db8500-prcmu.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/mfd/core.h>
  32. #include <linux/mfd/dbx500-prcmu.h>
  33. #include <linux/mfd/abx500/ab8500.h>
  34. #include <linux/regulator/db8500-prcmu.h>
  35. #include <linux/regulator/machine.h>
  36. #include <linux/platform_data/ux500_wdt.h>
  37. #include <linux/platform_data/db8500_thermal.h>
  38. #include "dbx500-prcmu-regs.h"
  39. /* Index of different voltages to be used when accessing AVSData */
  40. #define PRCM_AVS_BASE 0x2FC
  41. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  42. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  43. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  44. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  45. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  46. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  47. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  48. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  49. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  50. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  51. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  52. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  53. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  54. #define PRCM_AVS_VOLTAGE 0
  55. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  56. #define PRCM_AVS_ISSLOWSTARTUP 6
  57. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  58. #define PRCM_AVS_ISMODEENABLE 7
  59. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  60. #define PRCM_BOOT_STATUS 0xFFF
  61. #define PRCM_ROMCODE_A2P 0xFFE
  62. #define PRCM_ROMCODE_P2A 0xFFD
  63. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  64. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  65. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  66. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  67. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  68. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  69. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  70. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  71. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  72. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  73. /* Req Mailboxes */
  74. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  75. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  76. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  77. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  78. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  79. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  80. /* Ack Mailboxes */
  81. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  82. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  83. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  84. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  85. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  86. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  87. /* Mailbox 0 headers */
  88. #define MB0H_POWER_STATE_TRANS 0
  89. #define MB0H_CONFIG_WAKEUPS_EXE 1
  90. #define MB0H_READ_WAKEUP_ACK 3
  91. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  92. #define MB0H_WAKEUP_EXE 2
  93. #define MB0H_WAKEUP_SLEEP 5
  94. /* Mailbox 0 REQs */
  95. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  96. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  97. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  98. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  99. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  100. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  101. /* Mailbox 0 ACKs */
  102. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  103. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  104. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  105. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  106. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  107. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  108. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  109. /* Mailbox 1 headers */
  110. #define MB1H_ARM_APE_OPP 0x0
  111. #define MB1H_RESET_MODEM 0x2
  112. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  113. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  114. #define MB1H_RELEASE_USB_WAKEUP 0x5
  115. #define MB1H_PLL_ON_OFF 0x6
  116. /* Mailbox 1 Requests */
  117. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  118. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  119. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  120. #define PLL_SOC0_OFF 0x1
  121. #define PLL_SOC0_ON 0x2
  122. #define PLL_SOC1_OFF 0x4
  123. #define PLL_SOC1_ON 0x8
  124. /* Mailbox 1 ACKs */
  125. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  126. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  127. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  128. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  129. /* Mailbox 2 headers */
  130. #define MB2H_DPS 0x0
  131. #define MB2H_AUTO_PWR 0x1
  132. /* Mailbox 2 REQs */
  133. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  134. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  135. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  136. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  137. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  138. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  139. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  140. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  141. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  142. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  143. /* Mailbox 2 ACKs */
  144. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  145. #define HWACC_PWR_ST_OK 0xFE
  146. /* Mailbox 3 headers */
  147. #define MB3H_ANC 0x0
  148. #define MB3H_SIDETONE 0x1
  149. #define MB3H_SYSCLK 0xE
  150. /* Mailbox 3 Requests */
  151. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  152. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  153. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  154. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  155. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  157. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  158. /* Mailbox 4 headers */
  159. #define MB4H_DDR_INIT 0x0
  160. #define MB4H_MEM_ST 0x1
  161. #define MB4H_HOTDOG 0x12
  162. #define MB4H_HOTMON 0x13
  163. #define MB4H_HOT_PERIOD 0x14
  164. #define MB4H_A9WDOG_CONF 0x16
  165. #define MB4H_A9WDOG_EN 0x17
  166. #define MB4H_A9WDOG_DIS 0x18
  167. #define MB4H_A9WDOG_LOAD 0x19
  168. #define MB4H_A9WDOG_KICK 0x20
  169. /* Mailbox 4 Requests */
  170. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  171. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  172. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  173. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  176. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  177. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  178. #define HOTMON_CONFIG_LOW BIT(0)
  179. #define HOTMON_CONFIG_HIGH BIT(1)
  180. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  181. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  182. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  183. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  184. #define A9WDOG_AUTO_OFF_EN BIT(7)
  185. #define A9WDOG_AUTO_OFF_DIS 0
  186. #define A9WDOG_ID_MASK 0xf
  187. /* Mailbox 5 Requests */
  188. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  189. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  190. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  191. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  192. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  193. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  194. #define PRCMU_I2C_STOP_EN BIT(3)
  195. /* Mailbox 5 ACKs */
  196. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  197. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  198. #define I2C_WR_OK 0x1
  199. #define I2C_RD_OK 0x2
  200. #define NUM_MB 8
  201. #define MBOX_BIT BIT
  202. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  203. /*
  204. * Wakeups/IRQs
  205. */
  206. #define WAKEUP_BIT_RTC BIT(0)
  207. #define WAKEUP_BIT_RTT0 BIT(1)
  208. #define WAKEUP_BIT_RTT1 BIT(2)
  209. #define WAKEUP_BIT_HSI0 BIT(3)
  210. #define WAKEUP_BIT_HSI1 BIT(4)
  211. #define WAKEUP_BIT_CA_WAKE BIT(5)
  212. #define WAKEUP_BIT_USB BIT(6)
  213. #define WAKEUP_BIT_ABB BIT(7)
  214. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  215. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  216. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  217. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  218. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  219. #define WAKEUP_BIT_ANC_OK BIT(13)
  220. #define WAKEUP_BIT_SW_ERROR BIT(14)
  221. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  222. #define WAKEUP_BIT_ARM BIT(17)
  223. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  224. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  225. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  226. #define WAKEUP_BIT_GPIO0 BIT(23)
  227. #define WAKEUP_BIT_GPIO1 BIT(24)
  228. #define WAKEUP_BIT_GPIO2 BIT(25)
  229. #define WAKEUP_BIT_GPIO3 BIT(26)
  230. #define WAKEUP_BIT_GPIO4 BIT(27)
  231. #define WAKEUP_BIT_GPIO5 BIT(28)
  232. #define WAKEUP_BIT_GPIO6 BIT(29)
  233. #define WAKEUP_BIT_GPIO7 BIT(30)
  234. #define WAKEUP_BIT_GPIO8 BIT(31)
  235. static struct {
  236. bool valid;
  237. struct prcmu_fw_version version;
  238. } fw_info;
  239. static struct irq_domain *db8500_irq_domain;
  240. /*
  241. * This vector maps irq numbers to the bits in the bit field used in
  242. * communication with the PRCMU firmware.
  243. *
  244. * The reason for having this is to keep the irq numbers contiguous even though
  245. * the bits in the bit field are not. (The bits also have a tendency to move
  246. * around, to further complicate matters.)
  247. */
  248. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
  249. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  250. #define IRQ_PRCMU_RTC 0
  251. #define IRQ_PRCMU_RTT0 1
  252. #define IRQ_PRCMU_RTT1 2
  253. #define IRQ_PRCMU_HSI0 3
  254. #define IRQ_PRCMU_HSI1 4
  255. #define IRQ_PRCMU_CA_WAKE 5
  256. #define IRQ_PRCMU_USB 6
  257. #define IRQ_PRCMU_ABB 7
  258. #define IRQ_PRCMU_ABB_FIFO 8
  259. #define IRQ_PRCMU_ARM 9
  260. #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
  261. #define IRQ_PRCMU_GPIO0 11
  262. #define IRQ_PRCMU_GPIO1 12
  263. #define IRQ_PRCMU_GPIO2 13
  264. #define IRQ_PRCMU_GPIO3 14
  265. #define IRQ_PRCMU_GPIO4 15
  266. #define IRQ_PRCMU_GPIO5 16
  267. #define IRQ_PRCMU_GPIO6 17
  268. #define IRQ_PRCMU_GPIO7 18
  269. #define IRQ_PRCMU_GPIO8 19
  270. #define IRQ_PRCMU_CA_SLEEP 20
  271. #define IRQ_PRCMU_HOTMON_LOW 21
  272. #define IRQ_PRCMU_HOTMON_HIGH 22
  273. #define NUM_PRCMU_WAKEUPS 23
  274. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  275. IRQ_ENTRY(RTC),
  276. IRQ_ENTRY(RTT0),
  277. IRQ_ENTRY(RTT1),
  278. IRQ_ENTRY(HSI0),
  279. IRQ_ENTRY(HSI1),
  280. IRQ_ENTRY(CA_WAKE),
  281. IRQ_ENTRY(USB),
  282. IRQ_ENTRY(ABB),
  283. IRQ_ENTRY(ABB_FIFO),
  284. IRQ_ENTRY(CA_SLEEP),
  285. IRQ_ENTRY(ARM),
  286. IRQ_ENTRY(HOTMON_LOW),
  287. IRQ_ENTRY(HOTMON_HIGH),
  288. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  289. IRQ_ENTRY(GPIO0),
  290. IRQ_ENTRY(GPIO1),
  291. IRQ_ENTRY(GPIO2),
  292. IRQ_ENTRY(GPIO3),
  293. IRQ_ENTRY(GPIO4),
  294. IRQ_ENTRY(GPIO5),
  295. IRQ_ENTRY(GPIO6),
  296. IRQ_ENTRY(GPIO7),
  297. IRQ_ENTRY(GPIO8)
  298. };
  299. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  300. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  301. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  302. WAKEUP_ENTRY(RTC),
  303. WAKEUP_ENTRY(RTT0),
  304. WAKEUP_ENTRY(RTT1),
  305. WAKEUP_ENTRY(HSI0),
  306. WAKEUP_ENTRY(HSI1),
  307. WAKEUP_ENTRY(USB),
  308. WAKEUP_ENTRY(ABB),
  309. WAKEUP_ENTRY(ABB_FIFO),
  310. WAKEUP_ENTRY(ARM)
  311. };
  312. /*
  313. * mb0_transfer - state needed for mailbox 0 communication.
  314. * @lock: The transaction lock.
  315. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  316. * the request data.
