m_can.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829
  1. /*
  2. * CAN bus driver for Bosch M_CAN controller
  3. *
  4. * Copyright (C) 2014 Freescale Semiconductor, Inc.
  5. * Dong Aisheng <b29396@freescale.com>
  6. *
  7. * Bosch M_CAN user manual can be obtained from:
  8. * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
  9. * mcan_users_manual_v302.pdf
  10. *
  11. * This file is licensed under the terms of the GNU General Public
  12. * License version 2. This program is licensed "as is" without any
  13. * warranty of any kind, whether express or implied.
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/of.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/iopoll.h>
  27. #include <linux/can/dev.h>
  28. #include <linux/pinctrl/consumer.h>
  29. /* napi related */
  30. #define M_CAN_NAPI_WEIGHT 64
  31. /* message ram configuration data length */
  32. #define MRAM_CFG_LEN 8
  33. /* registers definition */
  34. enum m_can_reg {
  35. M_CAN_CREL = 0x0,
  36. M_CAN_ENDN = 0x4,
  37. M_CAN_CUST = 0x8,
  38. M_CAN_DBTP = 0xc,
  39. M_CAN_TEST = 0x10,
  40. M_CAN_RWD = 0x14,
  41. M_CAN_CCCR = 0x18,
  42. M_CAN_NBTP = 0x1c,
  43. M_CAN_TSCC = 0x20,
  44. M_CAN_TSCV = 0x24,
  45. M_CAN_TOCC = 0x28,
  46. M_CAN_TOCV = 0x2c,
  47. M_CAN_ECR = 0x40,
  48. M_CAN_PSR = 0x44,
  49. /* TDCR Register only available for version >=3.1.x */
  50. M_CAN_TDCR = 0x48,
  51. M_CAN_IR = 0x50,
  52. M_CAN_IE = 0x54,
  53. M_CAN_ILS = 0x58,
  54. M_CAN_ILE = 0x5c,
  55. M_CAN_GFC = 0x80,
  56. M_CAN_SIDFC = 0x84,
  57. M_CAN_XIDFC = 0x88,
  58. M_CAN_XIDAM = 0x90,
  59. M_CAN_HPMS = 0x94,
  60. M_CAN_NDAT1 = 0x98,
  61. M_CAN_NDAT2 = 0x9c,
  62. M_CAN_RXF0C = 0xa0,
  63. M_CAN_RXF0S = 0xa4,
  64. M_CAN_RXF0A = 0xa8,
  65. M_CAN_RXBC = 0xac,
  66. M_CAN_RXF1C = 0xb0,
  67. M_CAN_RXF1S = 0xb4,
  68. M_CAN_RXF1A = 0xb8,
  69. M_CAN_RXESC = 0xbc,
  70. M_CAN_TXBC = 0xc0,
  71. M_CAN_TXFQS = 0xc4,
  72. M_CAN_TXESC = 0xc8,
  73. M_CAN_TXBRP = 0xcc,
  74. M_CAN_TXBAR = 0xd0,
  75. M_CAN_TXBCR = 0xd4,
  76. M_CAN_TXBTO = 0xd8,
  77. M_CAN_TXBCF = 0xdc,
  78. M_CAN_TXBTIE = 0xe0,
  79. M_CAN_TXBCIE = 0xe4,
  80. M_CAN_TXEFC = 0xf0,
  81. M_CAN_TXEFS = 0xf4,
  82. M_CAN_TXEFA = 0xf8,
  83. };
  84. /* m_can lec values */
  85. enum m_can_lec_type {
  86. LEC_NO_ERROR = 0,
  87. LEC_STUFF_ERROR,
  88. LEC_FORM_ERROR,
  89. LEC_ACK_ERROR,
  90. LEC_BIT1_ERROR,
  91. LEC_BIT0_ERROR,
  92. LEC_CRC_ERROR,
  93. LEC_UNUSED,
  94. };
  95. enum m_can_mram_cfg {
  96. MRAM_SIDF = 0,
  97. MRAM_XIDF,
  98. MRAM_RXF0,
  99. MRAM_RXF1,
  100. MRAM_RXB,
  101. MRAM_TXE,
  102. MRAM_TXB,
  103. MRAM_CFG_NUM,
  104. };
  105. /* Core Release Register (CREL) */
  106. #define CREL_REL_SHIFT 28
  107. #define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
  108. #define CREL_STEP_SHIFT 24
  109. #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
  110. #define CREL_SUBSTEP_SHIFT 20
  111. #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
  112. /* Data Bit Timing & Prescaler Register (DBTP) */
  113. #define DBTP_TDC BIT(23)
  114. #define DBTP_DBRP_SHIFT 16
  115. #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
  116. #define DBTP_DTSEG1_SHIFT 8
  117. #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
  118. #define DBTP_DTSEG2_SHIFT 4
  119. #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
  120. #define DBTP_DSJW_SHIFT 0
  121. #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
  122. /* Transmitter Delay Compensation Register (TDCR) */
  123. #define TDCR_TDCO_SHIFT 8
  124. #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
  125. #define TDCR_TDCF_SHIFT 0
  126. #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
  127. /* Test Register (TEST) */
  128. #define TEST_LBCK BIT(4)
  129. /* CC Control Register(CCCR) */
  130. #define CCCR_CMR_MASK 0x3
  131. #define CCCR_CMR_SHIFT 10
  132. #define CCCR_CMR_CANFD 0x1
  133. #define CCCR_CMR_CANFD_BRS 0x2
  134. #define CCCR_CMR_CAN 0x3
  135. #define CCCR_CME_MASK 0x3
  136. #define CCCR_CME_SHIFT 8
  137. #define CCCR_CME_CAN 0
  138. #define CCCR_CME_CANFD 0x1
  139. #define CCCR_CME_CANFD_BRS 0x2
  140. #define CCCR_TXP BIT(14)
  141. #define CCCR_TEST BIT(7)
  142. #define CCCR_MON BIT(5)
  143. #define CCCR_CSR BIT(4)
  144. #define CCCR_CSA BIT(3)
  145. #define CCCR_ASM BIT(2)
  146. #define CCCR_CCE BIT(1)
  147. #define CCCR_INIT BIT(0)
  148. #define CCCR_CANFD 0x10
  149. /* for version >=3.1.x */
  150. #define CCCR_EFBI BIT(13)
  151. #define CCCR_PXHD BIT(12)
  152. #define CCCR_BRSE BIT(9)
  153. #define CCCR_FDOE BIT(8)
  154. /* only for version >=3.2.x */
  155. #define CCCR_NISO BIT(15)
  156. /* Nominal Bit Timing & Prescaler Register (NBTP) */
  157. #define NBTP_NSJW_SHIFT 25
  158. #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
  159. #define NBTP_NBRP_SHIFT 16
  160. #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
  161. #define NBTP_NTSEG1_SHIFT 8
  162. #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
  163. #define NBTP_NTSEG2_SHIFT 0
  164. #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
  165. /* Error Counter Register(ECR) */
  166. #define ECR_RP BIT(15)
  167. #define ECR_REC_SHIFT 8
  168. #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
  169. #define ECR_TEC_SHIFT 0
  170. #define ECR_TEC_MASK 0xff
  171. /* Protocol Status Register(PSR) */
  172. #define PSR_BO BIT(7)
  173. #define PSR_EW BIT(6)
  174. #define PSR_EP BIT(5)
  175. #define PSR_LEC_MASK 0x7
  176. /* Interrupt Register(IR) */
  177. #define IR_ALL_INT 0xffffffff
  178. /* Renamed bits for versions > 3.1.x */
  179. #define IR_ARA BIT(29)
  180. #define IR_PED BIT(28)
  181. #define IR_PEA BIT(27)
  182. /* Bits for version 3.0.x */
  183. #define IR_STE BIT(31)
  184. #define IR_FOE BIT(30)
  185. #define IR_ACKE BIT(29)
  186. #define IR_BE BIT(28)
  187. #define IR_CRCE BIT(27)
  188. #define IR_WDI BIT(26)
  189. #define IR_BO BIT(25)
  190. #define IR_EW BIT(24)
  191. #define IR_EP BIT(23)
  192. #define IR_ELO BIT(22)
  193. #define IR_BEU BIT(21)
  194. #define IR_BEC BIT(20)
  195. #define IR_DRX BIT(19)
  196. #define IR_TOO BIT(18)
  197. #define IR_MRAF BIT(17)
  198. #define IR_TSW BIT(16)
  199. #define IR_TEFL BIT(15)
  200. #define IR_TEFF BIT(14)
  201. #define IR_TEFW BIT(13)
  202. #define IR_TEFN BIT(12)
  203. #define IR_TFE BIT(11)
  204. #define IR_TCF BIT(10)
  205. #define IR_TC BIT(9)
  206. #define IR_HPM BIT(8)
  207. #define IR_RF1L BIT(7)
  208. #define IR_RF1F BIT(6)
  209. #define IR_RF1W BIT(5)
  210. #define IR_RF1N BIT(4)
  211. #define IR_RF0L BIT(3)
  212. #define IR_RF0F BIT(2)
  213. #define IR_RF0W BIT(1)
  214. #define IR_RF0N BIT(0)
  215. #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
  216. /* Interrupts for version 3.0.x */
  217. #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
