icc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. /* $Id: icc.c,v 1.8.2.3 2004/01/13 14:31:25 keil Exp $
  2. *
  3. * ICC specific routines
  4. *
  5. * Author Matt Henderson & Guy Ellis
  6. * Copyright by Traverse Technologies Pty Ltd, www.travers.com.au
  7. *
  8. * This software may be used and distributed according to the terms
  9. * of the GNU General Public License, incorporated herein by reference.
  10. *
  11. * 1999.6.25 Initial implementation of routines for Siemens ISDN
  12. * Communication Controller PEB 2070 based on the ISAC routines
  13. * written by Karsten Keil.
  14. *
  15. */
  16. #include <linux/init.h>
  17. #include "hisax.h"
  18. #include "icc.h"
  19. // #include "arcofi.h"
  20. #include "isdnl1.h"
  21. #include <linux/interrupt.h>
  22. #include <linux/slab.h>
  23. #define DBUSY_TIMER_VALUE 80
  24. #define ARCOFI_USE 0
  25. static char *ICCVer[] =
  26. {"2070 A1/A3", "2070 B1", "2070 B2/B3", "2070 V2.4"};
  27. void
  28. ICCVersion(struct IsdnCardState *cs, char *s)
  29. {
  30. int val;
  31. val = cs->readisac(cs, ICC_RBCH);
  32. printk(KERN_INFO "%s ICC version (%x): %s\n", s, val, ICCVer[(val >> 5) & 3]);
  33. }
  34. static void
  35. ph_command(struct IsdnCardState *cs, unsigned int command)
  36. {
  37. if (cs->debug & L1_DEB_ISAC)
  38. debugl1(cs, "ph_command %x", command);
  39. cs->writeisac(cs, ICC_CIX0, (command << 2) | 3);
  40. }
  41. static void
  42. icc_new_ph(struct IsdnCardState *cs)
  43. {
  44. switch (cs->dc.icc.ph_state) {
  45. case (ICC_IND_EI1):
  46. ph_command(cs, ICC_CMD_DI);
  47. l1_msg(cs, HW_RESET | INDICATION, NULL);
  48. break;
  49. case (ICC_IND_DC):
  50. l1_msg(cs, HW_DEACTIVATE | CONFIRM, NULL);
  51. break;
  52. case (ICC_IND_DR):
  53. l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
  54. break;
  55. case (ICC_IND_PU):
  56. l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
  57. break;
  58. case (ICC_IND_FJ):
  59. l1_msg(cs, HW_RSYNC | INDICATION, NULL);
  60. break;
  61. case (ICC_IND_AR):
  62. l1_msg(cs, HW_INFO2 | INDICATION, NULL);
  63. break;
  64. case (ICC_IND_AI):
  65. l1_msg(cs, HW_INFO4 | INDICATION, NULL);
  66. break;
  67. default:
  68. break;
  69. }
  70. }
  71. static void
  72. icc_bh(struct work_struct *work)
  73. {
  74. struct IsdnCardState *cs =
  75. container_of(work, struct IsdnCardState, tqueue);
  76. struct PStack *stptr;
  77. if (test_and_clear_bit(D_CLEARBUSY, &cs->event)) {
  78. if (cs->debug)
  79. debugl1(cs, "D-Channel Busy cleared");
  80. stptr = cs->stlist;
  81. while (stptr != NULL) {
  82. stptr->l1.l1l2(stptr, PH_PAUSE | CONFIRM, NULL);
  83. stptr = stptr->next;
  84. }
  85. }
  86. if (test_and_clear_bit(D_L1STATECHANGE, &cs->event))
  87. icc_new_ph(cs);
  88. if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
  89. DChannel_proc_rcv(cs);
  90. if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
  91. DChannel_proc_xmt(cs);
  92. #if ARCOFI_USE
  93. if (!test_bit(HW_ARCOFI, &cs->HW_Flags))
  94. return;
  95. if (test_and_clear_bit(D_RX_MON1, &cs->event))