  317. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  318. * @req: Request data that need to persist between requests.
  319. */
  320. static struct {
  321. spinlock_t lock;
  322. spinlock_t dbb_irqs_lock;
  323. struct work_struct mask_work;
  324. struct mutex ac_wake_lock;
  325. struct completion ac_wake_work;
  326. struct {
  327. u32 dbb_irqs;
  328. u32 dbb_wakeups;
  329. u32 abb_events;
  330. } req;
  331. } mb0_transfer;
  332. /*
  333. * mb1_transfer - state needed for mailbox 1 communication.
  334. * @lock: The transaction lock.
  335. * @work: The transaction completion structure.
  336. * @ape_opp: The current APE OPP.
  337. * @ack: Reply ("acknowledge") data.
  338. */
  339. static struct {
  340. struct mutex lock;
  341. struct completion work;
  342. u8 ape_opp;
  343. struct {
  344. u8 header;
  345. u8 arm_opp;
  346. u8 ape_opp;
  347. u8 ape_voltage_status;
  348. } ack;
  349. } mb1_transfer;
  350. /*
  351. * mb2_transfer - state needed for mailbox 2 communication.
  352. * @lock: The transaction lock.
  353. * @work: The transaction completion structure.
  354. * @auto_pm_lock: The autonomous power management configuration lock.
  355. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  356. * @req: Request data that need to persist between requests.
  357. * @ack: Reply ("acknowledge") data.
  358. */
  359. static struct {
  360. struct mutex lock;
  361. struct completion work;
  362. spinlock_t auto_pm_lock;
  363. bool auto_pm_enabled;
  364. struct {
  365. u8 status;
  366. } ack;
  367. } mb2_transfer;
  368. /*
  369. * mb3_transfer - state needed for mailbox 3 communication.
  370. * @lock: The request lock.
  371. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  372. * @sysclk_work: Work structure used for sysclk requests.
  373. */
  374. static struct {
  375. spinlock_t lock;
  376. struct mutex sysclk_lock;
  377. struct completion sysclk_work;
  378. } mb3_transfer;
  379. /*
  380. * mb4_transfer - state needed for mailbox 4 communication.
  381. * @lock: The transaction lock.
  382. * @work: The transaction completion structure.
  383. */
  384. static struct {
  385. struct mutex lock;
  386. struct completion work;
  387. } mb4_transfer;
  388. /*
  389. * mb5_transfer - state needed for mailbox 5 communication.
  390. * @lock: The transaction lock.
  391. * @work: The transaction completion structure.
  392. * @ack: Reply ("acknowledge") data.
  393. */
  394. static struct {
  395. struct mutex lock;
  396. struct completion work;
  397. struct {
  398. u8 status;
  399. u8 value;
  400. } ack;
  401. } mb5_transfer;
  402. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  403. /* Spinlocks */
  404. static DEFINE_SPINLOCK(prcmu_lock);
  405. static DEFINE_SPINLOCK(clkout_lock);
  406. /* Global var to runtime determine TCDM base for v2 or v1 */
  407. static __iomem void *tcdm_base;
  408. static __iomem void *prcmu_base;
  409. struct clk_mgt {
  410. u32 offset;
  411. u32 pllsw;
  412. int branch;
  413. bool clk38div;
  414. };
  415. enum {
  416. PLL_RAW,
  417. PLL_FIX,
  418. PLL_DIV
  419. };
  420. static DEFINE_SPINLOCK(clk_mgt_lock);
  421. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  422. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  423. static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  424. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  425. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  426. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  430. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  431. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  432. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  433. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  434. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  435. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  436. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  437. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  438. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  439. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  440. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  441. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  442. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  443. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  444. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  445. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  446. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  447. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  448. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  449. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  450. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  451. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  452. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  453. };
  454. struct dsiclk {
  455. u32 divsel_mask;
  456. u32 divsel_shift;
  457. u32 divsel;
  458. };
  459. static struct dsiclk dsiclk[2] = {
  460. {
  461. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  462. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  463. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  464. },
  465. {
  466. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  467. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  468. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  469. }
  470. };
  471. struct dsiescclk {
  472. u32 en;
  473. u32 div_mask;
  474. u32 div_shift;
  475. };
  476. static struct dsiescclk dsiescclk[3] = {
  477. {
  478. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  479. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  480. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  481. },
  482. {
  483. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  484. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  485. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  486. },
  487. {
  488. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  489. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  490. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  491. }
  492. };
  493. /*
  494. * Used by MCDE to setup all necessary PRCMU registers
  495. */
  496. #define PRCMU_RESET_DSIPLL 0x00004000
  497. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  498. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  499. #define PRCMU_CLK_PLL_SW_SHIFT 5
  500. #define PRCMU_CLK_38 (1 << 9)
  501. #define PRCMU_CLK_38_SRC (1 << 10)
  502. #define PRCMU_CLK_38_DIV (1 << 11)
  503. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  504. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  505. /* DPI 50000000 Hz */
  506. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  507. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  508. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  509. /* D=101, N=1, R=4, SELDIV2=0 */
  510. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  511. #define PRCMU_ENABLE_PLLDSI 0x00000001
  512. #define PRCMU_DISABLE_PLLDSI 0x00000000
  513. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  514. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  515. /* ESC clk, div0=1, div1=1, div2=3 */
  516. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  517. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  518. #define PRCMU_DSI_RESET_SW 0x00000007
  519. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  520. int db8500_prcmu_enable_dsipll(void)
  521. {
  522. int i;
  523. /* Clear DSIPLL_RESETN */
  524. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  525. /* Unclamp DSIPLL in/out */
  526. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  527. /* Set DSI PLL FREQ */
  528. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  529. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  530. /* Enable Escape clocks */
  531. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  532. /* Start DSI PLL */
  533. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  534. /* Reset DSI PLL */
  535. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  536. for (i = 0; i < 10; i++) {
  537. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  538. == PRCMU_PLLDSI_LOCKP_LOCKED)
  539. break;
  540. udelay(100);
  541. }
  542. /* Set DSIPLL_RESETN */
  543. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  544. return 0;
  545. }
  546. int db8500_prcmu_disable_dsipll(void)
  547. {
  548. /* Disable dsi pll */
  549. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  550. /* Disable escapeclock */
  551. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  552. return 0;
  553. }
  554. int db8500_prcmu_set_display_clocks(void)
  555. {
  556. unsigned long flags;
  557. spin_lock_irqsave(&clk_mgt_lock, flags);
  558. /* Grab the HW semaphore. */
  559. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  560. cpu_relax();
  561. writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
  562. writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
  563. writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
  564. /* Release the HW semaphore. */
  565. writel(0, PRCM_SEM);
  566. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  567. return 0;
  568. }
  569. u32 db8500_prcmu_read(unsigned int reg)
  570. {
  571. return readl(prcmu_base + reg);
  572. }
  573. void db8500_prcmu_write(unsigned int reg, u32 value)
  574. {
  575. unsigned long flags;
  576. spin_lock_irqsave(&prcmu_lock, flags);
  577. writel(value, (prcmu_base + reg));
  578. spin_unlock_irqrestore(&prcmu_lock, flags);
  579. }
  580. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  581. {
  582. u32 val;
  583. unsigned long flags;
  584. spin_lock_irqsave(&prcmu_lock, flags);
  585. val = readl(prcmu_base + reg);
  586. val = ((val & ~mask) | (value & mask));
  587. writel(val, (prcmu_base + reg));
  588. spin_unlock_irqrestore(&prcmu_lock, flags);
  589. }
  590. struct prcmu_fw_version *prcmu_get_fw_version(void)
  591. {
  592. return fw_info.valid ? &fw_info.version : NULL;
  593. }
  594. bool prcmu_has_arm_maxopp(void)
  595. {
  596. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  597. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  598. }
  599. /**
  600. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  601. * @val: Value to be set, i.e. transition requested
  602. * Returns: 0 on success, -EINVAL on invalid argument
  603. *
  604. * This function is used to run the following power state sequences -
  605. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  606. */
  607. int prcmu_set_rc_a2p(enum romcode_write val)
  608. {
  609. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  610. return -EINVAL;
  611. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  612. return 0;
  613. }
  614. /**
  615. * prcmu_get_rc_p2a - This function is used to get power state sequences
  616. * Returns: the power transition that has last happened
  617. *
  618. * This function can return the following transitions-
  619. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  620. */
  621. enum romcode_read prcmu_get_rc_p2a(void)
  622. {
  623. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  624. }
  625. /**
  626. * prcmu_get_current_mode - Return the current XP70 power mode
  627. * Returns: Returns the current AP(ARM) power mode: init,
  628. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  629. */
  630. enum ap_pwrst prcmu_get_xp70_current_state(void)
  631. {
  632. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  633. }
  634. /**
  635. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  636. * @clkout: The CLKOUT number (0 or 1).
  637. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  638. * @div: The divider to be applied.
  639. *
  640. * Configures one of the programmable clock outputs (CLKOUTs).
  641. * @div should be in the range [1,63] to request a configuration, or 0 to
  642. * inform that the configuration is no longer requested.