  218. #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
  219. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  220. IR_RF1L | IR_RF0L)
  221. #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
  222. /* Interrupts for version >= 3.1.x */
  223. #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
  224. #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
  225. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  226. IR_RF1L | IR_RF0L)
  227. #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
  228. /* Interrupt Line Select (ILS) */
  229. #define ILS_ALL_INT0 0x0
  230. #define ILS_ALL_INT1 0xFFFFFFFF
  231. /* Interrupt Line Enable (ILE) */
  232. #define ILE_EINT1 BIT(1)
  233. #define ILE_EINT0 BIT(0)
  234. /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
  235. #define RXFC_FWM_SHIFT 24
  236. #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
  237. #define RXFC_FS_SHIFT 16
  238. #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
  239. /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
  240. #define RXFS_RFL BIT(25)
  241. #define RXFS_FF BIT(24)
  242. #define RXFS_FPI_SHIFT 16
  243. #define RXFS_FPI_MASK 0x3f0000
  244. #define RXFS_FGI_SHIFT 8
  245. #define RXFS_FGI_MASK 0x3f00
  246. #define RXFS_FFL_MASK 0x7f
  247. /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
  248. #define M_CAN_RXESC_8BYTES 0x0
  249. #define M_CAN_RXESC_64BYTES 0x777
  250. /* Tx Buffer Configuration(TXBC) */
  251. #define TXBC_NDTB_SHIFT 16
  252. #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
  253. #define TXBC_TFQS_SHIFT 24
  254. #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
  255. /* Tx FIFO/Queue Status (TXFQS) */
  256. #define TXFQS_TFQF BIT(21)
  257. #define TXFQS_TFQPI_SHIFT 16
  258. #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
  259. #define TXFQS_TFGI_SHIFT 8
  260. #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
  261. #define TXFQS_TFFL_SHIFT 0
  262. #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
  263. /* Tx Buffer Element Size Configuration(TXESC) */
  264. #define TXESC_TBDS_8BYTES 0x0
  265. #define TXESC_TBDS_64BYTES 0x7
  266. /* Tx Event FIFO Configuration (TXEFC) */
  267. #define TXEFC_EFS_SHIFT 16
  268. #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
  269. /* Tx Event FIFO Status (TXEFS) */
  270. #define TXEFS_TEFL BIT(25)
  271. #define TXEFS_EFF BIT(24)
  272. #define TXEFS_EFGI_SHIFT 8
  273. #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
  274. #define TXEFS_EFFL_SHIFT 0
  275. #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
  276. /* Tx Event FIFO Acknowledge (TXEFA) */
  277. #define TXEFA_EFAI_SHIFT 0
  278. #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
  279. /* Message RAM Configuration (in bytes) */
  280. #define SIDF_ELEMENT_SIZE 4
  281. #define XIDF_ELEMENT_SIZE 8
  282. #define RXF0_ELEMENT_SIZE 72
  283. #define RXF1_ELEMENT_SIZE 72
  284. #define RXB_ELEMENT_SIZE 72
  285. #define TXE_ELEMENT_SIZE 8
  286. #define TXB_ELEMENT_SIZE 72
  287. /* Message RAM Elements */
  288. #define M_CAN_FIFO_ID 0x0
  289. #define M_CAN_FIFO_DLC 0x4
  290. #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
  291. /* Rx Buffer Element */
  292. /* R0 */
  293. #define RX_BUF_ESI BIT(31)
  294. #define RX_BUF_XTD BIT(30)
  295. #define RX_BUF_RTR BIT(29)
  296. /* R1 */
  297. #define RX_BUF_ANMF BIT(31)
  298. #define RX_BUF_FDF BIT(21)
  299. #define RX_BUF_BRS BIT(20)
  300. /* Tx Buffer Element */
  301. /* T0 */
  302. #define TX_BUF_ESI BIT(31)
  303. #define TX_BUF_XTD BIT(30)
  304. #define TX_BUF_RTR BIT(29)
  305. /* T1 */
  306. #define TX_BUF_EFC BIT(23)
  307. #define TX_BUF_FDF BIT(21)
  308. #define TX_BUF_BRS BIT(20)
  309. #define TX_BUF_MM_SHIFT 24
  310. #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
  311. /* Tx event FIFO Element */
  312. /* E1 */
  313. #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
  314. #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
  315. /* address offset and element number for each FIFO/Buffer in the Message RAM */
  316. struct mram_cfg {
  317. u16 off;
  318. u8 num;
  319. };
  320. /* m_can private data structure */
  321. struct m_can_priv {
  322. struct can_priv can; /* must be the first member */
  323. struct napi_struct napi;
  324. struct net_device *dev;
  325. struct device *device;
  326. struct clk *hclk;
  327. struct clk *cclk;
  328. void __iomem *base;
  329. u32 irqstatus;
  330. int version;
  331. /* message ram configuration */
  332. void __iomem *mram_base;
  333. struct mram_cfg mcfg[MRAM_CFG_NUM];
  334. };
  335. static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
  336. {
  337. return readl(priv->base + reg);
  338. }
  339. static inline void m_can_write(const struct m_can_priv *priv,
  340. enum m_can_reg reg, u32 val)
  341. {
  342. writel(val, priv->base + reg);
  343. }
  344. static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
  345. u32 fgi, unsigned int offset)
  346. {
  347. return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
  348. fgi * RXF0_ELEMENT_SIZE + offset);
  349. }
  350. static inline void m_can_fifo_write(const struct m_can_priv *priv,
  351. u32 fpi, unsigned int offset, u32 val)
  352. {
  353. writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
  354. fpi * TXB_ELEMENT_SIZE + offset);
  355. }
  356. static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
  357. u32 fgi,
  358. u32 offset) {
  359. return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
  360. fgi * TXE_ELEMENT_SIZE + offset);
  361. }
  362. static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
  363. {
  364. return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
  365. }
  366. static inline void m_can_config_endisable(const struct m_can_priv *priv,
  367. bool enable)
  368. {
  369. u32 cccr = m_can_read(priv, M_CAN_CCCR);
  370. u32 timeout = 10;
  371. u32 val = 0;
  372. if (enable) {
  373. /* enable m_can configuration */
  374. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
  375. udelay(5);
  376. /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
  377. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
  378. } else {
  379. m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
  380. }
  381. /* there's a delay for module initialization */
  382. if (enable)
  383. val = CCCR_INIT | CCCR_CCE;
  384. while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
  385. if (timeout == 0) {
  386. netdev_warn(priv->dev, "Failed to init module\n");
  387. return;
  388. }
  389. timeout--;
  390. udelay(1);
  391. }
  392. }
  393. static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
  394. {
  395. /* Only interrupt line 0 is used in this driver */
  396. m_can_write(priv, M_CAN_ILE, ILE_EINT0);
  397. }
  398. static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
  399. {
