niu.c 229 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* niu.c: Neptune ethernet driver.
  3. *
  4. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/pci.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/ethtool.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/mii.h>
  19. #include <linux/if.h>
  20. #include <linux/if_ether.h>
  21. #include <linux/if_vlan.h>
  22. #include <linux/ip.h>
  23. #include <linux/in.h>
  24. #include <linux/ipv6.h>
  25. #include <linux/log2.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/crc32.h>
  28. #include <linux/list.h>
  29. #include <linux/slab.h>
  30. #include <linux/io.h>
  31. #include <linux/of_device.h>
  32. #include "niu.h"
  33. #define DRV_MODULE_NAME "niu"
  34. #define DRV_MODULE_VERSION "1.1"
  35. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  36. static char version[] =
  37. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  38. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  39. MODULE_DESCRIPTION("NIU ethernet driver");
  40. MODULE_LICENSE("GPL");
  41. MODULE_VERSION(DRV_MODULE_VERSION);
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static const struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niu_lock_parent(np, flags) \
  75. spin_lock_irqsave(&np->parent->lock, flags)
  76. #define niu_unlock_parent(np, flags) \
  77. spin_unlock_irqrestore(&np->parent->lock, flags)
  78. static int serdes_init_10g_serdes(struct niu *np);
  79. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  80. u64 bits, int limit, int delay)
  81. {
  82. while (--limit >= 0) {
  83. u64 val = nr64_mac(reg);
  84. if (!(val & bits))
  85. break;
  86. udelay(delay);
  87. }
  88. if (limit < 0)
  89. return -ENODEV;
  90. return 0;
  91. }
  92. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  93. u64 bits, int limit, int delay,
  94. const char *reg_name)
  95. {
  96. int err;
  97. nw64_mac(reg, bits);
  98. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  99. if (err)
  100. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  101. (unsigned long long)bits, reg_name,
  102. (unsigned long long)nr64_mac(reg));
  103. return err;
  104. }
  105. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  106. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  107. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  108. })
  109. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  110. u64 bits, int limit, int delay)
  111. {
  112. while (--limit >= 0) {
  113. u64 val = nr64_ipp(reg);
  114. if (!(val & bits))
  115. break;
  116. udelay(delay);
  117. }
  118. if (limit < 0)
  119. return -ENODEV;
  120. return 0;
  121. }
  122. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay,
  124. const char *reg_name)
  125. {
  126. int err;
  127. u64 val;
  128. val = nr64_ipp(reg);
  129. val |= bits;
  130. nw64_ipp(reg, val);
  131. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  132. if (err)
  133. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  134. (unsigned long long)bits, reg_name,
  135. (unsigned long long)nr64_ipp(reg));
  136. return err;
  137. }
  138. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  139. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  140. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  141. })
  142. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  143. u64 bits, int limit, int delay)
  144. {
  145. while (--limit >= 0) {
  146. u64 val = nr64(reg);
  147. if (!(val & bits))
  148. break;
  149. udelay(delay);
  150. }
  151. if (limit < 0)
  152. return -ENODEV;
  153. return 0;
  154. }
  155. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  156. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  157. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  158. })
  159. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  160. u64 bits, int limit, int delay,
  161. const char *reg_name)
  162. {
  163. int err;
  164. nw64(reg, bits);
  165. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  166. if (err)
  167. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  168. (unsigned long long)bits, reg_name,
  169. (unsigned long long)nr64(reg));
  170. return err;
  171. }
  172. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  173. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  174. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  175. })
  176. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  177. {
  178. u64 val = (u64) lp->timer;
  179. if (on)
  180. val |= LDG_IMGMT_ARM;
  181. nw64(LDG_IMGMT(lp->ldg_num), val);
  182. }
  183. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  184. {
  185. unsigned long mask_reg, bits;
  186. u64 val;
  187. if (ldn < 0 || ldn > LDN_MAX)
  188. return -EINVAL;
  189. if (ldn < 64) {
  190. mask_reg = LD_IM0(ldn);
  191. bits = LD_IM0_MASK;
  192. } else {
  193. mask_reg = LD_IM1(ldn - 64);
  194. bits = LD_IM1_MASK;
  195. }
  196. val = nr64(mask_reg);
  197. if (on)
  198. val &= ~bits;
  199. else
  200. val |= bits;
  201. nw64(mask_reg, val);
  202. return 0;
  203. }
  204. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  205. {
  206. struct niu_parent *parent = np->parent;
  207. int i;
  208. for (i = 0; i <= LDN_MAX; i++) {
  209. int err;
  210. if (parent->ldg_map[i] != lp->ldg_num)
  211. continue;
  212. err = niu_ldn_irq_enable(np, i, on);
  213. if (err)
  214. return err;
  215. }
  216. return 0;
  217. }
  218. static int niu_enable_interrupts(struct niu *np, int on)
  219. {
  220. int i;
  221. for (i = 0; i < np->num_ldg; i++) {
  222. struct niu_ldg *lp = &np->ldg[i];
  223. int err;
  224. err = niu_enable_ldn_in_ldg(np, lp, on);
  225. if (err)
  226. return err;
  227. }
  228. for (i = 0; i < np->num_ldg; i++)
  229. niu_ldg_rearm(np, &np->ldg[i], on);
  230. return 0;
  231. }
  232. static u32 phy_encode(u32 type, int port)
  233. {
  234. return type << (port * 2);
  235. }
  236. static u32 phy_decode(u32 val, int port)
  237. {
  238. return (val >> (port * 2)) & PORT_TYPE_MASK;
  239. }
  240. static int mdio_wait(struct niu *np)
  241. {
  242. int limit = 1000;
  243. u64 val;
  244. while (--limit > 0) {
  245. val = nr64(MIF_FRAME_OUTPUT);
  246. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  247. return val & MIF_FRAME_OUTPUT_DATA;
  248. udelay(10);
  249. }
  250. return -ENODEV;
  251. }
  252. static int mdio_read(struct niu *np, int port, int dev, int reg)
  253. {
  254. int err;
  255. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  256. err = mdio_wait(np);
  257. if (err < 0)
  258. return err;
  259. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  260. return mdio_wait(np);
  261. }
  262. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  263. {
  264. int err;
  265. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  266. err = mdio_wait(np);
  267. if (err < 0)
  268. return err;
  269. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  270. err = mdio_wait(np);
  271. if (err < 0)
  272. return err;
  273. return 0;
  274. }
  275. static int mii_read(struct niu *np, int port, int reg)
  276. {
  277. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  278. return mdio_wait(np);
  279. }
  280. static int mii_write(struct niu *np, int port, int reg, int data)
  281. {
  282. int err;
  283. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  284. err = mdio_wait(np);
  285. if (err < 0)
  286. return err;
  287. return 0;
  288. }
  289. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  290. {
  291. int err;
  292. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  293. ESR2_TI_PLL_TX_CFG_L(channel),
  294. val & 0xffff);
  295. if (!err)
  296. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  297. ESR2_TI_PLL_TX_CFG_H(channel),
  298. val >> 16);
  299. return err;
  300. }
  301. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  302. {
  303. int err;
  304. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  305. ESR2_TI_PLL_RX_CFG_L(channel),
  306. val & 0xffff);
  307. if (!err)
  308. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  309. ESR2_TI_PLL_RX_CFG_H(channel),
  310. val >> 16);
  311. return err;
  312. }
  313. /* Mode is always 10G fiber. */
  314. static int serdes_init_niu_10g_fiber(struct niu *np)
  315. {
  316. struct niu_link_config *lp = &np->link_config;
  317. u32 tx_cfg, rx_cfg;
  318. unsigned long i;
  319. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  320. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  321. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  322. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  323. if (lp->loopback_mode == LOOPBACK_PHY) {
  324. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  325. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  326. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  327. tx_cfg |= PLL_TX_CFG_ENTEST;
  328. rx_cfg |= PLL_RX_CFG_ENTEST;
  329. }
  330. /* Initialize all 4 lanes of the SERDES. */
  331. for (i = 0; i < 4; i++) {
  332. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  333. if (err)
  334. return err;
  335. }
  336. for (i = 0; i < 4; i++) {
  337. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  338. if (err)
  339. return err;
  340. }
  341. return 0;
  342. }
  343. static int serdes_init_niu_1g_serdes(struct niu *np)
  344. {
  345. struct niu_link_config *lp = &np->link_config;
  346. u16 pll_cfg, pll_sts;
  347. int max_retry = 100;
  348. u64 uninitialized_var(sig), mask, val;
  349. u32 tx_cfg, rx_cfg;
  350. unsigned long i;
  351. int err;
  352. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  353. PLL_TX_CFG_RATE_HALF);
  354. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  355. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  356. PLL_RX_CFG_RATE_HALF);
  357. if (np->port == 0)
  358. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  359. if (lp->loopback_mode == LOOPBACK_PHY) {
  360. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  361. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  362. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  363. tx_cfg |= PLL_TX_CFG_ENTEST;
  364. rx_cfg |= PLL_RX_CFG_ENTEST;
  365. }
  366. /* Initialize PLL for 1G */
  367. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  368. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  369. ESR2_TI_PLL_CFG_L, pll_cfg);
  370. if (err) {
  371. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  372. np->port, __func__);
  373. return err;
  374. }
  375. pll_sts = PLL_CFG_ENPLL;
  376. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_STS_L, pll_sts);
  378. if (err) {
  379. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  380. np->port, __func__);
  381. return err;
  382. }
  383. udelay(200);
  384. /* Initialize all 4 lanes of the SERDES. */
  385. for (i = 0; i < 4; i++) {
  386. err = esr2_set_tx_cfg(np, i, tx_cfg);
  387. if (err)
  388. return err;
  389. }
  390. for (i = 0; i < 4; i++) {
  391. err = esr2_set_rx_cfg(np, i, rx_cfg);
  392. if (err)
  393. return err;
  394. }
  395. switch (np->port) {
  396. case 0:
  397. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  398. mask = val;
  399. break;
  400. case 1:
  401. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  402. mask = val;
  403. break;
  404. default:
  405. return -EINVAL;
  406. }
  407. while (max_retry--) {
  408. sig = nr64(ESR_INT_SIGNALS);
  409. if ((sig & mask) == val)
  410. break;
  411. mdelay(500);
  412. }
  413. if ((sig & mask) != val) {
  414. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  415. np->port, (int)(sig & mask), (int)val);
  416. return -ENODEV;
  417. }
  418. return 0;
  419. }
  420. static int serdes_init_niu_10g_serdes(struct niu *np)
  421. {
  422. struct niu_link_config *lp = &np->link_config;
  423. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  424. int max_retry = 100;
  425. u64 uninitialized_var(sig), mask, val;
  426. unsigned long i;
  427. int err;
  428. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  429. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  430. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  431. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  432. if (lp->loopback_mode == LOOPBACK_PHY) {
  433. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  434. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  435. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  436. tx_cfg |= PLL_TX_CFG_ENTEST;
  437. rx_cfg |= PLL_RX_CFG_ENTEST;
  438. }
  439. /* Initialize PLL for 10G */
  440. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  441. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  442. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  443. if (err) {
  444. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  445. np->port, __func__);
  446. return err;
  447. }
  448. pll_sts = PLL_CFG_ENPLL;
  449. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  450. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  451. if (err) {
  452. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  453. np->port, __func__);
  454. return err;
  455. }
  456. udelay(200);
  457. /* Initialize all 4 lanes of the SERDES. */
  458. for (i = 0; i < 4; i++) {
  459. err = esr2_set_tx_cfg(np, i, tx_cfg);
  460. if (err)
  461. return err;
  462. }
  463. for (i = 0; i < 4; i++) {
  464. err = esr2_set_rx_cfg(np, i, rx_cfg);
  465. if (err)
  466. return err;
  467. }
  468. /* check if serdes is ready */
  469. switch (np->port) {
  470. case 0:
  471. mask = ESR_INT_SIGNALS_P0_BITS;
  472. val = (ESR_INT_SRDY0_P0 |
  473. ESR_INT_DET0_P0 |
  474. ESR_INT_XSRDY_P0 |
  475. ESR_INT_XDP_P0_CH3 |
  476. ESR_INT_XDP_P0_CH2 |
  477. ESR_INT_XDP_P0_CH1 |
  478. ESR_INT_XDP_P0_CH0);
  479. break;
  480. case 1:
  481. mask = ESR_INT_SIGNALS_P1_BITS;
  482. val = (ESR_INT_SRDY0_P1 |
  483. ESR_INT_DET0_P1 |
  484. ESR_INT_XSRDY_P1 |
  485. ESR_INT_XDP_P1_CH3 |
  486. ESR_INT_XDP_P1_CH2 |
  487. ESR_INT_XDP_P1_CH1 |
  488. ESR_INT_XDP_P1_CH0);
  489. break;
  490. default:
  491. return -EINVAL;
  492. }
  493. while (max_retry--) {
  494. sig = nr64(ESR_INT_SIGNALS);
  495. if ((sig & mask) == val)
  496. break;
  497. mdelay(500);
  498. }
  499. if ((sig & mask) != val) {
  500. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  501. np->port, (int)(sig & mask), (int)val);
  502. /* 10G failed, try initializing at 1G */
  503. err = serdes_init_niu_1g_serdes(np);
  504. if (!err) {
  505. np->flags &= ~NIU_FLAGS_10G;
  506. np->mac_xcvr = MAC_XCVR_PCS;
  507. } else {
  508. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  509. np->port);
  510. return -ENODEV;
  511. }
  512. }
  513. return 0;
  514. }
  515. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  516. {
  517. int err;
  518. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  519. if (err >= 0) {
  520. *val = (err & 0xffff);
  521. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  522. ESR_RXTX_CTRL_H(chan));
  523. if (err >= 0)
  524. *val |= ((err & 0xffff) << 16);
  525. err = 0;
  526. }
  527. return err;
  528. }
  529. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  530. {
  531. int err;
  532. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  533. ESR_GLUE_CTRL0_L(chan));
  534. if (err >= 0) {
  535. *val = (err & 0xffff);
  536. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  537. ESR_GLUE_CTRL0_H(chan));
  538. if (err >= 0) {
  539. *val |= ((err & 0xffff) << 16);
  540. err = 0;
  541. }
  542. }
  543. return err;
  544. }
  545. static int esr_read_reset(struct niu *np, u32 *val)
  546. {
  547. int err;
  548. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  549. ESR_RXTX_RESET_CTRL_L);
  550. if (err >= 0) {
  551. *val = (err & 0xffff);
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_RXTX_RESET_CTRL_H);
  554. if (err >= 0) {
  555. *val |= ((err & 0xffff) << 16);
  556. err = 0;
  557. }
  558. }
  559. return err;
  560. }
  561. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  562. {
  563. int err;
  564. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  565. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  566. if (!err)
  567. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  568. ESR_RXTX_CTRL_H(chan), (val >> 16));
  569. return err;
  570. }
  571. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  572. {
  573. int err;
  574. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  575. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  576. if (!err)
  577. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  578. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  579. return err;
  580. }
  581. static int esr_reset(struct niu *np)
  582. {
  583. u32 uninitialized_var(reset);
  584. int err;
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_RESET_CTRL_L, 0x0000);
  587. if (err)
  588. return err;
  589. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  590. ESR_RXTX_RESET_CTRL_H, 0xffff);
  591. if (err)
  592. return err;
  593. udelay(200);
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_RXTX_RESET_CTRL_L, 0xffff);
  596. if (err)
  597. return err;
  598. udelay(200);
  599. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  600. ESR_RXTX_RESET_CTRL_H, 0x0000);
  601. if (err)
  602. return err;
  603. udelay(200);
  604. err = esr_read_reset(np, &reset);
  605. if (err)
  606. return err;
  607. if (reset != 0) {
  608. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  609. np->port, reset);
  610. return -ENODEV;
  611. }
  612. return 0;
  613. }
  614. static int serdes_init_10g(struct niu *np)
  615. {
  616. struct niu_link_config *lp = &np->link_config;
  617. unsigned long ctrl_reg, test_cfg_reg, i;
  618. u64 ctrl_val, test_cfg_val, sig, mask, val;
  619. int err;
  620. switch (np->port) {
  621. case 0:
  622. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  623. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  624. break;
  625. case 1:
  626. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  627. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  628. break;
  629. default:
  630. return -EINVAL;
  631. }
  632. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  633. ENET_SERDES_CTRL_SDET_1 |
  634. ENET_SERDES_CTRL_SDET_2 |
  635. ENET_SERDES_CTRL_SDET_3 |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  639. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  643. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  644. test_cfg_val = 0;
  645. if (lp->loopback_mode == LOOPBACK_PHY) {
  646. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  647. ENET_SERDES_TEST_MD_0_SHIFT) |
  648. (ENET_TEST_MD_PAD_LOOPBACK <<
  649. ENET_SERDES_TEST_MD_1_SHIFT) |
  650. (ENET_TEST_MD_PAD_LOOPBACK <<
  651. ENET_SERDES_TEST_MD_2_SHIFT) |
  652. (ENET_TEST_MD_PAD_LOOPBACK <<
  653. ENET_SERDES_TEST_MD_3_SHIFT));
  654. }
  655. nw64(ctrl_reg, ctrl_val);
  656. nw64(test_cfg_reg, test_cfg_val);
  657. /* Initialize all 4 lanes of the SERDES. */
  658. for (i = 0; i < 4; i++) {
  659. u32 rxtx_ctrl, glue0;