  96. arcofi_fsm(cs, ARCOFI_RX_END, NULL);
  97. if (test_and_clear_bit(D_TX_MON1, &cs->event))
  98. arcofi_fsm(cs, ARCOFI_TX_END, NULL);
  99. #endif
  100. }
  101. static void
  102. icc_empty_fifo(struct IsdnCardState *cs, int count)
  103. {
  104. u_char *ptr;
  105. if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
  106. debugl1(cs, "icc_empty_fifo");
  107. if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
  108. if (cs->debug & L1_DEB_WARN)
  109. debugl1(cs, "icc_empty_fifo overrun %d",
  110. cs->rcvidx + count);
  111. cs->writeisac(cs, ICC_CMDR, 0x80);
  112. cs->rcvidx = 0;
  113. return;
  114. }
  115. ptr = cs->rcvbuf + cs->rcvidx;
  116. cs->rcvidx += count;
  117. cs->readisacfifo(cs, ptr, count);
  118. cs->writeisac(cs, ICC_CMDR, 0x80);
  119. if (cs->debug & L1_DEB_ISAC_FIFO) {
  120. char *t = cs->dlog;
  121. t += sprintf(t, "icc_empty_fifo cnt %d", count);
  122. QuickHex(t, ptr, count);
  123. debugl1(cs, "%s", cs->dlog);
  124. }
  125. }
  126. static void
  127. icc_fill_fifo(struct IsdnCardState *cs)
  128. {
  129. int count, more;
  130. u_char *ptr;
  131. if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
  132. debugl1(cs, "icc_fill_fifo");
  133. if (!cs->tx_skb)
  134. return;
  135. count = cs->tx_skb->len;
  136. if (count <= 0)
  137. return;
  138. more = 0;
  139. if (count > 32) {
  140. more = !0;
  141. count = 32;
  142. }
  143. ptr = cs->tx_skb->data;
  144. skb_pull(cs->tx_skb, count);
  145. cs->tx_cnt += count;
  146. cs->writeisacfifo(cs, ptr, count);
  147. cs->writeisac(cs, ICC_CMDR, more ? 0x8 : 0xa);
  148. if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
  149. debugl1(cs, "icc_fill_fifo dbusytimer running");
  150. del_timer(&cs->dbusytimer);
  151. }
  152. cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000);
  153. add_timer(&cs->dbusytimer);
  154. if (cs->debug & L1_DEB_ISAC_FIFO) {
  155. char *t = cs->dlog;
  156. t += sprintf(t, "icc_fill_fifo cnt %d", count);
  157. QuickHex(t, ptr, count);
  158. debugl1(cs, "%s", cs->dlog);
  159. }
  160. }
  161. void
  162. icc_interrupt(struct IsdnCardState *cs, u_char val)
  163. {
  164. u_char exval, v1;
  165. struct sk_buff *skb;
  166. unsigned int count;
  167. if (cs->debug & L1_DEB_ISAC)
  168. debugl1(cs, "ICC interrupt %x", val);
  169. if (val & 0x80) { /* RME */
  170. exval = cs->readisac(cs, ICC_RSTA);
  171. if ((exval & 0x70) != 0x20) {
  172. if (exval & 0x40) {
  173. if (cs->debug & L1_DEB_WARN)
  174. debugl1(cs, "ICC RDO");
  175. #ifdef ERROR_STATISTIC
  176. cs->err_rx++;
  177. #endif
  178. }
  179. if (!(exval & 0x20)) {
  180. if (cs->debug & L1_DEB_WARN)
  181. debugl1(cs, "ICC CRC error");
  182. #ifdef ERROR_STATISTIC
  183. cs->err_crc++;
  184. #endif
  185. }
  186. cs->writeisac(cs, ICC_CMDR, 0x80);
  187. } else {
  188. count = cs->readisac(cs, ICC_RBCL) & 0x1f;
  189. if (count == 0)
  190. count = 32;
  191. icc_empty_fifo(cs, count);
  192. if ((count = cs->rcvidx) > 0) {
  193. cs->rcvidx = 0;
  194. if (!(skb = alloc_skb(count, GFP_ATOMIC)))
