coming because the operation has been canceled.
- *
- * 3. Only share DNSServiceRef's created with DNSServiceCreateConnection
- * Calling DNSServiceCreateConnection(&ref) creates a special shareable DNSServiceRef.
- * DNSServiceRef's created by other calls like DNSServiceBrowse() or DNSServiceResolve()
- * cannot be shared by copying them and using kDNSServiceFlagsShareConnection.
- *
- * 4. Don't Double-Deallocate if the MainRef has been Deallocated
- * Calling DNSServiceRefDeallocate(ref) for a particular operation's DNSServiceRef terminates
- * just that operation. Calling DNSServiceRefDeallocate(ref) for the main shared DNSServiceRef
- * (the parent DNSServiceRef, originally created by DNSServiceCreateConnection(&ref))
- * automatically terminates the shared connection and all operations that were still using it.
- * After doing this, DO NOT then attempt to deallocate any remaining subordinate DNSServiceRef's.
- * The memory used by those subordinate DNSServiceRef's has already been freed, so any attempt
- * to do a DNSServiceRefDeallocate (or any other operation) on them will result in accesses
- * to freed memory, leading to crashes or other equally undesirable results.
- *
- * 5. Thread Safety
- * The dns_sd.h API does not presuppose any particular threading model, and consequently
- * does no locking internally (which would require linking with a specific threading library).
- * If the client concurrently, from multiple threads (or contexts), calls API routines using
- * the same DNSServiceRef, it is the client's responsibility to provide mutual exclusion for
- * that DNSServiceRef.
- * For example, use of DNSServiceRefDeallocate requires caution. A common mistake is as follows:
- * Thread B calls DNSServiceRefDeallocate to deallocate sdRef while Thread A is processing events
- * using sdRef. Doing this will lead to intermittent crashes on thread A if the sdRef is used after
- * it was deallocated.
- * A telltale sign of this crash type is to see DNSServiceProcessResult on the stack preceding the
- * actual crash location.
- * To state this more explicitly, mDNSResponder does not queue DNSServiceRefDeallocate so
- * that it occurs discretely before or after an event is handled.
- */
- kDNSServiceFlagsSuppressUnusable = 0x8000,
- /*
- * This flag is meaningful only in DNSServiceQueryRecord which suppresses unusable queries on the
- * wire. If "hostname" is a wide-area unicast DNS hostname (i.e. not a ".local." name)
- * but this host has no routable IPv6 address, then the call will not try to look up IPv6 addresses
- * for "hostname", since any addresses it found would be unlikely to be of any use anyway. Similarly,
- * if this host has no routable IPv4 address, the call will not try to look up IPv4 addresses for
- * "hostname".
- */
- kDNSServiceFlagsTimeout = 0x10000,
- /*
- * When kDNServiceFlagsTimeout is passed to DNSServiceQueryRecord or DNSServiceGetAddrInfo, the query is
- * stopped after a certain number of seconds have elapsed. The time at which the query will be stopped
- * is determined by the system and cannot be configured by the user. The query will be stopped irrespective
- * of whether a response was given earlier or not. When the query is stopped, the callback will be called
- * with an error code of kDNSServiceErr_Timeout and a NULL sockaddr will be returned for DNSServiceGetAddrInfo
- * and zero length rdata will be returned for DNSServiceQueryRecord.
- */
- kDNSServiceFlagsIncludeP2P = 0x20000,
- /*
- * Include P2P interfaces when kDNSServiceInterfaceIndexAny is specified.
- * By default, specifying kDNSServiceInterfaceIndexAny does not include P2P interfaces.
- */
- kDNSServiceFlagsWakeOnResolve = 0x40000,
- /*
- * This flag is meaningful only in DNSServiceResolve. When set, it tries to send a magic packet
- * to wake up the client.
- */
- kDNSServiceFlagsBackgroundTrafficClass = 0x80000,
- /*
- * This flag is meaningful for Unicast DNS queries. When set, it uses the background traffic
- * class for packets that service the request.
- */
- kDNSServiceFlagsIncludeAWDL = 0x100000,
- /*
- * Include AWDL interface when kDNSServiceInterfaceIndexAny is specified.
- */
- kDNSServiceFlagsValidate = 0x200000,
- /*
- * This flag is meaningful in DNSServiceGetAddrInfo and DNSServiceQueryRecord. This is the ONLY flag to be valid
- * as an input to the APIs and also an output through the callbacks in the APIs.
- *
- * When this flag is passed to DNSServiceQueryRecord and DNSServiceGetAddrInfo to resolve unicast names,
- * the response will be validated using DNSSEC. The validation results are delivered using the flags field in
- * the callback and kDNSServiceFlagsValidate is marked in the flags to indicate that DNSSEC status is also available.
- * When the callback is called to deliver the query results, the validation results may or may not be available.
- * If it is not delivered along with the results, the validation status is delivered when the validation completes.
- *
- * When the validation results are delivered in the callback, it is indicated by marking the flags with
- * kDNSServiceFlagsValidate and kDNSServiceFlagsAdd along with the DNSSEC status flags (described below) and a NULL
- * sockaddr will be returned for DNSServiceGetAddrInfo and zero length rdata will be returned for DNSServiceQueryRecord.
- * DNSSEC validation results are for the whole RRSet and not just individual records delivered in the callback. When
- * kDNSServiceFlagsAdd is not set in the flags, applications should implicitly assume that the DNSSEC status of the
- * RRSet that has been delivered up until that point is not valid anymore, till another callback is called with
- * kDNSServiceFlagsAdd and kDNSServiceFlagsValidate.
- *
- * The following four flags indicate the status of the DNSSEC validation and marked in the flags field of the callback.
- * When any of the four flags is set, kDNSServiceFlagsValidate will also be set. To check the validation status, the
- * other applicable output flags should be masked. See kDNSServiceOutputFlags below.
- */
- kDNSServiceFlagsSecure = 0x200010,
- /*
- * The response has been validated by verifying all the signatures in the response and was able to
- * build a successful authentication chain starting from a known trust anchor.
- */
- kDNSServiceFlagsInsecure = 0x200020,
- /*
- * A chain of trust cannot be built starting from a known trust anchor to the response.
- */
- kDNSServiceFlagsBogus = 0x200040,
- /*
- * If the response cannot be verified to be secure due to expired signatures, missing signatures etc.,
- * then the results are considered to be bogus.
- */
- kDNSServiceFlagsIndeterminate = 0x200080,
- /*
- * There is no valid trust anchor that can be used to determine whether a response is secure or not.
- */
- kDNSServiceFlagsUnicastResponse = 0x400000,
- /*
- * Request unicast response to query.
- */
- kDNSServiceFlagsValidateOptional = 0x800000,
- /*
- * This flag is identical to kDNSServiceFlagsValidate except for the case where the response
- * cannot be validated. If this flag is set in DNSServiceQueryRecord or DNSServiceGetAddrInfo,
- * the DNSSEC records will be requested for validation. If they cannot be received for some reason
- * during the validation (e.g., zone is not signed, zone is signed but cannot be traced back to
- * root, recursive server does not understand DNSSEC etc.), then this will fallback to the default
- * behavior where the validation will not be performed and no DNSSEC results will be provided.
- *
- * If the zone is signed and there is a valid path to a known trust anchor configured in the system
- * and the application requires DNSSEC validation irrespective of the DNSSEC awareness in the current
- * network, then this option MUST not be used. This is only intended to be used during the transition
- * period where the different nodes participating in the DNS resolution may not understand DNSSEC or
- * managed properly (e.g. missing DS record) but still want to be able to resolve DNS successfully.
- */
- kDNSServiceFlagsWakeOnlyService = 0x1000000,
- /*
- * This flag is meaningful only in DNSServiceRegister. When set, the service will not be registered
- * with sleep proxy server during sleep.
- */
- kDNSServiceFlagsThresholdOne = 0x2000000,
- kDNSServiceFlagsThresholdFinder = 0x4000000,
- kDNSServiceFlagsThresholdReached = kDNSServiceFlagsThresholdOne,
- /*
- * kDNSServiceFlagsThresholdOne is meaningful only in DNSServiceBrowse. When set,
- * the system will stop issuing browse queries on the network once the number
- * of answers returned is one or more. It will issue queries on the network
- * again if the number of answers drops to zero.
- * This flag is for Apple internal use only. Third party developers
- * should not rely on this behavior being supported in any given software release.
- *
- * kDNSServiceFlagsThresholdFinder is meaningful only in DNSServiceBrowse. When set,
- * the system will stop issuing browse queries on the network once the number
- * of answers has reached the threshold set for Finder.
- * It will issue queries on the network again if the number of answers drops below
- * this threshold.
- * This flag is for Apple internal use only. Third party developers
- * should not rely on this behavior being supported in any given software release.
- *
- * When kDNSServiceFlagsThresholdReached is set in the client callback add or remove event,
- * it indicates that the browse answer threshold has been reached and no
- * browse requests will be generated on the network until the number of answers falls
- * below the threshold value. Add and remove events can still occur based
- * on incoming Bonjour traffic observed by the system.
- * The set of services return to the client is not guaranteed to represent the
- * entire set of services present on the network once the threshold has been reached.
- *
- * Note, while kDNSServiceFlagsThresholdReached and kDNSServiceFlagsThresholdOne
- * have the same value, there isn't a conflict because kDNSServiceFlagsThresholdReached
- * is only set in the callbacks and kDNSServiceFlagsThresholdOne is only set on
- * input to a DNSServiceBrowse call.
- */
- kDNSServiceFlagsDenyCellular = 0x8000000,
- /*
- * This flag is meaningful only for Unicast DNS queries. When set, the kernel will restrict
- * DNS resolutions on the cellular interface for that request.
- */
- kDNSServiceFlagsServiceIndex = 0x10000000,
- /*
- * This flag is meaningful only for DNSServiceGetAddrInfo() for Unicast DNS queries.
- * When set, DNSServiceGetAddrInfo() will interpret the "interfaceIndex" argument of the call
- * as the "serviceIndex".
- */
- kDNSServiceFlagsDenyExpensive = 0x20000000,
- /*
- * This flag is meaningful only for Unicast DNS queries. When set, the kernel will restrict
- * DNS resolutions on interfaces defined as expensive for that request.
- */
- kDNSServiceFlagsPathEvaluationDone = 0x40000000
- /*
- * This flag is meaningful for only Unicast DNS queries.
- * When set, it indicates that Network PathEvaluation has already been performed.
- */
- };
- #define kDNSServiceOutputFlags (kDNSServiceFlagsValidate | kDNSServiceFlagsValidateOptional | kDNSServiceFlagsMoreComing | kDNSServiceFlagsAdd | kDNSServiceFlagsDefault)
- /* All the output flags excluding the DNSSEC Status flags. Typically used to check DNSSEC Status */
- /* Possible protocol values */
- enum
- {
- /* for DNSServiceGetAddrInfo() */
- kDNSServiceProtocol_IPv4 = 0x01,
- kDNSServiceProtocol_IPv6 = 0x02,
- /* 0x04 and 0x08 reserved for future internetwork protocols */
- /* for DNSServiceNATPortMappingCreate() */
- kDNSServiceProtocol_UDP = 0x10,
- kDNSServiceProtocol_TCP = 0x20
- /* 0x40 and 0x80 reserved for future transport protocols, e.g. SCTP [RFC 2960]
- * or DCCP [RFC 4340]. If future NAT gateways are created that support port
- * mappings for these protocols, new constants will be defined here.
- */
- };
- /*
- * The values for DNS Classes and Types are listed in RFC 1035, and are available
- * on every OS in its DNS header file. Unfortunately every OS does not have the
- * same header file containing DNS Class and Type constants, and the names of
- * the constants are not consistent. For example, BIND 8 uses "T_A",
- * BIND 9 uses "ns_t_a", Windows uses "DNS_TYPE_A", etc.