  660. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  661. if (err)
  662. return err;
  663. err = esr_read_glue0(np, i, &glue0);
  664. if (err)
  665. return err;
  666. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  667. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  668. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  669. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  670. ESR_GLUE_CTRL0_THCNT |
  671. ESR_GLUE_CTRL0_BLTIME);
  672. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  673. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  674. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  675. (BLTIME_300_CYCLES <<
  676. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  677. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  678. if (err)
  679. return err;
  680. err = esr_write_glue0(np, i, glue0);
  681. if (err)
  682. return err;
  683. }
  684. err = esr_reset(np);
  685. if (err)
  686. return err;
  687. sig = nr64(ESR_INT_SIGNALS);
  688. switch (np->port) {
  689. case 0:
  690. mask = ESR_INT_SIGNALS_P0_BITS;
  691. val = (ESR_INT_SRDY0_P0 |
  692. ESR_INT_DET0_P0 |
  693. ESR_INT_XSRDY_P0 |
  694. ESR_INT_XDP_P0_CH3 |
  695. ESR_INT_XDP_P0_CH2 |
  696. ESR_INT_XDP_P0_CH1 |
  697. ESR_INT_XDP_P0_CH0);
  698. break;
  699. case 1:
  700. mask = ESR_INT_SIGNALS_P1_BITS;
  701. val = (ESR_INT_SRDY0_P1 |
  702. ESR_INT_DET0_P1 |
  703. ESR_INT_XSRDY_P1 |
  704. ESR_INT_XDP_P1_CH3 |
  705. ESR_INT_XDP_P1_CH2 |
  706. ESR_INT_XDP_P1_CH1 |
  707. ESR_INT_XDP_P1_CH0);
  708. break;
  709. default:
  710. return -EINVAL;
  711. }
  712. if ((sig & mask) != val) {
  713. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  714. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  715. return 0;
  716. }
  717. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  718. np->port, (int)(sig & mask), (int)val);
  719. return -ENODEV;
  720. }
  721. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  722. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  723. return 0;
  724. }
  725. static int serdes_init_1g(struct niu *np)
  726. {
  727. u64 val;
  728. val = nr64(ENET_SERDES_1_PLL_CFG);
  729. val &= ~ENET_SERDES_PLL_FBDIV2;
  730. switch (np->port) {
  731. case 0:
  732. val |= ENET_SERDES_PLL_HRATE0;
  733. break;
  734. case 1:
  735. val |= ENET_SERDES_PLL_HRATE1;
  736. break;
  737. case 2:
  738. val |= ENET_SERDES_PLL_HRATE2;
  739. break;
  740. case 3:
  741. val |= ENET_SERDES_PLL_HRATE3;
  742. break;
  743. default:
  744. return -EINVAL;
  745. }
  746. nw64(ENET_SERDES_1_PLL_CFG, val);
  747. return 0;
  748. }
  749. static int serdes_init_1g_serdes(struct niu *np)
  750. {
  751. struct niu_link_config *lp = &np->link_config;
  752. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  753. u64 ctrl_val, test_cfg_val, sig, mask, val;
  754. int err;
  755. u64 reset_val, val_rd;
  756. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  757. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  758. ENET_SERDES_PLL_FBDIV0;
  759. switch (np->port) {
  760. case 0:
  761. reset_val = ENET_SERDES_RESET_0;
  762. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  763. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  764. pll_cfg = ENET_SERDES_0_PLL_CFG;
  765. break;
  766. case 1:
  767. reset_val = ENET_SERDES_RESET_1;
  768. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  769. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  770. pll_cfg = ENET_SERDES_1_PLL_CFG;
  771. break;
  772. default:
  773. return -EINVAL;
  774. }
  775. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  776. ENET_SERDES_CTRL_SDET_1 |
  777. ENET_SERDES_CTRL_SDET_2 |
  778. ENET_SERDES_CTRL_SDET_3 |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  782. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  786. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  787. test_cfg_val = 0;
  788. if (lp->loopback_mode == LOOPBACK_PHY) {
  789. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  790. ENET_SERDES_TEST_MD_0_SHIFT) |
  791. (ENET_TEST_MD_PAD_LOOPBACK <<
  792. ENET_SERDES_TEST_MD_1_SHIFT) |
  793. (ENET_TEST_MD_PAD_LOOPBACK <<
  794. ENET_SERDES_TEST_MD_2_SHIFT) |
  795. (ENET_TEST_MD_PAD_LOOPBACK <<
  796. ENET_SERDES_TEST_MD_3_SHIFT));
  797. }
  798. nw64(ENET_SERDES_RESET, reset_val);
  799. mdelay(20);
  800. val_rd = nr64(ENET_SERDES_RESET);
  801. val_rd &= ~reset_val;
  802. nw64(pll_cfg, val);
  803. nw64(ctrl_reg, ctrl_val);
  804. nw64(test_cfg_reg, test_cfg_val);
  805. nw64(ENET_SERDES_RESET, val_rd);
  806. mdelay(2000);
  807. /* Initialize all 4 lanes of the SERDES. */
  808. for (i = 0; i < 4; i++) {
  809. u32 rxtx_ctrl, glue0;
  810. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  811. if (err)
  812. return err;
  813. err = esr_read_glue0(np, i, &glue0);
  814. if (err)
  815. return err;
  816. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  817. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  818. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  819. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  820. ESR_GLUE_CTRL0_THCNT |
  821. ESR_GLUE_CTRL0_BLTIME);
  822. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  823. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  824. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  825. (BLTIME_300_CYCLES <<
  826. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  827. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  828. if (err)
  829. return err;
  830. err = esr_write_glue0(np, i, glue0);
  831. if (err)
  832. return err;
  833. }
  834. sig = nr64(ESR_INT_SIGNALS);
  835. switch (np->port) {
  836. case 0:
  837. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  838. mask = val;
  839. break;
  840. case 1:
  841. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  842. mask = val;
  843. break;
  844. default:
  845. return -EINVAL;
  846. }
  847. if ((sig & mask) != val) {
  848. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  849. np->port, (int)(sig & mask), (int)val);
  850. return -ENODEV;
  851. }
  852. return 0;
  853. }
  854. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  855. {
  856. struct niu_link_config *lp = &np->link_config;
  857. int link_up;
  858. u64 val;
  859. u16 current_speed;
  860. unsigned long flags;
  861. u8 current_duplex;
  862. link_up = 0;
  863. current_speed = SPEED_INVALID;
  864. current_duplex = DUPLEX_INVALID;
  865. spin_lock_irqsave(&np->lock, flags);
  866. val = nr64_pcs(PCS_MII_STAT);
  867. if (val & PCS_MII_STAT_LINK_STATUS) {
  868. link_up = 1;
  869. current_speed = SPEED_1000;
  870. current_duplex = DUPLEX_FULL;
  871. }
  872. lp->active_speed = current_speed;
  873. lp->active_duplex = current_duplex;
  874. spin_unlock_irqrestore(&np->lock, flags);
  875. *link_up_p = link_up;
  876. return 0;
  877. }
  878. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  879. {
  880. unsigned long flags;
  881. struct niu_link_config *lp = &np->link_config;
  882. int link_up = 0;
  883. int link_ok = 1;
  884. u64 val, val2;
  885. u16 current_speed;
  886. u8 current_duplex;
  887. if (!(np->flags & NIU_FLAGS_10G))
  888. return link_status_1g_serdes(np, link_up_p);
  889. current_speed = SPEED_INVALID;
  890. current_duplex = DUPLEX_INVALID;
  891. spin_lock_irqsave(&np->lock, flags);
  892. val = nr64_xpcs(XPCS_STATUS(0));
  893. val2 = nr64_mac(XMAC_INTER2);
  894. if (val2 & 0x01000000)
  895. link_ok = 0;
  896. if ((val & 0x1000ULL) && link_ok) {
  897. link_up = 1;
  898. current_speed = SPEED_10000;
  899. current_duplex = DUPLEX_FULL;
  900. }
  901. lp->active_speed = current_speed;
  902. lp->active_duplex = current_duplex;
  903. spin_unlock_irqrestore(&np->lock, flags);
  904. *link_up_p = link_up;
  905. return 0;
  906. }
  907. static int link_status_mii(struct niu *np, int *link_up_p)
  908. {
  909. struct niu_link_config *lp = &np->link_config;
  910. int err;
  911. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  912. int supported, advertising, active_speed, active_duplex;
  913. err = mii_read(np, np->phy_addr, MII_BMCR);
  914. if (unlikely(err < 0))
  915. return err;
  916. bmcr = err;
  917. err = mii_read(np, np->phy_addr, MII_BMSR);
  918. if (unlikely(err < 0))
  919. return err;
  920. bmsr = err;
  921. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  922. if (unlikely(err < 0))
  923. return err;
  924. advert = err;
  925. err = mii_read(np, np->phy_addr, MII_LPA);
  926. if (unlikely(err < 0))
  927. return err;
  928. lpa = err;
  929. if (likely(bmsr & BMSR_ESTATEN)) {
  930. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  931. if (unlikely(err < 0))
  932. return err;
  933. estatus = err;
  934. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  935. if (unlikely(err < 0))
  936. return err;
  937. ctrl1000 = err;
  938. err = mii_read(np, np->phy_addr, MII_STAT1000);
  939. if (unlikely(err < 0))
  940. return err;
  941. stat1000 = err;
  942. } else
  943. estatus = ctrl1000 = stat1000 = 0;
  944. supported = 0;
  945. if (bmsr & BMSR_ANEGCAPABLE)
  946. supported |= SUPPORTED_Autoneg;
  947. if (bmsr & BMSR_10HALF)
  948. supported |= SUPPORTED_10baseT_Half;
  949. if (bmsr & BMSR_10FULL)
  950. supported |= SUPPORTED_10baseT_Full;
  951. if (bmsr & BMSR_100HALF)
  952. supported |= SUPPORTED_100baseT_Half;
  953. if (bmsr & BMSR_100FULL)
  954. supported |= SUPPORTED_100baseT_Full;
  955. if (estatus & ESTATUS_1000_THALF)
  956. supported |= SUPPORTED_1000baseT_Half;
  957. if (estatus & ESTATUS_1000_TFULL)
  958. supported |= SUPPORTED_1000baseT_Full;
  959. lp->supported = supported;
  960. advertising = mii_adv_to_ethtool_adv_t(advert);
  961. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  962. if (bmcr & BMCR_ANENABLE) {
  963. int neg, neg1000;
  964. lp->active_autoneg = 1;
  965. advertising |= ADVERTISED_Autoneg;
  966. neg = advert & lpa;
  967. neg1000 = (ctrl1000 << 2) & stat1000;
  968. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  969. active_speed = SPEED_1000;
  970. else if (neg & LPA_100)
  971. active_speed = SPEED_100;
  972. else if (neg & (LPA_10HALF | LPA_10FULL))
  973. active_speed = SPEED_10;
  974. else
  975. active_speed = SPEED_INVALID;
  976. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  977. active_duplex = DUPLEX_FULL;
  978. else if (active_speed != SPEED_INVALID)
  979. active_duplex = DUPLEX_HALF;
  980. else
  981. active_duplex = DUPLEX_INVALID;
  982. } else {
  983. lp->active_autoneg = 0;
  984. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  985. active_speed = SPEED_1000;
  986. else if (bmcr & BMCR_SPEED100)
  987. active_speed = SPEED_100;
  988. else
  989. active_speed = SPEED_10;
  990. if (bmcr & BMCR_FULLDPLX)
  991. active_duplex = DUPLEX_FULL;
  992. else
  993. active_duplex = DUPLEX_HALF;
  994. }
  995. lp->active_advertising = advertising;
  996. lp->active_speed = active_speed;
  997. lp->active_duplex = active_duplex;
  998. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  999. return 0;
  1000. }
  1001. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1002. {
  1003. struct niu_link_config *lp = &np->link_config;
  1004. u16 current_speed, bmsr;
  1005. unsigned long flags;
  1006. u8 current_duplex;
  1007. int err, link_up;
  1008. link_up = 0;
  1009. current_speed = SPEED_INVALID;
  1010. current_duplex = DUPLEX_INVALID;
  1011. spin_lock_irqsave(&np->lock, flags);
  1012. err = -EINVAL;
  1013. err = mii_read(np, np->phy_addr, MII_BMSR);
  1014. if (err < 0)
  1015. goto out;
  1016. bmsr = err;
  1017. if (bmsr & BMSR_LSTATUS) {
  1018. link_up = 1;
  1019. current_speed = SPEED_1000;
  1020. current_duplex = DUPLEX_FULL;
  1021. }
  1022. lp->active_speed = current_speed;
  1023. lp->active_duplex = current_duplex;
  1024. err = 0;
  1025. out:
  1026. spin_unlock_irqrestore(&np->lock, flags);
  1027. *link_up_p = link_up;
  1028. return err;
  1029. }
  1030. static int link_status_1g(struct niu *np, int *link_up_p)
  1031. {
  1032. struct niu_link_config *lp = &np->link_config;
  1033. unsigned long flags;
  1034. int err;
  1035. spin_lock_irqsave(&np->lock, flags);
  1036. err = link_status_mii(np, link_up_p);
  1037. lp->supported |= SUPPORTED_TP;
  1038. lp->active_advertising |= ADVERTISED_TP;
  1039. spin_unlock_irqrestore(&np->lock, flags);
  1040. return err;
  1041. }
  1042. static int bcm8704_reset(struct niu *np)
  1043. {
  1044. int err, limit;
  1045. err = mdio_read(np, np->phy_addr,
  1046. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1047. if (err < 0 || err == 0xffff)
  1048. return err;
  1049. err |= BMCR_RESET;
  1050. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1051. MII_BMCR, err);
  1052. if (err)
  1053. return err;
  1054. limit = 1000;
  1055. while (--limit >= 0) {
  1056. err = mdio_read(np, np->phy_addr,
  1057. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1058. if (err < 0)
  1059. return err;
  1060. if (!(err & BMCR_RESET))
  1061. break;
  1062. }
  1063. if (limit < 0) {
  1064. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1065. np->port, (err & 0xffff));
  1066. return -ENODEV;
  1067. }
  1068. return 0;
  1069. }
  1070. /* When written, certain PHY registers need to be read back twice
  1071. * in order for the bits to settle properly.
  1072. */
  1073. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1074. {
  1075. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1076. if (err < 0)
  1077. return err;
  1078. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1079. if (err < 0)
  1080. return err;
  1081. return 0;
  1082. }
  1083. static int bcm8706_init_user_dev3(struct niu *np)
  1084. {
  1085. int err;
  1086. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1087. BCM8704_USER_OPT_DIGITAL_CTRL);
  1088. if (err < 0)
  1089. return err;
  1090. err &= ~USER_ODIG_CTRL_GPIOS;
  1091. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1092. err |= USER_ODIG_CTRL_RESV2;
  1093. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1094. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1095. if (err)
  1096. return err;
  1097. mdelay(1000);
  1098. return 0;
  1099. }
  1100. static int bcm8704_init_user_dev3(struct niu *np)
  1101. {
  1102. int err;
  1103. err = mdio_write(np, np->phy_addr,
  1104. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1105. (USER_CONTROL_OPTXRST_LVL |
  1106. USER_CONTROL_OPBIASFLT_LVL |
  1107. USER_CONTROL_OBTMPFLT_LVL |
  1108. USER_CONTROL_OPPRFLT_LVL |
  1109. USER_CONTROL_OPTXFLT_LVL |
  1110. USER_CONTROL_OPRXLOS_LVL |
  1111. USER_CONTROL_OPRXFLT_LVL |
  1112. USER_CONTROL_OPTXON_LVL |
  1113. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1114. if (err)
  1115. return err;
  1116. err = mdio_write(np, np->phy_addr,
  1117. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1118. (USER_PMD_TX_CTL_XFP_CLKEN |
  1119. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1120. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1121. USER_PMD_TX_CTL_TSCK_LPWREN));
  1122. if (err)
  1123. return err;
  1124. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1125. if (err)
  1126. return err;
  1127. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1128. if (err)
  1129. return err;
  1130. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1131. BCM8704_USER_OPT_DIGITAL_CTRL);
  1132. if (err < 0)
  1133. return err;
  1134. err &= ~USER_ODIG_CTRL_GPIOS;
  1135. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1136. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1137. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1138. if (err)
  1139. return err;
  1140. mdelay(1000);
  1141. return 0;
  1142. }
  1143. static int mrvl88x2011_act_led(struct niu *np, int val)
  1144. {
  1145. int err;
  1146. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1147. MRVL88X2011_LED_8_TO_11_CTL);
  1148. if (err < 0)
  1149. return err;
  1150. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1151. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1152. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1153. MRVL88X2011_LED_8_TO_11_CTL, err);
  1154. }
  1155. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1156. {
  1157. int err;
  1158. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1159. MRVL88X2011_LED_BLINK_CTL);
  1160. if (err >= 0) {
  1161. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1162. err |= (rate << 4);
  1163. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1164. MRVL88X2011_LED_BLINK_CTL, err);
  1165. }
  1166. return err;
  1167. }
  1168. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1169. {
  1170. int err;
  1171. /* Set LED functions */
  1172. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1173. if (err)
  1174. return err;
  1175. /* led activity */
  1176. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1177. if (err)
  1178. return err;
  1179. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1180. MRVL88X2011_GENERAL_CTL);
  1181. if (err < 0)
  1182. return err;
  1183. err |= MRVL88X2011_ENA_XFPREFCLK;
  1184. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1185. MRVL88X2011_GENERAL_CTL, err);
  1186. if (err < 0)
  1187. return err;
  1188. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1189. MRVL88X2011_PMA_PMD_CTL_1);
  1190. if (err < 0)
  1191. return err;
  1192. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1193. err |= MRVL88X2011_LOOPBACK;
  1194. else
  1195. err &= ~MRVL88X2011_LOOPBACK;
  1196. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1197. MRVL88X2011_PMA_PMD_CTL_1, err);
  1198. if (err < 0)
  1199. return err;
  1200. /* Enable PMD */
  1201. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1202. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1203. }
  1204. static int xcvr_diag_bcm870x(struct niu *np)
  1205. {
  1206. u16 analog_stat0, tx_alarm_status;
  1207. int err = 0;
  1208. #if 1
  1209. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1210. MII_STAT1000);
  1211. if (err < 0)
  1212. return err;
  1213. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1214. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1215. if (err < 0)
  1216. return err;
  1217. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1218. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1219. MII_NWAYTEST);
  1220. if (err < 0)
  1221. return err;
  1222. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1223. #endif
  1224. /* XXX dig this out it might not be so useful XXX */
  1225. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1226. BCM8704_USER_ANALOG_STATUS0);
  1227. if (err < 0)
  1228. return err;
  1229. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1230. BCM8704_USER_ANALOG_STATUS0);
  1231. if (err < 0)
  1232. return err;
  1233. analog_stat0 = err;
  1234. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1235. BCM8704_USER_TX_ALARM_STATUS);
  1236. if (err < 0)
  1237. return err;
  1238. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1239. BCM8704_USER_TX_ALARM_STATUS);
  1240. if (err < 0)
  1241. return err;
  1242. tx_alarm_status = err;