  643. */
  644. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  645. {
  646. static int requests[2];
  647. int r = 0;
  648. unsigned long flags;
  649. u32 val;
  650. u32 bits;
  651. u32 mask;
  652. u32 div_mask;
  653. BUG_ON(clkout > 1);
  654. BUG_ON(div > 63);
  655. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  656. if (!div && !requests[clkout])
  657. return -EINVAL;
  658. if (clkout == 0) {
  659. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  660. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  661. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  662. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  663. } else {
  664. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  665. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  666. PRCM_CLKOCR_CLK1TYPE);
  667. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  668. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  669. }
  670. bits &= mask;
  671. spin_lock_irqsave(&clkout_lock, flags);
  672. val = readl(PRCM_CLKOCR);
  673. if (val & div_mask) {
  674. if (div) {
  675. if ((val & mask) != bits) {
  676. r = -EBUSY;
  677. goto unlock_and_return;
  678. }
  679. } else {
  680. if ((val & mask & ~div_mask) != bits) {
  681. r = -EINVAL;
  682. goto unlock_and_return;
  683. }
  684. }
  685. }
  686. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  687. requests[clkout] += (div ? 1 : -1);
  688. unlock_and_return:
  689. spin_unlock_irqrestore(&clkout_lock, flags);
  690. return r;
  691. }
  692. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  693. {
  694. unsigned long flags;
  695. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  696. spin_lock_irqsave(&mb0_transfer.lock, flags);
  697. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  698. cpu_relax();
  699. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  700. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  701. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  702. writeb((keep_ulp_clk ? 1 : 0),
  703. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  704. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  705. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  706. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  707. return 0;
  708. }
  709. u8 db8500_prcmu_get_power_state_result(void)
  710. {
  711. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  712. }
  713. /* This function should only be called while mb0_transfer.lock is held. */
  714. static void config_wakeups(void)
  715. {
  716. const u8 header[2] = {
  717. MB0H_CONFIG_WAKEUPS_EXE,
  718. MB0H_CONFIG_WAKEUPS_SLEEP
  719. };
  720. static u32 last_dbb_events;
  721. static u32 last_abb_events;
  722. u32 dbb_events;
  723. u32 abb_events;
  724. unsigned int i;
  725. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  726. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  727. abb_events = mb0_transfer.req.abb_events;
  728. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  729. return;
  730. for (i = 0; i < 2; i++) {
  731. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  732. cpu_relax();
  733. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  734. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  735. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  736. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  737. }
  738. last_dbb_events = dbb_events;
  739. last_abb_events = abb_events;
  740. }
  741. void db8500_prcmu_enable_wakeups(u32 wakeups)
  742. {
  743. unsigned long flags;
  744. u32 bits;
  745. int i;
  746. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  747. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  748. if (wakeups & BIT(i))
  749. bits |= prcmu_wakeup_bit[i];
  750. }
  751. spin_lock_irqsave(&mb0_transfer.lock, flags);
  752. mb0_transfer.req.dbb_wakeups = bits;
  753. config_wakeups();
  754. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  755. }
  756. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  757. {
  758. unsigned long flags;
  759. spin_lock_irqsave(&mb0_transfer.lock, flags);
  760. mb0_transfer.req.abb_events = abb_events;
  761. config_wakeups();
  762. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  763. }
  764. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  765. {
  766. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  767. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  768. else
  769. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  770. }
  771. /**
  772. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  773. * @opp: The new ARM operating point to which transition is to be made
  774. * Returns: 0 on success, non-zero on failure
  775. *
  776. * This function sets the the operating point of the ARM.
  777. */
  778. int db8500_prcmu_set_arm_opp(u8 opp)
  779. {
  780. int r;
  781. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  782. return -EINVAL;
  783. r = 0;
  784. mutex_lock(&mb1_transfer.lock);
  785. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  786. cpu_relax();
  787. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  788. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  789. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  790. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  791. wait_for_completion(&mb1_transfer.work);
  792. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  793. (mb1_transfer.ack.arm_opp != opp))
  794. r = -EIO;
  795. mutex_unlock(&mb1_transfer.lock);
  796. return r;
  797. }
  798. /**
  799. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  800. *
  801. * Returns: the current ARM OPP
  802. */
  803. int db8500_prcmu_get_arm_opp(void)
  804. {
  805. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  806. }
  807. /**
  808. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  809. *
  810. * Returns: the current DDR OPP
  811. */
  812. int db8500_prcmu_get_ddr_opp(void)
  813. {
  814. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  815. }
  816. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  817. static void request_even_slower_clocks(bool enable)
  818. {
  819. u32 clock_reg[] = {
  820. PRCM_ACLK_MGT,
  821. PRCM_DMACLK_MGT
  822. };
  823. unsigned long flags;
  824. unsigned int i;
  825. spin_lock_irqsave(&clk_mgt_lock, flags);
  826. /* Grab the HW semaphore. */
  827. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  828. cpu_relax();
  829. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  830. u32 val;
  831. u32 div;
  832. val = readl(prcmu_base + clock_reg[i]);
  833. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  834. if (enable) {
  835. if ((div <= 1) || (div > 15)) {
  836. pr_err("prcmu: Bad clock divider %d in %s\n",
  837. div, __func__);
  838. goto unlock_and_return;
  839. }
  840. div <<= 1;
  841. } else {
  842. if (div <= 2)
  843. goto unlock_and_return;
  844. div >>= 1;
  845. }
  846. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  847. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  848. writel(val, prcmu_base + clock_reg[i]);
  849. }
  850. unlock_and_return:
  851. /* Release the HW semaphore. */
  852. writel(0, PRCM_SEM);
  853. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  854. }
  855. /**
  856. * db8500_set_ape_opp - set the appropriate APE OPP
  857. * @opp: The new APE operating point to which transition is to be made
  858. * Returns: 0 on success, non-zero on failure
  859. *
  860. * This function sets the operating point of the APE.
  861. */
  862. int db8500_prcmu_set_ape_opp(u8 opp)
  863. {
  864. int r = 0;
  865. if (opp == mb1_transfer.ape_opp)
  866. return 0;
  867. mutex_lock(&mb1_transfer.lock);
  868. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  869. request_even_slower_clocks(false);
  870. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  871. goto skip_message;
  872. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  873. cpu_relax();
  874. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  875. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  876. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  877. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  878. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  879. wait_for_completion(&mb1_transfer.work);
  880. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  881. (mb1_transfer.ack.ape_opp != opp))
  882. r = -EIO;
  883. skip_message:
  884. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  885. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  886. request_even_slower_clocks(true);
  887. if (!r)
  888. mb1_transfer.ape_opp = opp;
  889. mutex_unlock(&mb1_transfer.lock);
  890. return r;
  891. }
  892. /**
  893. * db8500_prcmu_get_ape_opp - get the current APE OPP
  894. *
  895. * Returns: the current APE OPP
  896. */
  897. int db8500_prcmu_get_ape_opp(void)
  898. {
  899. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  900. }
  901. /**
  902. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  903. * @enable: true to request the higher voltage, false to drop a request.
  904. *
  905. * Calls to this function to enable and disable requests must be balanced.
  906. */
  907. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  908. {
  909. int r = 0;
  910. u8 header;
  911. static unsigned int requests;
  912. mutex_lock(&mb1_transfer.lock);
  913. if (enable) {
  914. if (0 != requests++)
  915. goto unlock_and_return;
  916. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  917. } else {
  918. if (requests == 0) {
  919. r = -EIO;
  920. goto unlock_and_return;
  921. } else if (1 != requests--) {
  922. goto unlock_and_return;
  923. }
  924. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  925. }
  926. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  927. cpu_relax();
  928. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  929. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  930. wait_for_completion(&mb1_transfer.work);
  931. if ((mb1_transfer.ack.header != header) ||
  932. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  933. r = -EIO;
  934. unlock_and_return:
  935. mutex_unlock(&mb1_transfer.lock);
  936. return r;
  937. }
  938. /**
  939. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  940. *
  941. * This function releases the power state requirements of a USB wakeup.
  942. */
  943. int prcmu_release_usb_wakeup_state(void)
  944. {
  945. int r = 0;
  946. mutex_lock(&mb1_transfer.lock);
  947. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  948. cpu_relax();
  949. writeb(MB1H_RELEASE_USB_WAKEUP,
  950. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  951. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  952. wait_for_completion(&mb1_transfer.work);
  953. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  954. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  955. r = -EIO;
  956. mutex_unlock(&mb1_transfer.lock);
  957. return r;
  958. }
  959. static int request_pll(u8 clock, bool enable)
  960. {
  961. int r = 0;
  962. if (clock == PRCMU_PLLSOC0)
  963. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  964. else if (clock == PRCMU_PLLSOC1)
  965. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  966. else
  967. return -EINVAL;
  968. mutex_lock(&mb1_transfer.lock);
  969. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  970. cpu_relax();
  971. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  972. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  973. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  974. wait_for_completion(&mb1_transfer.work);
  975. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  976. r = -EIO;
  977. mutex_unlock(&mb1_transfer.lock);
  978. return r;
  979. }
  980. /**
  981. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  982. * @epod_id: The EPOD to set
  983. * @epod_state: The new EPOD state
  984. *
  985. * This function sets the state of a EPOD (power domain). It may not be called
  986. * from interrupt context.
  987. */
  988. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  989. {
  990. int r = 0;
  991. bool ram_retention = false;
  992. int i;
  993. /* check argument */
  994. BUG_ON(epod_id >= NUM_EPOD_ID);
  995. /* set flag if retention is possible */
  996. switch (epod_id) {
  997. case EPOD_ID_SVAMMDSP:
  998. case EPOD_ID_SIAMMDSP:
  999. case EPOD_ID_ESRAM12:
  1000. case EPOD_ID_ESRAM34:
  1001. ram_retention = true;
  1002. break;
  1003. }
  1004. /* check argument */
  1005. BUG_ON(epod_state > EPOD_STATE_ON);
  1006. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1007. /* get lock */
  1008. mutex_lock(&mb2_transfer.lock);
  1009. /* wait for mailbox */
  1010. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1011. cpu_relax();
  1012. /* fill in mailbox */
  1013. for (i = 0; i < NUM_EPOD_ID; i++)
  1014. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1015. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1016. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1017. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1018. /*
  1019. * The current firmware version does not handle errors correctly,
  1020. * and we cannot recover if there is an error.
  1021. * This is expected to change when the firmware is updated.
  1022. */
  1023. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1024. msecs_to_jiffies(20000))) {
  1025. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1026. __func__);
  1027. r = -EIO;
  1028. goto unlock_and_return;
  1029. }
  1030. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1031. r = -EIO;
  1032. unlock_and_return:
  1033. mutex_unlock(&mb2_transfer.lock);
  1034. return r;
  1035. }
  1036. /**
  1037. * prcmu_configure_auto_pm - Configure autonomous power management.
  1038. * @sleep: Configuration for ApSleep.
  1039. * @idle: Configuration for ApIdle.
  1040. */
  1041. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1042. struct prcmu_auto_pm_config *idle)
  1043. {
  1044. u32 sleep_cfg;
  1045. u32 idle_cfg;
  1046. unsigned long flags;
  1047. BUG_ON((sleep == NULL) || (idle == NULL));
  1048. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1049. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1050. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1051. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1052. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1053. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1054. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1055. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1056. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1057. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1058. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1059. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1060. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1061. /*
  1062. * The autonomous power management configuration is done through
  1063. * fields in mailbox 2, but these fields are only used as shared
  1064. * variables - i.e. there is no need to send a message.