- * For this reason, these constants are also listed here, so that code using
- * the DNS-SD programming APIs can use these constants, so that the same code
- * can compile on all our supported platforms.
- */
- enum
- {
- kDNSServiceClass_IN = 1 /* Internet */
- };
- enum
- {
- kDNSServiceType_A = 1, /* Host address. */
- kDNSServiceType_NS = 2, /* Authoritative server. */
- kDNSServiceType_MD = 3, /* Mail destination. */
- kDNSServiceType_MF = 4, /* Mail forwarder. */
- kDNSServiceType_CNAME = 5, /* Canonical name. */
- kDNSServiceType_SOA = 6, /* Start of authority zone. */
- kDNSServiceType_MB = 7, /* Mailbox domain name. */
- kDNSServiceType_MG = 8, /* Mail group member. */
- kDNSServiceType_MR = 9, /* Mail rename name. */
- kDNSServiceType_NULL = 10, /* Null resource record. */
- kDNSServiceType_WKS = 11, /* Well known service. */
- kDNSServiceType_PTR = 12, /* Domain name pointer. */
- kDNSServiceType_HINFO = 13, /* Host information. */
- kDNSServiceType_MINFO = 14, /* Mailbox information. */
- kDNSServiceType_MX = 15, /* Mail routing information. */
- kDNSServiceType_TXT = 16, /* One or more text strings (NOT "zero or more..."). */
- kDNSServiceType_RP = 17, /* Responsible person. */
- kDNSServiceType_AFSDB = 18, /* AFS cell database. */
- kDNSServiceType_X25 = 19, /* X_25 calling address. */
- kDNSServiceType_ISDN = 20, /* ISDN calling address. */
- kDNSServiceType_RT = 21, /* Router. */
- kDNSServiceType_NSAP = 22, /* NSAP address. */
- kDNSServiceType_NSAP_PTR = 23, /* Reverse NSAP lookup (deprecated). */
- kDNSServiceType_SIG = 24, /* Security signature. */
- kDNSServiceType_KEY = 25, /* Security key. */
- kDNSServiceType_PX = 26, /* X.400 mail mapping. */
- kDNSServiceType_GPOS = 27, /* Geographical position (withdrawn). */
- kDNSServiceType_AAAA = 28, /* IPv6 Address. */
- kDNSServiceType_LOC = 29, /* Location Information. */
- kDNSServiceType_NXT = 30, /* Next domain (security). */
- kDNSServiceType_EID = 31, /* Endpoint identifier. */
- kDNSServiceType_NIMLOC = 32, /* Nimrod Locator. */
- kDNSServiceType_SRV = 33, /* Server Selection. */
- kDNSServiceType_ATMA = 34, /* ATM Address */
- kDNSServiceType_NAPTR = 35, /* Naming Authority PoinTeR */
- kDNSServiceType_KX = 36, /* Key Exchange */
- kDNSServiceType_CERT = 37, /* Certification record */
- kDNSServiceType_A6 = 38, /* IPv6 Address (deprecated) */
- kDNSServiceType_DNAME = 39, /* Non-terminal DNAME (for IPv6) */
- kDNSServiceType_SINK = 40, /* Kitchen sink (experimental) */
- kDNSServiceType_OPT = 41, /* EDNS0 option (meta-RR) */
- kDNSServiceType_APL = 42, /* Address Prefix List */
- kDNSServiceType_DS = 43, /* Delegation Signer */
- kDNSServiceType_SSHFP = 44, /* SSH Key Fingerprint */
- kDNSServiceType_IPSECKEY = 45, /* IPSECKEY */
- kDNSServiceType_RRSIG = 46, /* RRSIG */
- kDNSServiceType_NSEC = 47, /* Denial of Existence */
- kDNSServiceType_DNSKEY = 48, /* DNSKEY */
- kDNSServiceType_DHCID = 49, /* DHCP Client Identifier */
- kDNSServiceType_NSEC3 = 50, /* Hashed Authenticated Denial of Existence */
- kDNSServiceType_NSEC3PARAM = 51, /* Hashed Authenticated Denial of Existence */
- kDNSServiceType_HIP = 55, /* Host Identity Protocol */
- kDNSServiceType_SPF = 99, /* Sender Policy Framework for E-Mail */
- kDNSServiceType_UINFO = 100, /* IANA-Reserved */
- kDNSServiceType_UID = 101, /* IANA-Reserved */
- kDNSServiceType_GID = 102, /* IANA-Reserved */
- kDNSServiceType_UNSPEC = 103, /* IANA-Reserved */
- kDNSServiceType_TKEY = 249, /* Transaction key */
- kDNSServiceType_TSIG = 250, /* Transaction signature. */
- kDNSServiceType_IXFR = 251, /* Incremental zone transfer. */
- kDNSServiceType_AXFR = 252, /* Transfer zone of authority. */
- kDNSServiceType_MAILB = 253, /* Transfer mailbox records. */
- kDNSServiceType_MAILA = 254, /* Transfer mail agent records. */
- kDNSServiceType_ANY = 255 /* Wildcard match. */
- };
- /* possible error code values */
- enum
- {
- kDNSServiceErr_NoError = 0,
- kDNSServiceErr_Unknown = -65537, /* 0xFFFE FFFF */
- kDNSServiceErr_NoSuchName = -65538,
- kDNSServiceErr_NoMemory = -65539,
- kDNSServiceErr_BadParam = -65540,
- kDNSServiceErr_BadReference = -65541,
- kDNSServiceErr_BadState = -65542,
- kDNSServiceErr_BadFlags = -65543,
- kDNSServiceErr_Unsupported = -65544,
- kDNSServiceErr_NotInitialized = -65545,
- kDNSServiceErr_AlreadyRegistered = -65547,
- kDNSServiceErr_NameConflict = -65548,
- kDNSServiceErr_Invalid = -65549,
- kDNSServiceErr_Firewall = -65550,
- kDNSServiceErr_Incompatible = -65551, /* client library incompatible with daemon */
- kDNSServiceErr_BadInterfaceIndex = -65552,
- kDNSServiceErr_Refused = -65553,
- kDNSServiceErr_NoSuchRecord = -65554,
- kDNSServiceErr_NoAuth = -65555,
- kDNSServiceErr_NoSuchKey = -65556,
- kDNSServiceErr_NATTraversal = -65557,
- kDNSServiceErr_DoubleNAT = -65558,
- kDNSServiceErr_BadTime = -65559, /* Codes up to here existed in Tiger */
- kDNSServiceErr_BadSig = -65560,
- kDNSServiceErr_BadKey = -65561,
- kDNSServiceErr_Transient = -65562,
- kDNSServiceErr_ServiceNotRunning = -65563, /* Background daemon not running */
- kDNSServiceErr_NATPortMappingUnsupported = -65564, /* NAT doesn't support PCP, NAT-PMP or UPnP */
- kDNSServiceErr_NATPortMappingDisabled = -65565, /* NAT supports PCP, NAT-PMP or UPnP, but it's disabled by the administrator */
- kDNSServiceErr_NoRouter = -65566, /* No router currently configured (probably no network connectivity) */
- kDNSServiceErr_PollingMode = -65567,
- kDNSServiceErr_Timeout = -65568
- /* mDNS Error codes are in the range
- * FFFE FF00 (-65792) to FFFE FFFF (-65537) */
- };
- /* Maximum length, in bytes, of a service name represented as a */
- /* literal C-String, including the terminating NULL at the end. */
- #define kDNSServiceMaxServiceName 64
- /* Maximum length, in bytes, of a domain name represented as an *escaped* C-String */
- /* including the final trailing dot, and the C-String terminating NULL at the end. */
- #define kDNSServiceMaxDomainName 1009
- /*
- * Notes on DNS Name Escaping
- * -- or --
- * "Why is kDNSServiceMaxDomainName 1009, when the maximum legal domain name is 256 bytes?"
- *
- * All strings used in the DNS-SD APIs are UTF-8 strings.
- * Apart from the exceptions noted below, the APIs expect the strings to be properly escaped, using the
- * conventional DNS escaping rules, as used by the traditional DNS res_query() API, as described below:
- *
- * Generally all UTF-8 characters (which includes all US ASCII characters) represent themselves,
- * with two exceptions, the dot ('.') character, which is the label separator,
- * and the backslash ('\') character, which is the escape character.
- * The escape character ('\') is interpreted as described below:
- *
- * '\ddd', where ddd is a three-digit decimal value from 000 to 255,
- * represents a single literal byte with that value. Any byte value may be
- * represented in '\ddd' format, even characters that don't strictly need to be escaped.
- * For example, the ASCII code for 'w' is 119, and therefore '\119' is equivalent to 'w'.
- * Thus the command "ping '\119\119\119.apple.com'" is the equivalent to the command "ping 'www.apple.com'".
- * Nonprinting ASCII characters in the range 0-31 are often represented this way.
- * In particular, the ASCII NUL character (0) cannot appear in a C string because C uses it as the
- * string terminator character, so ASCII NUL in a domain name has to be represented in a C string as '\000'.
- * Other characters like space (ASCII code 32) are sometimes represented as '\032'
- * in contexts where having an actual space character in a C string would be inconvenient.
- *
- * Otherwise, for all cases where a '\' is followed by anything other than a three-digit decimal value
- * from 000 to 255, the character sequence '\x' represents a single literal occurrence of character 'x'.
- * This is legal for any character, so, for example, '\w' is equivalent to 'w'.
- * Thus the command "ping '\w\w\w.apple.com'" is the equivalent to the command "ping 'www.apple.com'".
- * However, this encoding is most useful when representing the characters '.' and '\',
- * which otherwise would have special meaning in DNS name strings.
- * This means that the following encodings are particularly common:
- * '\\' represents a single literal '\' in the name
- * '\.' represents a single literal '.' in the name
- *
- * A lone escape character ('\') appearing at the end of a string is not allowed, since it is
- * followed by neither a three-digit decimal value from 000 to 255 nor a single character.
- * If a lone escape character ('\') does appear as the last character of a string, it is silently ignored.
- *
- * The exceptions, that do not use escaping, are the routines where the full
- * DNS name of a resource is broken, for convenience, into servicename/regtype/domain.
- * In these routines, the "servicename" is NOT escaped. It does not need to be, since
- * it is, by definition, just a single literal string. Any characters in that string
- * represent exactly what they are. The "regtype" portion is, technically speaking,
- * escaped, but since legal regtypes are only allowed to contain US ASCII letters,
- * digits, and hyphens, there is nothing to escape, so the issue is moot.
- * The "domain" portion is also escaped, though most domains in use on the public
- * Internet today, like regtypes, don't contain any characters that need to be escaped.
- * As DNS-SD becomes more popular, rich-text domains for service discovery will
- * become common, so software should be written to cope with domains with escaping.
- *
- * The servicename may be up to 63 bytes of UTF-8 text (not counting the C-String
- * terminating NULL at the end). The regtype is of the form _service._tcp or
- * _service._udp, where the "service" part is 1-15 characters, which may be
- * letters, digits, or hyphens. The domain part of the three-part name may be
- * any legal domain, providing that the resulting servicename+regtype+domain
- * name does not exceed 256 bytes.
- *
- * For most software, these issues are transparent. When browsing, the discovered
- * servicenames should simply be displayed as-is. When resolving, the discovered
- * servicename/regtype/domain are simply passed unchanged to DNSServiceResolve().
- * When a DNSServiceResolve() succeeds, the returned fullname is already in
- * the correct format to pass to standard system DNS APIs such as res_query().
- * For converting from servicename/regtype/domain to a single properly-escaped
- * full DNS name, the helper function DNSServiceConstructFullName() is provided.
- *
- * The following (highly contrived) example illustrates the escaping process.
- * Suppose you have an service called "Dr. Smith\Dr. Johnson", of type "_ftp._tcp"
- * in subdomain "4th. Floor" of subdomain "Building 2" of domain "apple.com."
- * The full (escaped) DNS name of this service's SRV record would be:
- * Dr\.\032Smith\\Dr\.\032Johnson._ftp._tcp.4th\.\032Floor.Building\0322.apple.com.