  1243. if (analog_stat0 != 0x03fc) {
  1244. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1245. pr_info("Port %u cable not connected or bad cable\n",
  1246. np->port);
  1247. } else if (analog_stat0 == 0x639c) {
  1248. pr_info("Port %u optical module is bad or missing\n",
  1249. np->port);
  1250. }
  1251. }
  1252. return 0;
  1253. }
  1254. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1255. {
  1256. struct niu_link_config *lp = &np->link_config;
  1257. int err;
  1258. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1259. MII_BMCR);
  1260. if (err < 0)
  1261. return err;
  1262. err &= ~BMCR_LOOPBACK;
  1263. if (lp->loopback_mode == LOOPBACK_MAC)
  1264. err |= BMCR_LOOPBACK;
  1265. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1266. MII_BMCR, err);
  1267. if (err)
  1268. return err;
  1269. return 0;
  1270. }
  1271. static int xcvr_init_10g_bcm8706(struct niu *np)
  1272. {
  1273. int err = 0;
  1274. u64 val;
  1275. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1276. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1277. return err;
  1278. val = nr64_mac(XMAC_CONFIG);
  1279. val &= ~XMAC_CONFIG_LED_POLARITY;
  1280. val |= XMAC_CONFIG_FORCE_LED_ON;
  1281. nw64_mac(XMAC_CONFIG, val);
  1282. val = nr64(MIF_CONFIG);
  1283. val |= MIF_CONFIG_INDIRECT_MODE;
  1284. nw64(MIF_CONFIG, val);
  1285. err = bcm8704_reset(np);
  1286. if (err)
  1287. return err;
  1288. err = xcvr_10g_set_lb_bcm870x(np);
  1289. if (err)
  1290. return err;
  1291. err = bcm8706_init_user_dev3(np);
  1292. if (err)
  1293. return err;
  1294. err = xcvr_diag_bcm870x(np);
  1295. if (err)
  1296. return err;
  1297. return 0;
  1298. }
  1299. static int xcvr_init_10g_bcm8704(struct niu *np)
  1300. {
  1301. int err;
  1302. err = bcm8704_reset(np);
  1303. if (err)
  1304. return err;
  1305. err = bcm8704_init_user_dev3(np);
  1306. if (err)
  1307. return err;
  1308. err = xcvr_10g_set_lb_bcm870x(np);
  1309. if (err)
  1310. return err;
  1311. err = xcvr_diag_bcm870x(np);
  1312. if (err)
  1313. return err;
  1314. return 0;
  1315. }
  1316. static int xcvr_init_10g(struct niu *np)
  1317. {
  1318. int phy_id, err;
  1319. u64 val;
  1320. val = nr64_mac(XMAC_CONFIG);
  1321. val &= ~XMAC_CONFIG_LED_POLARITY;
  1322. val |= XMAC_CONFIG_FORCE_LED_ON;
  1323. nw64_mac(XMAC_CONFIG, val);
  1324. /* XXX shared resource, lock parent XXX */
  1325. val = nr64(MIF_CONFIG);
  1326. val |= MIF_CONFIG_INDIRECT_MODE;
  1327. nw64(MIF_CONFIG, val);
  1328. phy_id = phy_decode(np->parent->port_phy, np->port);
  1329. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1330. /* handle different phy types */
  1331. switch (phy_id & NIU_PHY_ID_MASK) {
  1332. case NIU_PHY_ID_MRVL88X2011:
  1333. err = xcvr_init_10g_mrvl88x2011(np);
  1334. break;
  1335. default: /* bcom 8704 */
  1336. err = xcvr_init_10g_bcm8704(np);
  1337. break;
  1338. }
  1339. return err;
  1340. }
  1341. static int mii_reset(struct niu *np)
  1342. {
  1343. int limit, err;
  1344. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1345. if (err)
  1346. return err;
  1347. limit = 1000;
  1348. while (--limit >= 0) {
  1349. udelay(500);
  1350. err = mii_read(np, np->phy_addr, MII_BMCR);
  1351. if (err < 0)
  1352. return err;
  1353. if (!(err & BMCR_RESET))
  1354. break;
  1355. }
  1356. if (limit < 0) {
  1357. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1358. np->port, err);
  1359. return -ENODEV;
  1360. }
  1361. return 0;
  1362. }
  1363. static int xcvr_init_1g_rgmii(struct niu *np)
  1364. {
  1365. int err;
  1366. u64 val;
  1367. u16 bmcr, bmsr, estat;
  1368. val = nr64(MIF_CONFIG);
  1369. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1370. nw64(MIF_CONFIG, val);
  1371. err = mii_reset(np);
  1372. if (err)
  1373. return err;
  1374. err = mii_read(np, np->phy_addr, MII_BMSR);
  1375. if (err < 0)
  1376. return err;
  1377. bmsr = err;
  1378. estat = 0;
  1379. if (bmsr & BMSR_ESTATEN) {
  1380. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1381. if (err < 0)
  1382. return err;
  1383. estat = err;
  1384. }
  1385. bmcr = 0;
  1386. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1387. if (err)
  1388. return err;
  1389. if (bmsr & BMSR_ESTATEN) {
  1390. u16 ctrl1000 = 0;
  1391. if (estat & ESTATUS_1000_TFULL)
  1392. ctrl1000 |= ADVERTISE_1000FULL;
  1393. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1394. if (err)
  1395. return err;
  1396. }
  1397. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1398. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1399. if (err)
  1400. return err;
  1401. err = mii_read(np, np->phy_addr, MII_BMCR);
  1402. if (err < 0)
  1403. return err;
  1404. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1405. err = mii_read(np, np->phy_addr, MII_BMSR);
  1406. if (err < 0)
  1407. return err;
  1408. return 0;
  1409. }
  1410. static int mii_init_common(struct niu *np)
  1411. {
  1412. struct niu_link_config *lp = &np->link_config;
  1413. u16 bmcr, bmsr, adv, estat;
  1414. int err;
  1415. err = mii_reset(np);
  1416. if (err)
  1417. return err;
  1418. err = mii_read(np, np->phy_addr, MII_BMSR);
  1419. if (err < 0)
  1420. return err;
  1421. bmsr = err;
  1422. estat = 0;
  1423. if (bmsr & BMSR_ESTATEN) {
  1424. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1425. if (err < 0)
  1426. return err;
  1427. estat = err;
  1428. }
  1429. bmcr = 0;
  1430. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1431. if (err)
  1432. return err;
  1433. if (lp->loopback_mode == LOOPBACK_MAC) {
  1434. bmcr |= BMCR_LOOPBACK;
  1435. if (lp->active_speed == SPEED_1000)
  1436. bmcr |= BMCR_SPEED1000;
  1437. if (lp->active_duplex == DUPLEX_FULL)
  1438. bmcr |= BMCR_FULLDPLX;
  1439. }
  1440. if (lp->loopback_mode == LOOPBACK_PHY) {
  1441. u16 aux;
  1442. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1443. BCM5464R_AUX_CTL_WRITE_1);
  1444. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1445. if (err)
  1446. return err;
  1447. }
  1448. if (lp->autoneg) {
  1449. u16 ctrl1000;
  1450. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1451. if ((bmsr & BMSR_10HALF) &&
  1452. (lp->advertising & ADVERTISED_10baseT_Half))
  1453. adv |= ADVERTISE_10HALF;
  1454. if ((bmsr & BMSR_10FULL) &&
  1455. (lp->advertising & ADVERTISED_10baseT_Full))
  1456. adv |= ADVERTISE_10FULL;
  1457. if ((bmsr & BMSR_100HALF) &&
  1458. (lp->advertising & ADVERTISED_100baseT_Half))
  1459. adv |= ADVERTISE_100HALF;
  1460. if ((bmsr & BMSR_100FULL) &&
  1461. (lp->advertising & ADVERTISED_100baseT_Full))
  1462. adv |= ADVERTISE_100FULL;
  1463. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1464. if (err)
  1465. return err;
  1466. if (likely(bmsr & BMSR_ESTATEN)) {
  1467. ctrl1000 = 0;
  1468. if ((estat & ESTATUS_1000_THALF) &&
  1469. (lp->advertising & ADVERTISED_1000baseT_Half))
  1470. ctrl1000 |= ADVERTISE_1000HALF;
  1471. if ((estat & ESTATUS_1000_TFULL) &&
  1472. (lp->advertising & ADVERTISED_1000baseT_Full))
  1473. ctrl1000 |= ADVERTISE_1000FULL;
  1474. err = mii_write(np, np->phy_addr,
  1475. MII_CTRL1000, ctrl1000);
  1476. if (err)
  1477. return err;
  1478. }
  1479. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1480. } else {
  1481. /* !lp->autoneg */
  1482. int fulldpx;
  1483. if (lp->duplex == DUPLEX_FULL) {
  1484. bmcr |= BMCR_FULLDPLX;
  1485. fulldpx = 1;
  1486. } else if (lp->duplex == DUPLEX_HALF)
  1487. fulldpx = 0;
  1488. else
  1489. return -EINVAL;
  1490. if (lp->speed == SPEED_1000) {
  1491. /* if X-full requested while not supported, or
  1492. X-half requested while not supported... */
  1493. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1494. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1495. return -EINVAL;
  1496. bmcr |= BMCR_SPEED1000;
  1497. } else if (lp->speed == SPEED_100) {
  1498. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1499. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1500. return -EINVAL;
  1501. bmcr |= BMCR_SPEED100;
  1502. } else if (lp->speed == SPEED_10) {
  1503. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1504. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1505. return -EINVAL;
  1506. } else
  1507. return -EINVAL;
  1508. }
  1509. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1510. if (err)
  1511. return err;
  1512. #if 0
  1513. err = mii_read(np, np->phy_addr, MII_BMCR);
  1514. if (err < 0)
  1515. return err;
  1516. bmcr = err;
  1517. err = mii_read(np, np->phy_addr, MII_BMSR);
  1518. if (err < 0)
  1519. return err;
  1520. bmsr = err;
  1521. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1522. np->port, bmcr, bmsr);
  1523. #endif
  1524. return 0;
  1525. }
  1526. static int xcvr_init_1g(struct niu *np)
  1527. {
  1528. u64 val;
  1529. /* XXX shared resource, lock parent XXX */
  1530. val = nr64(MIF_CONFIG);
  1531. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1532. nw64(MIF_CONFIG, val);
  1533. return mii_init_common(np);
  1534. }
  1535. static int niu_xcvr_init(struct niu *np)
  1536. {
  1537. const struct niu_phy_ops *ops = np->phy_ops;
  1538. int err;
  1539. err = 0;
  1540. if (ops->xcvr_init)
  1541. err = ops->xcvr_init(np);
  1542. return err;
  1543. }
  1544. static int niu_serdes_init(struct niu *np)
  1545. {
  1546. const struct niu_phy_ops *ops = np->phy_ops;
  1547. int err;
  1548. err = 0;
  1549. if (ops->serdes_init)
  1550. err = ops->serdes_init(np);
  1551. return err;
  1552. }
  1553. static void niu_init_xif(struct niu *);
  1554. static void niu_handle_led(struct niu *, int status);
  1555. static int niu_link_status_common(struct niu *np, int link_up)
  1556. {
  1557. struct niu_link_config *lp = &np->link_config;
  1558. struct net_device *dev = np->dev;
  1559. unsigned long flags;
  1560. if (!netif_carrier_ok(dev) && link_up) {
  1561. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1562. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1563. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1564. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1565. "10Mbit/sec",
  1566. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1567. spin_lock_irqsave(&np->lock, flags);
  1568. niu_init_xif(np);
  1569. niu_handle_led(np, 1);
  1570. spin_unlock_irqrestore(&np->lock, flags);
  1571. netif_carrier_on(dev);
  1572. } else if (netif_carrier_ok(dev) && !link_up) {
  1573. netif_warn(np, link, dev, "Link is down\n");
  1574. spin_lock_irqsave(&np->lock, flags);
  1575. niu_handle_led(np, 0);
  1576. spin_unlock_irqrestore(&np->lock, flags);
  1577. netif_carrier_off(dev);
  1578. }
  1579. return 0;
  1580. }
  1581. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1582. {
  1583. int err, link_up, pma_status, pcs_status;
  1584. link_up = 0;
  1585. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1586. MRVL88X2011_10G_PMD_STATUS_2);
  1587. if (err < 0)
  1588. goto out;
  1589. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1590. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1591. MRVL88X2011_PMA_PMD_STATUS_1);
  1592. if (err < 0)
  1593. goto out;
  1594. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1595. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1596. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1597. MRVL88X2011_PMA_PMD_STATUS_1);
  1598. if (err < 0)
  1599. goto out;
  1600. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1601. MRVL88X2011_PMA_PMD_STATUS_1);
  1602. if (err < 0)
  1603. goto out;
  1604. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1605. /* Check XGXS Register : 4.0018.[0-3,12] */
  1606. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1607. MRVL88X2011_10G_XGXS_LANE_STAT);
  1608. if (err < 0)
  1609. goto out;
  1610. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1611. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1612. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1613. 0x800))
  1614. link_up = (pma_status && pcs_status) ? 1 : 0;
  1615. np->link_config.active_speed = SPEED_10000;
  1616. np->link_config.active_duplex = DUPLEX_FULL;
  1617. err = 0;
  1618. out:
  1619. mrvl88x2011_act_led(np, (link_up ?
  1620. MRVL88X2011_LED_CTL_PCS_ACT :
  1621. MRVL88X2011_LED_CTL_OFF));
  1622. *link_up_p = link_up;
  1623. return err;
  1624. }
  1625. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1626. {
  1627. int err, link_up;
  1628. link_up = 0;
  1629. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1630. BCM8704_PMD_RCV_SIGDET);
  1631. if (err < 0 || err == 0xffff)
  1632. goto out;
  1633. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1634. err = 0;
  1635. goto out;
  1636. }
  1637. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1638. BCM8704_PCS_10G_R_STATUS);
  1639. if (err < 0)
  1640. goto out;
  1641. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1642. err = 0;
  1643. goto out;
  1644. }
  1645. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1646. BCM8704_PHYXS_XGXS_LANE_STAT);
  1647. if (err < 0)
  1648. goto out;
  1649. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1650. PHYXS_XGXS_LANE_STAT_MAGIC |
  1651. PHYXS_XGXS_LANE_STAT_PATTEST |
  1652. PHYXS_XGXS_LANE_STAT_LANE3 |
  1653. PHYXS_XGXS_LANE_STAT_LANE2 |
  1654. PHYXS_XGXS_LANE_STAT_LANE1 |
  1655. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1656. err = 0;
  1657. np->link_config.active_speed = SPEED_INVALID;
  1658. np->link_config.active_duplex = DUPLEX_INVALID;
  1659. goto out;
  1660. }
  1661. link_up = 1;
  1662. np->link_config.active_speed = SPEED_10000;
  1663. np->link_config.active_duplex = DUPLEX_FULL;
  1664. err = 0;
  1665. out:
  1666. *link_up_p = link_up;
  1667. return err;
  1668. }
  1669. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1670. {
  1671. int err, link_up;
  1672. link_up = 0;
  1673. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1674. BCM8704_PMD_RCV_SIGDET);
  1675. if (err < 0)
  1676. goto out;
  1677. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1678. err = 0;
  1679. goto out;
  1680. }
  1681. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1682. BCM8704_PCS_10G_R_STATUS);
  1683. if (err < 0)
  1684. goto out;
  1685. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1686. err = 0;
  1687. goto out;
  1688. }
  1689. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1690. BCM8704_PHYXS_XGXS_LANE_STAT);
  1691. if (err < 0)
  1692. goto out;
  1693. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1694. PHYXS_XGXS_LANE_STAT_MAGIC |
  1695. PHYXS_XGXS_LANE_STAT_LANE3 |
  1696. PHYXS_XGXS_LANE_STAT_LANE2 |
  1697. PHYXS_XGXS_LANE_STAT_LANE1 |
  1698. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1699. err = 0;
  1700. goto out;
  1701. }
  1702. link_up = 1;
  1703. np->link_config.active_speed = SPEED_10000;
  1704. np->link_config.active_duplex = DUPLEX_FULL;
  1705. err = 0;
  1706. out:
  1707. *link_up_p = link_up;
  1708. return err;
  1709. }
  1710. static int link_status_10g(struct niu *np, int *link_up_p)
  1711. {
  1712. unsigned long flags;
  1713. int err = -EINVAL;
  1714. spin_lock_irqsave(&np->lock, flags);
  1715. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1716. int phy_id;
  1717. phy_id = phy_decode(np->parent->port_phy, np->port);
  1718. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1719. /* handle different phy types */
  1720. switch (phy_id & NIU_PHY_ID_MASK) {
  1721. case NIU_PHY_ID_MRVL88X2011:
  1722. err = link_status_10g_mrvl(np, link_up_p);
  1723. break;
  1724. default: /* bcom 8704 */
  1725. err = link_status_10g_bcom(np, link_up_p);
  1726. break;
  1727. }
  1728. }
  1729. spin_unlock_irqrestore(&np->lock, flags);
  1730. return err;
  1731. }
  1732. static int niu_10g_phy_present(struct niu *np)
  1733. {
  1734. u64 sig, mask, val;
  1735. sig = nr64(ESR_INT_SIGNALS);
  1736. switch (np->port) {
  1737. case 0:
  1738. mask = ESR_INT_SIGNALS_P0_BITS;
  1739. val = (ESR_INT_SRDY0_P0 |
  1740. ESR_INT_DET0_P0 |
  1741. ESR_INT_XSRDY_P0 |
  1742. ESR_INT_XDP_P0_CH3 |
  1743. ESR_INT_XDP_P0_CH2 |
  1744. ESR_INT_XDP_P0_CH1 |
  1745. ESR_INT_XDP_P0_CH0);
  1746. break;
  1747. case 1:
  1748. mask = ESR_INT_SIGNALS_P1_BITS;
  1749. val = (ESR_INT_SRDY0_P1 |
  1750. ESR_INT_DET0_P1 |
  1751. ESR_INT_XSRDY_P1 |
  1752. ESR_INT_XDP_P1_CH3 |
  1753. ESR_INT_XDP_P1_CH2 |
  1754. ESR_INT_XDP_P1_CH1 |
  1755. ESR_INT_XDP_P1_CH0);
  1756. break;
  1757. default:
  1758. return 0;
  1759. }
  1760. if ((sig & mask) != val)
  1761. return 0;
  1762. return 1;
  1763. }
  1764. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1765. {
  1766. unsigned long flags;
  1767. int err = 0;
  1768. int phy_present;
  1769. int phy_present_prev;
  1770. spin_lock_irqsave(&np->lock, flags);
  1771. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1772. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1773. 1 : 0;
  1774. phy_present = niu_10g_phy_present(np);
  1775. if (phy_present != phy_present_prev) {
  1776. /* state change */
  1777. if (phy_present) {
  1778. /* A NEM was just plugged in */
  1779. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1780. if (np->phy_ops->xcvr_init)
  1781. err = np->phy_ops->xcvr_init(np);
  1782. if (err) {
  1783. err = mdio_read(np, np->phy_addr,
  1784. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1785. if (err == 0xffff) {
  1786. /* No mdio, back-to-back XAUI */
  1787. goto out;
  1788. }
  1789. /* debounce */
  1790. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1791. }
  1792. } else {
  1793. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1794. *link_up_p = 0;
  1795. netif_warn(np, link, np->dev,
  1796. "Hotplug PHY Removed\n");
  1797. }
  1798. }
  1799. out:
  1800. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1801. err = link_status_10g_bcm8706(np, link_up_p);
  1802. if (err == 0xffff) {
  1803. /* No mdio, back-to-back XAUI: it is C10NEM */
  1804. *link_up_p = 1;
  1805. np->link_config.active_speed = SPEED_10000;
  1806. np->link_config.active_duplex = DUPLEX_FULL;
  1807. }
  1808. }
  1809. }
  1810. spin_unlock_irqrestore(&np->lock, flags);
  1811. return 0;
  1812. }
  1813. static int niu_link_status(struct niu *np, int *link_up_p)
  1814. {
  1815. const struct niu_phy_ops *ops = np->phy_ops;
  1816. int err;
  1817. err = 0;
  1818. if (ops->link_status)
  1819. err = ops->link_status(np, link_up_p);
  1820. return err;
  1821. }
  1822. static void niu_timer(struct timer_list *t)
  1823. {
  1824. struct niu *np = from_timer(np, t, timer);
  1825. unsigned long off;
  1826. int err, link_up;
  1827. err = niu_link_status(np, &link_up);
  1828. if (!err)
  1829. niu_link_status_common(np, link_up);
  1830. if (netif_carrier_ok(np->dev))
  1831. off = 5 * HZ;
  1832. else
  1833. off = 1 * HZ;
  1834. np->timer.expires = jiffies + off;
  1835. add_timer(&np->timer);
  1836. }
  1837. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1838. .serdes_init = serdes_init_10g_serdes,
  1839. .link_status = link_status_10g_serdes,
  1840. };
  1841. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1842. .serdes_init = serdes_init_niu_10g_serdes,