  195. printk(KERN_WARNING "HiSax: D receive out of memory\n");
  196. else {
  197. skb_put_data(skb, cs->rcvbuf, count);
  198. skb_queue_tail(&cs->rq, skb);
  199. }
  200. }
  201. }
  202. cs->rcvidx = 0;
  203. schedule_event(cs, D_RCVBUFREADY);
  204. }
  205. if (val & 0x40) { /* RPF */
  206. icc_empty_fifo(cs, 32);
  207. }
  208. if (val & 0x20) { /* RSC */
  209. /* never */
  210. if (cs->debug & L1_DEB_WARN)
  211. debugl1(cs, "ICC RSC interrupt");
  212. }
  213. if (val & 0x10) { /* XPR */
  214. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  215. del_timer(&cs->dbusytimer);
  216. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  217. schedule_event(cs, D_CLEARBUSY);
  218. if (cs->tx_skb) {
  219. if (cs->tx_skb->len) {
  220. icc_fill_fifo(cs);
  221. goto afterXPR;
  222. } else {
  223. dev_kfree_skb_irq(cs->tx_skb);
  224. cs->tx_cnt = 0;
  225. cs->tx_skb = NULL;
  226. }
  227. }
  228. if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
  229. cs->tx_cnt = 0;
  230. icc_fill_fifo(cs);
  231. } else
  232. schedule_event(cs, D_XMTBUFREADY);
  233. }
  234. afterXPR:
  235. if (val & 0x04) { /* CISQ */
  236. exval = cs->readisac(cs, ICC_CIR0);
  237. if (cs->debug & L1_DEB_ISAC)
  238. debugl1(cs, "ICC CIR0 %02X", exval);
  239. if (exval & 2) {
  240. cs->dc.icc.ph_state = (exval >> 2) & 0xf;
  241. if (cs->debug & L1_DEB_ISAC)
  242. debugl1(cs, "ph_state change %x", cs->dc.icc.ph_state);
  243. schedule_event(cs, D_L1STATECHANGE);
  244. }
  245. if (exval & 1) {
  246. exval = cs->readisac(cs, ICC_CIR1);
  247. if (cs->debug & L1_DEB_ISAC)
  248. debugl1(cs, "ICC CIR1 %02X", exval);
  249. }
  250. }
  251. if (val & 0x02) { /* SIN */
  252. /* never */
  253. if (cs->debug & L1_DEB_WARN)
  254. debugl1(cs, "ICC SIN interrupt");
  255. }
  256. if (val & 0x01) { /* EXI */
  257. exval = cs->readisac(cs, ICC_EXIR);
  258. if (cs->debug & L1_DEB_WARN)
  259. debugl1(cs, "ICC EXIR %02x", exval);
  260. if (exval & 0x80) { /* XMR */
  261. debugl1(cs, "ICC XMR");
  262. printk(KERN_WARNING "HiSax: ICC XMR\n");
  263. }
  264. if (exval & 0x40) { /* XDU */
  265. debugl1(cs, "ICC XDU");
  266. printk(KERN_WARNING "HiSax: ICC XDU\n");
  267. #ifdef ERROR_STATISTIC
  268. cs->err_tx++;
  269. #endif
  270. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  271. del_timer(&cs->dbusytimer);
  272. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  273. schedule_event(cs, D_CLEARBUSY);
  274. if (cs->tx_skb) { /* Restart frame */
  275. skb_push(cs->tx_skb, cs->tx_cnt);
  276. cs->tx_cnt = 0;
  277. icc_fill_fifo(cs);
  278. } else {
  279. printk(KERN_WARNING "HiSax: ICC XDU no skb\n");
  280. debugl1(cs, "ICC XDU no skb");
  281. }
  282. }
  283. if (exval & 0x04) { /* MOS */
  284. v1 = cs->readisac(cs, ICC_MOSR);
  285. if (cs->debug & L1_DEB_MONITOR)
  286. debugl1(cs, "ICC MOSR %02x", v1);
  287. #if ARCOFI_USE
  288. if (v1 & 0x08) {
  289. if (!cs->dc.icc.mon_rx) {
  290. if (!(cs->dc.icc.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