- */
- /*
- * Constants for specifying an interface index
- *
- * Specific interface indexes are identified via a 32-bit unsigned integer returned
- * by the if_nametoindex() family of calls.
- *
- * If the client passes 0 for interface index, that means "do the right thing",
- * which (at present) means, "if the name is in an mDNS local multicast domain
- * (e.g. 'local.', '254.169.in-addr.arpa.', '{8,9,A,B}.E.F.ip6.arpa.') then multicast
- * on all applicable interfaces, otherwise send via unicast to the appropriate
- * DNS server." Normally, most clients will use 0 for interface index to
- * automatically get the default sensible behaviour.
- *
- * If the client passes a positive interface index, then that indicates to do the
- * operation only on that one specified interface.
- *
- * If the client passes kDNSServiceInterfaceIndexLocalOnly when registering
- * a service, then that service will be found *only* by other local clients
- * on the same machine that are browsing using kDNSServiceInterfaceIndexLocalOnly
- * or kDNSServiceInterfaceIndexAny.
- * If a client has a 'private' service, accessible only to other processes
- * running on the same machine, this allows the client to advertise that service
- * in a way such that it does not inadvertently appear in service lists on
- * all the other machines on the network.
- *
- * If the client passes kDNSServiceInterfaceIndexLocalOnly when querying or
- * browsing, then the LocalOnly authoritative records and /etc/hosts caches
- * are searched and will find *all* records registered or configured on that
- * same local machine.
- *
- * If interested in getting negative answers to local questions while querying
- * or browsing, then set both the kDNSServiceInterfaceIndexLocalOnly and the
- * kDNSServiceFlagsReturnIntermediates flags. If no local answers exist at this
- * moment in time, then the reply will return an immediate negative answer. If
- * local records are subsequently created that answer the question, then those
- * answers will be delivered, for as long as the question is still active.
- *
- * Clients explicitly wishing to discover *only* LocalOnly services during a
- * browse may do this, without flags, by inspecting the interfaceIndex of each
- * service reported to a DNSServiceBrowseReply() callback function, and
- * discarding those answers where the interface index is not set to
- * kDNSServiceInterfaceIndexLocalOnly.
- *
- * kDNSServiceInterfaceIndexP2P is meaningful only in Browse, QueryRecord, Register,
- * and Resolve operations. It should not be used in other DNSService APIs.
- *
- * - If kDNSServiceInterfaceIndexP2P is passed to DNSServiceBrowse or
- * DNSServiceQueryRecord, it restricts the operation to P2P.
- *
- * - If kDNSServiceInterfaceIndexP2P is passed to DNSServiceRegister, it is
- * mapped internally to kDNSServiceInterfaceIndexAny with the kDNSServiceFlagsIncludeP2P
- * set.
- *
- * - If kDNSServiceInterfaceIndexP2P is passed to DNSServiceResolve, it is
- * mapped internally to kDNSServiceInterfaceIndexAny with the kDNSServiceFlagsIncludeP2P
- * set, because resolving a P2P service may create and/or enable an interface whose
- * index is not known a priori. The resolve callback will indicate the index of the
- * interface via which the service can be accessed.
- *
- * If applications pass kDNSServiceInterfaceIndexAny to DNSServiceBrowse
- * or DNSServiceQueryRecord, they must set the kDNSServiceFlagsIncludeP2P flag
- * to include P2P. In this case, if a service instance or the record being queried
- * is found over P2P, the resulting ADD event will indicate kDNSServiceInterfaceIndexP2P
- * as the interface index.
- */
- #define kDNSServiceInterfaceIndexAny 0
- #define kDNSServiceInterfaceIndexLocalOnly ((uint32_t)-1)
- #define kDNSServiceInterfaceIndexUnicast ((uint32_t)-2)
- #define kDNSServiceInterfaceIndexP2P ((uint32_t)-3)
- #define kDNSServiceInterfaceIndexBLE ((uint32_t)-4)
- typedef uint32_t DNSServiceFlags;
- typedef uint32_t DNSServiceProtocol;
- typedef int32_t DNSServiceErrorType;
- /*********************************************************************************************
- *
- * Version checking
- *
- *********************************************************************************************/
- /* DNSServiceGetProperty() Parameters:
- *
- * property: The requested property.
- * Currently the only property defined is kDNSServiceProperty_DaemonVersion.
- *
- * result: Place to store result.
- * For retrieving DaemonVersion, this should be the address of a uint32_t.
- *
- * size: Pointer to uint32_t containing size of the result location.
- * For retrieving DaemonVersion, this should be sizeof(uint32_t).
- * On return the uint32_t is updated to the size of the data returned.
- * For DaemonVersion, the returned size is always sizeof(uint32_t), but
- * future properties could be defined which return variable-sized results.
- *
- * return value: Returns kDNSServiceErr_NoError on success, or kDNSServiceErr_ServiceNotRunning
- * if the daemon (or "system service" on Windows) is not running.
- */
- DNSServiceErrorType DNSSD_API DNSServiceGetProperty
- (
- const char *property, /* Requested property (i.e. kDNSServiceProperty_DaemonVersion) */
- void *result, /* Pointer to place to store result */
- uint32_t *size /* size of result location */
- );
- /*
- * When requesting kDNSServiceProperty_DaemonVersion, the result pointer must point
- * to a 32-bit unsigned integer, and the size parameter must be set to sizeof(uint32_t).
- *
- * On return, the 32-bit unsigned integer contains the API version number
- *
- * For example, Mac OS X 10.4.9 has API version 1080400.
- * This allows applications to do simple greater-than and less-than comparisons:
- * e.g. an application that requires at least API version 1080400 can check:
- * if (version >= 1080400) ...
- *
- * Example usage:
- * uint32_t version;
- * uint32_t size = sizeof(version);
- * DNSServiceErrorType err = DNSServiceGetProperty(kDNSServiceProperty_DaemonVersion, &version, &size);
- * if (!err) printf("DNS_SD API version is %d.%d\n", version / 10000, version / 100 % 100);
- */
- #define kDNSServiceProperty_DaemonVersion "DaemonVersion"
- /*********************************************************************************************
- *
- * Unix Domain Socket access, DNSServiceRef deallocation, and data processing functions
- *
- *********************************************************************************************/
- /* DNSServiceRefSockFD()
- *
- * Access underlying Unix domain socket for an initialized DNSServiceRef.
- * The DNS Service Discovery implementation uses this socket to communicate between the client and
- * the daemon. The application MUST NOT directly read from or write to this socket.
- * Access to the socket is provided so that it can be used as a kqueue event source, a CFRunLoop
- * event source, in a select() loop, etc. When the underlying event management subsystem (kqueue/
- * select/CFRunLoop etc.) indicates to the client that data is available for reading on the
- * socket, the client should call DNSServiceProcessResult(), which will extract the daemon's
- * reply from the socket, and pass it to the appropriate application callback. By using a run
- * loop or select(), results from the daemon can be processed asynchronously. Alternatively,
- * a client can choose to fork a thread and have it loop calling "DNSServiceProcessResult(ref);"
- * If DNSServiceProcessResult() is called when no data is available for reading on the socket, it
- * will block until data does become available, and then process the data and return to the caller.
- * The application is responsible for checking the return value of DNSServiceProcessResult()
- * to determine if the socket is valid and if it should continue to process data on the socket.
- * When data arrives on the socket, the client is responsible for calling DNSServiceProcessResult(ref)
- * in a timely fashion -- if the client allows a large backlog of data to build up the daemon
- * may terminate the connection.
- *
- * sdRef: A DNSServiceRef initialized by any of the DNSService calls.
- *
- * return value: The DNSServiceRef's underlying socket descriptor, or -1 on
- * error.
- */
- dnssd_sock_t DNSSD_API DNSServiceRefSockFD(DNSServiceRef sdRef);
- /* DNSServiceProcessResult()
- *
- * Read a reply from the daemon, calling the appropriate application callback. This call will
- * block until the daemon's response is received. Use DNSServiceRefSockFD() in
- * conjunction with a run loop or select() to determine the presence of a response from the
- * server before calling this function to process the reply without blocking. Call this function
- * at any point if it is acceptable to block until the daemon's response arrives. Note that the
- * client is responsible for ensuring that DNSServiceProcessResult() is called whenever there is
- * a reply from the daemon - the daemon may terminate its connection with a client that does not
- * process the daemon's responses.
- *
- * sdRef: A DNSServiceRef initialized by any of the DNSService calls
- * that take a callback parameter.
- *
- * return value: Returns kDNSServiceErr_NoError on success, otherwise returns
- * an error code indicating the specific failure that occurred.
- */
- DNSServiceErrorType DNSSD_API DNSServiceProcessResult(DNSServiceRef sdRef);
- /* DNSServiceRefDeallocate()
- *
- * Terminate a connection with the daemon and free memory associated with the DNSServiceRef.
- * Any services or records registered with this DNSServiceRef will be deregistered. Any
- * Browse, Resolve, or Query operations called with this reference will be terminated.
- *
- * Note: If the reference's underlying socket is used in a run loop or select() call, it should
- * be removed BEFORE DNSServiceRefDeallocate() is called, as this function closes the reference's
- * socket.
- *
- * Note: If the reference was initialized with DNSServiceCreateConnection(), any DNSRecordRefs
- * created via this reference will be invalidated by this call - the resource records are
- * deregistered, and their DNSRecordRefs may not be used in subsequent functions. Similarly,
- * if the reference was initialized with DNSServiceRegister, and an extra resource record was
- * added to the service via DNSServiceAddRecord(), the DNSRecordRef created by the Add() call
- * is invalidated when this function is called - the DNSRecordRef may not be used in subsequent
- * functions.
- *
- * Note: This call is to be used only with the DNSServiceRef defined by this API.
- *
- * sdRef: A DNSServiceRef initialized by any of the DNSService calls.
- *
- */
- void DNSSD_API DNSServiceRefDeallocate(DNSServiceRef sdRef);
- /*********************************************************************************************
- *
- * Domain Enumeration
- *
- *********************************************************************************************/
- /* DNSServiceEnumerateDomains()
- *
- * Asynchronously enumerate domains available for browsing and registration.
- *
- * The enumeration MUST be cancelled via DNSServiceRefDeallocate() when no more domains
- * are to be found.
- *
- * Note that the names returned are (like all of DNS-SD) UTF-8 strings,
- * and are escaped using standard DNS escaping rules.
- * (See "Notes on DNS Name Escaping" earlier in this file for more details.)
- * A graphical browser displaying a hierarchical tree-structured view should cut
- * the names at the bare dots to yield individual labels, then de-escape each
- * label according to the escaping rules, and then display the resulting UTF-8 text.
- *
- * DNSServiceDomainEnumReply Callback Parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceEnumerateDomains().
- *
- * flags: Possible values are:
- * kDNSServiceFlagsMoreComing
- * kDNSServiceFlagsAdd
- * kDNSServiceFlagsDefault
- *
- * interfaceIndex: Specifies the interface on which the domain exists. (The index for a given
- * interface is determined via the if_nametoindex() family of calls.)
- *
- * errorCode: Will be kDNSServiceErr_NoError (0) on success, otherwise indicates
- * the failure that occurred (other parameters are undefined if errorCode is nonzero).
- *
- * replyDomain: The name of the domain.
- *
- * context: The context pointer passed to DNSServiceEnumerateDomains.
- *
- */
- typedef void (DNSSD_API *DNSServiceDomainEnumReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceErrorType errorCode,
- const char *replyDomain,
- void *context
- );
- /* DNSServiceEnumerateDomains() Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds
- * then it initializes the DNSServiceRef, returns kDNSServiceErr_NoError,
- * and the enumeration operation will run indefinitely until the client
- * terminates it by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * flags: Possible values are:
- * kDNSServiceFlagsBrowseDomains to enumerate domains recommended for browsing.