  1843. .link_status = link_status_10g_serdes,
  1844. };
  1845. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1846. .serdes_init = serdes_init_niu_1g_serdes,
  1847. .link_status = link_status_1g_serdes,
  1848. };
  1849. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1850. .xcvr_init = xcvr_init_1g_rgmii,
  1851. .link_status = link_status_1g_rgmii,
  1852. };
  1853. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1854. .serdes_init = serdes_init_niu_10g_fiber,
  1855. .xcvr_init = xcvr_init_10g,
  1856. .link_status = link_status_10g,
  1857. };
  1858. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1859. .serdes_init = serdes_init_10g,
  1860. .xcvr_init = xcvr_init_10g,
  1861. .link_status = link_status_10g,
  1862. };
  1863. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1864. .serdes_init = serdes_init_10g,
  1865. .xcvr_init = xcvr_init_10g_bcm8706,
  1866. .link_status = link_status_10g_hotplug,
  1867. };
  1868. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1869. .serdes_init = serdes_init_niu_10g_fiber,
  1870. .xcvr_init = xcvr_init_10g_bcm8706,
  1871. .link_status = link_status_10g_hotplug,
  1872. };
  1873. static const struct niu_phy_ops phy_ops_10g_copper = {
  1874. .serdes_init = serdes_init_10g,
  1875. .link_status = link_status_10g, /* XXX */
  1876. };
  1877. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1878. .serdes_init = serdes_init_1g,
  1879. .xcvr_init = xcvr_init_1g,
  1880. .link_status = link_status_1g,
  1881. };
  1882. static const struct niu_phy_ops phy_ops_1g_copper = {
  1883. .xcvr_init = xcvr_init_1g,
  1884. .link_status = link_status_1g,
  1885. };
  1886. struct niu_phy_template {
  1887. const struct niu_phy_ops *ops;
  1888. u32 phy_addr_base;
  1889. };
  1890. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1891. .ops = &phy_ops_10g_fiber_niu,
  1892. .phy_addr_base = 16,
  1893. };
  1894. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1895. .ops = &phy_ops_10g_serdes_niu,
  1896. .phy_addr_base = 0,
  1897. };
  1898. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1899. .ops = &phy_ops_1g_serdes_niu,
  1900. .phy_addr_base = 0,
  1901. };
  1902. static const struct niu_phy_template phy_template_10g_fiber = {
  1903. .ops = &phy_ops_10g_fiber,
  1904. .phy_addr_base = 8,
  1905. };
  1906. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1907. .ops = &phy_ops_10g_fiber_hotplug,
  1908. .phy_addr_base = 8,
  1909. };
  1910. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1911. .ops = &phy_ops_niu_10g_hotplug,
  1912. .phy_addr_base = 8,
  1913. };
  1914. static const struct niu_phy_template phy_template_10g_copper = {
  1915. .ops = &phy_ops_10g_copper,
  1916. .phy_addr_base = 10,
  1917. };
  1918. static const struct niu_phy_template phy_template_1g_fiber = {
  1919. .ops = &phy_ops_1g_fiber,
  1920. .phy_addr_base = 0,
  1921. };
  1922. static const struct niu_phy_template phy_template_1g_copper = {
  1923. .ops = &phy_ops_1g_copper,
  1924. .phy_addr_base = 0,
  1925. };
  1926. static const struct niu_phy_template phy_template_1g_rgmii = {
  1927. .ops = &phy_ops_1g_rgmii,
  1928. .phy_addr_base = 0,
  1929. };
  1930. static const struct niu_phy_template phy_template_10g_serdes = {
  1931. .ops = &phy_ops_10g_serdes,
  1932. .phy_addr_base = 0,
  1933. };
  1934. static int niu_atca_port_num[4] = {
  1935. 0, 0, 11, 10
  1936. };
  1937. static int serdes_init_10g_serdes(struct niu *np)
  1938. {
  1939. struct niu_link_config *lp = &np->link_config;
  1940. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1941. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1942. switch (np->port) {
  1943. case 0:
  1944. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1945. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1946. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1947. break;
  1948. case 1:
  1949. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1950. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1951. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1952. break;
  1953. default:
  1954. return -EINVAL;
  1955. }
  1956. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1957. ENET_SERDES_CTRL_SDET_1 |
  1958. ENET_SERDES_CTRL_SDET_2 |
  1959. ENET_SERDES_CTRL_SDET_3 |
  1960. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1961. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1962. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1963. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1964. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1965. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1966. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1967. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1968. test_cfg_val = 0;
  1969. if (lp->loopback_mode == LOOPBACK_PHY) {
  1970. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1971. ENET_SERDES_TEST_MD_0_SHIFT) |
  1972. (ENET_TEST_MD_PAD_LOOPBACK <<
  1973. ENET_SERDES_TEST_MD_1_SHIFT) |
  1974. (ENET_TEST_MD_PAD_LOOPBACK <<
  1975. ENET_SERDES_TEST_MD_2_SHIFT) |
  1976. (ENET_TEST_MD_PAD_LOOPBACK <<
  1977. ENET_SERDES_TEST_MD_3_SHIFT));
  1978. }
  1979. esr_reset(np);
  1980. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1981. nw64(ctrl_reg, ctrl_val);
  1982. nw64(test_cfg_reg, test_cfg_val);
  1983. /* Initialize all 4 lanes of the SERDES. */
  1984. for (i = 0; i < 4; i++) {
  1985. u32 rxtx_ctrl, glue0;
  1986. int err;
  1987. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1988. if (err)
  1989. return err;
  1990. err = esr_read_glue0(np, i, &glue0);
  1991. if (err)
  1992. return err;
  1993. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  1994. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  1995. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  1996. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  1997. ESR_GLUE_CTRL0_THCNT |
  1998. ESR_GLUE_CTRL0_BLTIME);
  1999. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2000. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2001. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2002. (BLTIME_300_CYCLES <<
  2003. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2004. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2005. if (err)
  2006. return err;
  2007. err = esr_write_glue0(np, i, glue0);
  2008. if (err)
  2009. return err;
  2010. }
  2011. sig = nr64(ESR_INT_SIGNALS);
  2012. switch (np->port) {
  2013. case 0:
  2014. mask = ESR_INT_SIGNALS_P0_BITS;
  2015. val = (ESR_INT_SRDY0_P0 |
  2016. ESR_INT_DET0_P0 |
  2017. ESR_INT_XSRDY_P0 |
  2018. ESR_INT_XDP_P0_CH3 |
  2019. ESR_INT_XDP_P0_CH2 |
  2020. ESR_INT_XDP_P0_CH1 |
  2021. ESR_INT_XDP_P0_CH0);
  2022. break;
  2023. case 1:
  2024. mask = ESR_INT_SIGNALS_P1_BITS;
  2025. val = (ESR_INT_SRDY0_P1 |
  2026. ESR_INT_DET0_P1 |
  2027. ESR_INT_XSRDY_P1 |
  2028. ESR_INT_XDP_P1_CH3 |
  2029. ESR_INT_XDP_P1_CH2 |
  2030. ESR_INT_XDP_P1_CH1 |
  2031. ESR_INT_XDP_P1_CH0);
  2032. break;
  2033. default:
  2034. return -EINVAL;
  2035. }
  2036. if ((sig & mask) != val) {
  2037. int err;
  2038. err = serdes_init_1g_serdes(np);
  2039. if (!err) {
  2040. np->flags &= ~NIU_FLAGS_10G;
  2041. np->mac_xcvr = MAC_XCVR_PCS;
  2042. } else {
  2043. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2044. np->port);
  2045. return -ENODEV;
  2046. }
  2047. }
  2048. return 0;
  2049. }
  2050. static int niu_determine_phy_disposition(struct niu *np)
  2051. {
  2052. struct niu_parent *parent = np->parent;
  2053. u8 plat_type = parent->plat_type;
  2054. const struct niu_phy_template *tp;
  2055. u32 phy_addr_off = 0;
  2056. if (plat_type == PLAT_TYPE_NIU) {
  2057. switch (np->flags &
  2058. (NIU_FLAGS_10G |
  2059. NIU_FLAGS_FIBER |
  2060. NIU_FLAGS_XCVR_SERDES)) {
  2061. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2062. /* 10G Serdes */
  2063. tp = &phy_template_niu_10g_serdes;
  2064. break;
  2065. case NIU_FLAGS_XCVR_SERDES:
  2066. /* 1G Serdes */
  2067. tp = &phy_template_niu_1g_serdes;
  2068. break;
  2069. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2070. /* 10G Fiber */
  2071. default:
  2072. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2073. tp = &phy_template_niu_10g_hotplug;
  2074. if (np->port == 0)
  2075. phy_addr_off = 8;
  2076. if (np->port == 1)
  2077. phy_addr_off = 12;
  2078. } else {
  2079. tp = &phy_template_niu_10g_fiber;
  2080. phy_addr_off += np->port;
  2081. }
  2082. break;
  2083. }
  2084. } else {
  2085. switch (np->flags &
  2086. (NIU_FLAGS_10G |
  2087. NIU_FLAGS_FIBER |
  2088. NIU_FLAGS_XCVR_SERDES)) {
  2089. case 0:
  2090. /* 1G copper */
  2091. tp = &phy_template_1g_copper;
  2092. if (plat_type == PLAT_TYPE_VF_P0)
  2093. phy_addr_off = 10;
  2094. else if (plat_type == PLAT_TYPE_VF_P1)
  2095. phy_addr_off = 26;
  2096. phy_addr_off += (np->port ^ 0x3);
  2097. break;
  2098. case NIU_FLAGS_10G:
  2099. /* 10G copper */
  2100. tp = &phy_template_10g_copper;
  2101. break;
  2102. case NIU_FLAGS_FIBER:
  2103. /* 1G fiber */
  2104. tp = &phy_template_1g_fiber;
  2105. break;
  2106. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2107. /* 10G fiber */
  2108. tp = &phy_template_10g_fiber;
  2109. if (plat_type == PLAT_TYPE_VF_P0 ||
  2110. plat_type == PLAT_TYPE_VF_P1)
  2111. phy_addr_off = 8;
  2112. phy_addr_off += np->port;
  2113. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2114. tp = &phy_template_10g_fiber_hotplug;
  2115. if (np->port == 0)
  2116. phy_addr_off = 8;
  2117. if (np->port == 1)
  2118. phy_addr_off = 12;
  2119. }
  2120. break;
  2121. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2122. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2123. case NIU_FLAGS_XCVR_SERDES:
  2124. switch(np->port) {
  2125. case 0:
  2126. case 1:
  2127. tp = &phy_template_10g_serdes;
  2128. break;
  2129. case 2:
  2130. case 3:
  2131. tp = &phy_template_1g_rgmii;
  2132. break;
  2133. default:
  2134. return -EINVAL;
  2135. }
  2136. phy_addr_off = niu_atca_port_num[np->port];
  2137. break;
  2138. default:
  2139. return -EINVAL;
  2140. }
  2141. }
  2142. np->phy_ops = tp->ops;
  2143. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2144. return 0;
  2145. }
  2146. static int niu_init_link(struct niu *np)
  2147. {
  2148. struct niu_parent *parent = np->parent;
  2149. int err, ignore;
  2150. if (parent->plat_type == PLAT_TYPE_NIU) {
  2151. err = niu_xcvr_init(np);
  2152. if (err)
  2153. return err;
  2154. msleep(200);
  2155. }
  2156. err = niu_serdes_init(np);
  2157. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2158. return err;
  2159. msleep(200);
  2160. err = niu_xcvr_init(np);
  2161. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2162. niu_link_status(np, &ignore);
  2163. return 0;
  2164. }
  2165. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2166. {
  2167. u16 reg0 = addr[4] << 8 | addr[5];
  2168. u16 reg1 = addr[2] << 8 | addr[3];
  2169. u16 reg2 = addr[0] << 8 | addr[1];
  2170. if (np->flags & NIU_FLAGS_XMAC) {
  2171. nw64_mac(XMAC_ADDR0, reg0);
  2172. nw64_mac(XMAC_ADDR1, reg1);
  2173. nw64_mac(XMAC_ADDR2, reg2);
  2174. } else {
  2175. nw64_mac(BMAC_ADDR0, reg0);
  2176. nw64_mac(BMAC_ADDR1, reg1);
  2177. nw64_mac(BMAC_ADDR2, reg2);
  2178. }
  2179. }
  2180. static int niu_num_alt_addr(struct niu *np)
  2181. {
  2182. if (np->flags & NIU_FLAGS_XMAC)
  2183. return XMAC_NUM_ALT_ADDR;
  2184. else
  2185. return BMAC_NUM_ALT_ADDR;
  2186. }
  2187. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2188. {
  2189. u16 reg0 = addr[4] << 8 | addr[5];
  2190. u16 reg1 = addr[2] << 8 | addr[3];
  2191. u16 reg2 = addr[0] << 8 | addr[1];
  2192. if (index >= niu_num_alt_addr(np))
  2193. return -EINVAL;
  2194. if (np->flags & NIU_FLAGS_XMAC) {
  2195. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2196. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2197. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2198. } else {
  2199. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2200. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2201. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2202. }
  2203. return 0;
  2204. }
  2205. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2206. {
  2207. unsigned long reg;
  2208. u64 val, mask;
  2209. if (index >= niu_num_alt_addr(np))
  2210. return -EINVAL;
  2211. if (np->flags & NIU_FLAGS_XMAC) {
  2212. reg = XMAC_ADDR_CMPEN;
  2213. mask = 1 << index;
  2214. } else {
  2215. reg = BMAC_ADDR_CMPEN;
  2216. mask = 1 << (index + 1);
  2217. }
  2218. val = nr64_mac(reg);
  2219. if (on)
  2220. val |= mask;
  2221. else
  2222. val &= ~mask;
  2223. nw64_mac(reg, val);
  2224. return 0;
  2225. }
  2226. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2227. int num, int mac_pref)
  2228. {
  2229. u64 val = nr64_mac(reg);
  2230. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2231. val |= num;
  2232. if (mac_pref)
  2233. val |= HOST_INFO_MPR;
  2234. nw64_mac(reg, val);
  2235. }
  2236. static int __set_rdc_table_num(struct niu *np,
  2237. int xmac_index, int bmac_index,
  2238. int rdc_table_num, int mac_pref)
  2239. {
  2240. unsigned long reg;
  2241. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2242. return -EINVAL;
  2243. if (np->flags & NIU_FLAGS_XMAC)
  2244. reg = XMAC_HOST_INFO(xmac_index);
  2245. else
  2246. reg = BMAC_HOST_INFO(bmac_index);
  2247. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2248. return 0;
  2249. }
  2250. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2251. int mac_pref)
  2252. {
  2253. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2254. }
  2255. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2256. int mac_pref)
  2257. {
  2258. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2259. }
  2260. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2261. int table_num, int mac_pref)
  2262. {
  2263. if (idx >= niu_num_alt_addr(np))
  2264. return -EINVAL;
  2265. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2266. }
  2267. static u64 vlan_entry_set_parity(u64 reg_val)
  2268. {
  2269. u64 port01_mask;
  2270. u64 port23_mask;
  2271. port01_mask = 0x00ff;
  2272. port23_mask = 0xff00;
  2273. if (hweight64(reg_val & port01_mask) & 1)
  2274. reg_val |= ENET_VLAN_TBL_PARITY0;
  2275. else
  2276. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2277. if (hweight64(reg_val & port23_mask) & 1)
  2278. reg_val |= ENET_VLAN_TBL_PARITY1;
  2279. else
  2280. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2281. return reg_val;
  2282. }
  2283. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2284. int port, int vpr, int rdc_table)
  2285. {
  2286. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2287. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2288. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2289. ENET_VLAN_TBL_SHIFT(port));
  2290. if (vpr)
  2291. reg_val |= (ENET_VLAN_TBL_VPR <<
  2292. ENET_VLAN_TBL_SHIFT(port));
  2293. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2294. reg_val = vlan_entry_set_parity(reg_val);
  2295. nw64(ENET_VLAN_TBL(index), reg_val);
  2296. }
  2297. static void vlan_tbl_clear(struct niu *np)
  2298. {
  2299. int i;
  2300. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2301. nw64(ENET_VLAN_TBL(i), 0);
  2302. }
  2303. static int tcam_wait_bit(struct niu *np, u64 bit)
  2304. {
  2305. int limit = 1000;
  2306. while (--limit > 0) {
  2307. if (nr64(TCAM_CTL) & bit)
  2308. break;
  2309. udelay(1);
  2310. }
  2311. if (limit <= 0)
  2312. return -ENODEV;
  2313. return 0;
  2314. }
  2315. static int tcam_flush(struct niu *np, int index)
  2316. {
  2317. nw64(TCAM_KEY_0, 0x00);
  2318. nw64(TCAM_KEY_MASK_0, 0xff);
  2319. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2320. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2321. }
  2322. #if 0
  2323. static int tcam_read(struct niu *np, int index,
  2324. u64 *key, u64 *mask)
  2325. {
  2326. int err;
  2327. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2328. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2329. if (!err) {
  2330. key[0] = nr64(TCAM_KEY_0);
  2331. key[1] = nr64(TCAM_KEY_1);
  2332. key[2] = nr64(TCAM_KEY_2);
  2333. key[3] = nr64(TCAM_KEY_3);
  2334. mask[0] = nr64(TCAM_KEY_MASK_0);
  2335. mask[1] = nr64(TCAM_KEY_MASK_1);
  2336. mask[2] = nr64(TCAM_KEY_MASK_2);
  2337. mask[3] = nr64(TCAM_KEY_MASK_3);
  2338. }
  2339. return err;
  2340. }
  2341. #endif
  2342. static int tcam_write(struct niu *np, int index,
  2343. u64 *key, u64 *mask)
  2344. {
  2345. nw64(TCAM_KEY_0, key[0]);
  2346. nw64(TCAM_KEY_1, key[1]);
  2347. nw64(TCAM_KEY_2, key[2]);
  2348. nw64(TCAM_KEY_3, key[3]);
  2349. nw64(TCAM_KEY_MASK_0, mask[0]);
  2350. nw64(TCAM_KEY_MASK_1, mask[1]);
  2351. nw64(TCAM_KEY_MASK_2, mask[2]);
  2352. nw64(TCAM_KEY_MASK_3, mask[3]);
  2353. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2354. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2355. }
  2356. #if 0
  2357. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2358. {
  2359. int err;
  2360. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2361. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2362. if (!err)
  2363. *data = nr64(TCAM_KEY_1);
  2364. return err;
  2365. }
  2366. #endif
  2367. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2368. {
  2369. nw64(TCAM_KEY_1, assoc_data);
  2370. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2371. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2372. }
  2373. static void tcam_enable(struct niu *np, int on)
  2374. {
  2375. u64 val = nr64(FFLP_CFG_1);
  2376. if (on)
  2377. val &= ~FFLP_CFG_1_TCAM_DIS;
  2378. else
  2379. val |= FFLP_CFG_1_TCAM_DIS;
  2380. nw64(FFLP_CFG_1, val);
  2381. }
  2382. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2383. {
  2384. u64 val = nr64(FFLP_CFG_1);
  2385. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2386. FFLP_CFG_1_CAMLAT |
  2387. FFLP_CFG_1_CAMRATIO);
  2388. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2389. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2390. nw64(FFLP_CFG_1, val);
  2391. val = nr64(FFLP_CFG_1);
  2392. val |= FFLP_CFG_1_FFLPINITDONE;
  2393. nw64(FFLP_CFG_1, val);
  2394. }
  2395. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2396. int on)
  2397. {
  2398. unsigned long reg;
  2399. u64 val;
  2400. if (class < CLASS_CODE_ETHERTYPE1 ||
  2401. class > CLASS_CODE_ETHERTYPE2)
  2402. return -EINVAL;
  2403. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2404. val = nr64(reg);
  2405. if (on)
  2406. val |= L2_CLS_VLD;
  2407. else
  2408. val &= ~L2_CLS_VLD;
  2409. nw64(reg, val);
  2410. return 0;
  2411. }
  2412. #if 0
  2413. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2414. u64 ether_type)
  2415. {
  2416. unsigned long reg;
  2417. u64 val;
  2418. if (class < CLASS_CODE_ETHERTYPE1 ||
  2419. class > CLASS_CODE_ETHERTYPE2 ||
  2420. (ether_type & ~(u64)0xffff) != 0)
  2421. return -EINVAL;
  2422. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2423. val = nr64(reg);
  2424. val &= ~L2_CLS_ETYPE;
  2425. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2426. nw64(reg, val);