  1065. */
  1066. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1067. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1068. mb2_transfer.auto_pm_enabled =
  1069. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1070. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1071. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1072. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1073. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1074. }
  1075. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1076. bool prcmu_is_auto_pm_enabled(void)
  1077. {
  1078. return mb2_transfer.auto_pm_enabled;
  1079. }
  1080. static int request_sysclk(bool enable)
  1081. {
  1082. int r;
  1083. unsigned long flags;
  1084. r = 0;
  1085. mutex_lock(&mb3_transfer.sysclk_lock);
  1086. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1087. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1088. cpu_relax();
  1089. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1090. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1091. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1092. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1093. /*
  1094. * The firmware only sends an ACK if we want to enable the
  1095. * SysClk, and it succeeds.
  1096. */
  1097. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1098. msecs_to_jiffies(20000))) {
  1099. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1100. __func__);
  1101. r = -EIO;
  1102. }
  1103. mutex_unlock(&mb3_transfer.sysclk_lock);
  1104. return r;
  1105. }
  1106. static int request_timclk(bool enable)
  1107. {
  1108. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1109. if (!enable)
  1110. val |= PRCM_TCR_STOP_TIMERS;
  1111. writel(val, PRCM_TCR);
  1112. return 0;
  1113. }
  1114. static int request_clock(u8 clock, bool enable)
  1115. {
  1116. u32 val;
  1117. unsigned long flags;
  1118. spin_lock_irqsave(&clk_mgt_lock, flags);
  1119. /* Grab the HW semaphore. */
  1120. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1121. cpu_relax();
  1122. val = readl(prcmu_base + clk_mgt[clock].offset);
  1123. if (enable) {
  1124. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1125. } else {
  1126. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1127. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1128. }
  1129. writel(val, prcmu_base + clk_mgt[clock].offset);
  1130. /* Release the HW semaphore. */
  1131. writel(0, PRCM_SEM);
  1132. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1133. return 0;
  1134. }
  1135. static int request_sga_clock(u8 clock, bool enable)
  1136. {
  1137. u32 val;
  1138. int ret;
  1139. if (enable) {
  1140. val = readl(PRCM_CGATING_BYPASS);
  1141. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1142. }
  1143. ret = request_clock(clock, enable);
  1144. if (!ret && !enable) {
  1145. val = readl(PRCM_CGATING_BYPASS);
  1146. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1147. }
  1148. return ret;
  1149. }
  1150. static inline bool plldsi_locked(void)
  1151. {
  1152. return (readl(PRCM_PLLDSI_LOCKP) &
  1153. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1154. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1155. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1156. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1157. }
  1158. static int request_plldsi(bool enable)
  1159. {
  1160. int r = 0;
  1161. u32 val;
  1162. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1163. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1164. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1165. val = readl(PRCM_PLLDSI_ENABLE);
  1166. if (enable)
  1167. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1168. else
  1169. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1170. writel(val, PRCM_PLLDSI_ENABLE);
  1171. if (enable) {
  1172. unsigned int i;
  1173. bool locked = plldsi_locked();
  1174. for (i = 10; !locked && (i > 0); --i) {
  1175. udelay(100);
  1176. locked = plldsi_locked();
  1177. }
  1178. if (locked) {
  1179. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1180. PRCM_APE_RESETN_SET);
  1181. } else {
  1182. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1183. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1184. PRCM_MMIP_LS_CLAMP_SET);
  1185. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1186. writel(val, PRCM_PLLDSI_ENABLE);
  1187. r = -EAGAIN;
  1188. }
  1189. } else {
  1190. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1191. }
  1192. return r;
  1193. }
  1194. static int request_dsiclk(u8 n, bool enable)
  1195. {
  1196. u32 val;
  1197. val = readl(PRCM_DSI_PLLOUT_SEL);
  1198. val &= ~dsiclk[n].divsel_mask;
  1199. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1200. dsiclk[n].divsel_shift);
  1201. writel(val, PRCM_DSI_PLLOUT_SEL);
  1202. return 0;
  1203. }
  1204. static int request_dsiescclk(u8 n, bool enable)
  1205. {
  1206. u32 val;
  1207. val = readl(PRCM_DSITVCLK_DIV);
  1208. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1209. writel(val, PRCM_DSITVCLK_DIV);
  1210. return 0;
  1211. }
  1212. /**
  1213. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1214. * @clock: The clock for which the request is made.
  1215. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1216. *
  1217. * This function should only be used by the clock implementation.
  1218. * Do not use it from any other place!
  1219. */
  1220. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1221. {
  1222. if (clock == PRCMU_SGACLK)
  1223. return request_sga_clock(clock, enable);
  1224. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1225. return request_clock(clock, enable);
  1226. else if (clock == PRCMU_TIMCLK)
  1227. return request_timclk(enable);
  1228. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1229. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1230. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1231. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1232. else if (clock == PRCMU_PLLDSI)
  1233. return request_plldsi(enable);
  1234. else if (clock == PRCMU_SYSCLK)
  1235. return request_sysclk(enable);
  1236. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1237. return request_pll(clock, enable);
  1238. else
  1239. return -EINVAL;
  1240. }
  1241. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1242. int branch)
  1243. {
  1244. u64 rate;
  1245. u32 val;
  1246. u32 d;
  1247. u32 div = 1;
  1248. val = readl(reg);
  1249. rate = src_rate;
  1250. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1251. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1252. if (d > 1)
  1253. div *= d;
  1254. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1255. if (d > 1)
  1256. div *= d;
  1257. if (val & PRCM_PLL_FREQ_SELDIV2)
  1258. div *= 2;
  1259. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1260. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1261. ((reg == PRCM_PLLSOC0_FREQ) ||
  1262. (reg == PRCM_PLLARM_FREQ) ||
  1263. (reg == PRCM_PLLDDR_FREQ))))
  1264. div *= 2;
  1265. (void)do_div(rate, div);
  1266. return (unsigned long)rate;
  1267. }
  1268. #define ROOT_CLOCK_RATE 38400000
  1269. static unsigned long clock_rate(u8 clock)
  1270. {
  1271. u32 val;
  1272. u32 pllsw;
  1273. unsigned long rate = ROOT_CLOCK_RATE;
  1274. val = readl(prcmu_base + clk_mgt[clock].offset);
  1275. if (val & PRCM_CLK_MGT_CLK38) {
  1276. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1277. rate /= 2;
  1278. return rate;
  1279. }
  1280. val |= clk_mgt[clock].pllsw;
  1281. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1282. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1283. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1284. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1285. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1286. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1287. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1288. else
  1289. return 0;
  1290. if ((clock == PRCMU_SGACLK) &&
  1291. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1292. u64 r = (rate * 10);
  1293. (void)do_div(r, 25);
  1294. return (unsigned long)r;
  1295. }
  1296. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1297. if (val)
  1298. return rate / val;
  1299. else
  1300. return 0;
  1301. }
  1302. static unsigned long armss_rate(void)
  1303. {
  1304. u32 r;
  1305. unsigned long rate;
  1306. r = readl(PRCM_ARM_CHGCLKREQ);
  1307. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1308. /* External ARMCLKFIX clock */
  1309. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1310. /* Check PRCM_ARM_CHGCLKREQ divider */
  1311. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1312. rate /= 2;
  1313. /* Check PRCM_ARMCLKFIX_MGT divider */
  1314. r = readl(PRCM_ARMCLKFIX_MGT);
  1315. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1316. rate /= r;
  1317. } else {/* ARM PLL */
  1318. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1319. }
  1320. return rate;
  1321. }
  1322. static unsigned long dsiclk_rate(u8 n)
  1323. {
  1324. u32 divsel;
  1325. u32 div = 1;
  1326. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1327. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1328. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1329. divsel = dsiclk[n].divsel;
  1330. else
  1331. dsiclk[n].divsel = divsel;
  1332. switch (divsel) {
  1333. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1334. div *= 2;
  1335. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1336. div *= 2;
  1337. case PRCM_DSI_PLLOUT_SEL_PHI:
  1338. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1339. PLL_RAW) / div;
  1340. default:
  1341. return 0;
  1342. }
  1343. }
  1344. static unsigned long dsiescclk_rate(u8 n)
  1345. {
  1346. u32 div;
  1347. div = readl(PRCM_DSITVCLK_DIV);
  1348. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1349. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1350. }
  1351. unsigned long prcmu_clock_rate(u8 clock)
  1352. {
  1353. if (clock < PRCMU_NUM_REG_CLOCKS)
  1354. return clock_rate(clock);
  1355. else if (clock == PRCMU_TIMCLK)
  1356. return ROOT_CLOCK_RATE / 16;
  1357. else if (clock == PRCMU_SYSCLK)
  1358. return ROOT_CLOCK_RATE;
  1359. else if (clock == PRCMU_PLLSOC0)
  1360. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1361. else if (clock == PRCMU_PLLSOC1)
  1362. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1363. else if (clock == PRCMU_ARMSS)
  1364. return armss_rate();
  1365. else if (clock == PRCMU_PLLDDR)
  1366. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1367. else if (clock == PRCMU_PLLDSI)
  1368. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1369. PLL_RAW);
  1370. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1371. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1372. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1373. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1374. else
  1375. return 0;
  1376. }
  1377. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1378. {
  1379. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1380. return ROOT_CLOCK_RATE;
  1381. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1382. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1383. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1384. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1385. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1386. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1387. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1388. else
  1389. return 0;
  1390. }
  1391. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1392. {
  1393. u32 div;
  1394. div = (src_rate / rate);
  1395. if (div == 0)
  1396. return 1;
  1397. if (rate < (src_rate / div))
  1398. div++;
  1399. return div;
  1400. }
  1401. static long round_clock_rate(u8 clock, unsigned long rate)
  1402. {
  1403. u32 val;
  1404. u32 div;
  1405. unsigned long src_rate;
  1406. long rounded_rate;
  1407. val = readl(prcmu_base + clk_mgt[clock].offset);
  1408. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1409. clk_mgt[clock].branch);
  1410. div = clock_divider(src_rate, rate);
  1411. if (val & PRCM_CLK_MGT_CLK38) {
  1412. if (clk_mgt[clock].clk38div) {
  1413. if (div > 2)