- * kDNSServiceFlagsRegistrationDomains to enumerate domains recommended
- * for registration.
- *
- * interfaceIndex: If non-zero, specifies the interface on which to look for domains.
- * (the index for a given interface is determined via the if_nametoindex()
- * family of calls.) Most applications will pass 0 to enumerate domains on
- * all interfaces. See "Constants for specifying an interface index" for more details.
- *
- * callBack: The function to be called when a domain is found or the call asynchronously
- * fails.
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred (the callback is not invoked and the DNSServiceRef
- * is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceEnumerateDomains
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceDomainEnumReply callBack,
- void *context /* may be NULL */
- );
- /*********************************************************************************************
- *
- * Service Registration
- *
- *********************************************************************************************/
- /* Register a service that is discovered via Browse() and Resolve() calls.
- *
- * DNSServiceRegisterReply() Callback Parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceRegister().
- *
- * flags: When a name is successfully registered, the callback will be
- * invoked with the kDNSServiceFlagsAdd flag set. When Wide-Area
- * DNS-SD is in use, it is possible for a single service to get
- * more than one success callback (e.g. one in the "local" multicast
- * DNS domain, and another in a wide-area unicast DNS domain).
- * If a successfully-registered name later suffers a name conflict
- * or similar problem and has to be deregistered, the callback will
- * be invoked with the kDNSServiceFlagsAdd flag not set. The callback
- * is *not* invoked in the case where the caller explicitly terminates
- * the service registration by calling DNSServiceRefDeallocate(ref);
- *
- * errorCode: Will be kDNSServiceErr_NoError on success, otherwise will
- * indicate the failure that occurred (including name conflicts,
- * if the kDNSServiceFlagsNoAutoRename flag was used when registering.)
- * Other parameters are undefined if errorCode is nonzero.
- *
- * name: The service name registered (if the application did not specify a name in
- * DNSServiceRegister(), this indicates what name was automatically chosen).
- *
- * regtype: The type of service registered, as it was passed to the callout.
- *
- * domain: The domain on which the service was registered (if the application did not
- * specify a domain in DNSServiceRegister(), this indicates the default domain
- * on which the service was registered).
- *
- * context: The context pointer that was passed to the callout.
- *
- */
- typedef void (DNSSD_API *DNSServiceRegisterReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- DNSServiceErrorType errorCode,
- const char *name,
- const char *regtype,
- const char *domain,
- void *context
- );
- /* DNSServiceRegister() Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds
- * then it initializes the DNSServiceRef, returns kDNSServiceErr_NoError,
- * and the registration will remain active indefinitely until the client
- * terminates it by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * interfaceIndex: If non-zero, specifies the interface on which to register the service
- * (the index for a given interface is determined via the if_nametoindex()
- * family of calls.) Most applications will pass 0 to register on all
- * available interfaces. See "Constants for specifying an interface index" for more details.
- *
- * flags: Indicates the renaming behavior on name conflict (most applications
- * will pass 0). See flag definitions above for details.
- *
- * name: If non-NULL, specifies the service name to be registered.
- * Most applications will not specify a name, in which case the computer
- * name is used (this name is communicated to the client via the callback).
- * If a name is specified, it must be 1-63 bytes of UTF-8 text.
- * If the name is longer than 63 bytes it will be automatically truncated
- * to a legal length, unless the NoAutoRename flag is set,
- * in which case kDNSServiceErr_BadParam will be returned.
- *
- * regtype: The service type followed by the protocol, separated by a dot
- * (e.g. "_ftp._tcp"). The service type must be an underscore, followed
- * by 1-15 characters, which may be letters, digits, or hyphens.
- * The transport protocol must be "_tcp" or "_udp". New service types
- * should be registered at <http://www.dns-sd.org/ServiceTypes.html>.
- *
- * Additional subtypes of the primary service type (where a service
- * type has defined subtypes) follow the primary service type in a
- * comma-separated list, with no additional spaces, e.g.
- * "_primarytype._tcp,_subtype1,_subtype2,_subtype3"
- * Subtypes provide a mechanism for filtered browsing: A client browsing
- * for "_primarytype._tcp" will discover all instances of this type;
- * a client browsing for "_primarytype._tcp,_subtype2" will discover only
- * those instances that were registered with "_subtype2" in their list of
- * registered subtypes.
- *
- * The subtype mechanism can be illustrated with some examples using the
- * dns-sd command-line tool:
- *
- * % dns-sd -R Simple _test._tcp "" 1001 &
- * % dns-sd -R Better _test._tcp,HasFeatureA "" 1002 &
- * % dns-sd -R Best _test._tcp,HasFeatureA,HasFeatureB "" 1003 &
- *
- * Now:
- * % dns-sd -B _test._tcp # will find all three services
- * % dns-sd -B _test._tcp,HasFeatureA # finds "Better" and "Best"
- * % dns-sd -B _test._tcp,HasFeatureB # finds only "Best"
- *
- * Subtype labels may be up to 63 bytes long, and may contain any eight-
- * bit byte values, including zero bytes. However, due to the nature of
- * using a C-string-based API, conventional DNS escaping must be used for
- * dots ('.'), commas (','), backslashes ('\') and zero bytes, as shown below:
- *
- * % dns-sd -R Test '_test._tcp,s\.one,s\,two,s\\three,s\000four' local 123
- *
- * When a service is registered, all the clients browsing for the registered
- * type ("regtype") will discover it. If the discovery should be
- * restricted to a smaller set of well known peers, the service can be
- * registered with additional data (group identifier) that is known
- * only to a smaller set of peers. The group identifier should follow primary
- * service type using a colon (":") as a delimeter. If subtypes are also present,
- * it should be given before the subtype as shown below.
- *
- * % dns-sd -R _test1 _http._tcp:mygroup1 local 1001
- * % dns-sd -R _test2 _http._tcp:mygroup2 local 1001
- * % dns-sd -R _test3 _http._tcp:mygroup3,HasFeatureA local 1001
- *
- * Now:
- * % dns-sd -B _http._tcp:"mygroup1" # will discover only test1
- * % dns-sd -B _http._tcp:"mygroup2" # will discover only test2
- * % dns-sd -B _http._tcp:"mygroup3",HasFeatureA # will discover only test3
- *
- * By specifying the group information, only the members of that group are
- * discovered.
- *
- * The group identifier itself is not sent in clear. Only a hash of the group
- * identifier is sent and the clients discover them anonymously. The group identifier
- * may be up to 256 bytes long and may contain any eight bit values except comma which
- * should be escaped.
- *
- * domain: If non-NULL, specifies the domain on which to advertise the service.
- * Most applications will not specify a domain, instead automatically
- * registering in the default domain(s).
- *
- * host: If non-NULL, specifies the SRV target host name. Most applications
- * will not specify a host, instead automatically using the machine's
- * default host name(s). Note that specifying a non-NULL host does NOT
- * create an address record for that host - the application is responsible
- * for ensuring that the appropriate address record exists, or creating it
- * via DNSServiceRegisterRecord().
- *
- * port: The port, in network byte order, on which the service accepts connections.
- * Pass 0 for a "placeholder" service (i.e. a service that will not be discovered
- * by browsing, but will cause a name conflict if another client tries to
- * register that same name). Most clients will not use placeholder services.
- *
- * txtLen: The length of the txtRecord, in bytes. Must be zero if the txtRecord is NULL.
- *
- * txtRecord: The TXT record rdata. A non-NULL txtRecord MUST be a properly formatted DNS
- * TXT record, i.e. <length byte> <data> <length byte> <data> ...
- * Passing NULL for the txtRecord is allowed as a synonym for txtLen=1, txtRecord="",
- * i.e. it creates a TXT record of length one containing a single empty string.
- * RFC 1035 doesn't allow a TXT record to contain *zero* strings, so a single empty
- * string is the smallest legal DNS TXT record.
- * As with the other parameters, the DNSServiceRegister call copies the txtRecord
- * data; e.g. if you allocated the storage for the txtRecord parameter with malloc()
- * then you can safely free that memory right after the DNSServiceRegister call returns.
- *
- * callBack: The function to be called when the registration completes or asynchronously
- * fails. The client MAY pass NULL for the callback - The client will NOT be notified
- * of the default values picked on its behalf, and the client will NOT be notified of any
- * asynchronous errors (e.g. out of memory errors, etc.) that may prevent the registration
- * of the service. The client may NOT pass the NoAutoRename flag if the callback is NULL.
- * The client may still deregister the service at any time via DNSServiceRefDeallocate().
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred (the callback is never invoked and the DNSServiceRef
- * is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceRegister
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- const char *name, /* may be NULL */
- const char *regtype,
- const char *domain, /* may be NULL */
- const char *host, /* may be NULL */
- uint16_t port, /* In network byte order */
- uint16_t txtLen,
- const void *txtRecord, /* may be NULL */
- DNSServiceRegisterReply callBack, /* may be NULL */
- void *context /* may be NULL */
- );
- /* DNSServiceAddRecord()
- *
- * Add a record to a registered service. The name of the record will be the same as the
- * registered service's name.
- * The record can later be updated or deregistered by passing the RecordRef initialized
- * by this function to DNSServiceUpdateRecord() or DNSServiceRemoveRecord().
- *
- * Note that the DNSServiceAddRecord/UpdateRecord/RemoveRecord are *NOT* thread-safe
- * with respect to a single DNSServiceRef. If you plan to have multiple threads
- * in your program simultaneously add, update, or remove records from the same
- * DNSServiceRef, then it's the caller's responsibility to use a mutex lock
- * or take similar appropriate precautions to serialize those calls.
- *
- * Parameters;
- *
- * sdRef: A DNSServiceRef initialized by DNSServiceRegister().
- *
- * RecordRef: A pointer to an uninitialized DNSRecordRef. Upon succesfull completion of this
- * call, this ref may be passed to DNSServiceUpdateRecord() or DNSServiceRemoveRecord().
- * If the above DNSServiceRef is passed to DNSServiceRefDeallocate(), RecordRef is also
- * invalidated and may not be used further.
- *
- * flags: Currently ignored, reserved for future use.
- *
- * rrtype: The type of the record (e.g. kDNSServiceType_TXT, kDNSServiceType_SRV, etc)
- *
- * rdlen: The length, in bytes, of the rdata.
- *
- * rdata: The raw rdata to be contained in the added resource record.
- *
- * ttl: The time to live of the resource record, in seconds.
- * Most clients should pass 0 to indicate that the system should
- * select a sensible default value.
- *
- * return value: Returns kDNSServiceErr_NoError on success, otherwise returns an
- * error code indicating the error that occurred (the RecordRef is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceAddRecord
- (
- DNSServiceRef sdRef,
- DNSRecordRef *RecordRef,
- DNSServiceFlags flags,
- uint16_t rrtype,
- uint16_t rdlen,
- const void *rdata,
- uint32_t ttl
- );
- /* DNSServiceUpdateRecord
- *
- * Update a registered resource record. The record must either be:
- * - The primary txt record of a service registered via DNSServiceRegister()
- * - A record added to a registered service via DNSServiceAddRecord()
- * - An individual record registered by DNSServiceRegisterRecord()
- *
- * Parameters:
- *
- * sdRef: A DNSServiceRef that was initialized by DNSServiceRegister()
- * or DNSServiceCreateConnection().
- *
- * RecordRef: A DNSRecordRef initialized by DNSServiceAddRecord, or NULL to update the
- * service's primary txt record.
- *
- * flags: Currently ignored, reserved for future use.
- *
- * rdlen: The length, in bytes, of the new rdata.
- *
- * rdata: The new rdata to be contained in the updated resource record.
- *
- * ttl: The time to live of the updated resource record, in seconds.
- * Most clients should pass 0 to indicate that the system should
- * select a sensible default value.
- *
- * return value: Returns kDNSServiceErr_NoError on success, otherwise returns an
- * error code indicating the error that occurred.