  2427. return 0;
  2428. }
  2429. #endif
  2430. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2431. int on)
  2432. {
  2433. unsigned long reg;
  2434. u64 val;
  2435. if (class < CLASS_CODE_USER_PROG1 ||
  2436. class > CLASS_CODE_USER_PROG4)
  2437. return -EINVAL;
  2438. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2439. val = nr64(reg);
  2440. if (on)
  2441. val |= L3_CLS_VALID;
  2442. else
  2443. val &= ~L3_CLS_VALID;
  2444. nw64(reg, val);
  2445. return 0;
  2446. }
  2447. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2448. int ipv6, u64 protocol_id,
  2449. u64 tos_mask, u64 tos_val)
  2450. {
  2451. unsigned long reg;
  2452. u64 val;
  2453. if (class < CLASS_CODE_USER_PROG1 ||
  2454. class > CLASS_CODE_USER_PROG4 ||
  2455. (protocol_id & ~(u64)0xff) != 0 ||
  2456. (tos_mask & ~(u64)0xff) != 0 ||
  2457. (tos_val & ~(u64)0xff) != 0)
  2458. return -EINVAL;
  2459. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2460. val = nr64(reg);
  2461. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2462. L3_CLS_TOSMASK | L3_CLS_TOS);
  2463. if (ipv6)
  2464. val |= L3_CLS_IPVER;
  2465. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2466. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2467. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2468. nw64(reg, val);
  2469. return 0;
  2470. }
  2471. static int tcam_early_init(struct niu *np)
  2472. {
  2473. unsigned long i;
  2474. int err;
  2475. tcam_enable(np, 0);
  2476. tcam_set_lat_and_ratio(np,
  2477. DEFAULT_TCAM_LATENCY,
  2478. DEFAULT_TCAM_ACCESS_RATIO);
  2479. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2480. err = tcam_user_eth_class_enable(np, i, 0);
  2481. if (err)
  2482. return err;
  2483. }
  2484. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2485. err = tcam_user_ip_class_enable(np, i, 0);
  2486. if (err)
  2487. return err;
  2488. }
  2489. return 0;
  2490. }
  2491. static int tcam_flush_all(struct niu *np)
  2492. {
  2493. unsigned long i;
  2494. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2495. int err = tcam_flush(np, i);
  2496. if (err)
  2497. return err;
  2498. }
  2499. return 0;
  2500. }
  2501. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2502. {
  2503. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2504. }
  2505. #if 0
  2506. static int hash_read(struct niu *np, unsigned long partition,
  2507. unsigned long index, unsigned long num_entries,
  2508. u64 *data)
  2509. {
  2510. u64 val = hash_addr_regval(index, num_entries);
  2511. unsigned long i;
  2512. if (partition >= FCRAM_NUM_PARTITIONS ||
  2513. index + num_entries > FCRAM_SIZE)
  2514. return -EINVAL;
  2515. nw64(HASH_TBL_ADDR(partition), val);
  2516. for (i = 0; i < num_entries; i++)
  2517. data[i] = nr64(HASH_TBL_DATA(partition));
  2518. return 0;
  2519. }
  2520. #endif
  2521. static int hash_write(struct niu *np, unsigned long partition,
  2522. unsigned long index, unsigned long num_entries,
  2523. u64 *data)
  2524. {
  2525. u64 val = hash_addr_regval(index, num_entries);
  2526. unsigned long i;
  2527. if (partition >= FCRAM_NUM_PARTITIONS ||
  2528. index + (num_entries * 8) > FCRAM_SIZE)
  2529. return -EINVAL;
  2530. nw64(HASH_TBL_ADDR(partition), val);
  2531. for (i = 0; i < num_entries; i++)
  2532. nw64(HASH_TBL_DATA(partition), data[i]);
  2533. return 0;
  2534. }
  2535. static void fflp_reset(struct niu *np)
  2536. {
  2537. u64 val;
  2538. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2539. udelay(10);
  2540. nw64(FFLP_CFG_1, 0);
  2541. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2542. nw64(FFLP_CFG_1, val);
  2543. }
  2544. static void fflp_set_timings(struct niu *np)
  2545. {
  2546. u64 val = nr64(FFLP_CFG_1);
  2547. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2548. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2549. nw64(FFLP_CFG_1, val);
  2550. val = nr64(FFLP_CFG_1);
  2551. val |= FFLP_CFG_1_FFLPINITDONE;
  2552. nw64(FFLP_CFG_1, val);
  2553. val = nr64(FCRAM_REF_TMR);
  2554. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2555. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2556. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2557. nw64(FCRAM_REF_TMR, val);
  2558. }
  2559. static int fflp_set_partition(struct niu *np, u64 partition,
  2560. u64 mask, u64 base, int enable)
  2561. {
  2562. unsigned long reg;
  2563. u64 val;
  2564. if (partition >= FCRAM_NUM_PARTITIONS ||
  2565. (mask & ~(u64)0x1f) != 0 ||
  2566. (base & ~(u64)0x1f) != 0)
  2567. return -EINVAL;
  2568. reg = FLW_PRT_SEL(partition);
  2569. val = nr64(reg);
  2570. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2571. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2572. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2573. if (enable)
  2574. val |= FLW_PRT_SEL_EXT;
  2575. nw64(reg, val);
  2576. return 0;
  2577. }
  2578. static int fflp_disable_all_partitions(struct niu *np)
  2579. {
  2580. unsigned long i;
  2581. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2582. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2583. if (err)
  2584. return err;
  2585. }
  2586. return 0;
  2587. }
  2588. static void fflp_llcsnap_enable(struct niu *np, int on)
  2589. {
  2590. u64 val = nr64(FFLP_CFG_1);
  2591. if (on)
  2592. val |= FFLP_CFG_1_LLCSNAP;
  2593. else
  2594. val &= ~FFLP_CFG_1_LLCSNAP;
  2595. nw64(FFLP_CFG_1, val);
  2596. }
  2597. static void fflp_errors_enable(struct niu *np, int on)
  2598. {
  2599. u64 val = nr64(FFLP_CFG_1);
  2600. if (on)
  2601. val &= ~FFLP_CFG_1_ERRORDIS;
  2602. else
  2603. val |= FFLP_CFG_1_ERRORDIS;
  2604. nw64(FFLP_CFG_1, val);
  2605. }
  2606. static int fflp_hash_clear(struct niu *np)
  2607. {
  2608. struct fcram_hash_ipv4 ent;
  2609. unsigned long i;
  2610. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2611. memset(&ent, 0, sizeof(ent));
  2612. ent.header = HASH_HEADER_EXT;
  2613. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2614. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2615. if (err)
  2616. return err;
  2617. }
  2618. return 0;
  2619. }
  2620. static int fflp_early_init(struct niu *np)
  2621. {
  2622. struct niu_parent *parent;
  2623. unsigned long flags;
  2624. int err;
  2625. niu_lock_parent(np, flags);
  2626. parent = np->parent;
  2627. err = 0;
  2628. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2629. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2630. fflp_reset(np);
  2631. fflp_set_timings(np);
  2632. err = fflp_disable_all_partitions(np);
  2633. if (err) {
  2634. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2635. "fflp_disable_all_partitions failed, err=%d\n",
  2636. err);
  2637. goto out;
  2638. }
  2639. }
  2640. err = tcam_early_init(np);
  2641. if (err) {
  2642. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2643. "tcam_early_init failed, err=%d\n", err);
  2644. goto out;
  2645. }
  2646. fflp_llcsnap_enable(np, 1);
  2647. fflp_errors_enable(np, 0);
  2648. nw64(H1POLY, 0);
  2649. nw64(H2POLY, 0);
  2650. err = tcam_flush_all(np);
  2651. if (err) {
  2652. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2653. "tcam_flush_all failed, err=%d\n", err);
  2654. goto out;
  2655. }
  2656. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2657. err = fflp_hash_clear(np);
  2658. if (err) {
  2659. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2660. "fflp_hash_clear failed, err=%d\n",
  2661. err);
  2662. goto out;
  2663. }
  2664. }
  2665. vlan_tbl_clear(np);
  2666. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2667. }
  2668. out:
  2669. niu_unlock_parent(np, flags);
  2670. return err;
  2671. }
  2672. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2673. {
  2674. if (class_code < CLASS_CODE_USER_PROG1 ||
  2675. class_code > CLASS_CODE_SCTP_IPV6)
  2676. return -EINVAL;
  2677. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2678. return 0;
  2679. }
  2680. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2681. {
  2682. if (class_code < CLASS_CODE_USER_PROG1 ||
  2683. class_code > CLASS_CODE_SCTP_IPV6)
  2684. return -EINVAL;
  2685. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2686. return 0;
  2687. }
  2688. /* Entries for the ports are interleaved in the TCAM */
  2689. static u16 tcam_get_index(struct niu *np, u16 idx)
  2690. {
  2691. /* One entry reserved for IP fragment rule */
  2692. if (idx >= (np->clas.tcam_sz - 1))
  2693. idx = 0;
  2694. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2695. }
  2696. static u16 tcam_get_size(struct niu *np)
  2697. {
  2698. /* One entry reserved for IP fragment rule */
  2699. return np->clas.tcam_sz - 1;
  2700. }
  2701. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2702. {
  2703. /* One entry reserved for IP fragment rule */
  2704. return np->clas.tcam_valid_entries - 1;
  2705. }
  2706. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2707. u32 offset, u32 size, u32 truesize)
  2708. {
  2709. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2710. skb->len += size;
  2711. skb->data_len += size;
  2712. skb->truesize += truesize;
  2713. }
  2714. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2715. {
  2716. a >>= PAGE_SHIFT;
  2717. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2718. return a & (MAX_RBR_RING_SIZE - 1);
  2719. }
  2720. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2721. struct page ***link)
  2722. {
  2723. unsigned int h = niu_hash_rxaddr(rp, addr);
  2724. struct page *p, **pp;
  2725. addr &= PAGE_MASK;
  2726. pp = &rp->rxhash[h];
  2727. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2728. if (p->index == addr) {
  2729. *link = pp;
  2730. goto found;
  2731. }
  2732. }
  2733. BUG();
  2734. found:
  2735. return p;
  2736. }
  2737. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2738. {
  2739. unsigned int h = niu_hash_rxaddr(rp, base);
  2740. page->index = base;
  2741. page->mapping = (struct address_space *) rp->rxhash[h];
  2742. rp->rxhash[h] = page;
  2743. }
  2744. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2745. gfp_t mask, int start_index)
  2746. {
  2747. struct page *page;
  2748. u64 addr;
  2749. int i;
  2750. page = alloc_page(mask);
  2751. if (!page)
  2752. return -ENOMEM;
  2753. addr = np->ops->map_page(np->device, page, 0,
  2754. PAGE_SIZE, DMA_FROM_DEVICE);
  2755. if (!addr) {
  2756. __free_page(page);
  2757. return -ENOMEM;
  2758. }
  2759. niu_hash_page(rp, page, addr);
  2760. if (rp->rbr_blocks_per_page > 1)
  2761. page_ref_add(page, rp->rbr_blocks_per_page - 1);
  2762. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2763. __le32 *rbr = &rp->rbr[start_index + i];
  2764. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2765. addr += rp->rbr_block_size;
  2766. }
  2767. return 0;
  2768. }
  2769. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2770. {
  2771. int index = rp->rbr_index;
  2772. rp->rbr_pending++;
  2773. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2774. int err = niu_rbr_add_page(np, rp, mask, index);
  2775. if (unlikely(err)) {
  2776. rp->rbr_pending--;
  2777. return;
  2778. }
  2779. rp->rbr_index += rp->rbr_blocks_per_page;
  2780. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2781. if (rp->rbr_index == rp->rbr_table_size)
  2782. rp->rbr_index = 0;
  2783. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2784. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2785. rp->rbr_pending = 0;
  2786. }
  2787. }
  2788. }
  2789. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2790. {
  2791. unsigned int index = rp->rcr_index;
  2792. int num_rcr = 0;
  2793. rp->rx_dropped++;
  2794. while (1) {
  2795. struct page *page, **link;
  2796. u64 addr, val;
  2797. u32 rcr_size;
  2798. num_rcr++;
  2799. val = le64_to_cpup(&rp->rcr[index]);
  2800. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2801. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2802. page = niu_find_rxpage(rp, addr, &link);
  2803. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2804. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2805. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2806. *link = (struct page *) page->mapping;
  2807. np->ops->unmap_page(np->device, page->index,
  2808. PAGE_SIZE, DMA_FROM_DEVICE);
  2809. page->index = 0;
  2810. page->mapping = NULL;
  2811. __free_page(page);
  2812. rp->rbr_refill_pending++;
  2813. }
  2814. index = NEXT_RCR(rp, index);
  2815. if (!(val & RCR_ENTRY_MULTI))
  2816. break;
  2817. }
  2818. rp->rcr_index = index;
  2819. return num_rcr;
  2820. }
  2821. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2822. struct rx_ring_info *rp)
  2823. {
  2824. unsigned int index = rp->rcr_index;
  2825. struct rx_pkt_hdr1 *rh;
  2826. struct sk_buff *skb;
  2827. int len, num_rcr;
  2828. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2829. if (unlikely(!skb))
  2830. return niu_rx_pkt_ignore(np, rp);
  2831. num_rcr = 0;
  2832. while (1) {
  2833. struct page *page, **link;
  2834. u32 rcr_size, append_size;
  2835. u64 addr, val, off;
  2836. num_rcr++;
  2837. val = le64_to_cpup(&rp->rcr[index]);
  2838. len = (val & RCR_ENTRY_L2_LEN) >>
  2839. RCR_ENTRY_L2_LEN_SHIFT;
  2840. append_size = len + ETH_HLEN + ETH_FCS_LEN;
  2841. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2842. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2843. page = niu_find_rxpage(rp, addr, &link);
  2844. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2845. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2846. off = addr & ~PAGE_MASK;
  2847. if (num_rcr == 1) {
  2848. int ptype;
  2849. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2850. if ((ptype == RCR_PKT_TYPE_TCP ||
  2851. ptype == RCR_PKT_TYPE_UDP) &&
  2852. !(val & (RCR_ENTRY_NOPORT |
  2853. RCR_ENTRY_ERROR)))
  2854. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2855. else
  2856. skb_checksum_none_assert(skb);
  2857. } else if (!(val & RCR_ENTRY_MULTI))
  2858. append_size = append_size - skb->len;
  2859. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2860. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2861. *link = (struct page *) page->mapping;
  2862. np->ops->unmap_page(np->device, page->index,
  2863. PAGE_SIZE, DMA_FROM_DEVICE);
  2864. page->index = 0;
  2865. page->mapping = NULL;
  2866. rp->rbr_refill_pending++;
  2867. } else
  2868. get_page(page);
  2869. index = NEXT_RCR(rp, index);
  2870. if (!(val & RCR_ENTRY_MULTI))
  2871. break;
  2872. }
  2873. rp->rcr_index = index;
  2874. len += sizeof(*rh);
  2875. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2876. __pskb_pull_tail(skb, len);
  2877. rh = (struct rx_pkt_hdr1 *) skb->data;
  2878. if (np->dev->features & NETIF_F_RXHASH)
  2879. skb_set_hash(skb,
  2880. ((u32)rh->hashval2_0 << 24 |
  2881. (u32)rh->hashval2_1 << 16 |
  2882. (u32)rh->hashval1_1 << 8 |
  2883. (u32)rh->hashval1_2 << 0),
  2884. PKT_HASH_TYPE_L3);
  2885. skb_pull(skb, sizeof(*rh));
  2886. rp->rx_packets++;
  2887. rp->rx_bytes += skb->len;
  2888. skb->protocol = eth_type_trans(skb, np->dev);
  2889. skb_record_rx_queue(skb, rp->rx_channel);
  2890. napi_gro_receive(napi, skb);
  2891. return num_rcr;
  2892. }
  2893. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2894. {
  2895. int blocks_per_page = rp->rbr_blocks_per_page;
  2896. int err, index = rp->rbr_index;
  2897. err = 0;
  2898. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2899. err = niu_rbr_add_page(np, rp, mask, index);
  2900. if (unlikely(err))
  2901. break;
  2902. index += blocks_per_page;
  2903. }
  2904. rp->rbr_index = index;
  2905. return err;
  2906. }
  2907. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2908. {
  2909. int i;
  2910. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2911. struct page *page;
  2912. page = rp->rxhash[i];
  2913. while (page) {
  2914. struct page *next = (struct page *) page->mapping;
  2915. u64 base = page->index;
  2916. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2917. DMA_FROM_DEVICE);
  2918. page->index = 0;
  2919. page->mapping = NULL;
  2920. __free_page(page);
  2921. page = next;
  2922. }
  2923. }
  2924. for (i = 0; i < rp->rbr_table_size; i++)
  2925. rp->rbr[i] = cpu_to_le32(0);
  2926. rp->rbr_index = 0;
  2927. }
  2928. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2929. {
  2930. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2931. struct sk_buff *skb = tb->skb;
  2932. struct tx_pkt_hdr *tp;
  2933. u64 tx_flags;
  2934. int i, len;
  2935. tp = (struct tx_pkt_hdr *) skb->data;
  2936. tx_flags = le64_to_cpup(&tp->flags);
  2937. rp->tx_packets++;
  2938. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2939. ((tx_flags & TXHDR_PAD) / 2));
  2940. len = skb_headlen(skb);
  2941. np->ops->unmap_single(np->device, tb->mapping,
  2942. len, DMA_TO_DEVICE);
  2943. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2944. rp->mark_pending--;
  2945. tb->skb = NULL;
  2946. do {
  2947. idx = NEXT_TX(rp, idx);
  2948. len -= MAX_TX_DESC_LEN;
  2949. } while (len > 0);
  2950. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2951. tb = &rp->tx_buffs[idx];
  2952. BUG_ON(tb->skb != NULL);
  2953. np->ops->unmap_page(np->device, tb->mapping,
  2954. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2955. DMA_TO_DEVICE);
  2956. idx = NEXT_TX(rp, idx);
  2957. }
  2958. dev_kfree_skb(skb);
  2959. return idx;
  2960. }
  2961. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2962. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2963. {
  2964. struct netdev_queue *txq;
  2965. u16 pkt_cnt, tmp;
  2966. int cons, index;
  2967. u64 cs;
  2968. index = (rp - np->tx_rings);
  2969. txq = netdev_get_tx_queue(np->dev, index);
  2970. cs = rp->tx_cs;
  2971. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2972. goto out;
  2973. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2974. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2975. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2976. rp->last_pkt_cnt = tmp;
  2977. cons = rp->cons;
  2978. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2979. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2980. while (pkt_cnt--)
  2981. cons = release_tx_packet(np, rp, cons);
  2982. rp->cons = cons;
  2983. smp_mb();
  2984. out:
  2985. if (unlikely(netif_tx_queue_stopped(txq) &&
  2986. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2987. __netif_tx_lock(txq, smp_processor_id());
  2988. if (netif_tx_queue_stopped(txq) &&
  2989. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  2990. netif_tx_wake_queue(txq);
  2991. __netif_tx_unlock(txq);
  2992. }
  2993. }
  2994. static inline void niu_sync_rx_discard_stats(struct niu *np,
  2995. struct rx_ring_info *rp,
  2996. const int limit)
  2997. {
  2998. /* This elaborate scheme is needed for reading the RX discard
  2999. * counters, as they are only 16-bit and can overflow quickly,
  3000. * and because the overflow indication bit is not usable as
  3001. * the counter value does not wrap, but remains at max value
  3002. * 0xFFFF.