  291. if (cs->debug & L1_DEB_WARN)
  292. debugl1(cs, "ICC MON RX out of memory!");
  293. cs->dc.icc.mocr &= 0xf0;
  294. cs->dc.icc.mocr |= 0x0a;
  295. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  296. goto afterMONR0;
  297. } else
  298. cs->dc.icc.mon_rxp = 0;
  299. }
  300. if (cs->dc.icc.mon_rxp >= MAX_MON_FRAME) {
  301. cs->dc.icc.mocr &= 0xf0;
  302. cs->dc.icc.mocr |= 0x0a;
  303. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  304. cs->dc.icc.mon_rxp = 0;
  305. if (cs->debug & L1_DEB_WARN)
  306. debugl1(cs, "ICC MON RX overflow!");
  307. goto afterMONR0;
  308. }
  309. cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp++] = cs->readisac(cs, ICC_MOR0);
  310. if (cs->debug & L1_DEB_MONITOR)
  311. debugl1(cs, "ICC MOR0 %02x", cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp - 1]);
  312. if (cs->dc.icc.mon_rxp == 1) {
  313. cs->dc.icc.mocr |= 0x04;
  314. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  315. }
  316. }
  317. afterMONR0:
  318. if (v1 & 0x80) {
  319. if (!cs->dc.icc.mon_rx) {
  320. if (!(cs->dc.icc.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
  321. if (cs->debug & L1_DEB_WARN)
  322. debugl1(cs, "ICC MON RX out of memory!");
  323. cs->dc.icc.mocr &= 0x0f;
  324. cs->dc.icc.mocr |= 0xa0;
  325. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  326. goto afterMONR1;
  327. } else
  328. cs->dc.icc.mon_rxp = 0;
  329. }
  330. if (cs->dc.icc.mon_rxp >= MAX_MON_FRAME) {
  331. cs->dc.icc.mocr &= 0x0f;
  332. cs->dc.icc.mocr |= 0xa0;
  333. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  334. cs->dc.icc.mon_rxp = 0;
  335. if (cs->debug & L1_DEB_WARN)
  336. debugl1(cs, "ICC MON RX overflow!");
  337. goto afterMONR1;
  338. }
  339. cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp++] = cs->readisac(cs, ICC_MOR1);
  340. if (cs->debug & L1_DEB_MONITOR)
  341. debugl1(cs, "ICC MOR1 %02x", cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp - 1]);
  342. cs->dc.icc.mocr |= 0x40;
  343. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  344. }
  345. afterMONR1:
  346. if (v1 & 0x04) {
  347. cs->dc.icc.mocr &= 0xf0;
  348. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  349. cs->dc.icc.mocr |= 0x0a;
  350. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  351. schedule_event(cs, D_RX_MON0);
  352. }
  353. if (v1 & 0x40) {
  354. cs->dc.icc.mocr &= 0x0f;
  355. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  356. cs->dc.icc.mocr |= 0xa0;
  357. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  358. schedule_event(cs, D_RX_MON1);
  359. }
  360. if (v1 & 0x02) {
  361. if ((!cs->dc.icc.mon_tx) || (cs->dc.icc.mon_txc &&
  362. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc) &&
  363. !(v1 & 0x08))) {
  364. cs->dc.icc.mocr &= 0xf0;
  365. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  366. cs->dc.icc.mocr |= 0x0a;
  367. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  368. if (cs->dc.icc.mon_txc &&
  369. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc))
  370. schedule_event(cs, D_TX_MON0);