  400. m_can_write(priv, M_CAN_ILE, 0x0);
  401. }
  402. static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
  403. {
  404. struct net_device_stats *stats = &dev->stats;
  405. struct m_can_priv *priv = netdev_priv(dev);
  406. struct canfd_frame *cf;
  407. struct sk_buff *skb;
  408. u32 id, fgi, dlc;
  409. int i;
  410. /* calculate the fifo get index for where to read data */
  411. fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
  412. dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
  413. if (dlc & RX_BUF_FDF)
  414. skb = alloc_canfd_skb(dev, &cf);
  415. else
  416. skb = alloc_can_skb(dev, (struct can_frame **)&cf);
  417. if (!skb) {
  418. stats->rx_dropped++;
  419. return;
  420. }
  421. if (dlc & RX_BUF_FDF)
  422. cf->len = can_dlc2len((dlc >> 16) & 0x0F);
  423. else
  424. cf->len = get_can_dlc((dlc >> 16) & 0x0F);
  425. id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
  426. if (id & RX_BUF_XTD)
  427. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  428. else
  429. cf->can_id = (id >> 18) & CAN_SFF_MASK;
  430. if (id & RX_BUF_ESI) {
  431. cf->flags |= CANFD_ESI;
  432. netdev_dbg(dev, "ESI Error\n");
  433. }
  434. if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
  435. cf->can_id |= CAN_RTR_FLAG;
  436. } else {
  437. if (dlc & RX_BUF_BRS)
  438. cf->flags |= CANFD_BRS;
  439. for (i = 0; i < cf->len; i += 4)
  440. *(u32 *)(cf->data + i) =
  441. m_can_fifo_read(priv, fgi,
  442. M_CAN_FIFO_DATA(i / 4));
  443. }
  444. /* acknowledge rx fifo 0 */
  445. m_can_write(priv, M_CAN_RXF0A, fgi);
  446. stats->rx_packets++;
  447. stats->rx_bytes += cf->len;
  448. netif_receive_skb(skb);
  449. }
  450. static int m_can_do_rx_poll(struct net_device *dev, int quota)
  451. {
  452. struct m_can_priv *priv = netdev_priv(dev);
  453. u32 pkts = 0;
  454. u32 rxfs;
  455. rxfs = m_can_read(priv, M_CAN_RXF0S);
  456. if (!(rxfs & RXFS_FFL_MASK)) {
  457. netdev_dbg(dev, "no messages in fifo0\n");
  458. return 0;
  459. }
  460. while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
  461. m_can_read_fifo(dev, rxfs);
  462. quota--;
  463. pkts++;
  464. rxfs = m_can_read(priv, M_CAN_RXF0S);
  465. }
  466. if (pkts)
  467. can_led_event(dev, CAN_LED_EVENT_RX);
  468. return pkts;
  469. }
  470. static int m_can_handle_lost_msg(struct net_device *dev)
  471. {
  472. struct net_device_stats *stats = &dev->stats;
  473. struct sk_buff *skb;
  474. struct can_frame *frame;
  475. netdev_err(dev, "msg lost in rxf0\n");
  476. stats->rx_errors++;
  477. stats->rx_over_errors++;
  478. skb = alloc_can_err_skb(dev, &frame);
  479. if (unlikely(!skb))
  480. return 0;
  481. frame->can_id |= CAN_ERR_CRTL;
  482. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  483. netif_receive_skb(skb);
  484. return 1;
  485. }
  486. static int m_can_handle_lec_err(struct net_device *dev,
  487. enum m_can_lec_type lec_type)
  488. {
  489. struct m_can_priv *priv = netdev_priv(dev);
  490. struct net_device_stats *stats = &dev->stats;
  491. struct can_frame *cf;
  492. struct sk_buff *skb;
  493. priv->can.can_stats.bus_error++;
  494. stats->rx_errors++;
  495. /* propagate the error condition to the CAN stack */
  496. skb = alloc_can_err_skb(dev, &cf);
  497. if (unlikely(!skb))
  498. return 0;
  499. /* check for 'last error code' which tells us the
  500. * type of the last error to occur on the CAN bus
  501. */
  502. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  503. switch (lec_type) {
  504. case LEC_STUFF_ERROR:
  505. netdev_dbg(dev, "stuff error\n");
  506. cf->data[2] |= CAN_ERR_PROT_STUFF;
  507. break;
  508. case LEC_FORM_ERROR:
  509. netdev_dbg(dev, "form error\n");
  510. cf->data[2] |= CAN_ERR_PROT_FORM;
  511. break;
  512. case LEC_ACK_ERROR:
  513. netdev_dbg(dev, "ack error\n");
  514. cf->data[3] = CAN_ERR_PROT_LOC_ACK;
  515. break;
  516. case LEC_BIT1_ERROR:
  517. netdev_dbg(dev, "bit1 error\n");
  518. cf->data[2] |= CAN_ERR_PROT_BIT1;
  519. break;
  520. case LEC_BIT0_ERROR:
  521. netdev_dbg(dev, "bit0 error\n");
  522. cf->data[2] |= CAN_ERR_PROT_BIT0;
  523. break;
  524. case LEC_CRC_ERROR:
  525. netdev_dbg(dev, "CRC error\n");
  526. cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
  527. break;
  528. default:
  529. break;
  530. }
  531. stats->rx_packets++;
  532. stats->rx_bytes += cf->can_dlc;
  533. netif_receive_skb(skb);
  534. return 1;
  535. }
  536. static int __m_can_get_berr_counter(const struct net_device *dev,
  537. struct can_berr_counter *bec)
  538. {
  539. struct m_can_priv *priv = netdev_priv(dev);
  540. unsigned int ecr;
  541. ecr = m_can_read(priv, M_CAN_ECR);
  542. bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
  543. bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
  544. return 0;
  545. }
  546. static int m_can_clk_start(struct m_can_priv *priv)
  547. {
  548. int err;
  549. err = pm_runtime_get_sync(priv->device);
  550. if (err < 0) {
  551. pm_runtime_put_noidle(priv->device);
  552. return err;
  553. }
  554. return 0;
  555. }
  556. static void m_can_clk_stop(struct m_can_priv *priv)
  557. {
  558. pm_runtime_put_sync(priv->device);
  559. }
  560. static int m_can_get_berr_counter(const struct net_device *dev,
  561. struct can_berr_counter *bec)
  562. {
  563. struct m_can_priv *priv = netdev_priv(dev);
  564. int err;
  565. err = m_can_clk_start(priv);
  566. if (err)
  567. return err;
  568. __m_can_get_berr_counter(dev, bec);
  569. m_can_clk_stop(priv);
  570. return 0;
  571. }
  572. static int m_can_handle_state_change(struct net_device *dev,
  573. enum can_state new_state)
  574. {
  575. struct m_can_priv *priv = netdev_priv(dev);
  576. struct net_device_stats *stats = &dev->stats;
  577. struct can_frame *cf;
  578. struct sk_buff *skb;
  579. struct can_berr_counter bec;
  580. unsigned int ecr;
  581. switch (new_state) {
  582. case CAN_STATE_ERROR_WARNING:
  583. /* error warning state */
  584. priv->can.can_stats.error_warning++;
  585. priv->can.state = CAN_STATE_ERROR_WARNING;
  586. break;
  587. case CAN_STATE_ERROR_PASSIVE:
  588. /* error passive state */
  589. priv->can.can_stats.error_passive++;
  590. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  591. break;
  592. case CAN_STATE_BUS_OFF:
  593. /* bus-off state */
  594. priv->can.state = CAN_STATE_BUS_OFF;
  595. m_can_disable_all_interrupts(priv);
  596. priv->can.can_stats.bus_off++;
  597. can_bus_off(dev);
  598. break;
  599. default:
  600. break;
  601. }
  602. /* propagate the error condition to the CAN stack */
  603. skb = alloc_can_err_skb(dev, &cf);
  604. if (unlikely(!skb))
  605. return 0;
  606. __m_can_get_berr_counter(dev, &bec);
  607. switch (new_state) {
  608. case CAN_STATE_ERROR_WARNING:
  609. /* error warning state */
  610. cf->can_id |= CAN_ERR_CRTL;
  611. cf->data[1] = (bec.txerr > bec.rxerr) ?