  3003. *
  3004. * In theory and in practice counters can be lost in between
  3005. * reading nr64() and clearing the counter nw64(). For this
  3006. * reason, the number of counter clearings nw64() is
  3007. * limited/reduced though the limit parameter.
  3008. */
  3009. int rx_channel = rp->rx_channel;
  3010. u32 misc, wred;
  3011. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3012. * following discard events: IPP (Input Port Process),
  3013. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3014. * Block Ring) prefetch buffer is empty.
  3015. */
  3016. misc = nr64(RXMISC(rx_channel));
  3017. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3018. nw64(RXMISC(rx_channel), 0);
  3019. rp->rx_errors += misc & RXMISC_COUNT;
  3020. if (unlikely(misc & RXMISC_OFLOW))
  3021. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3022. rx_channel);
  3023. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3024. "rx-%d: MISC drop=%u over=%u\n",
  3025. rx_channel, misc, misc-limit);
  3026. }
  3027. /* WRED (Weighted Random Early Discard) by hardware */
  3028. wred = nr64(RED_DIS_CNT(rx_channel));
  3029. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3030. nw64(RED_DIS_CNT(rx_channel), 0);
  3031. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3032. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3033. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3034. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3035. "rx-%d: WRED drop=%u over=%u\n",
  3036. rx_channel, wred, wred-limit);
  3037. }
  3038. }
  3039. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3040. struct rx_ring_info *rp, int budget)
  3041. {
  3042. int qlen, rcr_done = 0, work_done = 0;
  3043. struct rxdma_mailbox *mbox = rp->mbox;
  3044. u64 stat;
  3045. #if 1
  3046. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3047. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3048. #else
  3049. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3050. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3051. #endif
  3052. mbox->rx_dma_ctl_stat = 0;
  3053. mbox->rcrstat_a = 0;
  3054. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3055. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3056. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3057. rcr_done = work_done = 0;
  3058. qlen = min(qlen, budget);
  3059. while (work_done < qlen) {
  3060. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3061. work_done++;
  3062. }
  3063. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3064. unsigned int i;
  3065. for (i = 0; i < rp->rbr_refill_pending; i++)
  3066. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3067. rp->rbr_refill_pending = 0;
  3068. }
  3069. stat = (RX_DMA_CTL_STAT_MEX |
  3070. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3071. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3072. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3073. /* Only sync discards stats when qlen indicate potential for drops */
  3074. if (qlen > 10)
  3075. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3076. return work_done;
  3077. }
  3078. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3079. {
  3080. u64 v0 = lp->v0;
  3081. u32 tx_vec = (v0 >> 32);
  3082. u32 rx_vec = (v0 & 0xffffffff);
  3083. int i, work_done = 0;
  3084. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3085. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3086. for (i = 0; i < np->num_tx_rings; i++) {
  3087. struct tx_ring_info *rp = &np->tx_rings[i];
  3088. if (tx_vec & (1 << rp->tx_channel))
  3089. niu_tx_work(np, rp);
  3090. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3091. }
  3092. for (i = 0; i < np->num_rx_rings; i++) {
  3093. struct rx_ring_info *rp = &np->rx_rings[i];
  3094. if (rx_vec & (1 << rp->rx_channel)) {
  3095. int this_work_done;
  3096. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3097. budget);
  3098. budget -= this_work_done;
  3099. work_done += this_work_done;
  3100. }
  3101. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3102. }
  3103. return work_done;
  3104. }
  3105. static int niu_poll(struct napi_struct *napi, int budget)
  3106. {
  3107. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3108. struct niu *np = lp->np;
  3109. int work_done;
  3110. work_done = niu_poll_core(np, lp, budget);
  3111. if (work_done < budget) {
  3112. napi_complete_done(napi, work_done);
  3113. niu_ldg_rearm(np, lp, 1);
  3114. }
  3115. return work_done;
  3116. }
  3117. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3118. u64 stat)
  3119. {
  3120. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3121. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3122. pr_cont("RBR_TMOUT ");
  3123. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3124. pr_cont("RSP_CNT ");
  3125. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3126. pr_cont("BYTE_EN_BUS ");
  3127. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3128. pr_cont("RSP_DAT ");
  3129. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3130. pr_cont("RCR_ACK ");
  3131. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3132. pr_cont("RCR_SHA_PAR ");
  3133. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3134. pr_cont("RBR_PRE_PAR ");
  3135. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3136. pr_cont("CONFIG ");
  3137. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3138. pr_cont("RCRINCON ");
  3139. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3140. pr_cont("RCRFULL ");
  3141. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3142. pr_cont("RBRFULL ");
  3143. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3144. pr_cont("RBRLOGPAGE ");
  3145. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3146. pr_cont("CFIGLOGPAGE ");
  3147. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3148. pr_cont("DC_FIDO ");
  3149. pr_cont(")\n");
  3150. }
  3151. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3152. {
  3153. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3154. int err = 0;
  3155. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3156. RX_DMA_CTL_STAT_PORT_FATAL))
  3157. err = -EINVAL;
  3158. if (err) {
  3159. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3160. rp->rx_channel,
  3161. (unsigned long long) stat);
  3162. niu_log_rxchan_errors(np, rp, stat);
  3163. }
  3164. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3165. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3166. return err;
  3167. }
  3168. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3169. u64 cs)
  3170. {
  3171. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3172. if (cs & TX_CS_MBOX_ERR)
  3173. pr_cont("MBOX ");
  3174. if (cs & TX_CS_PKT_SIZE_ERR)
  3175. pr_cont("PKT_SIZE ");
  3176. if (cs & TX_CS_TX_RING_OFLOW)
  3177. pr_cont("TX_RING_OFLOW ");
  3178. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3179. pr_cont("PREF_BUF_PAR ");
  3180. if (cs & TX_CS_NACK_PREF)
  3181. pr_cont("NACK_PREF ");
  3182. if (cs & TX_CS_NACK_PKT_RD)
  3183. pr_cont("NACK_PKT_RD ");
  3184. if (cs & TX_CS_CONF_PART_ERR)
  3185. pr_cont("CONF_PART ");
  3186. if (cs & TX_CS_PKT_PRT_ERR)
  3187. pr_cont("PKT_PTR ");
  3188. pr_cont(")\n");
  3189. }
  3190. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3191. {
  3192. u64 cs, logh, logl;
  3193. cs = nr64(TX_CS(rp->tx_channel));
  3194. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3195. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3196. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3197. rp->tx_channel,
  3198. (unsigned long long)cs,
  3199. (unsigned long long)logh,
  3200. (unsigned long long)logl);
  3201. niu_log_txchan_errors(np, rp, cs);
  3202. return -ENODEV;
  3203. }
  3204. static int niu_mif_interrupt(struct niu *np)
  3205. {
  3206. u64 mif_status = nr64(MIF_STATUS);
  3207. int phy_mdint = 0;
  3208. if (np->flags & NIU_FLAGS_XMAC) {
  3209. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3210. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3211. phy_mdint = 1;
  3212. }
  3213. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3214. (unsigned long long)mif_status, phy_mdint);
  3215. return -ENODEV;
  3216. }
  3217. static void niu_xmac_interrupt(struct niu *np)
  3218. {
  3219. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3220. u64 val;
  3221. val = nr64_mac(XTXMAC_STATUS);
  3222. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3223. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3224. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3225. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3226. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3227. mp->tx_fifo_errors++;
  3228. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3229. mp->tx_overflow_errors++;
  3230. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3231. mp->tx_max_pkt_size_errors++;
  3232. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3233. mp->tx_underflow_errors++;
  3234. val = nr64_mac(XRXMAC_STATUS);
  3235. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3236. mp->rx_local_faults++;
  3237. if (val & XRXMAC_STATUS_RFLT_DET)
  3238. mp->rx_remote_faults++;
  3239. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3240. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3241. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3242. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3243. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3244. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3245. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3246. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3247. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3248. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3249. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3250. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3251. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3252. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3253. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3254. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3255. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3256. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3257. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3258. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3259. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3260. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3261. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3262. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3263. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3264. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3265. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3266. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3267. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3268. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3269. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3270. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3271. if (val & XRXMAC_STATUS_RXUFLOW)
  3272. mp->rx_underflows++;
  3273. if (val & XRXMAC_STATUS_RXOFLOW)
  3274. mp->rx_overflows++;
  3275. val = nr64_mac(XMAC_FC_STAT);
  3276. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3277. mp->pause_off_state++;
  3278. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3279. mp->pause_on_state++;
  3280. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3281. mp->pause_received++;
  3282. }
  3283. static void niu_bmac_interrupt(struct niu *np)
  3284. {
  3285. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3286. u64 val;
  3287. val = nr64_mac(BTXMAC_STATUS);
  3288. if (val & BTXMAC_STATUS_UNDERRUN)
  3289. mp->tx_underflow_errors++;
  3290. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3291. mp->tx_max_pkt_size_errors++;
  3292. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3293. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3294. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3295. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3296. val = nr64_mac(BRXMAC_STATUS);
  3297. if (val & BRXMAC_STATUS_OVERFLOW)
  3298. mp->rx_overflows++;
  3299. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3300. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3301. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3302. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3303. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3304. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3305. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3306. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3307. val = nr64_mac(BMAC_CTRL_STATUS);
  3308. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3309. mp->pause_off_state++;
  3310. if (val & BMAC_CTRL_STATUS_PAUSE)
  3311. mp->pause_on_state++;
  3312. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3313. mp->pause_received++;
  3314. }
  3315. static int niu_mac_interrupt(struct niu *np)
  3316. {
  3317. if (np->flags & NIU_FLAGS_XMAC)
  3318. niu_xmac_interrupt(np);
  3319. else
  3320. niu_bmac_interrupt(np);
  3321. return 0;
  3322. }
  3323. static void niu_log_device_error(struct niu *np, u64 stat)
  3324. {
  3325. netdev_err(np->dev, "Core device errors ( ");
  3326. if (stat & SYS_ERR_MASK_META2)
  3327. pr_cont("META2 ");
  3328. if (stat & SYS_ERR_MASK_META1)
  3329. pr_cont("META1 ");
  3330. if (stat & SYS_ERR_MASK_PEU)
  3331. pr_cont("PEU ");
  3332. if (stat & SYS_ERR_MASK_TXC)
  3333. pr_cont("TXC ");
  3334. if (stat & SYS_ERR_MASK_RDMC)
  3335. pr_cont("RDMC ");
  3336. if (stat & SYS_ERR_MASK_TDMC)
  3337. pr_cont("TDMC ");
  3338. if (stat & SYS_ERR_MASK_ZCP)
  3339. pr_cont("ZCP ");
  3340. if (stat & SYS_ERR_MASK_FFLP)
  3341. pr_cont("FFLP ");
  3342. if (stat & SYS_ERR_MASK_IPP)
  3343. pr_cont("IPP ");
  3344. if (stat & SYS_ERR_MASK_MAC)
  3345. pr_cont("MAC ");
  3346. if (stat & SYS_ERR_MASK_SMX)
  3347. pr_cont("SMX ");
  3348. pr_cont(")\n");
  3349. }
  3350. static int niu_device_error(struct niu *np)
  3351. {
  3352. u64 stat = nr64(SYS_ERR_STAT);
  3353. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3354. (unsigned long long)stat);
  3355. niu_log_device_error(np, stat);
  3356. return -ENODEV;
  3357. }
  3358. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3359. u64 v0, u64 v1, u64 v2)
  3360. {
  3361. int i, err = 0;
  3362. lp->v0 = v0;
  3363. lp->v1 = v1;
  3364. lp->v2 = v2;
  3365. if (v1 & 0x00000000ffffffffULL) {
  3366. u32 rx_vec = (v1 & 0xffffffff);
  3367. for (i = 0; i < np->num_rx_rings; i++) {
  3368. struct rx_ring_info *rp = &np->rx_rings[i];
  3369. if (rx_vec & (1 << rp->rx_channel)) {
  3370. int r = niu_rx_error(np, rp);
  3371. if (r) {
  3372. err = r;
  3373. } else {
  3374. if (!v0)
  3375. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3376. RX_DMA_CTL_STAT_MEX);
  3377. }
  3378. }
  3379. }
  3380. }
  3381. if (v1 & 0x7fffffff00000000ULL) {
  3382. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3383. for (i = 0; i < np->num_tx_rings; i++) {
  3384. struct tx_ring_info *rp = &np->tx_rings[i];
  3385. if (tx_vec & (1 << rp->tx_channel)) {
  3386. int r = niu_tx_error(np, rp);
  3387. if (r)
  3388. err = r;
  3389. }
  3390. }
  3391. }
  3392. if ((v0 | v1) & 0x8000000000000000ULL) {
  3393. int r = niu_mif_interrupt(np);
  3394. if (r)
  3395. err = r;
  3396. }
  3397. if (v2) {
  3398. if (v2 & 0x01ef) {
  3399. int r = niu_mac_interrupt(np);
  3400. if (r)
  3401. err = r;
  3402. }
  3403. if (v2 & 0x0210) {
  3404. int r = niu_device_error(np);
  3405. if (r)
  3406. err = r;
  3407. }
  3408. }
  3409. if (err)
  3410. niu_enable_interrupts(np, 0);
  3411. return err;
  3412. }
  3413. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3414. int ldn)
  3415. {
  3416. struct rxdma_mailbox *mbox = rp->mbox;
  3417. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3418. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3419. RX_DMA_CTL_STAT_RCRTO);
  3420. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3421. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3422. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3423. }
  3424. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3425. int ldn)
  3426. {
  3427. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3428. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3429. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3430. }
  3431. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3432. {
  3433. struct niu_parent *parent = np->parent;
  3434. u32 rx_vec, tx_vec;
  3435. int i;
  3436. tx_vec = (v0 >> 32);
  3437. rx_vec = (v0 & 0xffffffff);
  3438. for (i = 0; i < np->num_rx_rings; i++) {
  3439. struct rx_ring_info *rp = &np->rx_rings[i];
  3440. int ldn = LDN_RXDMA(rp->rx_channel);
  3441. if (parent->ldg_map[ldn] != ldg)
  3442. continue;
  3443. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3444. if (rx_vec & (1 << rp->rx_channel))
  3445. niu_rxchan_intr(np, rp, ldn);
  3446. }
  3447. for (i = 0; i < np->num_tx_rings; i++) {
  3448. struct tx_ring_info *rp = &np->tx_rings[i];
  3449. int ldn = LDN_TXDMA(rp->tx_channel);
  3450. if (parent->ldg_map[ldn] != ldg)
  3451. continue;
  3452. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3453. if (tx_vec & (1 << rp->tx_channel))
  3454. niu_txchan_intr(np, rp, ldn);
  3455. }
  3456. }
  3457. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3458. u64 v0, u64 v1, u64 v2)
  3459. {
  3460. if (likely(napi_schedule_prep(&lp->napi))) {
  3461. lp->v0 = v0;
  3462. lp->v1 = v1;
  3463. lp->v2 = v2;
  3464. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3465. __napi_schedule(&lp->napi);
  3466. }
  3467. }
  3468. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3469. {
  3470. struct niu_ldg *lp = dev_id;
  3471. struct niu *np = lp->np;
  3472. int ldg = lp->ldg_num;
  3473. unsigned long flags;
  3474. u64 v0, v1, v2;
  3475. if (netif_msg_intr(np))
  3476. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3477. __func__, lp, ldg);
  3478. spin_lock_irqsave(&np->lock, flags);
  3479. v0 = nr64(LDSV0(ldg));
  3480. v1 = nr64(LDSV1(ldg));
  3481. v2 = nr64(LDSV2(ldg));
  3482. if (netif_msg_intr(np))
  3483. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3484. (unsigned long long) v0,
  3485. (unsigned long long) v1,
  3486. (unsigned long long) v2);
  3487. if (unlikely(!v0 && !v1 && !v2)) {
  3488. spin_unlock_irqrestore(&np->lock, flags);
  3489. return IRQ_NONE;
  3490. }
  3491. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3492. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3493. if (err)
  3494. goto out;
  3495. }
  3496. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3497. niu_schedule_napi(np, lp, v0, v1, v2);
  3498. else
  3499. niu_ldg_rearm(np, lp, 1);
  3500. out:
  3501. spin_unlock_irqrestore(&np->lock, flags);
  3502. return IRQ_HANDLED;
  3503. }
  3504. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3505. {
  3506. if (rp->mbox) {
  3507. np->ops->free_coherent(np->device,
  3508. sizeof(struct rxdma_mailbox),
  3509. rp->mbox, rp->mbox_dma);
  3510. rp->mbox = NULL;
  3511. }
  3512. if (rp->rcr) {
  3513. np->ops->free_coherent(np->device,
  3514. MAX_RCR_RING_SIZE * sizeof(__le64),
  3515. rp->rcr, rp->rcr_dma);
  3516. rp->rcr = NULL;
  3517. rp->rcr_table_size = 0;
  3518. rp->rcr_index = 0;
  3519. }
  3520. if (rp->rbr) {
  3521. niu_rbr_free(np, rp);
  3522. np->ops->free_coherent(np->device,
  3523. MAX_RBR_RING_SIZE * sizeof(__le32),
  3524. rp->rbr, rp->rbr_dma);
  3525. rp->rbr = NULL;
  3526. rp->rbr_table_size = 0;
  3527. rp->rbr_index = 0;
  3528. }
  3529. kfree(rp->rxhash);
  3530. rp->rxhash = NULL;
  3531. }
  3532. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3533. {
  3534. if (rp->mbox) {
  3535. np->ops->free_coherent(np->device,
  3536. sizeof(struct txdma_mailbox),
  3537. rp->mbox, rp->mbox_dma);
  3538. rp->mbox = NULL;
  3539. }
  3540. if (rp->descr) {
  3541. int i;
  3542. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3543. if (rp->tx_buffs[i].skb)
  3544. (void) release_tx_packet(np, rp, i);
  3545. }
  3546. np->ops->free_coherent(np->device,
  3547. MAX_TX_RING_SIZE * sizeof(__le64),
  3548. rp->descr, rp->descr_dma);
  3549. rp->descr = NULL;
  3550. rp->pending = 0;
  3551. rp->prod = 0;
  3552. rp->cons = 0;
  3553. rp->wrap_bit = 0;
  3554. }
  3555. }
  3556. static void niu_free_channels(struct niu *np)
  3557. {
  3558. int i;
  3559. if (np->rx_rings) {
  3560. for (i = 0; i < np->num_rx_rings; i++) {
  3561. struct rx_ring_info *rp = &np->rx_rings[i];
  3562. niu_free_rx_ring_info(np, rp);
  3563. }
  3564. kfree(np->rx_rings);
  3565. np->rx_rings = NULL;
  3566. np->num_rx_rings = 0;
  3567. }
  3568. if (np->tx_rings) {
  3569. for (i = 0; i < np->num_tx_rings; i++) {
  3570. struct tx_ring_info *rp = &np->tx_rings[i];
  3571. niu_free_tx_ring_info(np, rp);
  3572. }
  3573. kfree(np->tx_rings);
  3574. np->tx_rings = NULL;
  3575. np->num_tx_rings = 0;
  3576. }
  3577. }
  3578. static int niu_alloc_rx_ring_info(struct niu *np,
  3579. struct rx_ring_info *rp)
  3580. {
  3581. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3582. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3583. GFP_KERNEL);
  3584. if (!rp->rxhash)
  3585. return -ENOMEM;
  3586. rp->mbox = np->ops->alloc_coherent(np->device,
  3587. sizeof(struct rxdma_mailbox),
  3588. &rp->mbox_dma, GFP_KERNEL);
  3589. if (!rp->mbox)
  3590. return -ENOMEM;
  3591. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3592. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3593. rp->mbox);
  3594. return -EINVAL;
  3595. }
  3596. rp->rcr = np->ops->alloc_coherent(np->device,
  3597. MAX_RCR_RING_SIZE * sizeof(__le64),
  3598. &rp->rcr_dma, GFP_KERNEL);
  3599. if (!rp->rcr)
  3600. return -ENOMEM;
  3601. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3602. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3603. rp->rcr);
  3604. return -EINVAL;
  3605. }
  3606. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3607. rp->rcr_index = 0;
  3608. rp->rbr = np->ops->alloc_coherent(np->device,
  3609. MAX_RBR_RING_SIZE * sizeof(__le32),
  3610. &rp->rbr_dma, GFP_KERNEL);
  3611. if (!rp->rbr)
  3612. return -ENOMEM;
  3613. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3614. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3615. rp->rbr);
  3616. return -EINVAL;
  3617. }
  3618. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3619. rp->rbr_index = 0;
  3620. rp->rbr_pending = 0;
  3621. return 0;
  3622. }
  3623. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3624. {
  3625. int mtu = np->dev->mtu;
  3626. /* These values are recommended by the HW designers for fair
  3627. * utilization of DRR amongst the rings.