  1414. div = 2;
  1415. } else {
  1416. div = 1;
  1417. }
  1418. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1419. u64 r = (src_rate * 10);
  1420. (void)do_div(r, 25);
  1421. if (r <= rate)
  1422. return (unsigned long)r;
  1423. }
  1424. rounded_rate = (src_rate / min(div, (u32)31));
  1425. return rounded_rate;
  1426. }
  1427. static const unsigned long armss_freqs[] = {
  1428. 200000000,
  1429. 400000000,
  1430. 800000000,
  1431. 998400000
  1432. };
  1433. static long round_armss_rate(unsigned long rate)
  1434. {
  1435. unsigned long freq = 0;
  1436. int i;
  1437. /* Find the corresponding arm opp from the cpufreq table. */
  1438. for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
  1439. freq = armss_freqs[i];
  1440. if (rate <= freq)
  1441. break;
  1442. }
  1443. /* Return the last valid value, even if a match was not found. */
  1444. return freq;
  1445. }
  1446. #define MIN_PLL_VCO_RATE 600000000ULL
  1447. #define MAX_PLL_VCO_RATE 1680640000ULL
  1448. static long round_plldsi_rate(unsigned long rate)
  1449. {
  1450. long rounded_rate = 0;
  1451. unsigned long src_rate;
  1452. unsigned long rem;
  1453. u32 r;
  1454. src_rate = clock_rate(PRCMU_HDMICLK);
  1455. rem = rate;
  1456. for (r = 7; (rem > 0) && (r > 0); r--) {
  1457. u64 d;
  1458. d = (r * rate);
  1459. (void)do_div(d, src_rate);
  1460. if (d < 6)
  1461. d = 6;
  1462. else if (d > 255)
  1463. d = 255;
  1464. d *= src_rate;
  1465. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1466. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1467. continue;
  1468. (void)do_div(d, r);
  1469. if (rate < d) {
  1470. if (rounded_rate == 0)
  1471. rounded_rate = (long)d;
  1472. break;
  1473. }
  1474. if ((rate - d) < rem) {
  1475. rem = (rate - d);
  1476. rounded_rate = (long)d;
  1477. }
  1478. }
  1479. return rounded_rate;
  1480. }
  1481. static long round_dsiclk_rate(unsigned long rate)
  1482. {
  1483. u32 div;
  1484. unsigned long src_rate;
  1485. long rounded_rate;
  1486. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1487. PLL_RAW);
  1488. div = clock_divider(src_rate, rate);
  1489. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1490. return rounded_rate;
  1491. }
  1492. static long round_dsiescclk_rate(unsigned long rate)
  1493. {
  1494. u32 div;
  1495. unsigned long src_rate;
  1496. long rounded_rate;
  1497. src_rate = clock_rate(PRCMU_TVCLK);
  1498. div = clock_divider(src_rate, rate);
  1499. rounded_rate = (src_rate / min(div, (u32)255));
  1500. return rounded_rate;
  1501. }
  1502. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1503. {
  1504. if (clock < PRCMU_NUM_REG_CLOCKS)
  1505. return round_clock_rate(clock, rate);
  1506. else if (clock == PRCMU_ARMSS)
  1507. return round_armss_rate(rate);
  1508. else if (clock == PRCMU_PLLDSI)
  1509. return round_plldsi_rate(rate);
  1510. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1511. return round_dsiclk_rate(rate);
  1512. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1513. return round_dsiescclk_rate(rate);
  1514. else
  1515. return (long)prcmu_clock_rate(clock);
  1516. }
  1517. static void set_clock_rate(u8 clock, unsigned long rate)
  1518. {
  1519. u32 val;
  1520. u32 div;
  1521. unsigned long src_rate;
  1522. unsigned long flags;
  1523. spin_lock_irqsave(&clk_mgt_lock, flags);
  1524. /* Grab the HW semaphore. */
  1525. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1526. cpu_relax();
  1527. val = readl(prcmu_base + clk_mgt[clock].offset);
  1528. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1529. clk_mgt[clock].branch);
  1530. div = clock_divider(src_rate, rate);
  1531. if (val & PRCM_CLK_MGT_CLK38) {
  1532. if (clk_mgt[clock].clk38div) {
  1533. if (div > 1)
  1534. val |= PRCM_CLK_MGT_CLK38DIV;
  1535. else
  1536. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1537. }
  1538. } else if (clock == PRCMU_SGACLK) {
  1539. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1540. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1541. if (div == 3) {
  1542. u64 r = (src_rate * 10);
  1543. (void)do_div(r, 25);
  1544. if (r <= rate) {
  1545. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1546. div = 0;
  1547. }
  1548. }
  1549. val |= min(div, (u32)31);
  1550. } else {
  1551. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1552. val |= min(div, (u32)31);
  1553. }
  1554. writel(val, prcmu_base + clk_mgt[clock].offset);
  1555. /* Release the HW semaphore. */
  1556. writel(0, PRCM_SEM);
  1557. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1558. }
  1559. static int set_armss_rate(unsigned long rate)
  1560. {
  1561. unsigned long freq;
  1562. u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
  1563. int i;
  1564. /* Find the corresponding arm opp from the cpufreq table. */
  1565. for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
  1566. freq = armss_freqs[i];
  1567. if (rate == freq)
  1568. break;
  1569. }
  1570. if (rate != freq)
  1571. return -EINVAL;
  1572. /* Set the new arm opp. */
  1573. pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
  1574. return db8500_prcmu_set_arm_opp(opps[i]);
  1575. }
  1576. static int set_plldsi_rate(unsigned long rate)
  1577. {
  1578. unsigned long src_rate;
  1579. unsigned long rem;
  1580. u32 pll_freq = 0;
  1581. u32 r;
  1582. src_rate = clock_rate(PRCMU_HDMICLK);
  1583. rem = rate;
  1584. for (r = 7; (rem > 0) && (r > 0); r--) {
  1585. u64 d;
  1586. u64 hwrate;
  1587. d = (r * rate);
  1588. (void)do_div(d, src_rate);
  1589. if (d < 6)
  1590. d = 6;
  1591. else if (d > 255)
  1592. d = 255;
  1593. hwrate = (d * src_rate);
  1594. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1595. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1596. continue;
  1597. (void)do_div(hwrate, r);
  1598. if (rate < hwrate) {
  1599. if (pll_freq == 0)
  1600. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1601. (r << PRCM_PLL_FREQ_R_SHIFT));
  1602. break;
  1603. }
  1604. if ((rate - hwrate) < rem) {
  1605. rem = (rate - hwrate);
  1606. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1607. (r << PRCM_PLL_FREQ_R_SHIFT));
  1608. }
  1609. }
  1610. if (pll_freq == 0)
  1611. return -EINVAL;
  1612. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1613. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1614. return 0;
  1615. }
  1616. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1617. {
  1618. u32 val;
  1619. u32 div;
  1620. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1621. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1622. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1623. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1624. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1625. val = readl(PRCM_DSI_PLLOUT_SEL);
  1626. val &= ~dsiclk[n].divsel_mask;
  1627. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1628. writel(val, PRCM_DSI_PLLOUT_SEL);
  1629. }
  1630. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1631. {
  1632. u32 val;
  1633. u32 div;
  1634. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1635. val = readl(PRCM_DSITVCLK_DIV);
  1636. val &= ~dsiescclk[n].div_mask;
  1637. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1638. writel(val, PRCM_DSITVCLK_DIV);
  1639. }
  1640. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1641. {
  1642. if (clock < PRCMU_NUM_REG_CLOCKS)
  1643. set_clock_rate(clock, rate);
  1644. else if (clock == PRCMU_ARMSS)
  1645. return set_armss_rate(rate);
  1646. else if (clock == PRCMU_PLLDSI)
  1647. return set_plldsi_rate(rate);
  1648. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1649. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1650. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1651. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1652. return 0;
  1653. }
  1654. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1655. {
  1656. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1657. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1658. return -EINVAL;
  1659. mutex_lock(&mb4_transfer.lock);
  1660. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1661. cpu_relax();
  1662. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1663. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1664. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1665. writeb(DDR_PWR_STATE_ON,
  1666. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1667. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1668. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1669. wait_for_completion(&mb4_transfer.work);
  1670. mutex_unlock(&mb4_transfer.lock);
  1671. return 0;
  1672. }
  1673. int db8500_prcmu_config_hotdog(u8 threshold)
  1674. {
  1675. mutex_lock(&mb4_transfer.lock);
  1676. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1677. cpu_relax();
  1678. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1679. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1680. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1681. wait_for_completion(&mb4_transfer.work);
  1682. mutex_unlock(&mb4_transfer.lock);
  1683. return 0;
  1684. }
  1685. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1686. {
  1687. mutex_lock(&mb4_transfer.lock);
  1688. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1689. cpu_relax();
  1690. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1691. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1692. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1693. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1694. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1695. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1696. wait_for_completion(&mb4_transfer.work);
  1697. mutex_unlock(&mb4_transfer.lock);
  1698. return 0;
  1699. }
  1700. EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
  1701. static int config_hot_period(u16 val)
  1702. {
  1703. mutex_lock(&mb4_transfer.lock);
  1704. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1705. cpu_relax();
  1706. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1707. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1708. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1709. wait_for_completion(&mb4_transfer.work);
  1710. mutex_unlock(&mb4_transfer.lock);
  1711. return 0;
  1712. }
  1713. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1714. {
  1715. if (cycles32k == 0xFFFF)
  1716. return -EINVAL;
  1717. return config_hot_period(cycles32k);
  1718. }
  1719. EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
  1720. int db8500_prcmu_stop_temp_sense(void)
  1721. {
  1722. return config_hot_period(0xFFFF);
  1723. }
  1724. EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
  1725. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1726. {
  1727. mutex_lock(&mb4_transfer.lock);
  1728. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1729. cpu_relax();
  1730. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1731. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1732. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1733. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1734. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1735. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1736. wait_for_completion(&mb4_transfer.work);
  1737. mutex_unlock(&mb4_transfer.lock);
  1738. return 0;
  1739. }
  1740. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1741. {
  1742. BUG_ON(num == 0 || num > 0xf);
  1743. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1744. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1745. A9WDOG_AUTO_OFF_DIS);
  1746. }
  1747. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1748. int db8500_prcmu_enable_a9wdog(u8 id)
  1749. {
  1750. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1751. }
  1752. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1753. int db8500_prcmu_disable_a9wdog(u8 id)
  1754. {
  1755. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1756. }
  1757. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1758. int db8500_prcmu_kick_a9wdog(u8 id)
  1759. {
  1760. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1761. }
  1762. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1763. /*
  1764. * timeout is 28 bit, in ms.