- */
- DNSServiceErrorType DNSSD_API DNSServiceUpdateRecord
- (
- DNSServiceRef sdRef,
- DNSRecordRef RecordRef, /* may be NULL */
- DNSServiceFlags flags,
- uint16_t rdlen,
- const void *rdata,
- uint32_t ttl
- );
- /* DNSServiceRemoveRecord
- *
- * Remove a record previously added to a service record set via DNSServiceAddRecord(), or deregister
- * an record registered individually via DNSServiceRegisterRecord().
- *
- * Parameters:
- *
- * sdRef: A DNSServiceRef initialized by DNSServiceRegister() (if the
- * record being removed was registered via DNSServiceAddRecord()) or by
- * DNSServiceCreateConnection() (if the record being removed was registered via
- * DNSServiceRegisterRecord()).
- *
- * recordRef: A DNSRecordRef initialized by a successful call to DNSServiceAddRecord()
- * or DNSServiceRegisterRecord().
- *
- * flags: Currently ignored, reserved for future use.
- *
- * return value: Returns kDNSServiceErr_NoError on success, otherwise returns an
- * error code indicating the error that occurred.
- */
- DNSServiceErrorType DNSSD_API DNSServiceRemoveRecord
- (
- DNSServiceRef sdRef,
- DNSRecordRef RecordRef,
- DNSServiceFlags flags
- );
- /*********************************************************************************************
- *
- * Service Discovery
- *
- *********************************************************************************************/
- /* Browse for instances of a service.
- *
- * DNSServiceBrowseReply() Parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceBrowse().
- *
- * flags: Possible values are kDNSServiceFlagsMoreComing and kDNSServiceFlagsAdd.
- * See flag definitions for details.
- *
- * interfaceIndex: The interface on which the service is advertised. This index should
- * be passed to DNSServiceResolve() when resolving the service.
- *
- * errorCode: Will be kDNSServiceErr_NoError (0) on success, otherwise will
- * indicate the failure that occurred. Other parameters are undefined if
- * the errorCode is nonzero.
- *
- * serviceName: The discovered service name. This name should be displayed to the user,
- * and stored for subsequent use in the DNSServiceResolve() call.
- *
- * regtype: The service type, which is usually (but not always) the same as was passed
- * to DNSServiceBrowse(). One case where the discovered service type may
- * not be the same as the requested service type is when using subtypes:
- * The client may want to browse for only those ftp servers that allow
- * anonymous connections. The client will pass the string "_ftp._tcp,_anon"
- * to DNSServiceBrowse(), but the type of the service that's discovered
- * is simply "_ftp._tcp". The regtype for each discovered service instance
- * should be stored along with the name, so that it can be passed to
- * DNSServiceResolve() when the service is later resolved.
- *
- * domain: The domain of the discovered service instance. This may or may not be the
- * same as the domain that was passed to DNSServiceBrowse(). The domain for each
- * discovered service instance should be stored along with the name, so that
- * it can be passed to DNSServiceResolve() when the service is later resolved.
- *
- * context: The context pointer that was passed to the callout.
- *
- */
- typedef void (DNSSD_API *DNSServiceBrowseReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceErrorType errorCode,
- const char *serviceName,
- const char *regtype,
- const char *replyDomain,
- void *context
- );
- /* DNSServiceBrowse() Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds
- * then it initializes the DNSServiceRef, returns kDNSServiceErr_NoError,
- * and the browse operation will run indefinitely until the client
- * terminates it by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * flags: Currently ignored, reserved for future use.
- *
- * interfaceIndex: If non-zero, specifies the interface on which to browse for services
- * (the index for a given interface is determined via the if_nametoindex()
- * family of calls.) Most applications will pass 0 to browse on all available
- * interfaces. See "Constants for specifying an interface index" for more details.
- *
- * regtype: The service type being browsed for followed by the protocol, separated by a
- * dot (e.g. "_ftp._tcp"). The transport protocol must be "_tcp" or "_udp".
- * A client may optionally specify a single subtype to perform filtered browsing:
- * e.g. browsing for "_primarytype._tcp,_subtype" will discover only those
- * instances of "_primarytype._tcp" that were registered specifying "_subtype"
- * in their list of registered subtypes. Additionally, a group identifier may
- * also be specified before the subtype e.g., _primarytype._tcp:GroupID, which
- * will discover only the members that register the service with GroupID. See
- * DNSServiceRegister for more details.
- *
- * domain: If non-NULL, specifies the domain on which to browse for services.
- * Most applications will not specify a domain, instead browsing on the
- * default domain(s).
- *
- * callBack: The function to be called when an instance of the service being browsed for
- * is found, or if the call asynchronously fails.
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred (the callback is not invoked and the DNSServiceRef
- * is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceBrowse
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- const char *regtype,
- const char *domain, /* may be NULL */
- DNSServiceBrowseReply callBack,
- void *context /* may be NULL */
- );
- /* DNSServiceResolve()
- *
- * Resolve a service name discovered via DNSServiceBrowse() to a target host name, port number, and
- * txt record.
- *
- * Note: Applications should NOT use DNSServiceResolve() solely for txt record monitoring - use
- * DNSServiceQueryRecord() instead, as it is more efficient for this task.
- *
- * Note: When the desired results have been returned, the client MUST terminate the resolve by calling
- * DNSServiceRefDeallocate().
- *
- * Note: DNSServiceResolve() behaves correctly for typical services that have a single SRV record
- * and a single TXT record. To resolve non-standard services with multiple SRV or TXT records,
- * DNSServiceQueryRecord() should be used.
- *
- * DNSServiceResolveReply Callback Parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceResolve().
- *
- * flags: Possible values: kDNSServiceFlagsMoreComing
- *
- * interfaceIndex: The interface on which the service was resolved.
- *
- * errorCode: Will be kDNSServiceErr_NoError (0) on success, otherwise will
- * indicate the failure that occurred. Other parameters are undefined if
- * the errorCode is nonzero.
- *
- * fullname: The full service domain name, in the form <servicename>.<protocol>.<domain>.
- * (This name is escaped following standard DNS rules, making it suitable for
- * passing to standard system DNS APIs such as res_query(), or to the
- * special-purpose functions included in this API that take fullname parameters.
- * See "Notes on DNS Name Escaping" earlier in this file for more details.)
- *
- * hosttarget: The target hostname of the machine providing the service. This name can
- * be passed to functions like gethostbyname() to identify the host's IP address.
- *
- * port: The port, in network byte order, on which connections are accepted for this service.
- *
- * txtLen: The length of the txt record, in bytes.
- *
- * txtRecord: The service's primary txt record, in standard txt record format.
- *
- * context: The context pointer that was passed to the callout.
- *
- * NOTE: In earlier versions of this header file, the txtRecord parameter was declared "const char *"
- * This is incorrect, since it contains length bytes which are values in the range 0 to 255, not -128 to +127.
- * Depending on your compiler settings, this change may cause signed/unsigned mismatch warnings.
- * These should be fixed by updating your own callback function definition to match the corrected
- * function signature using "const unsigned char *txtRecord". Making this change may also fix inadvertent
- * bugs in your callback function, where it could have incorrectly interpreted a length byte with value 250
- * as being -6 instead, with various bad consequences ranging from incorrect operation to software crashes.
- * If you need to maintain portable code that will compile cleanly with both the old and new versions of
- * this header file, you should update your callback function definition to use the correct unsigned value,
- * and then in the place where you pass your callback function to DNSServiceResolve(), use a cast to eliminate
- * the compiler warning, e.g.:
- * DNSServiceResolve(sd, flags, index, name, regtype, domain, (DNSServiceResolveReply)MyCallback, context);
- * This will ensure that your code compiles cleanly without warnings (and more importantly, works correctly)
- * with both the old header and with the new corrected version.
- *
- */
- typedef void (DNSSD_API *DNSServiceResolveReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceErrorType errorCode,
- const char *fullname,
- const char *hosttarget,
- uint16_t port, /* In network byte order */
- uint16_t txtLen,
- const unsigned char *txtRecord,
- void *context
- );
- /* DNSServiceResolve() Parameters
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds
- * then it initializes the DNSServiceRef, returns kDNSServiceErr_NoError,
- * and the resolve operation will run indefinitely until the client
- * terminates it by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * flags: Specifying kDNSServiceFlagsForceMulticast will cause query to be
- * performed with a link-local mDNS query, even if the name is an
- * apparently non-local name (i.e. a name not ending in ".local.")
- *
- * interfaceIndex: The interface on which to resolve the service. If this resolve call is
- * as a result of a currently active DNSServiceBrowse() operation, then the
- * interfaceIndex should be the index reported in the DNSServiceBrowseReply
- * callback. If this resolve call is using information previously saved
- * (e.g. in a preference file) for later use, then use interfaceIndex 0, because
- * the desired service may now be reachable via a different physical interface.
- * See "Constants for specifying an interface index" for more details.
- *
- * name: The name of the service instance to be resolved, as reported to the
- * DNSServiceBrowseReply() callback.
- *
- * regtype: The type of the service instance to be resolved, as reported to the
- * DNSServiceBrowseReply() callback.
- *
- * domain: The domain of the service instance to be resolved, as reported to the
- * DNSServiceBrowseReply() callback.
- *
- * callBack: The function to be called when a result is found, or if the call
- * asynchronously fails.
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred (the callback is never invoked and the DNSServiceRef
- * is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceResolve
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- const char *name,
- const char *regtype,
- const char *domain,
- DNSServiceResolveReply callBack,
- void *context /* may be NULL */
- );
- /*********************************************************************************************
- *
- * Querying Individual Specific Records
- *
- *********************************************************************************************/
- /* DNSServiceQueryRecord
- *
- * Query for an arbitrary DNS record.
- *
- * DNSServiceQueryRecordReply() Callback Parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceQueryRecord().
- *
- * flags: Possible values are kDNSServiceFlagsMoreComing and
- * kDNSServiceFlagsAdd. The Add flag is NOT set for PTR records
- * with a ttl of 0, i.e. "Remove" events.
- *
- * interfaceIndex: The interface on which the query was resolved (the index for a given
- * interface is determined via the if_nametoindex() family of calls).
- * See "Constants for specifying an interface index" for more details.
- *
- * errorCode: Will be kDNSServiceErr_NoError on success, otherwise will
- * indicate the failure that occurred. Other parameters are undefined if
- * errorCode is nonzero.
- *
- * fullname: The resource record's full domain name.
- *
- * rrtype: The resource record's type (e.g. kDNSServiceType_PTR, kDNSServiceType_SRV, etc)
- *
- * rrclass: The class of the resource record (usually kDNSServiceClass_IN).
- *
- * rdlen: The length, in bytes, of the resource record rdata.
- *
- * rdata: The raw rdata of the resource record.
- *
- * ttl: If the client wishes to cache the result for performance reasons,
- * the TTL indicates how long the client may legitimately hold onto
- * this result, in seconds. After the TTL expires, the client should
- * consider the result no longer valid, and if it requires this data
- * again, it should be re-fetched with a new query. Of course, this
- * only applies to clients that cancel the asynchronous operation when
- * they get a result. Clients that leave the asynchronous operation
- * running can safely assume that the data remains valid until they
- * get another callback telling them otherwise.
- *
- * context: The context pointer that was passed to the callout.
- *
- */
- typedef void (DNSSD_API *DNSServiceQueryRecordReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceErrorType errorCode,
- const char *fullname,
- uint16_t rrtype,
- uint16_t rrclass,
- uint16_t rdlen,
- const void *rdata,
- uint32_t ttl,
- void *context
- );
- /* DNSServiceQueryRecord() Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds
- * then it initializes the DNSServiceRef, returns kDNSServiceErr_NoError,
- * and the query operation will run indefinitely until the client
- * terminates it by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * flags: kDNSServiceFlagsForceMulticast or kDNSServiceFlagsLongLivedQuery.