  612. CAN_ERR_CRTL_TX_WARNING :
  613. CAN_ERR_CRTL_RX_WARNING;
  614. cf->data[6] = bec.txerr;
  615. cf->data[7] = bec.rxerr;
  616. break;
  617. case CAN_STATE_ERROR_PASSIVE:
  618. /* error passive state */
  619. cf->can_id |= CAN_ERR_CRTL;
  620. ecr = m_can_read(priv, M_CAN_ECR);
  621. if (ecr & ECR_RP)
  622. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  623. if (bec.txerr > 127)
  624. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  625. cf->data[6] = bec.txerr;
  626. cf->data[7] = bec.rxerr;
  627. break;
  628. case CAN_STATE_BUS_OFF:
  629. /* bus-off state */
  630. cf->can_id |= CAN_ERR_BUSOFF;
  631. break;
  632. default:
  633. break;
  634. }
  635. stats->rx_packets++;
  636. stats->rx_bytes += cf->can_dlc;
  637. netif_receive_skb(skb);
  638. return 1;
  639. }
  640. static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
  641. {
  642. struct m_can_priv *priv = netdev_priv(dev);
  643. int work_done = 0;
  644. if ((psr & PSR_EW) &&
  645. (priv->can.state != CAN_STATE_ERROR_WARNING)) {
  646. netdev_dbg(dev, "entered error warning state\n");
  647. work_done += m_can_handle_state_change(dev,
  648. CAN_STATE_ERROR_WARNING);
  649. }
  650. if ((psr & PSR_EP) &&
  651. (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
  652. netdev_dbg(dev, "entered error passive state\n");
  653. work_done += m_can_handle_state_change(dev,
  654. CAN_STATE_ERROR_PASSIVE);
  655. }
  656. if ((psr & PSR_BO) &&
  657. (priv->can.state != CAN_STATE_BUS_OFF)) {
  658. netdev_dbg(dev, "entered error bus off state\n");
  659. work_done += m_can_handle_state_change(dev,
  660. CAN_STATE_BUS_OFF);
  661. }
  662. return work_done;
  663. }
  664. static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
  665. {
  666. if (irqstatus & IR_WDI)
  667. netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
  668. if (irqstatus & IR_ELO)
  669. netdev_err(dev, "Error Logging Overflow\n");
  670. if (irqstatus & IR_BEU)
  671. netdev_err(dev, "Bit Error Uncorrected\n");
  672. if (irqstatus & IR_BEC)
  673. netdev_err(dev, "Bit Error Corrected\n");
  674. if (irqstatus & IR_TOO)
  675. netdev_err(dev, "Timeout reached\n");
  676. if (irqstatus & IR_MRAF)
  677. netdev_err(dev, "Message RAM access failure occurred\n");
  678. }
  679. static inline bool is_lec_err(u32 psr)
  680. {
  681. psr &= LEC_UNUSED;
  682. return psr && (psr != LEC_UNUSED);
  683. }
  684. static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
  685. u32 psr)
  686. {
  687. struct m_can_priv *priv = netdev_priv(dev);
  688. int work_done = 0;
  689. if (irqstatus & IR_RF0L)
  690. work_done += m_can_handle_lost_msg(dev);
  691. /* handle lec errors on the bus */
  692. if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  693. is_lec_err(psr))
  694. work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
  695. /* other unproccessed error interrupts */
  696. m_can_handle_other_err(dev, irqstatus);
  697. return work_done;
  698. }
  699. static int m_can_poll(struct napi_struct *napi, int quota)
  700. {
  701. struct net_device *dev = napi->dev;
  702. struct m_can_priv *priv = netdev_priv(dev);
  703. int work_done = 0;
  704. u32 irqstatus, psr;
  705. irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
  706. if (!irqstatus)
  707. goto end;
  708. /* Errata workaround for issue "Needless activation of MRAF irq"
  709. * During frame reception while the MCAN is in Error Passive state
  710. * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
  711. * it may happen that MCAN_IR.MRAF is set although there was no
  712. * Message RAM access failure.
  713. * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
  714. * The Message RAM Access Failure interrupt routine needs to check
  715. * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
  716. * In this case, reset MCAN_IR.MRAF. No further action is required.