  3628. */
  3629. rp->max_burst = mtu + 32;
  3630. if (rp->max_burst > 4096)
  3631. rp->max_burst = 4096;
  3632. }
  3633. static int niu_alloc_tx_ring_info(struct niu *np,
  3634. struct tx_ring_info *rp)
  3635. {
  3636. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3637. rp->mbox = np->ops->alloc_coherent(np->device,
  3638. sizeof(struct txdma_mailbox),
  3639. &rp->mbox_dma, GFP_KERNEL);
  3640. if (!rp->mbox)
  3641. return -ENOMEM;
  3642. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3643. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3644. rp->mbox);
  3645. return -EINVAL;
  3646. }
  3647. rp->descr = np->ops->alloc_coherent(np->device,
  3648. MAX_TX_RING_SIZE * sizeof(__le64),
  3649. &rp->descr_dma, GFP_KERNEL);
  3650. if (!rp->descr)
  3651. return -ENOMEM;
  3652. if ((unsigned long)rp->descr & (64UL - 1)) {
  3653. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3654. rp->descr);
  3655. return -EINVAL;
  3656. }
  3657. rp->pending = MAX_TX_RING_SIZE;
  3658. rp->prod = 0;
  3659. rp->cons = 0;
  3660. rp->wrap_bit = 0;
  3661. /* XXX make these configurable... XXX */
  3662. rp->mark_freq = rp->pending / 4;
  3663. niu_set_max_burst(np, rp);
  3664. return 0;
  3665. }
  3666. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3667. {
  3668. u16 bss;
  3669. bss = min(PAGE_SHIFT, 15);
  3670. rp->rbr_block_size = 1 << bss;
  3671. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3672. rp->rbr_sizes[0] = 256;
  3673. rp->rbr_sizes[1] = 1024;
  3674. if (np->dev->mtu > ETH_DATA_LEN) {
  3675. switch (PAGE_SIZE) {
  3676. case 4 * 1024:
  3677. rp->rbr_sizes[2] = 4096;
  3678. break;
  3679. default:
  3680. rp->rbr_sizes[2] = 8192;
  3681. break;
  3682. }
  3683. } else {
  3684. rp->rbr_sizes[2] = 2048;
  3685. }
  3686. rp->rbr_sizes[3] = rp->rbr_block_size;
  3687. }
  3688. static int niu_alloc_channels(struct niu *np)
  3689. {
  3690. struct niu_parent *parent = np->parent;
  3691. int first_rx_channel, first_tx_channel;
  3692. int num_rx_rings, num_tx_rings;
  3693. struct rx_ring_info *rx_rings;
  3694. struct tx_ring_info *tx_rings;
  3695. int i, port, err;
  3696. port = np->port;
  3697. first_rx_channel = first_tx_channel = 0;
  3698. for (i = 0; i < port; i++) {
  3699. first_rx_channel += parent->rxchan_per_port[i];
  3700. first_tx_channel += parent->txchan_per_port[i];
  3701. }
  3702. num_rx_rings = parent->rxchan_per_port[port];
  3703. num_tx_rings = parent->txchan_per_port[port];
  3704. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3705. GFP_KERNEL);
  3706. err = -ENOMEM;
  3707. if (!rx_rings)
  3708. goto out_err;
  3709. np->num_rx_rings = num_rx_rings;
  3710. smp_wmb();
  3711. np->rx_rings = rx_rings;
  3712. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3713. for (i = 0; i < np->num_rx_rings; i++) {
  3714. struct rx_ring_info *rp = &np->rx_rings[i];
  3715. rp->np = np;
  3716. rp->rx_channel = first_rx_channel + i;
  3717. err = niu_alloc_rx_ring_info(np, rp);
  3718. if (err)
  3719. goto out_err;
  3720. niu_size_rbr(np, rp);
  3721. /* XXX better defaults, configurable, etc... XXX */
  3722. rp->nonsyn_window = 64;
  3723. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3724. rp->syn_window = 64;
  3725. rp->syn_threshold = rp->rcr_table_size - 64;
  3726. rp->rcr_pkt_threshold = 16;
  3727. rp->rcr_timeout = 8;
  3728. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3729. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3730. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3731. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3732. if (err)
  3733. return err;
  3734. }
  3735. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3736. GFP_KERNEL);
  3737. err = -ENOMEM;
  3738. if (!tx_rings)
  3739. goto out_err;
  3740. np->num_tx_rings = num_tx_rings;
  3741. smp_wmb();
  3742. np->tx_rings = tx_rings;
  3743. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3744. for (i = 0; i < np->num_tx_rings; i++) {
  3745. struct tx_ring_info *rp = &np->tx_rings[i];
  3746. rp->np = np;
  3747. rp->tx_channel = first_tx_channel + i;
  3748. err = niu_alloc_tx_ring_info(np, rp);
  3749. if (err)
  3750. goto out_err;
  3751. }
  3752. return 0;
  3753. out_err:
  3754. niu_free_channels(np);
  3755. return err;
  3756. }
  3757. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3758. {
  3759. int limit = 1000;
  3760. while (--limit > 0) {
  3761. u64 val = nr64(TX_CS(channel));
  3762. if (val & TX_CS_SNG_STATE)
  3763. return 0;
  3764. }
  3765. return -ENODEV;
  3766. }
  3767. static int niu_tx_channel_stop(struct niu *np, int channel)
  3768. {
  3769. u64 val = nr64(TX_CS(channel));
  3770. val |= TX_CS_STOP_N_GO;
  3771. nw64(TX_CS(channel), val);
  3772. return niu_tx_cs_sng_poll(np, channel);
  3773. }
  3774. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3775. {
  3776. int limit = 1000;
  3777. while (--limit > 0) {
  3778. u64 val = nr64(TX_CS(channel));
  3779. if (!(val & TX_CS_RST))
  3780. return 0;
  3781. }
  3782. return -ENODEV;
  3783. }
  3784. static int niu_tx_channel_reset(struct niu *np, int channel)
  3785. {
  3786. u64 val = nr64(TX_CS(channel));
  3787. int err;
  3788. val |= TX_CS_RST;
  3789. nw64(TX_CS(channel), val);
  3790. err = niu_tx_cs_reset_poll(np, channel);
  3791. if (!err)
  3792. nw64(TX_RING_KICK(channel), 0);
  3793. return err;
  3794. }
  3795. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3796. {
  3797. u64 val;
  3798. nw64(TX_LOG_MASK1(channel), 0);
  3799. nw64(TX_LOG_VAL1(channel), 0);
  3800. nw64(TX_LOG_MASK2(channel), 0);
  3801. nw64(TX_LOG_VAL2(channel), 0);
  3802. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3803. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3804. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3805. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3806. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3807. nw64(TX_LOG_PAGE_VLD(channel), val);
  3808. /* XXX TXDMA 32bit mode? XXX */
  3809. return 0;
  3810. }
  3811. static void niu_txc_enable_port(struct niu *np, int on)
  3812. {
  3813. unsigned long flags;
  3814. u64 val, mask;
  3815. niu_lock_parent(np, flags);
  3816. val = nr64(TXC_CONTROL);
  3817. mask = (u64)1 << np->port;
  3818. if (on) {
  3819. val |= TXC_CONTROL_ENABLE | mask;
  3820. } else {
  3821. val &= ~mask;
  3822. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3823. val &= ~TXC_CONTROL_ENABLE;
  3824. }
  3825. nw64(TXC_CONTROL, val);
  3826. niu_unlock_parent(np, flags);
  3827. }
  3828. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3829. {
  3830. unsigned long flags;
  3831. u64 val;
  3832. niu_lock_parent(np, flags);
  3833. val = nr64(TXC_INT_MASK);
  3834. val &= ~TXC_INT_MASK_VAL(np->port);
  3835. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3836. niu_unlock_parent(np, flags);
  3837. }
  3838. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3839. {
  3840. u64 val = 0;
  3841. if (on) {
  3842. int i;
  3843. for (i = 0; i < np->num_tx_rings; i++)
  3844. val |= (1 << np->tx_rings[i].tx_channel);
  3845. }
  3846. nw64(TXC_PORT_DMA(np->port), val);
  3847. }
  3848. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3849. {
  3850. int err, channel = rp->tx_channel;
  3851. u64 val, ring_len;
  3852. err = niu_tx_channel_stop(np, channel);
  3853. if (err)
  3854. return err;
  3855. err = niu_tx_channel_reset(np, channel);
  3856. if (err)
  3857. return err;
  3858. err = niu_tx_channel_lpage_init(np, channel);
  3859. if (err)
  3860. return err;
  3861. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3862. nw64(TX_ENT_MSK(channel), 0);
  3863. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3864. TX_RNG_CFIG_STADDR)) {
  3865. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3866. channel, (unsigned long long)rp->descr_dma);
  3867. return -EINVAL;
  3868. }
  3869. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3870. * blocks. rp->pending is the number of TX descriptors in
  3871. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3872. * to get the proper value the chip wants.
  3873. */
  3874. ring_len = (rp->pending / 8);
  3875. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3876. rp->descr_dma);
  3877. nw64(TX_RNG_CFIG(channel), val);
  3878. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3879. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3880. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3881. channel, (unsigned long long)rp->mbox_dma);
  3882. return -EINVAL;
  3883. }
  3884. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3885. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3886. nw64(TX_CS(channel), 0);
  3887. rp->last_pkt_cnt = 0;
  3888. return 0;
  3889. }
  3890. static void niu_init_rdc_groups(struct niu *np)
  3891. {
  3892. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3893. int i, first_table_num = tp->first_table_num;
  3894. for (i = 0; i < tp->num_tables; i++) {
  3895. struct rdc_table *tbl = &tp->tables[i];
  3896. int this_table = first_table_num + i;
  3897. int slot;
  3898. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3899. nw64(RDC_TBL(this_table, slot),
  3900. tbl->rxdma_channel[slot]);
  3901. }
  3902. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3903. }
  3904. static void niu_init_drr_weight(struct niu *np)
  3905. {
  3906. int type = phy_decode(np->parent->port_phy, np->port);
  3907. u64 val;
  3908. switch (type) {
  3909. case PORT_TYPE_10G:
  3910. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3911. break;
  3912. case PORT_TYPE_1G:
  3913. default:
  3914. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3915. break;
  3916. }
  3917. nw64(PT_DRR_WT(np->port), val);
  3918. }
  3919. static int niu_init_hostinfo(struct niu *np)
  3920. {
  3921. struct niu_parent *parent = np->parent;
  3922. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3923. int i, err, num_alt = niu_num_alt_addr(np);
  3924. int first_rdc_table = tp->first_table_num;
  3925. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3926. if (err)
  3927. return err;
  3928. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3929. if (err)
  3930. return err;
  3931. for (i = 0; i < num_alt; i++) {
  3932. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3933. if (err)
  3934. return err;
  3935. }
  3936. return 0;
  3937. }
  3938. static int niu_rx_channel_reset(struct niu *np, int channel)
  3939. {
  3940. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3941. RXDMA_CFIG1_RST, 1000, 10,
  3942. "RXDMA_CFIG1");
  3943. }
  3944. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3945. {
  3946. u64 val;
  3947. nw64(RX_LOG_MASK1(channel), 0);
  3948. nw64(RX_LOG_VAL1(channel), 0);
  3949. nw64(RX_LOG_MASK2(channel), 0);
  3950. nw64(RX_LOG_VAL2(channel), 0);
  3951. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3952. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3953. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3954. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3955. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3956. nw64(RX_LOG_PAGE_VLD(channel), val);
  3957. return 0;
  3958. }
  3959. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3960. {
  3961. u64 val;
  3962. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3963. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3964. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3965. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3966. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3967. }
  3968. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3969. {
  3970. u64 val = 0;
  3971. *ret = 0;
  3972. switch (rp->rbr_block_size) {
  3973. case 4 * 1024:
  3974. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3975. break;
  3976. case 8 * 1024:
  3977. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3978. break;
  3979. case 16 * 1024:
  3980. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3981. break;
  3982. case 32 * 1024:
  3983. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3984. break;
  3985. default:
  3986. return -EINVAL;
  3987. }
  3988. val |= RBR_CFIG_B_VLD2;
  3989. switch (rp->rbr_sizes[2]) {
  3990. case 2 * 1024:
  3991. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3992. break;
  3993. case 4 * 1024:
  3994. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3995. break;
  3996. case 8 * 1024:
  3997. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3998. break;
  3999. case 16 * 1024:
  4000. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4001. break;
  4002. default:
  4003. return -EINVAL;
  4004. }
  4005. val |= RBR_CFIG_B_VLD1;
  4006. switch (rp->rbr_sizes[1]) {
  4007. case 1 * 1024:
  4008. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4009. break;
  4010. case 2 * 1024:
  4011. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4012. break;
  4013. case 4 * 1024:
  4014. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4015. break;
  4016. case 8 * 1024:
  4017. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4018. break;
  4019. default:
  4020. return -EINVAL;
  4021. }
  4022. val |= RBR_CFIG_B_VLD0;
  4023. switch (rp->rbr_sizes[0]) {
  4024. case 256:
  4025. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4026. break;
  4027. case 512:
  4028. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4029. break;
  4030. case 1 * 1024:
  4031. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4032. break;
  4033. case 2 * 1024:
  4034. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4035. break;
  4036. default:
  4037. return -EINVAL;
  4038. }
  4039. *ret = val;
  4040. return 0;
  4041. }
  4042. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4043. {
  4044. u64 val = nr64(RXDMA_CFIG1(channel));
  4045. int limit;
  4046. if (on)
  4047. val |= RXDMA_CFIG1_EN;
  4048. else
  4049. val &= ~RXDMA_CFIG1_EN;
  4050. nw64(RXDMA_CFIG1(channel), val);
  4051. limit = 1000;
  4052. while (--limit > 0) {
  4053. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4054. break;
  4055. udelay(10);
  4056. }
  4057. if (limit <= 0)
  4058. return -ENODEV;
  4059. return 0;
  4060. }
  4061. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4062. {
  4063. int err, channel = rp->rx_channel;
  4064. u64 val;
  4065. err = niu_rx_channel_reset(np, channel);
  4066. if (err)
  4067. return err;
  4068. err = niu_rx_channel_lpage_init(np, channel);
  4069. if (err)
  4070. return err;
  4071. niu_rx_channel_wred_init(np, rp);
  4072. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4073. nw64(RX_DMA_CTL_STAT(channel),
  4074. (RX_DMA_CTL_STAT_MEX |
  4075. RX_DMA_CTL_STAT_RCRTHRES |
  4076. RX_DMA_CTL_STAT_RCRTO |
  4077. RX_DMA_CTL_STAT_RBR_EMPTY));
  4078. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4079. nw64(RXDMA_CFIG2(channel),
  4080. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4081. RXDMA_CFIG2_FULL_HDR));
  4082. nw64(RBR_CFIG_A(channel),
  4083. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4084. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4085. err = niu_compute_rbr_cfig_b(rp, &val);
  4086. if (err)
  4087. return err;
  4088. nw64(RBR_CFIG_B(channel), val);
  4089. nw64(RCRCFIG_A(channel),
  4090. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4091. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4092. nw64(RCRCFIG_B(channel),
  4093. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4094. RCRCFIG_B_ENTOUT |
  4095. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4096. err = niu_enable_rx_channel(np, channel, 1);
  4097. if (err)
  4098. return err;
  4099. nw64(RBR_KICK(channel), rp->rbr_index);
  4100. val = nr64(RX_DMA_CTL_STAT(channel));
  4101. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4102. nw64(RX_DMA_CTL_STAT(channel), val);
  4103. return 0;
  4104. }
  4105. static int niu_init_rx_channels(struct niu *np)
  4106. {
  4107. unsigned long flags;
  4108. u64 seed = jiffies_64;
  4109. int err, i;
  4110. niu_lock_parent(np, flags);
  4111. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4112. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4113. niu_unlock_parent(np, flags);
  4114. /* XXX RXDMA 32bit mode? XXX */
  4115. niu_init_rdc_groups(np);
  4116. niu_init_drr_weight(np);
  4117. err = niu_init_hostinfo(np);
  4118. if (err)
  4119. return err;
  4120. for (i = 0; i < np->num_rx_rings; i++) {
  4121. struct rx_ring_info *rp = &np->rx_rings[i];
  4122. err = niu_init_one_rx_channel(np, rp);
  4123. if (err)
  4124. return err;
  4125. }
  4126. return 0;
  4127. }
  4128. static int niu_set_ip_frag_rule(struct niu *np)
  4129. {
  4130. struct niu_parent *parent = np->parent;
  4131. struct niu_classifier *cp = &np->clas;
  4132. struct niu_tcam_entry *tp;
  4133. int index, err;
  4134. index = cp->tcam_top;
  4135. tp = &parent->tcam[index];
  4136. /* Note that the noport bit is the same in both ipv4 and
  4137. * ipv6 format TCAM entries.