- * Pass kDNSServiceFlagsLongLivedQuery to create a "long-lived" unicast
- * query to a unicast DNS server that implements the protocol. This flag
- * has no effect on link-local multicast queries.
- *
- * interfaceIndex: If non-zero, specifies the interface on which to issue the query
- * (the index for a given interface is determined via the if_nametoindex()
- * family of calls.) Passing 0 causes the name to be queried for on all
- * interfaces. See "Constants for specifying an interface index" for more details.
- *
- * fullname: The full domain name of the resource record to be queried for.
- *
- * rrtype: The numerical type of the resource record to be queried for
- * (e.g. kDNSServiceType_PTR, kDNSServiceType_SRV, etc)
- *
- * rrclass: The class of the resource record (usually kDNSServiceClass_IN).
- *
- * callBack: The function to be called when a result is found, or if the call
- * asynchronously fails.
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred (the callback is never invoked and the DNSServiceRef
- * is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceQueryRecord
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- const char *fullname,
- uint16_t rrtype,
- uint16_t rrclass,
- DNSServiceQueryRecordReply callBack,
- void *context /* may be NULL */
- );
- /*********************************************************************************************
- *
- * Unified lookup of both IPv4 and IPv6 addresses for a fully qualified hostname
- *
- *********************************************************************************************/
- /* DNSServiceGetAddrInfo
- *
- * Queries for the IP address of a hostname by using either Multicast or Unicast DNS.
- *
- * DNSServiceGetAddrInfoReply() parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceGetAddrInfo().
- *
- * flags: Possible values are kDNSServiceFlagsMoreComing and
- * kDNSServiceFlagsAdd.
- *
- * interfaceIndex: The interface to which the answers pertain.
- *
- * errorCode: Will be kDNSServiceErr_NoError on success, otherwise will
- * indicate the failure that occurred. Other parameters are
- * undefined if errorCode is nonzero.
- *
- * hostname: The fully qualified domain name of the host to be queried for.
- *
- * address: IPv4 or IPv6 address.
- *
- * ttl: If the client wishes to cache the result for performance reasons,
- * the TTL indicates how long the client may legitimately hold onto
- * this result, in seconds. After the TTL expires, the client should
- * consider the result no longer valid, and if it requires this data
- * again, it should be re-fetched with a new query. Of course, this
- * only applies to clients that cancel the asynchronous operation when
- * they get a result. Clients that leave the asynchronous operation
- * running can safely assume that the data remains valid until they
- * get another callback telling them otherwise.
- *
- * context: The context pointer that was passed to the callout.
- *
- */
- typedef void (DNSSD_API *DNSServiceGetAddrInfoReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceErrorType errorCode,
- const char *hostname,
- const struct sockaddr *address,
- uint32_t ttl,
- void *context
- );
- /* DNSServiceGetAddrInfo() Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds then it
- * initializes the DNSServiceRef, returns kDNSServiceErr_NoError, and the query
- * begins and will last indefinitely until the client terminates the query
- * by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * flags: kDNSServiceFlagsForceMulticast
- *
- * interfaceIndex: The interface on which to issue the query. Passing 0 causes the query to be
- * sent on all active interfaces via Multicast or the primary interface via Unicast.
- *
- * protocol: Pass in kDNSServiceProtocol_IPv4 to look up IPv4 addresses, or kDNSServiceProtocol_IPv6
- * to look up IPv6 addresses, or both to look up both kinds. If neither flag is
- * set, the system will apply an intelligent heuristic, which is (currently)
- * that it will attempt to look up both, except:
- *
- * * If "hostname" is a wide-area unicast DNS hostname (i.e. not a ".local." name)
- * but this host has no routable IPv6 address, then the call will not try to
- * look up IPv6 addresses for "hostname", since any addresses it found would be
- * unlikely to be of any use anyway. Similarly, if this host has no routable
- * IPv4 address, the call will not try to look up IPv4 addresses for "hostname".
- *
- * hostname: The fully qualified domain name of the host to be queried for.
- *
- * callBack: The function to be called when the query succeeds or fails asynchronously.
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred.
- */
- DNSServiceErrorType DNSSD_API DNSServiceGetAddrInfo
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceProtocol protocol,
- const char *hostname,
- DNSServiceGetAddrInfoReply callBack,
- void *context /* may be NULL */
- );
- /*********************************************************************************************
- *
- * Special Purpose Calls:
- * DNSServiceCreateConnection(), DNSServiceRegisterRecord(), DNSServiceReconfirmRecord()
- * (most applications will not use these)
- *
- *********************************************************************************************/
- /* DNSServiceCreateConnection()
- *
- * Create a connection to the daemon allowing efficient registration of
- * multiple individual records.
- *
- * Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. Deallocating
- * the reference (via DNSServiceRefDeallocate()) severs the
- * connection and deregisters all records registered on this connection.
- *
- * return value: Returns kDNSServiceErr_NoError on success, otherwise returns
- * an error code indicating the specific failure that occurred (in which
- * case the DNSServiceRef is not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceCreateConnection(DNSServiceRef *sdRef);
- /* DNSServiceRegisterRecord
- *
- * Register an individual resource record on a connected DNSServiceRef.
- *
- * Note that name conflicts occurring for records registered via this call must be handled
- * by the client in the callback.
- *
- * DNSServiceRegisterRecordReply() parameters:
- *
- * sdRef: The connected DNSServiceRef initialized by
- * DNSServiceCreateConnection().
- *
- * RecordRef: The DNSRecordRef initialized by DNSServiceRegisterRecord(). If the above
- * DNSServiceRef is passed to DNSServiceRefDeallocate(), this DNSRecordRef is
- * invalidated, and may not be used further.
- *
- * flags: Currently unused, reserved for future use.
- *
- * errorCode: Will be kDNSServiceErr_NoError on success, otherwise will
- * indicate the failure that occurred (including name conflicts.)
- * Other parameters are undefined if errorCode is nonzero.
- *
- * context: The context pointer that was passed to the callout.
- *
- */
- typedef void (DNSSD_API *DNSServiceRegisterRecordReply)
- (
- DNSServiceRef sdRef,
- DNSRecordRef RecordRef,
- DNSServiceFlags flags,
- DNSServiceErrorType errorCode,
- void *context
- );
- /* DNSServiceRegisterRecord() Parameters:
- *
- * sdRef: A DNSServiceRef initialized by DNSServiceCreateConnection().
- *
- * RecordRef: A pointer to an uninitialized DNSRecordRef. Upon succesfull completion of this
- * call, this ref may be passed to DNSServiceUpdateRecord() or DNSServiceRemoveRecord().
- * (To deregister ALL records registered on a single connected DNSServiceRef
- * and deallocate each of their corresponding DNSServiceRecordRefs, call
- * DNSServiceRefDeallocate()).
- *
- * flags: Possible values are kDNSServiceFlagsShared or kDNSServiceFlagsUnique
- * (see flag type definitions for details).
- *
- * interfaceIndex: If non-zero, specifies the interface on which to register the record
- * (the index for a given interface is determined via the if_nametoindex()
- * family of calls.) Passing 0 causes the record to be registered on all interfaces.
- * See "Constants for specifying an interface index" for more details.
- *
- * fullname: The full domain name of the resource record.
- *
- * rrtype: The numerical type of the resource record (e.g. kDNSServiceType_PTR, kDNSServiceType_SRV, etc)
- *
- * rrclass: The class of the resource record (usually kDNSServiceClass_IN)
- *
- * rdlen: Length, in bytes, of the rdata.
- *
- * rdata: A pointer to the raw rdata, as it is to appear in the DNS record.
- *
- * ttl: The time to live of the resource record, in seconds.
- * Most clients should pass 0 to indicate that the system should
- * select a sensible default value.
- *
- * callBack: The function to be called when a result is found, or if the call
- * asynchronously fails (e.g. because of a name conflict.)
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred (the callback is never invoked and the DNSRecordRef is
- * not initialized).
- */
- DNSServiceErrorType DNSSD_API DNSServiceRegisterRecord
- (
- DNSServiceRef sdRef,
- DNSRecordRef *RecordRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- const char *fullname,
- uint16_t rrtype,
- uint16_t rrclass,
- uint16_t rdlen,
- const void *rdata,
- uint32_t ttl,
- DNSServiceRegisterRecordReply callBack,
- void *context /* may be NULL */
- );
- /* DNSServiceReconfirmRecord
- *
- * Instruct the daemon to verify the validity of a resource record that appears
- * to be out of date (e.g. because TCP connection to a service's target failed.)
- * Causes the record to be flushed from the daemon's cache (as well as all other
- * daemons' caches on the network) if the record is determined to be invalid.
- * Use this routine conservatively. Reconfirming a record necessarily consumes
- * network bandwidth, so this should not be done indiscriminately.
- *
- * Parameters:
- *
- * flags: Not currently used.
- *
- * interfaceIndex: Specifies the interface of the record in question.
- * The caller must specify the interface.
- * This API (by design) causes increased network traffic, so it requires
- * the caller to be precise about which record should be reconfirmed.
- * It is not possible to pass zero for the interface index to perform
- * a "wildcard" reconfirmation, where *all* matching records are reconfirmed.
- *
- * fullname: The resource record's full domain name.
- *
- * rrtype: The resource record's type (e.g. kDNSServiceType_PTR, kDNSServiceType_SRV, etc)
- *
- * rrclass: The class of the resource record (usually kDNSServiceClass_IN).
- *
- * rdlen: The length, in bytes, of the resource record rdata.
- *
- * rdata: The raw rdata of the resource record.
- *
- */
- DNSServiceErrorType DNSSD_API DNSServiceReconfirmRecord
- (
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- const char *fullname,
- uint16_t rrtype,
- uint16_t rrclass,
- uint16_t rdlen,
- const void *rdata
- );
- /*********************************************************************************************
- *
- * NAT Port Mapping
- *
- *********************************************************************************************/
- /* DNSServiceNATPortMappingCreate
- *
- * Request a port mapping in the NAT gateway, which maps a port on the local machine
- * to an external port on the NAT. The NAT should support either PCP, NAT-PMP or the
- * UPnP/IGD protocol for this API to create a successful mapping. Note that this API
- * currently supports IPv4 addresses/mappings only. If the NAT gateway supports PCP and
- * returns an IPv6 address (incorrectly, since this API specifically requests IPv4
- * addresses), the DNSServiceNATPortMappingReply callback will be invoked with errorCode
- * kDNSServiceErr_NATPortMappingUnsupported.
- *
- * The port mapping will be renewed indefinitely until the client process exits, or
- * explicitly terminates the port mapping request by calling DNSServiceRefDeallocate().
- * The client callback will be invoked, informing the client of the NAT gateway's
- * external IP address and the external port that has been allocated for this client.
- * The client should then record this external IP address and port using whatever
- * directory service mechanism it is using to enable peers to connect to it.
- * (Clients advertising services using Wide-Area DNS-SD DO NOT need to use this API
- * -- when a client calls DNSServiceRegister() NAT mappings are automatically created
- * and the external IP address and port for the service are recorded in the global DNS.
- * Only clients using some directory mechanism other than Wide-Area DNS-SD need to use
- * this API to explicitly map their own ports.)
- *
- * It's possible that the client callback could be called multiple times, for example
- * if the NAT gateway's IP address changes, or if a configuration change results in a
- * different external port being mapped for this client. Over the lifetime of any long-lived
- * port mapping, the client should be prepared to handle these notifications of changes
- * in the environment, and should update its recorded address and/or port as appropriate.
- *
- * NOTE: There are two unusual aspects of how the DNSServiceNATPortMappingCreate API works,
- * which were intentionally designed to help simplify client code:
- *
- * 1. It's not an error to request a NAT mapping when the machine is not behind a NAT gateway.