  1765. */
  1766. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1767. {
  1768. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1769. (id & A9WDOG_ID_MASK) |
  1770. /*
  1771. * Put the lowest 28 bits of timeout at
  1772. * offset 4. Four first bits are used for id.
  1773. */
  1774. (u8)((timeout << 4) & 0xf0),
  1775. (u8)((timeout >> 4) & 0xff),
  1776. (u8)((timeout >> 12) & 0xff),
  1777. (u8)((timeout >> 20) & 0xff));
  1778. }
  1779. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1780. /**
  1781. * prcmu_abb_read() - Read register value(s) from the ABB.
  1782. * @slave: The I2C slave address.
  1783. * @reg: The (start) register address.
  1784. * @value: The read out value(s).
  1785. * @size: The number of registers to read.
  1786. *
  1787. * Reads register value(s) from the ABB.
  1788. * @size has to be 1 for the current firmware version.
  1789. */
  1790. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1791. {
  1792. int r;
  1793. if (size != 1)
  1794. return -EINVAL;
  1795. mutex_lock(&mb5_transfer.lock);
  1796. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1797. cpu_relax();
  1798. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1799. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1800. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1801. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1802. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1803. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1804. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1805. msecs_to_jiffies(20000))) {
  1806. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1807. __func__);
  1808. r = -EIO;
  1809. } else {
  1810. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1811. }
  1812. if (!r)
  1813. *value = mb5_transfer.ack.value;
  1814. mutex_unlock(&mb5_transfer.lock);
  1815. return r;
  1816. }
  1817. /**
  1818. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1819. * @slave: The I2C slave address.
  1820. * @reg: The (start) register address.
  1821. * @value: The value(s) to write.
  1822. * @mask: The mask(s) to use.
  1823. * @size: The number of registers to write.
  1824. *
  1825. * Writes masked register value(s) to the ABB.
  1826. * For each @value, only the bits set to 1 in the corresponding @mask
  1827. * will be written. The other bits are not changed.
  1828. * @size has to be 1 for the current firmware version.
  1829. */
  1830. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1831. {
  1832. int r;
  1833. if (size != 1)
  1834. return -EINVAL;
  1835. mutex_lock(&mb5_transfer.lock);
  1836. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1837. cpu_relax();
  1838. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1839. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1840. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1841. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1842. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1843. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1844. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1845. msecs_to_jiffies(20000))) {
  1846. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1847. __func__);
  1848. r = -EIO;
  1849. } else {
  1850. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1851. }
  1852. mutex_unlock(&mb5_transfer.lock);
  1853. return r;
  1854. }
  1855. /**
  1856. * prcmu_abb_write() - Write register value(s) to the ABB.
  1857. * @slave: The I2C slave address.
  1858. * @reg: The (start) register address.
  1859. * @value: The value(s) to write.
  1860. * @size: The number of registers to write.
  1861. *
  1862. * Writes register value(s) to the ABB.
  1863. * @size has to be 1 for the current firmware version.
  1864. */
  1865. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1866. {
  1867. u8 mask = ~0;
  1868. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1869. }
  1870. /**
  1871. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1872. */
  1873. int prcmu_ac_wake_req(void)
  1874. {
  1875. u32 val;
  1876. int ret = 0;
  1877. mutex_lock(&mb0_transfer.ac_wake_lock);
  1878. val = readl(PRCM_HOSTACCESS_REQ);
  1879. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1880. goto unlock_and_return;
  1881. atomic_set(&ac_wake_req_state, 1);
  1882. /*
  1883. * Force Modem Wake-up before hostaccess_req ping-pong.
  1884. * It prevents Modem to enter in Sleep while acking the hostaccess
  1885. * request. The 31us delay has been calculated by HWI.
  1886. */
  1887. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1888. writel(val, PRCM_HOSTACCESS_REQ);
  1889. udelay(31);
  1890. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1891. writel(val, PRCM_HOSTACCESS_REQ);
  1892. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1893. msecs_to_jiffies(5000))) {
  1894. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1895. __func__);
  1896. ret = -EFAULT;
  1897. }
  1898. unlock_and_return:
  1899. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1900. return ret;
  1901. }
  1902. /**
  1903. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1904. */
  1905. void prcmu_ac_sleep_req(void)
  1906. {
  1907. u32 val;
  1908. mutex_lock(&mb0_transfer.ac_wake_lock);
  1909. val = readl(PRCM_HOSTACCESS_REQ);
  1910. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1911. goto unlock_and_return;
  1912. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1913. PRCM_HOSTACCESS_REQ);
  1914. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1915. msecs_to_jiffies(5000))) {
  1916. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1917. __func__);
  1918. }
  1919. atomic_set(&ac_wake_req_state, 0);
  1920. unlock_and_return:
  1921. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1922. }
  1923. bool db8500_prcmu_is_ac_wake_requested(void)
  1924. {
  1925. return (atomic_read(&ac_wake_req_state) != 0);
  1926. }
  1927. /**
  1928. * db8500_prcmu_system_reset - System reset
  1929. *
  1930. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1931. * fires interrupt to fw
  1932. */
  1933. void db8500_prcmu_system_reset(u16 reset_code)
  1934. {
  1935. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1936. writel(1, PRCM_APE_SOFTRST);
  1937. }
  1938. /**
  1939. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1940. *
  1941. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1942. * last restart.
  1943. */
  1944. u16 db8500_prcmu_get_reset_code(void)
  1945. {
  1946. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1947. }
  1948. /**
  1949. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  1950. */
  1951. void db8500_prcmu_modem_reset(void)
  1952. {
  1953. mutex_lock(&mb1_transfer.lock);
  1954. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1955. cpu_relax();
  1956. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1957. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1958. wait_for_completion(&mb1_transfer.work);
  1959. /*
  1960. * No need to check return from PRCMU as modem should go in reset state
  1961. * This state is already managed by upper layer
  1962. */
  1963. mutex_unlock(&mb1_transfer.lock);
  1964. }
  1965. static void ack_dbb_wakeup(void)
  1966. {
  1967. unsigned long flags;
  1968. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1969. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1970. cpu_relax();
  1971. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1972. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1973. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1974. }
  1975. static inline void print_unknown_header_warning(u8 n, u8 header)
  1976. {
  1977. pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
  1978. header, n);
  1979. }
  1980. static bool read_mailbox_0(void)
  1981. {
  1982. bool r;
  1983. u32 ev;
  1984. unsigned int n;
  1985. u8 header;
  1986. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  1987. switch (header) {
  1988. case MB0H_WAKEUP_EXE:
  1989. case MB0H_WAKEUP_SLEEP:
  1990. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  1991. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  1992. else
  1993. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  1994. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  1995. complete(&mb0_transfer.ac_wake_work);
  1996. if (ev & WAKEUP_BIT_SYSCLK_OK)
  1997. complete(&mb3_transfer.sysclk_work);
  1998. ev &= mb0_transfer.req.dbb_irqs;
  1999. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2000. if (ev & prcmu_irq_bit[n])
  2001. generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
  2002. }
  2003. r = true;
  2004. break;
  2005. default:
  2006. print_unknown_header_warning(0, header);
  2007. r = false;
  2008. break;
  2009. }
  2010. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2011. return r;
  2012. }
  2013. static bool read_mailbox_1(void)
  2014. {
  2015. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2016. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2017. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2018. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2019. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2020. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2021. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2022. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2023. complete(&mb1_transfer.work);
  2024. return false;
  2025. }
  2026. static bool read_mailbox_2(void)
  2027. {
  2028. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2029. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2030. complete(&mb2_transfer.work);
  2031. return false;
  2032. }
  2033. static bool read_mailbox_3(void)
  2034. {
  2035. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2036. return false;
  2037. }
  2038. static bool read_mailbox_4(void)
  2039. {
  2040. u8 header;
  2041. bool do_complete = true;
  2042. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2043. switch (header) {
  2044. case MB4H_MEM_ST:
  2045. case MB4H_HOTDOG:
  2046. case MB4H_HOTMON:
  2047. case MB4H_HOT_PERIOD:
  2048. case MB4H_A9WDOG_CONF:
  2049. case MB4H_A9WDOG_EN:
  2050. case MB4H_A9WDOG_DIS:
  2051. case MB4H_A9WDOG_LOAD:
  2052. case MB4H_A9WDOG_KICK:
  2053. break;
  2054. default:
  2055. print_unknown_header_warning(4, header);
  2056. do_complete = false;
  2057. break;
  2058. }
  2059. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2060. if (do_complete)
  2061. complete(&mb4_transfer.work);
  2062. return false;
  2063. }
  2064. static bool read_mailbox_5(void)
  2065. {
  2066. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2067. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2068. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2069. complete(&mb5_transfer.work);
  2070. return false;
  2071. }
  2072. static bool read_mailbox_6(void)
  2073. {
  2074. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2075. return false;
  2076. }
  2077. static bool read_mailbox_7(void)
  2078. {
  2079. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2080. return false;
  2081. }