  371. goto AfterMOX0;
  372. }
  373. if (cs->dc.icc.mon_txc && (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc)) {
  374. schedule_event(cs, D_TX_MON0);
  375. goto AfterMOX0;
  376. }
  377. cs->writeisac(cs, ICC_MOX0,
  378. cs->dc.icc.mon_tx[cs->dc.icc.mon_txp++]);
  379. if (cs->debug & L1_DEB_MONITOR)
  380. debugl1(cs, "ICC %02x -> MOX0", cs->dc.icc.mon_tx[cs->dc.icc.mon_txp - 1]);
  381. }
  382. AfterMOX0:
  383. if (v1 & 0x20) {
  384. if ((!cs->dc.icc.mon_tx) || (cs->dc.icc.mon_txc &&
  385. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc) &&
  386. !(v1 & 0x80))) {
  387. cs->dc.icc.mocr &= 0x0f;
  388. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  389. cs->dc.icc.mocr |= 0xa0;
  390. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  391. if (cs->dc.icc.mon_txc &&
  392. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc))
  393. schedule_event(cs, D_TX_MON1);
  394. goto AfterMOX1;
  395. }
  396. if (cs->dc.icc.mon_txc && (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc)) {
  397. schedule_event(cs, D_TX_MON1);
  398. goto AfterMOX1;
  399. }
  400. cs->writeisac(cs, ICC_MOX1,
  401. cs->dc.icc.mon_tx[cs->dc.icc.mon_txp++]);
  402. if (cs->debug & L1_DEB_MONITOR)
  403. debugl1(cs, "ICC %02x -> MOX1", cs->dc.icc.mon_tx[cs->dc.icc.mon_txp - 1]);
  404. }
  405. AfterMOX1: ;
  406. #endif
  407. }
  408. }
  409. }
  410. static void
  411. ICC_l1hw(struct PStack *st, int pr, void *arg)
  412. {
  413. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  414. struct sk_buff *skb = arg;
  415. u_long flags;
  416. int val;
  417. switch (pr) {
  418. case (PH_DATA | REQUEST):
  419. if (cs->debug & DEB_DLOG_HEX)
  420. LogFrame(cs, skb->data, skb->len);
  421. if (cs->debug & DEB_DLOG_VERBOSE)
  422. dlogframe(cs, skb, 0);
  423. spin_lock_irqsave(&cs->lock, flags);
  424. if (cs->tx_skb) {
  425. skb_queue_tail(&cs->sq, skb);
  426. #ifdef L2FRAME_DEBUG /* psa */
  427. if (cs->debug & L1_DEB_LAPD)
  428. Logl2Frame(cs, skb, "PH_DATA Queued", 0);
  429. #endif
  430. } else {
  431. cs->tx_skb = skb;
  432. cs->tx_cnt = 0;
  433. #ifdef L2FRAME_DEBUG /* psa */
  434. if (cs->debug & L1_DEB_LAPD)
  435. Logl2Frame(cs, skb, "PH_DATA", 0);
  436. #endif
  437. icc_fill_fifo(cs);
  438. }
  439. spin_unlock_irqrestore(&cs->lock, flags);
  440. break;
  441. case (PH_PULL | INDICATION):
  442. spin_lock_irqsave(&cs->lock, flags);
  443. if (cs->tx_skb) {
  444. if (cs->debug & L1_DEB_WARN)
  445. debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
  446. skb_queue_tail(&cs->sq, skb);
  447. spin_unlock_irqrestore(&cs->lock, flags);
  448. break;
  449. }
  450. if (cs->debug & DEB_DLOG_HEX)
  451. LogFrame(cs, skb->data, skb->len);
  452. if (cs->debug & DEB_DLOG_VERBOSE)
  453. dlogframe(cs, skb, 0);
  454. cs->tx_skb = skb;
  455. cs->tx_cnt = 0;
  456. #ifdef L2FRAME_DEBUG /* psa */
  457. if (cs->debug & L1_DEB_LAPD)
  458. Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
  459. #endif
  460. icc_fill_fifo(cs);
  461. spin_unlock_irqrestore(&cs->lock, flags);