- * In other NAT mapping APIs, if you request a NAT mapping and the machine is not behind a NAT
- * gateway, then the API returns an error code -- it can't get you a NAT mapping if there's no
- * NAT gateway. The DNSServiceNATPortMappingCreate API takes a different view. Working out
- * whether or not you need a NAT mapping can be tricky and non-obvious, particularly on
- * a machine with multiple active network interfaces. Rather than make every client recreate
- * this logic for deciding whether a NAT mapping is required, the PortMapping API does that
- * work for you. If the client calls the PortMapping API when the machine already has a
- * routable public IP address, then instead of complaining about it and giving an error,
- * the PortMapping API just invokes your callback, giving the machine's public address
- * and your own port number. This means you don't need to write code to work out whether
- * your client needs to call the PortMapping API -- just call it anyway, and if it wasn't
- * necessary, no harm is done:
- *
- * - If the machine already has a routable public IP address, then your callback
- * will just be invoked giving your own address and port.
- * - If a NAT mapping is required and obtained, then your callback will be invoked
- * giving you the external address and port.
- * - If a NAT mapping is required but not obtained from the local NAT gateway,
- * or the machine has no network connectivity, then your callback will be
- * invoked giving zero address and port.
- *
- * 2. In other NAT mapping APIs, if a laptop computer is put to sleep and woken up on a new
- * network, it's the client's job to notice this, and work out whether a NAT mapping
- * is required on the new network, and make a new NAT mapping request if necessary.
- * The DNSServiceNATPortMappingCreate API does this for you, automatically.
- * The client just needs to make one call to the PortMapping API, and its callback will
- * be invoked any time the mapping state changes. This property complements point (1) above.
- * If the client didn't make a NAT mapping request just because it determined that one was
- * not required at that particular moment in time, the client would then have to monitor
- * for network state changes to determine if a NAT port mapping later became necessary.
- * By unconditionally making a NAT mapping request, even when a NAT mapping not to be
- * necessary, the PortMapping API will then begin monitoring network state changes on behalf of
- * the client, and if a NAT mapping later becomes necessary, it will automatically create a NAT
- * mapping and inform the client with a new callback giving the new address and port information.
- *
- * DNSServiceNATPortMappingReply() parameters:
- *
- * sdRef: The DNSServiceRef initialized by DNSServiceNATPortMappingCreate().
- *
- * flags: Currently unused, reserved for future use.
- *
- * interfaceIndex: The interface through which the NAT gateway is reached.
- *
- * errorCode: Will be kDNSServiceErr_NoError on success.
- * Will be kDNSServiceErr_DoubleNAT when the NAT gateway is itself behind one or
- * more layers of NAT, in which case the other parameters have the defined values.
- * For other failures, will indicate the failure that occurred, and the other
- * parameters are undefined.
- *
- * externalAddress: Four byte IPv4 address in network byte order.
- *
- * protocol: Will be kDNSServiceProtocol_UDP or kDNSServiceProtocol_TCP or both.
- *
- * internalPort: The port on the local machine that was mapped.
- *
- * externalPort: The actual external port in the NAT gateway that was mapped.
- * This is likely to be different than the requested external port.
- *
- * ttl: The lifetime of the NAT port mapping created on the gateway.
- * This controls how quickly stale mappings will be garbage-collected
- * if the client machine crashes, suffers a power failure, is disconnected
- * from the network, or suffers some other unfortunate demise which
- * causes it to vanish without explicitly removing its NAT port mapping.
- * It's possible that the ttl value will differ from the requested ttl value.
- *
- * context: The context pointer that was passed to the callout.
- *
- */
- typedef void (DNSSD_API *DNSServiceNATPortMappingReply)
- (
- DNSServiceRef sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceErrorType errorCode,
- uint32_t externalAddress, /* four byte IPv4 address in network byte order */
- DNSServiceProtocol protocol,
- uint16_t internalPort, /* In network byte order */
- uint16_t externalPort, /* In network byte order and may be different than the requested port */
- uint32_t ttl, /* may be different than the requested ttl */
- void *context
- );
- /* DNSServiceNATPortMappingCreate() Parameters:
- *
- * sdRef: A pointer to an uninitialized DNSServiceRef. If the call succeeds then it
- * initializes the DNSServiceRef, returns kDNSServiceErr_NoError, and the nat
- * port mapping will last indefinitely until the client terminates the port
- * mapping request by passing this DNSServiceRef to DNSServiceRefDeallocate().
- *
- * flags: Currently ignored, reserved for future use.
- *
- * interfaceIndex: The interface on which to create port mappings in a NAT gateway. Passing 0 causes
- * the port mapping request to be sent on the primary interface.
- *
- * protocol: To request a port mapping, pass in kDNSServiceProtocol_UDP, or kDNSServiceProtocol_TCP,
- * or (kDNSServiceProtocol_UDP | kDNSServiceProtocol_TCP) to map both.
- * The local listening port number must also be specified in the internalPort parameter.
- * To just discover the NAT gateway's external IP address, pass zero for protocol,
- * internalPort, externalPort and ttl.
- *
- * internalPort: The port number in network byte order on the local machine which is listening for packets.
- *
- * externalPort: The requested external port in network byte order in the NAT gateway that you would
- * like to map to the internal port. Pass 0 if you don't care which external port is chosen for you.
- *
- * ttl: The requested renewal period of the NAT port mapping, in seconds.
- * If the client machine crashes, suffers a power failure, is disconnected from
- * the network, or suffers some other unfortunate demise which causes it to vanish
- * unexpectedly without explicitly removing its NAT port mappings, then the NAT gateway
- * will garbage-collect old stale NAT port mappings when their lifetime expires.
- * Requesting a short TTL causes such orphaned mappings to be garbage-collected
- * more promptly, but consumes system resources and network bandwidth with
- * frequent renewal packets to keep the mapping from expiring.
- * Requesting a long TTL is more efficient on the network, but in the event of the
- * client vanishing, stale NAT port mappings will not be garbage-collected as quickly.
- * Most clients should pass 0 to use a system-wide default value.
- *
- * callBack: The function to be called when the port mapping request succeeds or fails asynchronously.
- *
- * context: An application context pointer which is passed to the callback function
- * (may be NULL).
- *
- * return value: Returns kDNSServiceErr_NoError on success (any subsequent, asynchronous
- * errors are delivered to the callback), otherwise returns an error code indicating
- * the error that occurred.
- *
- * If you don't actually want a port mapped, and are just calling the API
- * because you want to find out the NAT's external IP address (e.g. for UI
- * display) then pass zero for protocol, internalPort, externalPort and ttl.
- */
- DNSServiceErrorType DNSSD_API DNSServiceNATPortMappingCreate
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- uint32_t interfaceIndex,
- DNSServiceProtocol protocol, /* TCP and/or UDP */
- uint16_t internalPort, /* network byte order */
- uint16_t externalPort, /* network byte order */
- uint32_t ttl, /* time to live in seconds */
- DNSServiceNATPortMappingReply callBack,
- void *context /* may be NULL */
- );
- /*********************************************************************************************
- *
- * General Utility Functions
- *
- *********************************************************************************************/
- /* DNSServiceConstructFullName()
- *
- * Concatenate a three-part domain name (as returned by the above callbacks) into a
- * properly-escaped full domain name. Note that callbacks in the above functions ALREADY ESCAPE
- * strings where necessary.
- *
- * Parameters:
- *
- * fullName: A pointer to a buffer that where the resulting full domain name is to be written.
- * The buffer must be kDNSServiceMaxDomainName (1009) bytes in length to
- * accommodate the longest legal domain name without buffer overrun.
- *
- * service: The service name - any dots or backslashes must NOT be escaped.
- * May be NULL (to construct a PTR record name, e.g.
- * "_ftp._tcp.apple.com.").
- *
- * regtype: The service type followed by the protocol, separated by a dot
- * (e.g. "_ftp._tcp").
- *
- * domain: The domain name, e.g. "apple.com.". Literal dots or backslashes,
- * if any, must be escaped, e.g. "1st\. Floor.apple.com."
- *
- * return value: Returns kDNSServiceErr_NoError (0) on success, kDNSServiceErr_BadParam on error.
- *
- */
- DNSServiceErrorType DNSSD_API DNSServiceConstructFullName
- (
- char * const fullName,
- const char * const service, /* may be NULL */
- const char * const regtype,
- const char * const domain
- );
- /*********************************************************************************************
- *
- * TXT Record Construction Functions
- *
- *********************************************************************************************/
- /*
- * A typical calling sequence for TXT record construction is something like:
- *
- * Client allocates storage for TXTRecord data (e.g. declare buffer on the stack)
- * TXTRecordCreate();
- * TXTRecordSetValue();
- * TXTRecordSetValue();
- * TXTRecordSetValue();
- * ...
- * DNSServiceRegister( ... TXTRecordGetLength(), TXTRecordGetBytesPtr() ... );
- * TXTRecordDeallocate();
- * Explicitly deallocate storage for TXTRecord data (if not allocated on the stack)
- */
- /* TXTRecordRef
- *
- * Opaque internal data type.
- * Note: Represents a DNS-SD TXT record.
- */
- typedef union _TXTRecordRef_t { char PrivateData[16]; char *ForceNaturalAlignment; } TXTRecordRef;
- /* TXTRecordCreate()
- *
- * Creates a new empty TXTRecordRef referencing the specified storage.
- *
- * If the buffer parameter is NULL, or the specified storage size is not
- * large enough to hold a key subsequently added using TXTRecordSetValue(),
- * then additional memory will be added as needed using malloc().
- *
- * On some platforms, when memory is low, malloc() may fail. In this
- * case, TXTRecordSetValue() will return kDNSServiceErr_NoMemory, and this
- * error condition will need to be handled as appropriate by the caller.
- *
- * You can avoid the need to handle this error condition if you ensure
- * that the storage you initially provide is large enough to hold all
- * the key/value pairs that are to be added to the record.
- * The caller can precompute the exact length required for all of the
- * key/value pairs to be added, or simply provide a fixed-sized buffer
- * known in advance to be large enough.
- * A no-value (key-only) key requires (1 + key length) bytes.
- * A key with empty value requires (1 + key length + 1) bytes.
- * A key with non-empty value requires (1 + key length + 1 + value length).
- * For most applications, DNS-SD TXT records are generally
- * less than 100 bytes, so in most cases a simple fixed-sized
- * 256-byte buffer will be more than sufficient.
- * Recommended size limits for DNS-SD TXT Records are discussed in RFC 6763
- * <https://tools.ietf.org/html/rfc6763#section-6.2>
- *
- * Note: When passing parameters to and from these TXT record APIs,
- * the key name does not include the '=' character. The '=' character
- * is the separator between the key and value in the on-the-wire
- * packet format; it is not part of either the key or the value.
- *
- * txtRecord: A pointer to an uninitialized TXTRecordRef.
- *
- * bufferLen: The size of the storage provided in the "buffer" parameter.
- *
- * buffer: Optional caller-supplied storage used to hold the TXTRecord data.
- * This storage must remain valid for as long as
- * the TXTRecordRef.
- */
- void DNSSD_API TXTRecordCreate
- (
- TXTRecordRef *txtRecord,
- uint16_t bufferLen,
- void *buffer
- );
- /* TXTRecordDeallocate()
- *
- * Releases any resources allocated in the course of preparing a TXT Record
- * using TXTRecordCreate()/TXTRecordSetValue()/TXTRecordRemoveValue().
- * Ownership of the buffer provided in TXTRecordCreate() returns to the client.
- *
- * txtRecord: A TXTRecordRef initialized by calling TXTRecordCreate().
- *
- */
- void DNSSD_API TXTRecordDeallocate
- (
- TXTRecordRef *txtRecord
- );
- /* TXTRecordSetValue()
- *
- * Adds a key (optionally with value) to a TXTRecordRef. If the "key" already
- * exists in the TXTRecordRef, then the current value will be replaced with
- * the new value.