  717. */
  718. if ((priv->version <= 31) && (irqstatus & IR_MRAF) &&
  719. (m_can_read(priv, M_CAN_ECR) & ECR_RP)) {
  720. struct can_berr_counter bec;
  721. __m_can_get_berr_counter(dev, &bec);
  722. if (bec.rxerr == 127) {
  723. m_can_write(priv, M_CAN_IR, IR_MRAF);
  724. irqstatus &= ~IR_MRAF;
  725. }
  726. }
  727. psr = m_can_read(priv, M_CAN_PSR);
  728. if (irqstatus & IR_ERR_STATE)
  729. work_done += m_can_handle_state_errors(dev, psr);
  730. if (irqstatus & IR_ERR_BUS_30X)
  731. work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
  732. if (irqstatus & IR_RF0N)
  733. work_done += m_can_do_rx_poll(dev, (quota - work_done));
  734. if (work_done < quota) {
  735. napi_complete_done(napi, work_done);
  736. m_can_enable_all_interrupts(priv);
  737. }
  738. end:
  739. return work_done;
  740. }
  741. static void m_can_echo_tx_event(struct net_device *dev)
  742. {
  743. u32 txe_count = 0;
  744. u32 m_can_txefs;
  745. u32 fgi = 0;
  746. int i = 0;
  747. unsigned int msg_mark;
  748. struct m_can_priv *priv = netdev_priv(dev);
  749. struct net_device_stats *stats = &dev->stats;
  750. /* read tx event fifo status */
  751. m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
  752. /* Get Tx Event fifo element count */
  753. txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
  754. >> TXEFS_EFFL_SHIFT;
  755. /* Get and process all sent elements */
  756. for (i = 0; i < txe_count; i++) {
  757. /* retrieve get index */
  758. fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
  759. >> TXEFS_EFGI_SHIFT;
  760. /* get message marker */
  761. msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
  762. TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
  763. /* ack txe element */
  764. m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
  765. (fgi << TXEFA_EFAI_SHIFT)));
  766. /* update stats */
  767. stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
  768. stats->tx_packets++;
  769. }
  770. }
  771. static irqreturn_t m_can_isr(int irq, void *dev_id)
  772. {
  773. struct net_device *dev = (struct net_device *)dev_id;
  774. struct m_can_priv *priv = netdev_priv(dev);
  775. struct net_device_stats *stats = &dev->stats;
  776. u32 ir;
  777. ir = m_can_read(priv, M_CAN_IR);
  778. if (!ir)
  779. return IRQ_NONE;
  780. /* ACK all irqs */
  781. if (ir & IR_ALL_INT)
  782. m_can_write(priv, M_CAN_IR, ir);
  783. /* schedule NAPI in case of
  784. * - rx IRQ
  785. * - state change IRQ
  786. * - bus error IRQ and bus error reporting
  787. */
  788. if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
  789. priv->irqstatus = ir;
  790. m_can_disable_all_interrupts(priv);
  791. napi_schedule(&priv->napi);
  792. }
  793. if (priv->version == 30) {
  794. if (ir & IR_TC) {
  795. /* Transmission Complete Interrupt*/
  796. stats->tx_bytes += can_get_echo_skb(dev, 0);
  797. stats->tx_packets++;
  798. can_led_event(dev, CAN_LED_EVENT_TX);
  799. netif_wake_queue(dev);
  800. }
  801. } else {
  802. if (ir & IR_TEFN) {
  803. /* New TX FIFO Element arrived */
  804. m_can_echo_tx_event(dev);
  805. can_led_event(dev, CAN_LED_EVENT_TX);
  806. if (netif_queue_stopped(dev) &&
  807. !m_can_tx_fifo_full(priv))
  808. netif_wake_queue(dev);
  809. }
  810. }
  811. return IRQ_HANDLED;
  812. }
  813. static const struct can_bittiming_const m_can_bittiming_const_30X = {
  814. .name = KBUILD_MODNAME,
  815. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  816. .tseg1_max = 64,
  817. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  818. .tseg2_max = 16,
  819. .sjw_max = 16,
  820. .brp_min = 1,
  821. .brp_max = 1024,
  822. .brp_inc = 1,
  823. };
  824. static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
  825. .name = KBUILD_MODNAME,
  826. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  827. .tseg1_max = 16,
  828. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  829. .tseg2_max = 8,
  830. .sjw_max = 4,
  831. .brp_min = 1,
  832. .brp_max = 32,
  833. .brp_inc = 1,
  834. };
  835. static const struct can_bittiming_const m_can_bittiming_const_31X = {
  836. .name = KBUILD_MODNAME,
  837. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  838. .tseg1_max = 256,
  839. .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
  840. .tseg2_max = 128,
  841. .sjw_max = 128,
  842. .brp_min = 1,
  843. .brp_max = 512,
  844. .brp_inc = 1,
  845. };
  846. static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
  847. .name = KBUILD_MODNAME,
  848. .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
  849. .tseg1_max = 32,
  850. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  851. .tseg2_max = 16,
  852. .sjw_max = 16,
  853. .brp_min = 1,
  854. .brp_max = 32,
  855. .brp_inc = 1,
  856. };
  857. static int m_can_set_bittiming(struct net_device *dev)
  858. {
  859. struct m_can_priv *priv = netdev_priv(dev);
  860. const struct can_bittiming *bt = &priv->can.bittiming;
  861. const struct can_bittiming *dbt = &priv->can.data_bittiming;
  862. u16 brp, sjw, tseg1, tseg2;
  863. u32 reg_btp;
  864. brp = bt->brp - 1;
  865. sjw = bt->sjw - 1;
  866. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  867. tseg2 = bt->phase_seg2 - 1;
  868. reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
  869. (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
  870. m_can_write(priv, M_CAN_NBTP, reg_btp);
  871. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  872. reg_btp = 0;
  873. brp = dbt->brp - 1;
  874. sjw = dbt->sjw - 1;
  875. tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
  876. tseg2 = dbt->phase_seg2 - 1;
  877. /* TDC is only needed for bitrates beyond 2.5 MBit/s.
  878. * This is mentioned in the "Bit Time Requirements for CAN FD"
  879. * paper presented at the International CAN Conference 2013
  880. */
  881. if (dbt->bitrate > 2500000) {
  882. u32 tdco, ssp;
  883. /* Use the same value of secondary sampling point
  884. * as the data sampling point
  885. */
  886. ssp = dbt->sample_point;
  887. /* Equation based on Bosch's M_CAN User Manual's
  888. * Transmitter Delay Compensation Section
  889. */
  890. tdco = (priv->can.clock.freq / 1000) *
  891. ssp / dbt->bitrate;
  892. /* Max valid TDCO value is 127 */
  893. if (tdco > 127) {
  894. netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
  895. tdco);
  896. tdco = 127;
  897. }
  898. reg_btp |= DBTP_TDC;
  899. m_can_write(priv, M_CAN_TDCR,
  900. tdco << TDCR_TDCO_SHIFT);
  901. }
  902. reg_btp |= (brp << DBTP_DBRP_SHIFT) |
  903. (sjw << DBTP_DSJW_SHIFT) |
  904. (tseg1 << DBTP_DTSEG1_SHIFT) |
  905. (tseg2 << DBTP_DTSEG2_SHIFT);
  906. m_can_write(priv, M_CAN_DBTP, reg_btp);
  907. }
  908. return 0;
  909. }
  910. /* Configure M_CAN chip:
  911. * - set rx buffer/fifo element size
  912. * - configure rx fifo
  913. * - accept non-matching frame into fifo 0
  914. * - configure tx buffer
  915. * - >= v3.1.x: TX FIFO is used
  916. * - configure mode
  917. * - setup bittiming
  918. */
  919. static void m_can_chip_config(struct net_device *dev)
  920. {
  921. struct m_can_priv *priv = netdev_priv(dev);
  922. u32 cccr, test;
  923. m_can_config_endisable(priv, true);
  924. /* RX Buffer/FIFO Element Size 64 bytes data field */
  925. m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
  926. /* Accept Non-matching Frames Into FIFO 0 */
  927. m_can_write(priv, M_CAN_GFC, 0x0);
  928. if (priv->version == 30) {
  929. /* only support one Tx Buffer currently */
  930. m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