  462. break;
  463. case (PH_PULL | REQUEST):
  464. #ifdef L2FRAME_DEBUG /* psa */
  465. if (cs->debug & L1_DEB_LAPD)
  466. debugl1(cs, "-> PH_REQUEST_PULL");
  467. #endif
  468. if (!cs->tx_skb) {
  469. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  470. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  471. } else
  472. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  473. break;
  474. case (HW_RESET | REQUEST):
  475. spin_lock_irqsave(&cs->lock, flags);
  476. if ((cs->dc.icc.ph_state == ICC_IND_EI1) ||
  477. (cs->dc.icc.ph_state == ICC_IND_DR))
  478. ph_command(cs, ICC_CMD_DI);
  479. else
  480. ph_command(cs, ICC_CMD_RES);
  481. spin_unlock_irqrestore(&cs->lock, flags);
  482. break;
  483. case (HW_ENABLE | REQUEST):
  484. spin_lock_irqsave(&cs->lock, flags);
  485. ph_command(cs, ICC_CMD_DI);
  486. spin_unlock_irqrestore(&cs->lock, flags);
  487. break;
  488. case (HW_INFO1 | REQUEST):
  489. spin_lock_irqsave(&cs->lock, flags);
  490. ph_command(cs, ICC_CMD_AR);
  491. spin_unlock_irqrestore(&cs->lock, flags);
  492. break;
  493. case (HW_INFO3 | REQUEST):
  494. spin_lock_irqsave(&cs->lock, flags);
  495. ph_command(cs, ICC_CMD_AI);
  496. spin_unlock_irqrestore(&cs->lock, flags);
  497. break;
  498. case (HW_TESTLOOP | REQUEST):
  499. spin_lock_irqsave(&cs->lock, flags);
  500. val = 0;
  501. if (1 & (long) arg)
  502. val |= 0x0c;
  503. if (2 & (long) arg)
  504. val |= 0x3;
  505. if (test_bit(HW_IOM1, &cs->HW_Flags)) {
  506. /* IOM 1 Mode */
  507. if (!val) {
  508. cs->writeisac(cs, ICC_SPCR, 0xa);
  509. cs->writeisac(cs, ICC_ADF1, 0x2);
  510. } else {
  511. cs->writeisac(cs, ICC_SPCR, val);
  512. cs->writeisac(cs, ICC_ADF1, 0xa);
  513. }
  514. } else {
  515. /* IOM 2 Mode */
  516. cs->writeisac(cs, ICC_SPCR, val);
  517. if (val)
  518. cs->writeisac(cs, ICC_ADF1, 0x8);
  519. else
  520. cs->writeisac(cs, ICC_ADF1, 0x0);
  521. }
  522. spin_unlock_irqrestore(&cs->lock, flags);
  523. break;
  524. case (HW_DEACTIVATE | RESPONSE):
  525. skb_queue_purge(&cs->rq);
  526. skb_queue_purge(&cs->sq);
  527. if (cs->tx_skb) {
  528. dev_kfree_skb_any(cs->tx_skb);
  529. cs->tx_skb = NULL;
  530. }
  531. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  532. del_timer(&cs->dbusytimer);
  533. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  534. schedule_event(cs, D_CLEARBUSY);
  535. break;
  536. default:
  537. if (cs->debug & L1_DEB_WARN)
  538. debugl1(cs, "icc_l1hw unknown %04x", pr);
  539. break;
  540. }
  541. }
  542. static void
  543. setstack_icc(struct PStack *st, struct IsdnCardState *cs)
  544. {
  545. st->l1.l1hw = ICC_l1hw;
  546. }
  547. static void
  548. DC_Close_icc(struct IsdnCardState *cs) {
  549. kfree(cs->dc.icc.mon_rx);
  550. cs->dc.icc.mon_rx = NULL;
  551. kfree(cs->dc.icc.mon_tx);
  552. cs->dc.icc.mon_tx = NULL;
  553. }
  554. static void
  555. dbusy_timer_handler(struct timer_list *t)
  556. {
  557. struct IsdnCardState *cs = from_timer(cs, t, dbusytimer);
  558. struct PStack *stptr;
  559. int rbch, star;