  2082. static bool (* const read_mailbox[NUM_MB])(void) = {
  2083. read_mailbox_0,
  2084. read_mailbox_1,
  2085. read_mailbox_2,
  2086. read_mailbox_3,
  2087. read_mailbox_4,
  2088. read_mailbox_5,
  2089. read_mailbox_6,
  2090. read_mailbox_7
  2091. };
  2092. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2093. {
  2094. u32 bits;
  2095. u8 n;
  2096. irqreturn_t r;
  2097. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2098. if (unlikely(!bits))
  2099. return IRQ_NONE;
  2100. r = IRQ_HANDLED;
  2101. for (n = 0; bits; n++) {
  2102. if (bits & MBOX_BIT(n)) {
  2103. bits -= MBOX_BIT(n);
  2104. if (read_mailbox[n]())
  2105. r = IRQ_WAKE_THREAD;
  2106. }
  2107. }
  2108. return r;
  2109. }
  2110. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2111. {
  2112. ack_dbb_wakeup();
  2113. return IRQ_HANDLED;
  2114. }
  2115. static void prcmu_mask_work(struct work_struct *work)
  2116. {
  2117. unsigned long flags;
  2118. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2119. config_wakeups();
  2120. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2121. }
  2122. static void prcmu_irq_mask(struct irq_data *d)
  2123. {
  2124. unsigned long flags;
  2125. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2126. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2127. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2128. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2129. schedule_work(&mb0_transfer.mask_work);
  2130. }
  2131. static void prcmu_irq_unmask(struct irq_data *d)
  2132. {
  2133. unsigned long flags;
  2134. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2135. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2136. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2137. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2138. schedule_work(&mb0_transfer.mask_work);
  2139. }
  2140. static void noop(struct irq_data *d)
  2141. {
  2142. }
  2143. static struct irq_chip prcmu_irq_chip = {
  2144. .name = "prcmu",
  2145. .irq_disable = prcmu_irq_mask,
  2146. .irq_ack = noop,
  2147. .irq_mask = prcmu_irq_mask,
  2148. .irq_unmask = prcmu_irq_unmask,
  2149. };
  2150. static char *fw_project_name(u32 project)
  2151. {
  2152. switch (project) {
  2153. case PRCMU_FW_PROJECT_U8500:
  2154. return "U8500";
  2155. case PRCMU_FW_PROJECT_U8400:
  2156. return "U8400";
  2157. case PRCMU_FW_PROJECT_U9500:
  2158. return "U9500";
  2159. case PRCMU_FW_PROJECT_U8500_MBB:
  2160. return "U8500 MBB";
  2161. case PRCMU_FW_PROJECT_U8500_C1:
  2162. return "U8500 C1";
  2163. case PRCMU_FW_PROJECT_U8500_C2:
  2164. return "U8500 C2";
  2165. case PRCMU_FW_PROJECT_U8500_C3:
  2166. return "U8500 C3";
  2167. case PRCMU_FW_PROJECT_U8500_C4:
  2168. return "U8500 C4";
  2169. case PRCMU_FW_PROJECT_U9500_MBL:
  2170. return "U9500 MBL";
  2171. case PRCMU_FW_PROJECT_U8500_MBL:
  2172. return "U8500 MBL";
  2173. case PRCMU_FW_PROJECT_U8500_MBL2:
  2174. return "U8500 MBL2";
  2175. case PRCMU_FW_PROJECT_U8520:
  2176. return "U8520 MBL";
  2177. case PRCMU_FW_PROJECT_U8420:
  2178. return "U8420";
  2179. case PRCMU_FW_PROJECT_U9540:
  2180. return "U9540";
  2181. case PRCMU_FW_PROJECT_A9420:
  2182. return "A9420";
  2183. case PRCMU_FW_PROJECT_L8540:
  2184. return "L8540";
  2185. case PRCMU_FW_PROJECT_L8580:
  2186. return "L8580";
  2187. default:
  2188. return "Unknown";
  2189. }
  2190. }
  2191. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2192. irq_hw_number_t hwirq)
  2193. {
  2194. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2195. handle_simple_irq);
  2196. return 0;
  2197. }
  2198. static const struct irq_domain_ops db8500_irq_ops = {
  2199. .map = db8500_irq_map,
  2200. .xlate = irq_domain_xlate_twocell,
  2201. };
  2202. static int db8500_irq_init(struct device_node *np)
  2203. {
  2204. int i;
  2205. db8500_irq_domain = irq_domain_add_simple(
  2206. np, NUM_PRCMU_WAKEUPS, 0,
  2207. &db8500_irq_ops, NULL);
  2208. if (!db8500_irq_domain) {
  2209. pr_err("Failed to create irqdomain\n");
  2210. return -ENOSYS;
  2211. }
  2212. /* All wakeups will be used, so create mappings for all */
  2213. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2214. irq_create_mapping(db8500_irq_domain, i);
  2215. return 0;
  2216. }
  2217. static void dbx500_fw_version_init(struct platform_device *pdev,
  2218. u32 version_offset)
  2219. {
  2220. struct resource *res;
  2221. void __iomem *tcpm_base;
  2222. u32 version;
  2223. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2224. "prcmu-tcpm");
  2225. if (!res) {
  2226. dev_err(&pdev->dev,
  2227. "Error: no prcmu tcpm memory region provided\n");
  2228. return;
  2229. }
  2230. tcpm_base = ioremap(res->start, resource_size(res));
  2231. if (!tcpm_base) {
  2232. dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
  2233. return;
  2234. }
  2235. version = readl(tcpm_base + version_offset);
  2236. fw_info.version.project = (version & 0xFF);
  2237. fw_info.version.api_version = (version >> 8) & 0xFF;
  2238. fw_info.version.func_version = (version >> 16) & 0xFF;
  2239. fw_info.version.errata = (version >> 24) & 0xFF;
  2240. strncpy(fw_info.version.project_name,
  2241. fw_project_name(fw_info.version.project),
  2242. PRCMU_FW_PROJECT_NAME_LEN);
  2243. fw_info.valid = true;
  2244. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2245. fw_info.version.project_name,
  2246. fw_info.version.project,
  2247. fw_info.version.api_version,
  2248. fw_info.version.func_version,
  2249. fw_info.version.errata);
  2250. iounmap(tcpm_base);
  2251. }
  2252. void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
  2253. {
  2254. /*
  2255. * This is a temporary remap to bring up the clocks. It is
  2256. * subsequently replaces with a real remap. After the merge of
  2257. * the mailbox subsystem all of this early code goes away, and the
  2258. * clock driver can probe independently. An early initcall will
  2259. * still be needed, but it can be diverted into drivers/clk/ux500.
  2260. */
  2261. prcmu_base = ioremap(phy_base, size);
  2262. if (!prcmu_base)
  2263. pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
  2264. spin_lock_init(&mb0_transfer.lock);
  2265. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2266. mutex_init(&mb0_transfer.ac_wake_lock);
  2267. init_completion(&mb0_transfer.ac_wake_work);
  2268. mutex_init(&mb1_transfer.lock);
  2269. init_completion(&mb1_transfer.work);
  2270. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2271. mutex_init(&mb2_transfer.lock);
  2272. init_completion(&mb2_transfer.work);
  2273. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2274. spin_lock_init(&mb3_transfer.lock);
  2275. mutex_init(&mb3_transfer.sysclk_lock);
  2276. init_completion(&mb3_transfer.sysclk_work);
  2277. mutex_init(&mb4_transfer.lock);
  2278. init_completion(&mb4_transfer.work);
  2279. mutex_init(&mb5_transfer.lock);
  2280. init_completion(&mb5_transfer.work);
  2281. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2282. }
  2283. static void init_prcm_registers(void)
  2284. {
  2285. u32 val;
  2286. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2287. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2288. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2289. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2290. }
  2291. /*
  2292. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2293. */
  2294. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2295. REGULATOR_SUPPLY("v-ape", NULL),
  2296. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2297. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2298. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2299. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2300. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2301. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2302. REGULATOR_SUPPLY("vcore", "sdi0"),
  2303. REGULATOR_SUPPLY("vcore", "sdi1"),
  2304. REGULATOR_SUPPLY("vcore", "sdi2"),
  2305. REGULATOR_SUPPLY("vcore", "sdi3"),
  2306. REGULATOR_SUPPLY("vcore", "sdi4"),
  2307. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2308. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2309. /* "v-uart" changed to "vcore" in the mainline kernel */
  2310. REGULATOR_SUPPLY("vcore", "uart0"),
  2311. REGULATOR_SUPPLY("vcore", "uart1"),
  2312. REGULATOR_SUPPLY("vcore", "uart2"),
  2313. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2314. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2315. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2316. };
  2317. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2318. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2319. /* AV8100 regulator */
  2320. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2321. };
  2322. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2323. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2324. REGULATOR_SUPPLY("vsupply", "mcde"),
  2325. };
  2326. /* SVA MMDSP regulator switch */
  2327. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2328. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2329. };
  2330. /* SVA pipe regulator switch */
  2331. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2332. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2333. };
  2334. /* SIA MMDSP regulator switch */
  2335. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2336. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2337. };
  2338. /* SIA pipe regulator switch */
  2339. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2340. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2341. };
  2342. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2343. REGULATOR_SUPPLY("v-mali", NULL),
  2344. };
  2345. /* ESRAM1 and 2 regulator switch */
  2346. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2347. REGULATOR_SUPPLY("esram12", "cm_control"),
  2348. };
  2349. /* ESRAM3 and 4 regulator switch */
  2350. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2351. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2352. REGULATOR_SUPPLY("esram34", "cm_control"),
  2353. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2354. };
  2355. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2356. [DB8500_REGULATOR_VAPE] = {
  2357. .constraints = {
  2358. .name = "db8500-vape",
  2359. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2360. .always_on = true,
  2361. },
  2362. .consumer_supplies = db8500_vape_consumers,
  2363. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2364. },
  2365. [DB8500_REGULATOR_VARM] = {
  2366. .constraints = {
  2367. .name = "db8500-varm",
  2368. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2369. },
  2370. },
  2371. [DB8500_REGULATOR_VMODEM] = {
  2372. .constraints = {
  2373. .name = "db8500-vmodem",
  2374. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2375. },
  2376. },
  2377. [DB8500_REGULATOR_VPLL] = {
  2378. .constraints = {
  2379. .name = "db8500-vpll",
  2380. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2381. },
  2382. },
  2383. [DB8500_REGULATOR_VSMPS1] = {
  2384. .constraints = {
  2385. .name = "db8500-vsmps1",