  931. priv->mcfg[MRAM_TXB].off);
  932. } else {
  933. /* TX FIFO is used for newer IP Core versions */
  934. m_can_write(priv, M_CAN_TXBC,
  935. (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
  936. (priv->mcfg[MRAM_TXB].off));
  937. }
  938. /* support 64 bytes payload */
  939. m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
  940. /* TX Event FIFO */
  941. if (priv->version == 30) {
  942. m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
  943. priv->mcfg[MRAM_TXE].off);
  944. } else {
  945. /* Full TX Event FIFO is used */
  946. m_can_write(priv, M_CAN_TXEFC,
  947. ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
  948. & TXEFC_EFS_MASK) |
  949. priv->mcfg[MRAM_TXE].off);
  950. }
  951. /* rx fifo configuration, blocking mode, fifo size 1 */
  952. m_can_write(priv, M_CAN_RXF0C,
  953. (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
  954. priv->mcfg[MRAM_RXF0].off);
  955. m_can_write(priv, M_CAN_RXF1C,
  956. (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
  957. priv->mcfg[MRAM_RXF1].off);
  958. cccr = m_can_read(priv, M_CAN_CCCR);
  959. test = m_can_read(priv, M_CAN_TEST);
  960. test &= ~TEST_LBCK;
  961. if (priv->version == 30) {
  962. /* Version 3.0.x */
  963. cccr &= ~(CCCR_TEST | CCCR_MON |
  964. (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
  965. (CCCR_CME_MASK << CCCR_CME_SHIFT));
  966. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  967. cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
  968. } else {
  969. /* Version 3.1.x or 3.2.x */
  970. cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
  971. CCCR_NISO);
  972. /* Only 3.2.x has NISO Bit implemented */
  973. if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
  974. cccr |= CCCR_NISO;
  975. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  976. cccr |= (CCCR_BRSE | CCCR_FDOE);
  977. }
  978. /* Loopback Mode */
  979. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  980. cccr |= CCCR_TEST | CCCR_MON;
  981. test |= TEST_LBCK;
  982. }
  983. /* Enable Monitoring (all versions) */
  984. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  985. cccr |= CCCR_MON;
  986. /* Write config */
  987. m_can_write(priv, M_CAN_CCCR, cccr);
  988. m_can_write(priv, M_CAN_TEST, test);
  989. /* Enable interrupts */
  990. m_can_write(priv, M_CAN_IR, IR_ALL_INT);
  991. if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
  992. if (priv->version == 30)
  993. m_can_write(priv, M_CAN_IE, IR_ALL_INT &
  994. ~(IR_ERR_LEC_30X));
  995. else
  996. m_can_write(priv, M_CAN_IE, IR_ALL_INT &
  997. ~(IR_ERR_LEC_31X));
  998. else
  999. m_can_write(priv, M_CAN_IE, IR_ALL_INT);
  1000. /* route all interrupts to INT0 */
  1001. m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
  1002. /* set bittiming params */
  1003. m_can_set_bittiming(dev);
  1004. m_can_config_endisable(priv, false);
  1005. }
  1006. static void m_can_start(struct net_device *dev)
  1007. {
  1008. struct m_can_priv *priv = netdev_priv(dev);
  1009. /* basic m_can configuration */
  1010. m_can_chip_config(dev);
  1011. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1012. m_can_enable_all_interrupts(priv);
  1013. }
  1014. static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
  1015. {
  1016. switch (mode) {
  1017. case CAN_MODE_START:
  1018. m_can_start(dev);
  1019. netif_wake_queue(dev);
  1020. break;
  1021. default:
  1022. return -EOPNOTSUPP;
  1023. }
  1024. return 0;
  1025. }
  1026. /* Checks core release number of M_CAN
  1027. * returns 0 if an unsupported device is detected
  1028. * else it returns the release and step coded as:
  1029. * return value = 10 * <release> + 1 * <step>
  1030. */
  1031. static int m_can_check_core_release(void __iomem *m_can_base)
  1032. {
  1033. u32 crel_reg;
  1034. u8 rel;
  1035. u8 step;
  1036. int res;
  1037. struct m_can_priv temp_priv = {
  1038. .base = m_can_base
  1039. };
  1040. /* Read Core Release Version and split into version number
  1041. * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
  1042. */
  1043. crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
  1044. rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
  1045. step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
  1046. if (rel == 3) {
  1047. /* M_CAN v3.x.y: create return value */
  1048. res = 30 + step;
  1049. } else {
  1050. /* Unsupported M_CAN version */
  1051. res = 0;
  1052. }
  1053. return res;
  1054. }
  1055. /* Selectable Non ISO support only in version 3.2.x
  1056. * This function checks if the bit is writable.
  1057. */
  1058. static bool m_can_niso_supported(const struct m_can_priv *priv)
  1059. {
  1060. u32 cccr_reg, cccr_poll;
  1061. int niso_timeout;
  1062. m_can_config_endisable(priv, true);
  1063. cccr_reg = m_can_read(priv, M_CAN_CCCR);
  1064. cccr_reg |= CCCR_NISO;
  1065. m_can_write(priv, M_CAN_CCCR, cccr_reg);
  1066. niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
  1067. (cccr_poll == cccr_reg), 0, 10);
  1068. /* Clear NISO */
  1069. cccr_reg &= ~(CCCR_NISO);
  1070. m_can_write(priv, M_CAN_CCCR, cccr_reg);
  1071. m_can_config_endisable(priv, false);
  1072. /* return false if time out (-ETIMEDOUT), else return true */
  1073. return !niso_timeout;
  1074. }
  1075. static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
  1076. void __iomem *addr)
  1077. {
  1078. struct m_can_priv *priv;
  1079. int m_can_version;
  1080. m_can_version = m_can_check_core_release(addr);
  1081. /* return if unsupported version */
  1082. if (!m_can_version) {
  1083. dev_err(&pdev->dev, "Unsupported version number: %2d",
  1084. m_can_version);
  1085. return -EINVAL;
  1086. }
  1087. priv = netdev_priv(dev);
  1088. netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
  1089. /* Shared properties of all M_CAN versions */
  1090. priv->version = m_can_version;
  1091. priv->dev = dev;
  1092. priv->base = addr;
  1093. priv->can.do_set_mode = m_can_set_mode;
  1094. priv->can.do_get_berr_counter = m_can_get_berr_counter;
  1095. /* Set M_CAN supported operations */
  1096. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  1097. CAN_CTRLMODE_LISTENONLY |
  1098. CAN_CTRLMODE_BERR_REPORTING |
  1099. CAN_CTRLMODE_FD;
  1100. /* Set properties depending on M_CAN version */
  1101. switch (priv->version) {
  1102. case 30:
  1103. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
  1104. can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
  1105. priv->can.bittiming_const = &m_can_bittiming_const_30X;
  1106. priv->can.data_bittiming_const =
  1107. &m_can_data_bittiming_const_30X;
  1108. break;
  1109. case 31:
  1110. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
  1111. can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
  1112. priv->can.bittiming_const = &m_can_bittiming_const_31X;
  1113. priv->can.data_bittiming_const =
  1114. &m_can_data_bittiming_const_31X;
  1115. break;
  1116. case 32:
  1117. priv->can.bittiming_const = &m_can_bittiming_const_31X;
  1118. priv->can.data_bittiming_const =
  1119. &m_can_data_bittiming_const_31X;
  1120. priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
  1121. ? CAN_CTRLMODE_FD_NON_ISO
  1122. : 0);
  1123. break;
  1124. default:
  1125. dev_err(&pdev->dev, "Unsupported version number: %2d",
  1126. priv->version);
  1127. return -EINVAL;
  1128. }
  1129. return 0;
  1130. }
  1131. static int m_can_open(struct net_device *dev)
  1132. {
  1133. struct m_can_priv *priv = netdev_priv(dev);