  560. if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
  561. rbch = cs->readisac(cs, ICC_RBCH);
  562. star = cs->readisac(cs, ICC_STAR);
  563. if (cs->debug)
  564. debugl1(cs, "D-Channel Busy RBCH %02x STAR %02x",
  565. rbch, star);
  566. if (rbch & ICC_RBCH_XAC) { /* D-Channel Busy */
  567. test_and_set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
  568. stptr = cs->stlist;
  569. while (stptr != NULL) {
  570. stptr->l1.l1l2(stptr, PH_PAUSE | INDICATION, NULL);
  571. stptr = stptr->next;
  572. }
  573. } else {
  574. /* discard frame; reset transceiver */
  575. test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
  576. if (cs->tx_skb) {
  577. dev_kfree_skb_any(cs->tx_skb);
  578. cs->tx_cnt = 0;
  579. cs->tx_skb = NULL;
  580. } else {
  581. printk(KERN_WARNING "HiSax: ICC D-Channel Busy no skb\n");
  582. debugl1(cs, "D-Channel Busy no skb");
  583. }
  584. cs->writeisac(cs, ICC_CMDR, 0x01); /* Transmitter reset */
  585. cs->irq_func(cs->irq, cs);
  586. }
  587. }
  588. }
  589. void
  590. initicc(struct IsdnCardState *cs)
  591. {
  592. cs->setstack_d = setstack_icc;
  593. cs->DC_Close = DC_Close_icc;
  594. cs->dc.icc.mon_tx = NULL;
  595. cs->dc.icc.mon_rx = NULL;
  596. cs->writeisac(cs, ICC_MASK, 0xff);
  597. cs->dc.icc.mocr = 0xaa;
  598. if (test_bit(HW_IOM1, &cs->HW_Flags)) {
  599. /* IOM 1 Mode */
  600. cs->writeisac(cs, ICC_ADF2, 0x0);
  601. cs->writeisac(cs, ICC_SPCR, 0xa);
  602. cs->writeisac(cs, ICC_ADF1, 0x2);
  603. cs->writeisac(cs, ICC_STCR, 0x70);
  604. cs->writeisac(cs, ICC_MODE, 0xc9);
  605. } else {
  606. /* IOM 2 Mode */
  607. if (!cs->dc.icc.adf2)
  608. cs->dc.icc.adf2 = 0x80;
  609. cs->writeisac(cs, ICC_ADF2, cs->dc.icc.adf2);
  610. cs->writeisac(cs, ICC_SQXR, 0xa0);
  611. cs->writeisac(cs, ICC_SPCR, 0x20);
  612. cs->writeisac(cs, ICC_STCR, 0x70);
  613. cs->writeisac(cs, ICC_MODE, 0xca);
  614. cs->writeisac(cs, ICC_TIMR, 0x00);
  615. cs->writeisac(cs, ICC_ADF1, 0x20);
  616. }
  617. ph_command(cs, ICC_CMD_RES);
  618. cs->writeisac(cs, ICC_MASK, 0x0);
  619. ph_command(cs, ICC_CMD_DI);
  620. }
  621. void
  622. clear_pending_icc_ints(struct IsdnCardState *cs)
  623. {
  624. int val, eval;
  625. val = cs->readisac(cs, ICC_STAR);
  626. debugl1(cs, "ICC STAR %x", val);
  627. val = cs->readisac(cs, ICC_MODE);
  628. debugl1(cs, "ICC MODE %x", val);
  629. val = cs->readisac(cs, ICC_ADF2);
  630. debugl1(cs, "ICC ADF2 %x", val);
  631. val = cs->readisac(cs, ICC_ISTA);
  632. debugl1(cs, "ICC ISTA %x", val);
  633. if (val & 0x01) {
  634. eval = cs->readisac(cs, ICC_EXIR);
  635. debugl1(cs, "ICC EXIR %x", eval);
  636. }
  637. val = cs->readisac(cs, ICC_CIR0);
  638. debugl1(cs, "ICC CIR0 %x", val);
  639. cs->dc.icc.ph_state = (val >> 2) & 0xf;
  640. schedule_event(cs, D_L1STATECHANGE);
  641. /* Disable all IRQ */
  642. cs->writeisac(cs, ICC_MASK, 0xFF);
  643. }
  644. void setup_icc(struct IsdnCardState *cs)
  645. {
  646. INIT_WORK(&cs->tqueue, icc_bh);
  647. timer_setup(&cs->dbusytimer, dbusy_timer_handler, 0);
  648. }