  2386. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2387. },
  2388. },
  2389. [DB8500_REGULATOR_VSMPS2] = {
  2390. .constraints = {
  2391. .name = "db8500-vsmps2",
  2392. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2393. },
  2394. .consumer_supplies = db8500_vsmps2_consumers,
  2395. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2396. },
  2397. [DB8500_REGULATOR_VSMPS3] = {
  2398. .constraints = {
  2399. .name = "db8500-vsmps3",
  2400. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2401. },
  2402. },
  2403. [DB8500_REGULATOR_VRF1] = {
  2404. .constraints = {
  2405. .name = "db8500-vrf1",
  2406. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2407. },
  2408. },
  2409. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2410. /* dependency to u8500-vape is handled outside regulator framework */
  2411. .constraints = {
  2412. .name = "db8500-sva-mmdsp",
  2413. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2414. },
  2415. .consumer_supplies = db8500_svammdsp_consumers,
  2416. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2417. },
  2418. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2419. .constraints = {
  2420. /* "ret" means "retention" */
  2421. .name = "db8500-sva-mmdsp-ret",
  2422. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2423. },
  2424. },
  2425. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2426. /* dependency to u8500-vape is handled outside regulator framework */
  2427. .constraints = {
  2428. .name = "db8500-sva-pipe",
  2429. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2430. },
  2431. .consumer_supplies = db8500_svapipe_consumers,
  2432. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2433. },
  2434. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2435. /* dependency to u8500-vape is handled outside regulator framework */
  2436. .constraints = {
  2437. .name = "db8500-sia-mmdsp",
  2438. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2439. },
  2440. .consumer_supplies = db8500_siammdsp_consumers,
  2441. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2442. },
  2443. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2444. .constraints = {
  2445. .name = "db8500-sia-mmdsp-ret",
  2446. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2447. },
  2448. },
  2449. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2450. /* dependency to u8500-vape is handled outside regulator framework */
  2451. .constraints = {
  2452. .name = "db8500-sia-pipe",
  2453. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2454. },
  2455. .consumer_supplies = db8500_siapipe_consumers,
  2456. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2457. },
  2458. [DB8500_REGULATOR_SWITCH_SGA] = {
  2459. .supply_regulator = "db8500-vape",
  2460. .constraints = {
  2461. .name = "db8500-sga",
  2462. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2463. },
  2464. .consumer_supplies = db8500_sga_consumers,
  2465. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2466. },
  2467. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2468. .supply_regulator = "db8500-vape",
  2469. .constraints = {
  2470. .name = "db8500-b2r2-mcde",
  2471. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2472. },
  2473. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2474. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2475. },
  2476. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2477. /*
  2478. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2479. * no need to hold Vape
  2480. */
  2481. .constraints = {
  2482. .name = "db8500-esram12",
  2483. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2484. },
  2485. .consumer_supplies = db8500_esram12_consumers,
  2486. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2487. },
  2488. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2489. .constraints = {
  2490. .name = "db8500-esram12-ret",
  2491. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2492. },
  2493. },
  2494. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2495. /*
  2496. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2497. * no need to hold Vape
  2498. */
  2499. .constraints = {
  2500. .name = "db8500-esram34",
  2501. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2502. },
  2503. .consumer_supplies = db8500_esram34_consumers,
  2504. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2505. },
  2506. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2507. .constraints = {
  2508. .name = "db8500-esram34-ret",
  2509. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2510. },
  2511. },
  2512. };
  2513. static struct ux500_wdt_data db8500_wdt_pdata = {
  2514. .timeout = 600, /* 10 minutes */
  2515. .has_28_bits_resolution = true,
  2516. };
  2517. /*
  2518. * Thermal Sensor
  2519. */
  2520. static struct resource db8500_thsens_resources[] = {
  2521. {
  2522. .name = "IRQ_HOTMON_LOW",
  2523. .start = IRQ_PRCMU_HOTMON_LOW,
  2524. .end = IRQ_PRCMU_HOTMON_LOW,
  2525. .flags = IORESOURCE_IRQ,
  2526. },
  2527. {
  2528. .name = "IRQ_HOTMON_HIGH",
  2529. .start = IRQ_PRCMU_HOTMON_HIGH,
  2530. .end = IRQ_PRCMU_HOTMON_HIGH,
  2531. .flags = IORESOURCE_IRQ,
  2532. },
  2533. };
  2534. static struct db8500_thsens_platform_data db8500_thsens_data = {
  2535. .trip_points[0] = {
  2536. .temp = 70000,
  2537. .type = THERMAL_TRIP_ACTIVE,
  2538. .cdev_name = {
  2539. [0] = "thermal-cpufreq-0",
  2540. },
  2541. },
  2542. .trip_points[1] = {
  2543. .temp = 75000,
  2544. .type = THERMAL_TRIP_ACTIVE,
  2545. .cdev_name = {
  2546. [0] = "thermal-cpufreq-0",
  2547. },
  2548. },
  2549. .trip_points[2] = {
  2550. .temp = 80000,
  2551. .type = THERMAL_TRIP_ACTIVE,
  2552. .cdev_name = {
  2553. [0] = "thermal-cpufreq-0",
  2554. },
  2555. },
  2556. .trip_points[3] = {
  2557. .temp = 85000,
  2558. .type = THERMAL_TRIP_CRITICAL,
  2559. },
  2560. .num_trips = 4,
  2561. };
  2562. static const struct mfd_cell common_prcmu_devs[] = {
  2563. {
  2564. .name = "ux500_wdt",
  2565. .platform_data = &db8500_wdt_pdata,
  2566. .pdata_size = sizeof(db8500_wdt_pdata),
  2567. .id = -1,
  2568. },
  2569. };
  2570. static const struct mfd_cell db8500_prcmu_devs[] = {
  2571. {
  2572. .name = "db8500-prcmu-regulators",
  2573. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2574. .platform_data = &db8500_regulators,
  2575. .pdata_size = sizeof(db8500_regulators),
  2576. },
  2577. {
  2578. .name = "cpuidle-dbx500",
  2579. .of_compatible = "stericsson,cpuidle-dbx500",
  2580. },
  2581. {
  2582. .name = "db8500-thermal",
  2583. .num_resources = ARRAY_SIZE(db8500_thsens_resources),
  2584. .resources = db8500_thsens_resources,
  2585. .platform_data = &db8500_thsens_data,
  2586. .pdata_size = sizeof(db8500_thsens_data),
  2587. },
  2588. };
  2589. static int db8500_prcmu_register_ab8500(struct device *parent)
  2590. {
  2591. struct device_node *np;
  2592. struct resource ab8500_resource;
  2593. const struct mfd_cell ab8500_cell = {
  2594. .name = "ab8500-core",
  2595. .of_compatible = "stericsson,ab8500",
  2596. .id = AB8500_VERSION_AB8500,
  2597. .resources = &ab8500_resource,
  2598. .num_resources = 1,
  2599. };
  2600. if (!parent->of_node)
  2601. return -ENODEV;
  2602. /* Look up the device node, sneak the IRQ out of it */
  2603. for_each_child_of_node(parent->of_node, np) {
  2604. if (of_device_is_compatible(np, ab8500_cell.of_compatible))
  2605. break;
  2606. }
  2607. if (!np) {
  2608. dev_info(parent, "could not find AB8500 node in the device tree\n");
  2609. return -ENODEV;
  2610. }
  2611. of_irq_to_resource_table(np, &ab8500_resource, 1);
  2612. return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
  2613. }
  2614. /**
  2615. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2616. *
  2617. */
  2618. static int db8500_prcmu_probe(struct platform_device *pdev)
  2619. {
  2620. struct device_node *np = pdev->dev.of_node;
  2621. int irq = 0, err = 0;
  2622. struct resource *res;
  2623. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
  2624. if (!res) {
  2625. dev_err(&pdev->dev, "no prcmu memory region provided\n");
  2626. return -EINVAL;
  2627. }
  2628. prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  2629. if (!prcmu_base) {
  2630. dev_err(&pdev->dev,
  2631. "failed to ioremap prcmu register memory\n");
  2632. return -ENOMEM;
  2633. }
  2634. init_prcm_registers();
  2635. dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
  2636. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2637. if (!res) {
  2638. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2639. return -EINVAL;
  2640. }
  2641. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2642. resource_size(res));
  2643. if (!tcdm_base) {
  2644. dev_err(&pdev->dev,
  2645. "failed to ioremap prcmu-tcdm register memory\n");
  2646. return -ENOMEM;
  2647. }
  2648. /* Clean up the mailbox interrupts after pre-kernel code. */
  2649. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2650. irq = platform_get_irq(pdev, 0);
  2651. if (irq <= 0) {
  2652. dev_err(&pdev->dev, "no prcmu irq provided\n");
  2653. return irq;
  2654. }
  2655. err = request_threaded_irq(irq, prcmu_irq_handler,
  2656. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2657. if (err < 0) {
  2658. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2659. return err;
  2660. }
  2661. db8500_irq_init(np);
  2662. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2663. err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
  2664. ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
  2665. if (err) {
  2666. pr_err("prcmu: Failed to add subdevices\n");
  2667. return err;
  2668. }
  2669. /* TODO: Remove restriction when clk definitions are available. */
  2670. if (!of_machine_is_compatible("st-ericsson,u8540")) {
  2671. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2672. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
  2673. db8500_irq_domain);
  2674. if (err) {
  2675. mfd_remove_devices(&pdev->dev);
  2676. pr_err("prcmu: Failed to add subdevices\n");
  2677. return err;
  2678. }
  2679. }
  2680. err = db8500_prcmu_register_ab8500(&pdev->dev);
  2681. if (err) {
  2682. mfd_remove_devices(&pdev->dev);
  2683. pr_err("prcmu: Failed to add ab8500 subdevice\n");
  2684. return err;
  2685. }
  2686. pr_info("DB8500 PRCMU initialized\n");
  2687. return err;
  2688. }
  2689. static const struct of_device_id db8500_prcmu_match[] = {
  2690. { .compatible = "stericsson,db8500-prcmu"},
  2691. { },
  2692. };
  2693. static struct platform_driver db8500_prcmu_driver = {
  2694. .driver = {
  2695. .name = "db8500-prcmu",
  2696. .of_match_table = db8500_prcmu_match,
  2697. },
  2698. .probe = db8500_prcmu_probe,
  2699. };
  2700. static int __init db8500_prcmu_init(void)
  2701. {
  2702. return platform_driver_register(&db8500_prcmu_driver);
  2703. }
  2704. core_initcall(db8500_prcmu_init);
  2705. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2706. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2707. MODULE_LICENSE("GPL v2");