  1134. int err;
  1135. err = m_can_clk_start(priv);
  1136. if (err)
  1137. return err;
  1138. /* open the can device */
  1139. err = open_candev(dev);
  1140. if (err) {
  1141. netdev_err(dev, "failed to open can device\n");
  1142. goto exit_disable_clks;
  1143. }
  1144. /* register interrupt handler */
  1145. err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
  1146. dev);
  1147. if (err < 0) {
  1148. netdev_err(dev, "failed to request interrupt\n");
  1149. goto exit_irq_fail;
  1150. }
  1151. /* start the m_can controller */
  1152. m_can_start(dev);
  1153. can_led_event(dev, CAN_LED_EVENT_OPEN);
  1154. napi_enable(&priv->napi);
  1155. netif_start_queue(dev);
  1156. return 0;
  1157. exit_irq_fail:
  1158. close_candev(dev);
  1159. exit_disable_clks:
  1160. m_can_clk_stop(priv);
  1161. return err;
  1162. }
  1163. static void m_can_stop(struct net_device *dev)
  1164. {
  1165. struct m_can_priv *priv = netdev_priv(dev);
  1166. /* disable all interrupts */
  1167. m_can_disable_all_interrupts(priv);
  1168. /* set the state as STOPPED */
  1169. priv->can.state = CAN_STATE_STOPPED;
  1170. }
  1171. static int m_can_close(struct net_device *dev)
  1172. {
  1173. struct m_can_priv *priv = netdev_priv(dev);
  1174. netif_stop_queue(dev);
  1175. napi_disable(&priv->napi);
  1176. m_can_stop(dev);
  1177. m_can_clk_stop(priv);
  1178. free_irq(dev->irq, dev);
  1179. close_candev(dev);
  1180. can_led_event(dev, CAN_LED_EVENT_STOP);
  1181. return 0;
  1182. }
  1183. static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
  1184. {
  1185. struct m_can_priv *priv = netdev_priv(dev);
  1186. /*get wrap around for loopback skb index */
  1187. unsigned int wrap = priv->can.echo_skb_max;
  1188. int next_idx;
  1189. /* calculate next index */
  1190. next_idx = (++putidx >= wrap ? 0 : putidx);
  1191. /* check if occupied */
  1192. return !!priv->can.echo_skb[next_idx];
  1193. }
  1194. static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
  1195. struct net_device *dev)
  1196. {
  1197. struct m_can_priv *priv = netdev_priv(dev);
  1198. struct canfd_frame *cf = (struct canfd_frame *)skb->data;
  1199. u32 id, cccr, fdflags;
  1200. int i;
  1201. int putidx;
  1202. if (can_dropped_invalid_skb(dev, skb))
  1203. return NETDEV_TX_OK;
  1204. /* Generate ID field for TX buffer Element */
  1205. /* Common to all supported M_CAN versions */
  1206. if (cf->can_id & CAN_EFF_FLAG) {
  1207. id = cf->can_id & CAN_EFF_MASK;
  1208. id |= TX_BUF_XTD;
  1209. } else {
  1210. id = ((cf->can_id & CAN_SFF_MASK) << 18);
  1211. }
  1212. if (cf->can_id & CAN_RTR_FLAG)
  1213. id |= TX_BUF_RTR;
  1214. if (priv->version == 30) {
  1215. netif_stop_queue(dev);
  1216. /* message ram configuration */
  1217. m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
  1218. m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
  1219. can_len2dlc(cf->len) << 16);
  1220. for (i = 0; i < cf->len; i += 4)
  1221. m_can_fifo_write(priv, 0,
  1222. M_CAN_FIFO_DATA(i / 4),
  1223. *(u32 *)(cf->data + i));
  1224. can_put_echo_skb(skb, dev, 0);
  1225. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  1226. cccr = m_can_read(priv, M_CAN_CCCR);
  1227. cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
  1228. if (can_is_canfd_skb(skb)) {
  1229. if (cf->flags & CANFD_BRS)
  1230. cccr |= CCCR_CMR_CANFD_BRS <<
  1231. CCCR_CMR_SHIFT;
  1232. else
  1233. cccr |= CCCR_CMR_CANFD <<
  1234. CCCR_CMR_SHIFT;
  1235. } else {
  1236. cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
  1237. }
  1238. m_can_write(priv, M_CAN_CCCR, cccr);
  1239. }
  1240. m_can_write(priv, M_CAN_TXBTIE, 0x1);
  1241. m_can_write(priv, M_CAN_TXBAR, 0x1);
  1242. /* End of xmit function for version 3.0.x */
  1243. } else {
  1244. /* Transmit routine for version >= v3.1.x */
  1245. /* Check if FIFO full */
  1246. if (m_can_tx_fifo_full(priv)) {
  1247. /* This shouldn't happen */
  1248. netif_stop_queue(dev);
  1249. netdev_warn(dev,
  1250. "TX queue active although FIFO is full.");
  1251. return NETDEV_TX_BUSY;
  1252. }
  1253. /* get put index for frame */
  1254. putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
  1255. >> TXFQS_TFQPI_SHIFT);
  1256. /* Write ID Field to FIFO Element */
  1257. m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
  1258. /* get CAN FD configuration of frame */
  1259. fdflags = 0;
  1260. if (can_is_canfd_skb(skb)) {
  1261. fdflags |= TX_BUF_FDF;
  1262. if (cf->flags & CANFD_BRS)
  1263. fdflags |= TX_BUF_BRS;
  1264. }
  1265. /* Construct DLC Field. Also contains CAN-FD configuration
  1266. * use put index of fifo as message marker
  1267. * it is used in TX interrupt for
  1268. * sending the correct echo frame
  1269. */
  1270. m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
  1271. ((putidx << TX_BUF_MM_SHIFT) &
  1272. TX_BUF_MM_MASK) |
  1273. (can_len2dlc(cf->len) << 16) |
  1274. fdflags | TX_BUF_EFC);
  1275. for (i = 0; i < cf->len; i += 4)
  1276. m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
  1277. *(u32 *)(cf->data + i));
  1278. /* Push loopback echo.
  1279. * Will be looped back on TX interrupt based on message marker
  1280. */
  1281. can_put_echo_skb(skb, dev, putidx);
  1282. /* Enable TX FIFO element to start transfer */
  1283. m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
  1284. /* stop network queue if fifo full */
  1285. if (m_can_tx_fifo_full(priv) ||
  1286. m_can_next_echo_skb_occupied(dev, putidx))
  1287. netif_stop_queue(dev);
  1288. }
  1289. return NETDEV_TX_OK;
  1290. }
  1291. static const struct net_device_ops m_can_netdev_ops = {
  1292. .ndo_open = m_can_open,
  1293. .ndo_stop = m_can_close,
  1294. .ndo_start_xmit = m_can_start_xmit,
  1295. .ndo_change_mtu = can_change_mtu,
  1296. };
  1297. static int register_m_can_dev(struct net_device *dev)
  1298. {
  1299. dev->flags |= IFF_ECHO; /* we support local echo */
  1300. dev->netdev_ops = &m_can_netdev_ops;
  1301. return register_candev(dev);
  1302. }
  1303. static void m_can_init_ram(struct m_can_priv *priv)
  1304. {
  1305. int end, i, start;
  1306. /* initialize the entire Message RAM in use to avoid possible
  1307. * ECC/parity checksum errors when reading an uninitialized buffer
  1308. */
  1309. start = priv->mcfg[MRAM_SIDF].off;
  1310. end = priv->mcfg[MRAM_TXB].off +
  1311. priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
  1312. for (i = start; i < end; i += 4)
  1313. writel(0x0, priv->mram_base + i);
  1314. }
  1315. static void m_can_of_parse_mram(struct m_can_priv *priv,
  1316. const u32 *mram_config_vals)
  1317. {
  1318. priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
  1319. priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
  1320. priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
  1321. priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
  1322. priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
  1323. priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
  1324. priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
  1325. priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
  1326. (RXFC_FS_MASK >> RXFC_FS_SHIFT);
  1327. priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
  1328. priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
  1329. priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
  1330. (RXFC_FS_MASK >> RXFC_FS_SHIFT);
  1331. priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
  1332. priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