- * Keys may exist in four states with respect to a given TXT record:
- * - Absent (key does not appear at all)
- * - Present with no value ("key" appears alone)
- * - Present with empty value ("key=" appears in TXT record)
- * - Present with non-empty value ("key=value" appears in TXT record)
- * For more details refer to "Data Syntax for DNS-SD TXT Records" in RFC 6763
- * <https://tools.ietf.org/html/rfc6763#section-6>
- *
- * txtRecord: A TXTRecordRef initialized by calling TXTRecordCreate().
- *
- * key: A null-terminated string which only contains printable ASCII
- * values (0x20-0x7E), excluding '=' (0x3D). Keys should be
- * 9 characters or fewer (not counting the terminating null).
- *
- * valueSize: The size of the value.
- *
- * value: Any binary value. For values that represent
- * textual data, UTF-8 is STRONGLY recommended.
- * For values that represent textual data, valueSize
- * should NOT include the terminating null (if any)
- * at the end of the string.
- * If NULL, then "key" will be added with no value.
- * If non-NULL but valueSize is zero, then "key=" will be
- * added with empty value.
- *
- * return value: Returns kDNSServiceErr_NoError on success.
- * Returns kDNSServiceErr_Invalid if the "key" string contains
- * illegal characters.
- * Returns kDNSServiceErr_NoMemory if adding this key would
- * exceed the available storage.
- */
- DNSServiceErrorType DNSSD_API TXTRecordSetValue
- (
- TXTRecordRef *txtRecord,
- const char *key,
- uint8_t valueSize, /* may be zero */
- const void *value /* may be NULL */
- );
- /* TXTRecordRemoveValue()
- *
- * Removes a key from a TXTRecordRef. The "key" must be an
- * ASCII string which exists in the TXTRecordRef.
- *
- * txtRecord: A TXTRecordRef initialized by calling TXTRecordCreate().
- *
- * key: A key name which exists in the TXTRecordRef.
- *
- * return value: Returns kDNSServiceErr_NoError on success.
- * Returns kDNSServiceErr_NoSuchKey if the "key" does not
- * exist in the TXTRecordRef.
- */
- DNSServiceErrorType DNSSD_API TXTRecordRemoveValue
- (
- TXTRecordRef *txtRecord,
- const char *key
- );
- /* TXTRecordGetLength()
- *
- * Allows you to determine the length of the raw bytes within a TXTRecordRef.
- *
- * txtRecord: A TXTRecordRef initialized by calling TXTRecordCreate().
- *
- * return value: Returns the size of the raw bytes inside a TXTRecordRef
- * which you can pass directly to DNSServiceRegister() or
- * to DNSServiceUpdateRecord().
- * Returns 0 if the TXTRecordRef is empty.
- */
- uint16_t DNSSD_API TXTRecordGetLength
- (
- const TXTRecordRef *txtRecord
- );
- /* TXTRecordGetBytesPtr()
- *
- * Allows you to retrieve a pointer to the raw bytes within a TXTRecordRef.
- *
- * txtRecord: A TXTRecordRef initialized by calling TXTRecordCreate().
- *
- * return value: Returns a pointer to the raw bytes inside the TXTRecordRef
- * which you can pass directly to DNSServiceRegister() or
- * to DNSServiceUpdateRecord().
- */
- const void * DNSSD_API TXTRecordGetBytesPtr
- (
- const TXTRecordRef *txtRecord
- );
- /*********************************************************************************************
- *
- * TXT Record Parsing Functions
- *
- *********************************************************************************************/
- /*
- * A typical calling sequence for TXT record parsing is something like:
- *
- * Receive TXT record data in DNSServiceResolve() callback
- * if (TXTRecordContainsKey(txtLen, txtRecord, "key")) then do something
- * val1ptr = TXTRecordGetValuePtr(txtLen, txtRecord, "key1", &len1);
- * val2ptr = TXTRecordGetValuePtr(txtLen, txtRecord, "key2", &len2);
- * ...
- * memcpy(myval1, val1ptr, len1);
- * memcpy(myval2, val2ptr, len2);
- * ...
- * return;
- *
- * If you wish to retain the values after return from the DNSServiceResolve()
- * callback, then you need to copy the data to your own storage using memcpy()
- * or similar, as shown in the example above.
- *
- * If for some reason you need to parse a TXT record you built yourself
- * using the TXT record construction functions above, then you can do
- * that using TXTRecordGetLength and TXTRecordGetBytesPtr calls:
- * TXTRecordGetValue(TXTRecordGetLength(x), TXTRecordGetBytesPtr(x), key, &len);
- *
- * Most applications only fetch keys they know about from a TXT record and
- * ignore the rest.
- * However, some debugging tools wish to fetch and display all keys.
- * To do that, use the TXTRecordGetCount() and TXTRecordGetItemAtIndex() calls.
- */
- /* TXTRecordContainsKey()
- *
- * Allows you to determine if a given TXT Record contains a specified key.
- *
- * txtLen: The size of the received TXT Record.
- *
- * txtRecord: Pointer to the received TXT Record bytes.
- *
- * key: A null-terminated ASCII string containing the key name.
- *
- * return value: Returns 1 if the TXT Record contains the specified key.
- * Otherwise, it returns 0.
- */
- int DNSSD_API TXTRecordContainsKey
- (
- uint16_t txtLen,
- const void *txtRecord,
- const char *key
- );
- /* TXTRecordGetValuePtr()
- *
- * Allows you to retrieve the value for a given key from a TXT Record.
- *
- * txtLen: The size of the received TXT Record
- *
- * txtRecord: Pointer to the received TXT Record bytes.
- *
- * key: A null-terminated ASCII string containing the key name.
- *
- * valueLen: On output, will be set to the size of the "value" data.
- *
- * return value: Returns NULL if the key does not exist in this TXT record,
- * or exists with no value (to differentiate between
- * these two cases use TXTRecordContainsKey()).
- * Returns pointer to location within TXT Record bytes
- * if the key exists with empty or non-empty value.
- * For empty value, valueLen will be zero.
- * For non-empty value, valueLen will be length of value data.
- */
- const void * DNSSD_API TXTRecordGetValuePtr
- (
- uint16_t txtLen,
- const void *txtRecord,
- const char *key,
- uint8_t *valueLen
- );
- /* TXTRecordGetCount()
- *
- * Returns the number of keys stored in the TXT Record. The count
- * can be used with TXTRecordGetItemAtIndex() to iterate through the keys.
- *
- * txtLen: The size of the received TXT Record.
- *
- * txtRecord: Pointer to the received TXT Record bytes.
- *
- * return value: Returns the total number of keys in the TXT Record.
- *
- */
- uint16_t DNSSD_API TXTRecordGetCount
- (
- uint16_t txtLen,
- const void *txtRecord
- );
- /* TXTRecordGetItemAtIndex()
- *
- * Allows you to retrieve a key name and value pointer, given an index into
- * a TXT Record. Legal index values range from zero to TXTRecordGetCount()-1.
- * It's also possible to iterate through keys in a TXT record by simply
- * calling TXTRecordGetItemAtIndex() repeatedly, beginning with index zero
- * and increasing until TXTRecordGetItemAtIndex() returns kDNSServiceErr_Invalid.
- *
- * On return:
- * For keys with no value, *value is set to NULL and *valueLen is zero.
- * For keys with empty value, *value is non-NULL and *valueLen is zero.
- * For keys with non-empty value, *value is non-NULL and *valueLen is non-zero.
- *
- * txtLen: The size of the received TXT Record.
- *
- * txtRecord: Pointer to the received TXT Record bytes.
- *
- * itemIndex: An index into the TXT Record.
- *
- * keyBufLen: The size of the string buffer being supplied.
- *
- * key: A string buffer used to store the key name.
- * On return, the buffer contains a null-terminated C string
- * giving the key name. DNS-SD TXT keys are usually
- * 9 characters or fewer. To hold the maximum possible
- * key name, the buffer should be 256 bytes long.
- *
- * valueLen: On output, will be set to the size of the "value" data.
- *
- * value: On output, *value is set to point to location within TXT
- * Record bytes that holds the value data.
- *
- * return value: Returns kDNSServiceErr_NoError on success.
- * Returns kDNSServiceErr_NoMemory if keyBufLen is too short.
- * Returns kDNSServiceErr_Invalid if index is greater than
- * TXTRecordGetCount()-1.
- */
- DNSServiceErrorType DNSSD_API TXTRecordGetItemAtIndex
- (
- uint16_t txtLen,
- const void *txtRecord,
- uint16_t itemIndex,
- uint16_t keyBufLen,
- char *key,
- uint8_t *valueLen,
- const void **value
- );
- #if _DNS_SD_LIBDISPATCH
- /*
- * DNSServiceSetDispatchQueue
- *
- * Allows you to schedule a DNSServiceRef on a serial dispatch queue for receiving asynchronous
- * callbacks. It's the clients responsibility to ensure that the provided dispatch queue is running.
- *
- * A typical application that uses CFRunLoopRun or dispatch_main on its main thread will
- * usually schedule DNSServiceRefs on its main queue (which is always a serial queue)
- * using "DNSServiceSetDispatchQueue(sdref, dispatch_get_main_queue());"
- *
- * If there is any error during the processing of events, the application callback will
- * be called with an error code. For shared connections, each subordinate DNSServiceRef
- * will get its own error callback. Currently these error callbacks only happen
- * if the daemon is manually terminated or crashes, and the error
- * code in this case is kDNSServiceErr_ServiceNotRunning. The application must call
- * DNSServiceRefDeallocate to free the DNSServiceRef when it gets such an error code.
- * These error callbacks are rare and should not normally happen on customer machines,
- * but application code should be written defensively to handle such error callbacks
- * gracefully if they occur.
- *
- * After using DNSServiceSetDispatchQueue on a DNSServiceRef, calling DNSServiceProcessResult
- * on the same DNSServiceRef will result in undefined behavior and should be avoided.
- *
- * Once the application successfully schedules a DNSServiceRef on a serial dispatch queue using
- * DNSServiceSetDispatchQueue, it cannot remove the DNSServiceRef from the dispatch queue, or use
- * DNSServiceSetDispatchQueue a second time to schedule the DNSServiceRef onto a different serial dispatch
- * queue. Once scheduled onto a dispatch queue a DNSServiceRef will deliver events to that queue until
- * the application no longer requires that operation and terminates it using DNSServiceRefDeallocate.
- *
- * service: DNSServiceRef that was allocated and returned to the application, when the
- * application calls one of the DNSService API.
- *
- * queue: dispatch queue where the application callback will be scheduled
- *
- * return value: Returns kDNSServiceErr_NoError on success.
- * Returns kDNSServiceErr_NoMemory if it cannot create a dispatch source
- * Returns kDNSServiceErr_BadParam if the service param is invalid or the
- * queue param is invalid
- */
- DNSServiceErrorType DNSSD_API DNSServiceSetDispatchQueue
- (
- DNSServiceRef service,
- dispatch_queue_t queue
- );
- #endif //_DNS_SD_LIBDISPATCH
- #if !defined(_WIN32)
- typedef void (DNSSD_API *DNSServiceSleepKeepaliveReply)
- (
- DNSServiceRef sdRef,
- DNSServiceErrorType errorCode,
- void *context
- );
- DNSServiceErrorType DNSSD_API DNSServiceSleepKeepalive
- (
- DNSServiceRef *sdRef,
- DNSServiceFlags flags,
- int fd,
- unsigned int timeout,
- DNSServiceSleepKeepaliveReply callBack,
- void *context
- );
- #endif
- /* Some C compiler cleverness. We can make the compiler check certain things for us,
- * and report errors at compile-time if anything is wrong. The usual way to do this would
- * be to use a run-time "if" statement or the conventional run-time "assert" mechanism, but
- * then you don't find out what's wrong until you run the software. This way, if the assertion
- * condition is false, the array size is negative, and the complier complains immediately.
- */
- struct CompileTimeAssertionChecks_DNS_SD
- {
- char assert0[(sizeof(union _TXTRecordRef_t) == 16) ? 1 : -1];
- };
- #ifdef __cplusplus
- }
- #endif
- #endif /* _DNS_SD_H */
|