  1333. priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
  1334. priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
  1335. priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
  1336. priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
  1337. priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
  1338. priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
  1339. priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
  1340. (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
  1341. dev_dbg(priv->device,
  1342. "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
  1343. priv->mram_base,
  1344. priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
  1345. priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
  1346. priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
  1347. priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
  1348. priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
  1349. priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
  1350. priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
  1351. m_can_init_ram(priv);
  1352. }
  1353. static int m_can_plat_probe(struct platform_device *pdev)
  1354. {
  1355. struct net_device *dev;
  1356. struct m_can_priv *priv;
  1357. struct resource *res;
  1358. void __iomem *addr;
  1359. void __iomem *mram_addr;
  1360. struct clk *hclk, *cclk;
  1361. int irq, ret;
  1362. struct device_node *np;
  1363. u32 mram_config_vals[MRAM_CFG_LEN];
  1364. u32 tx_fifo_size;
  1365. np = pdev->dev.of_node;
  1366. hclk = devm_clk_get(&pdev->dev, "hclk");
  1367. cclk = devm_clk_get(&pdev->dev, "cclk");
  1368. if (IS_ERR(hclk) || IS_ERR(cclk)) {
  1369. dev_err(&pdev->dev, "no clock found\n");
  1370. ret = -ENODEV;
  1371. goto failed_ret;
  1372. }
  1373. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
  1374. addr = devm_ioremap_resource(&pdev->dev, res);
  1375. irq = platform_get_irq_byname(pdev, "int0");
  1376. if (IS_ERR(addr) || irq < 0) {
  1377. ret = -EINVAL;
  1378. goto failed_ret;
  1379. }
  1380. /* message ram could be shared */
  1381. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
  1382. if (!res) {
  1383. ret = -ENODEV;
  1384. goto failed_ret;
  1385. }
  1386. mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  1387. if (!mram_addr) {
  1388. ret = -ENOMEM;
  1389. goto failed_ret;
  1390. }
  1391. /* get message ram configuration */
  1392. ret = of_property_read_u32_array(np, "bosch,mram-cfg",
  1393. mram_config_vals,
  1394. sizeof(mram_config_vals) / 4);
  1395. if (ret) {
  1396. dev_err(&pdev->dev, "Could not get Message RAM configuration.");
  1397. goto failed_ret;
  1398. }
  1399. /* Get TX FIFO size
  1400. * Defines the total amount of echo buffers for loopback
  1401. */
  1402. tx_fifo_size = mram_config_vals[7];
  1403. /* allocate the m_can device */
  1404. dev = alloc_candev(sizeof(*priv), tx_fifo_size);
  1405. if (!dev) {
  1406. ret = -ENOMEM;
  1407. goto failed_ret;
  1408. }
  1409. priv = netdev_priv(dev);
  1410. dev->irq = irq;
  1411. priv->device = &pdev->dev;
  1412. priv->hclk = hclk;
  1413. priv->cclk = cclk;
  1414. priv->can.clock.freq = clk_get_rate(cclk);
  1415. priv->mram_base = mram_addr;
  1416. platform_set_drvdata(pdev, dev);
  1417. SET_NETDEV_DEV(dev, &pdev->dev);
  1418. /* Enable clocks. Necessary to read Core Release in order to determine
  1419. * M_CAN version
  1420. */
  1421. pm_runtime_enable(&pdev->dev);
  1422. ret = m_can_clk_start(priv);
  1423. if (ret)
  1424. goto pm_runtime_fail;
  1425. ret = m_can_dev_setup(pdev, dev, addr);
  1426. if (ret)
  1427. goto clk_disable;
  1428. ret = register_m_can_dev(dev);
  1429. if (ret) {
  1430. dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
  1431. KBUILD_MODNAME, ret);
  1432. goto clk_disable;
  1433. }
  1434. m_can_of_parse_mram(priv, mram_config_vals);
  1435. devm_can_led_init(dev);
  1436. of_can_transceiver(dev);
  1437. dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
  1438. KBUILD_MODNAME, dev->irq, priv->version);
  1439. /* Probe finished
  1440. * Stop clocks. They will be reactivated once the M_CAN device is opened
  1441. */
  1442. clk_disable:
  1443. m_can_clk_stop(priv);
  1444. pm_runtime_fail:
  1445. if (ret) {
  1446. pm_runtime_disable(&pdev->dev);
  1447. free_candev(dev);
  1448. }
  1449. failed_ret:
  1450. return ret;
  1451. }
  1452. static __maybe_unused int m_can_suspend(struct device *dev)
  1453. {
  1454. struct net_device *ndev = dev_get_drvdata(dev);
  1455. struct m_can_priv *priv = netdev_priv(ndev);
  1456. if (netif_running(ndev)) {
  1457. netif_stop_queue(ndev);
  1458. netif_device_detach(ndev);
  1459. m_can_stop(ndev);
  1460. m_can_clk_stop(priv);
  1461. }
  1462. pinctrl_pm_select_sleep_state(dev);
  1463. priv->can.state = CAN_STATE_SLEEPING;
  1464. return 0;
  1465. }
  1466. static __maybe_unused int m_can_resume(struct device *dev)
  1467. {
  1468. struct net_device *ndev = dev_get_drvdata(dev);
  1469. struct m_can_priv *priv = netdev_priv(ndev);
  1470. pinctrl_pm_select_default_state(dev);
  1471. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1472. if (netif_running(ndev)) {
  1473. int ret;
  1474. ret = m_can_clk_start(priv);
  1475. if (ret)
  1476. return ret;
  1477. m_can_init_ram(priv);
  1478. m_can_start(ndev);
  1479. netif_device_attach(ndev);
  1480. netif_start_queue(ndev);
  1481. }
  1482. return 0;
  1483. }
  1484. static void unregister_m_can_dev(struct net_device *dev)
  1485. {
  1486. unregister_candev(dev);
  1487. }
  1488. static int m_can_plat_remove(struct platform_device *pdev)
  1489. {
  1490. struct net_device *dev = platform_get_drvdata(pdev);
  1491. unregister_m_can_dev(dev);
  1492. pm_runtime_disable(&pdev->dev);
  1493. platform_set_drvdata(pdev, NULL);
  1494. free_candev(dev);
  1495. return 0;
  1496. }
  1497. static int __maybe_unused m_can_runtime_suspend(struct device *dev)
  1498. {
  1499. struct net_device *ndev = dev_get_drvdata(dev);
  1500. struct m_can_priv *priv = netdev_priv(ndev);
  1501. clk_disable_unprepare(priv->cclk);
  1502. clk_disable_unprepare(priv->hclk);
  1503. return 0;
  1504. }
  1505. static int __maybe_unused m_can_runtime_resume(struct device *dev)
  1506. {
  1507. struct net_device *ndev = dev_get_drvdata(dev);
  1508. struct m_can_priv *priv = netdev_priv(ndev);
  1509. int err;
  1510. err = clk_prepare_enable(priv->hclk);
  1511. if (err)
  1512. return err;
  1513. err = clk_prepare_enable(priv->cclk);
  1514. if (err)
  1515. clk_disable_unprepare(priv->hclk);
  1516. return err;
  1517. }
  1518. static const struct dev_pm_ops m_can_pmops = {
  1519. SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
  1520. m_can_runtime_resume, NULL)
  1521. SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
  1522. };
  1523. static const struct of_device_id m_can_of_table[] = {
  1524. { .compatible = "bosch,m_can", .data = NULL },
  1525. { /* sentinel */ },
  1526. };
  1527. MODULE_DEVICE_TABLE(of, m_can_of_table);
  1528. static struct platform_driver m_can_plat_driver = {
  1529. .driver = {
  1530. .name = KBUILD_MODNAME,
  1531. .of_match_table = m_can_of_table,
  1532. .pm = &m_can_pmops,
  1533. },
  1534. .probe = m_can_plat_probe,
  1535. .remove = m_can_plat_remove,
  1536. };
  1537. module_platform_driver(m_can_plat_driver);
  1538. MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
  1539. MODULE_LICENSE("GPL v2");
  1540. MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");