  4138. */
  4139. memset(tp, 0, sizeof(*tp));
  4140. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4141. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4142. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4143. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4144. err = tcam_write(np, index, tp->key, tp->key_mask);
  4145. if (err)
  4146. return err;
  4147. err = tcam_assoc_write(np, index, tp->assoc_data);
  4148. if (err)
  4149. return err;
  4150. tp->valid = 1;
  4151. cp->tcam_valid_entries++;
  4152. return 0;
  4153. }
  4154. static int niu_init_classifier_hw(struct niu *np)
  4155. {
  4156. struct niu_parent *parent = np->parent;
  4157. struct niu_classifier *cp = &np->clas;
  4158. int i, err;
  4159. nw64(H1POLY, cp->h1_init);
  4160. nw64(H2POLY, cp->h2_init);
  4161. err = niu_init_hostinfo(np);
  4162. if (err)
  4163. return err;
  4164. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4165. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4166. vlan_tbl_write(np, i, np->port,
  4167. vp->vlan_pref, vp->rdc_num);
  4168. }
  4169. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4170. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4171. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4172. ap->rdc_num, ap->mac_pref);
  4173. if (err)
  4174. return err;
  4175. }
  4176. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4177. int index = i - CLASS_CODE_USER_PROG1;
  4178. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4179. if (err)
  4180. return err;
  4181. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4182. if (err)
  4183. return err;
  4184. }
  4185. err = niu_set_ip_frag_rule(np);
  4186. if (err)
  4187. return err;
  4188. tcam_enable(np, 1);
  4189. return 0;
  4190. }
  4191. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4192. {
  4193. nw64(ZCP_RAM_DATA0, data[0]);
  4194. nw64(ZCP_RAM_DATA1, data[1]);
  4195. nw64(ZCP_RAM_DATA2, data[2]);
  4196. nw64(ZCP_RAM_DATA3, data[3]);
  4197. nw64(ZCP_RAM_DATA4, data[4]);
  4198. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4199. nw64(ZCP_RAM_ACC,
  4200. (ZCP_RAM_ACC_WRITE |
  4201. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4202. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4203. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4204. 1000, 100);
  4205. }
  4206. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4207. {
  4208. int err;
  4209. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4210. 1000, 100);
  4211. if (err) {
  4212. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4213. (unsigned long long)nr64(ZCP_RAM_ACC));
  4214. return err;
  4215. }
  4216. nw64(ZCP_RAM_ACC,
  4217. (ZCP_RAM_ACC_READ |
  4218. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4219. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4220. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4221. 1000, 100);
  4222. if (err) {
  4223. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4224. (unsigned long long)nr64(ZCP_RAM_ACC));
  4225. return err;
  4226. }
  4227. data[0] = nr64(ZCP_RAM_DATA0);
  4228. data[1] = nr64(ZCP_RAM_DATA1);
  4229. data[2] = nr64(ZCP_RAM_DATA2);
  4230. data[3] = nr64(ZCP_RAM_DATA3);
  4231. data[4] = nr64(ZCP_RAM_DATA4);
  4232. return 0;
  4233. }
  4234. static void niu_zcp_cfifo_reset(struct niu *np)
  4235. {
  4236. u64 val = nr64(RESET_CFIFO);
  4237. val |= RESET_CFIFO_RST(np->port);
  4238. nw64(RESET_CFIFO, val);
  4239. udelay(10);
  4240. val &= ~RESET_CFIFO_RST(np->port);
  4241. nw64(RESET_CFIFO, val);
  4242. }
  4243. static int niu_init_zcp(struct niu *np)
  4244. {
  4245. u64 data[5], rbuf[5];
  4246. int i, max, err;
  4247. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4248. if (np->port == 0 || np->port == 1)
  4249. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4250. else
  4251. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4252. } else
  4253. max = NIU_CFIFO_ENTRIES;
  4254. data[0] = 0;
  4255. data[1] = 0;
  4256. data[2] = 0;
  4257. data[3] = 0;
  4258. data[4] = 0;
  4259. for (i = 0; i < max; i++) {
  4260. err = niu_zcp_write(np, i, data);
  4261. if (err)
  4262. return err;
  4263. err = niu_zcp_read(np, i, rbuf);
  4264. if (err)
  4265. return err;
  4266. }
  4267. niu_zcp_cfifo_reset(np);
  4268. nw64(CFIFO_ECC(np->port), 0);
  4269. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4270. (void) nr64(ZCP_INT_STAT);
  4271. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4272. return 0;
  4273. }
  4274. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4275. {
  4276. u64 val = nr64_ipp(IPP_CFIG);
  4277. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4278. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4279. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4280. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4281. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4282. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4283. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4284. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4285. }
  4286. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4287. {
  4288. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4289. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4290. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4291. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4292. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4293. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4294. }
  4295. static int niu_ipp_reset(struct niu *np)
  4296. {
  4297. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4298. 1000, 100, "IPP_CFIG");
  4299. }
  4300. static int niu_init_ipp(struct niu *np)
  4301. {
  4302. u64 data[5], rbuf[5], val;
  4303. int i, max, err;
  4304. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4305. if (np->port == 0 || np->port == 1)
  4306. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4307. else
  4308. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4309. } else
  4310. max = NIU_DFIFO_ENTRIES;
  4311. data[0] = 0;
  4312. data[1] = 0;
  4313. data[2] = 0;
  4314. data[3] = 0;
  4315. data[4] = 0;
  4316. for (i = 0; i < max; i++) {
  4317. niu_ipp_write(np, i, data);
  4318. niu_ipp_read(np, i, rbuf);
  4319. }
  4320. (void) nr64_ipp(IPP_INT_STAT);
  4321. (void) nr64_ipp(IPP_INT_STAT);
  4322. err = niu_ipp_reset(np);
  4323. if (err)
  4324. return err;
  4325. (void) nr64_ipp(IPP_PKT_DIS);
  4326. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4327. (void) nr64_ipp(IPP_ECC);
  4328. (void) nr64_ipp(IPP_INT_STAT);
  4329. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4330. val = nr64_ipp(IPP_CFIG);
  4331. val &= ~IPP_CFIG_IP_MAX_PKT;
  4332. val |= (IPP_CFIG_IPP_ENABLE |
  4333. IPP_CFIG_DFIFO_ECC_EN |
  4334. IPP_CFIG_DROP_BAD_CRC |
  4335. IPP_CFIG_CKSUM_EN |
  4336. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4337. nw64_ipp(IPP_CFIG, val);
  4338. return 0;
  4339. }
  4340. static void niu_handle_led(struct niu *np, int status)
  4341. {
  4342. u64 val;
  4343. val = nr64_mac(XMAC_CONFIG);
  4344. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4345. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4346. if (status) {
  4347. val |= XMAC_CONFIG_LED_POLARITY;
  4348. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4349. } else {
  4350. val |= XMAC_CONFIG_FORCE_LED_ON;
  4351. val &= ~XMAC_CONFIG_LED_POLARITY;
  4352. }
  4353. }
  4354. nw64_mac(XMAC_CONFIG, val);
  4355. }
  4356. static void niu_init_xif_xmac(struct niu *np)
  4357. {
  4358. struct niu_link_config *lp = &np->link_config;
  4359. u64 val;
  4360. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4361. val = nr64(MIF_CONFIG);
  4362. val |= MIF_CONFIG_ATCA_GE;
  4363. nw64(MIF_CONFIG, val);
  4364. }
  4365. val = nr64_mac(XMAC_CONFIG);
  4366. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4367. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4368. if (lp->loopback_mode == LOOPBACK_MAC) {
  4369. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4370. val |= XMAC_CONFIG_LOOPBACK;
  4371. } else {
  4372. val &= ~XMAC_CONFIG_LOOPBACK;
  4373. }
  4374. if (np->flags & NIU_FLAGS_10G) {
  4375. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4376. } else {
  4377. val |= XMAC_CONFIG_LFS_DISABLE;
  4378. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4379. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4380. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4381. else
  4382. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4383. }
  4384. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4385. if (lp->active_speed == SPEED_100)
  4386. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4387. else
  4388. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4389. nw64_mac(XMAC_CONFIG, val);
  4390. val = nr64_mac(XMAC_CONFIG);
  4391. val &= ~XMAC_CONFIG_MODE_MASK;
  4392. if (np->flags & NIU_FLAGS_10G) {
  4393. val |= XMAC_CONFIG_MODE_XGMII;
  4394. } else {
  4395. if (lp->active_speed == SPEED_1000)
  4396. val |= XMAC_CONFIG_MODE_GMII;
  4397. else
  4398. val |= XMAC_CONFIG_MODE_MII;
  4399. }
  4400. nw64_mac(XMAC_CONFIG, val);
  4401. }
  4402. static void niu_init_xif_bmac(struct niu *np)
  4403. {
  4404. struct niu_link_config *lp = &np->link_config;
  4405. u64 val;
  4406. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4407. if (lp->loopback_mode == LOOPBACK_MAC)
  4408. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4409. else
  4410. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4411. if (lp->active_speed == SPEED_1000)
  4412. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4413. else
  4414. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4415. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4416. BMAC_XIF_CONFIG_LED_POLARITY);
  4417. if (!(np->flags & NIU_FLAGS_10G) &&
  4418. !(np->flags & NIU_FLAGS_FIBER) &&
  4419. lp->active_speed == SPEED_100)
  4420. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4421. else
  4422. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4423. nw64_mac(BMAC_XIF_CONFIG, val);
  4424. }
  4425. static void niu_init_xif(struct niu *np)
  4426. {
  4427. if (np->flags & NIU_FLAGS_XMAC)
  4428. niu_init_xif_xmac(np);
  4429. else
  4430. niu_init_xif_bmac(np);
  4431. }
  4432. static void niu_pcs_mii_reset(struct niu *np)
  4433. {
  4434. int limit = 1000;
  4435. u64 val = nr64_pcs(PCS_MII_CTL);
  4436. val |= PCS_MII_CTL_RST;
  4437. nw64_pcs(PCS_MII_CTL, val);
  4438. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4439. udelay(100);
  4440. val = nr64_pcs(PCS_MII_CTL);
  4441. }
  4442. }
  4443. static void niu_xpcs_reset(struct niu *np)
  4444. {
  4445. int limit = 1000;
  4446. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4447. val |= XPCS_CONTROL1_RESET;
  4448. nw64_xpcs(XPCS_CONTROL1, val);
  4449. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4450. udelay(100);
  4451. val = nr64_xpcs(XPCS_CONTROL1);
  4452. }
  4453. }
  4454. static int niu_init_pcs(struct niu *np)
  4455. {
  4456. struct niu_link_config *lp = &np->link_config;
  4457. u64 val;
  4458. switch (np->flags & (NIU_FLAGS_10G |
  4459. NIU_FLAGS_FIBER |
  4460. NIU_FLAGS_XCVR_SERDES)) {
  4461. case NIU_FLAGS_FIBER:
  4462. /* 1G fiber */
  4463. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4464. nw64_pcs(PCS_DPATH_MODE, 0);
  4465. niu_pcs_mii_reset(np);
  4466. break;
  4467. case NIU_FLAGS_10G:
  4468. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4469. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4470. /* 10G SERDES */
  4471. if (!(np->flags & NIU_FLAGS_XMAC))
  4472. return -EINVAL;
  4473. /* 10G copper or fiber */
  4474. val = nr64_mac(XMAC_CONFIG);
  4475. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4476. nw64_mac(XMAC_CONFIG, val);
  4477. niu_xpcs_reset(np);
  4478. val = nr64_xpcs(XPCS_CONTROL1);
  4479. if (lp->loopback_mode == LOOPBACK_PHY)
  4480. val |= XPCS_CONTROL1_LOOPBACK;
  4481. else
  4482. val &= ~XPCS_CONTROL1_LOOPBACK;
  4483. nw64_xpcs(XPCS_CONTROL1, val);
  4484. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4485. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4486. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4487. break;
  4488. case NIU_FLAGS_XCVR_SERDES:
  4489. /* 1G SERDES */
  4490. niu_pcs_mii_reset(np);
  4491. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4492. nw64_pcs(PCS_DPATH_MODE, 0);
  4493. break;
  4494. case 0:
  4495. /* 1G copper */
  4496. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4497. /* 1G RGMII FIBER */
  4498. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4499. niu_pcs_mii_reset(np);
  4500. break;
  4501. default:
  4502. return -EINVAL;
  4503. }
  4504. return 0;
  4505. }
  4506. static int niu_reset_tx_xmac(struct niu *np)
  4507. {
  4508. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4509. (XTXMAC_SW_RST_REG_RS |
  4510. XTXMAC_SW_RST_SOFT_RST),
  4511. 1000, 100, "XTXMAC_SW_RST");
  4512. }
  4513. static int niu_reset_tx_bmac(struct niu *np)
  4514. {
  4515. int limit;
  4516. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4517. limit = 1000;
  4518. while (--limit >= 0) {
  4519. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4520. break;
  4521. udelay(100);
  4522. }
  4523. if (limit < 0) {
  4524. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4525. np->port,
  4526. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4527. return -ENODEV;
  4528. }
  4529. return 0;
  4530. }
  4531. static int niu_reset_tx_mac(struct niu *np)
  4532. {
  4533. if (np->flags & NIU_FLAGS_XMAC)
  4534. return niu_reset_tx_xmac(np);
  4535. else
  4536. return niu_reset_tx_bmac(np);
  4537. }
  4538. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4539. {
  4540. u64 val;
  4541. val = nr64_mac(XMAC_MIN);
  4542. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4543. XMAC_MIN_RX_MIN_PKT_SIZE);
  4544. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4545. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4546. nw64_mac(XMAC_MIN, val);
  4547. nw64_mac(XMAC_MAX, max);
  4548. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4549. val = nr64_mac(XMAC_IPG);
  4550. if (np->flags & NIU_FLAGS_10G) {
  4551. val &= ~XMAC_IPG_IPG_XGMII;
  4552. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4553. } else {
  4554. val &= ~XMAC_IPG_IPG_MII_GMII;
  4555. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4556. }
  4557. nw64_mac(XMAC_IPG, val);
  4558. val = nr64_mac(XMAC_CONFIG);
  4559. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4560. XMAC_CONFIG_STRETCH_MODE |
  4561. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4562. XMAC_CONFIG_TX_ENABLE);
  4563. nw64_mac(XMAC_CONFIG, val);
  4564. nw64_mac(TXMAC_FRM_CNT, 0);
  4565. nw64_mac(TXMAC_BYTE_CNT, 0);
  4566. }
  4567. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4568. {
  4569. u64 val;
  4570. nw64_mac(BMAC_MIN_FRAME, min);
  4571. nw64_mac(BMAC_MAX_FRAME, max);
  4572. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4573. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4574. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4575. val = nr64_mac(BTXMAC_CONFIG);
  4576. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4577. BTXMAC_CONFIG_ENABLE);
  4578. nw64_mac(BTXMAC_CONFIG, val);
  4579. }
  4580. static void niu_init_tx_mac(struct niu *np)
  4581. {
  4582. u64 min, max;
  4583. min = 64;
  4584. if (np->dev->mtu > ETH_DATA_LEN)
  4585. max = 9216;
  4586. else
  4587. max = 1522;
  4588. /* The XMAC_MIN register only accepts values for TX min which
  4589. * have the low 3 bits cleared.
  4590. */
  4591. BUG_ON(min & 0x7);
  4592. if (np->flags & NIU_FLAGS_XMAC)
  4593. niu_init_tx_xmac(np, min, max);
  4594. else
  4595. niu_init_tx_bmac(np, min, max);
  4596. }
  4597. static int niu_reset_rx_xmac(struct niu *np)
  4598. {
  4599. int limit;
  4600. nw64_mac(XRXMAC_SW_RST,
  4601. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4602. limit = 1000;
  4603. while (--limit >= 0) {
  4604. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4605. XRXMAC_SW_RST_SOFT_RST)))
  4606. break;
  4607. udelay(100);
  4608. }
  4609. if (limit < 0) {
  4610. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4611. np->port,
  4612. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4613. return -ENODEV;
  4614. }
  4615. return 0;
  4616. }
  4617. static int niu_reset_rx_bmac(struct niu *np)
  4618. {
  4619. int limit;
  4620. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4621. limit = 1000;
  4622. while (--limit >= 0) {
  4623. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4624. break;
  4625. udelay(100);
  4626. }
  4627. if (limit < 0) {
  4628. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4629. np->port,
  4630. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4631. return -ENODEV;
  4632. }
  4633. return 0;
  4634. }
  4635. static int niu_reset_rx_mac(struct niu *np)
  4636. {
  4637. if (np->flags & NIU_FLAGS_XMAC)
  4638. return niu_reset_rx_xmac(np);
  4639. else
  4640. return niu_reset_rx_bmac(np);
  4641. }
  4642. static void niu_init_rx_xmac(struct niu *np)
  4643. {
  4644. struct niu_parent *parent = np->parent;
  4645. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4646. int first_rdc_table = tp->first_table_num;
  4647. unsigned long i;
  4648. u64 val;
  4649. nw64_mac(XMAC_ADD_FILT0, 0);
  4650. nw64_mac(XMAC_ADD_FILT1, 0);
  4651. nw64_mac(XMAC_ADD_FILT2, 0);
  4652. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4653. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4654. for (i = 0; i < MAC_NUM_HASH; i++)
  4655. nw64_mac(XMAC_HASH_TBL(i), 0);
  4656. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4657. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4658. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4659. val = nr64_mac(XMAC_CONFIG);
  4660. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4661. XMAC_CONFIG_PROMISCUOUS |
  4662. XMAC_CONFIG_PROMISC_GROUP |
  4663. XMAC_CONFIG_ERR_CHK_DIS |
  4664. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4665. XMAC_CONFIG_RESERVED_MULTICAST |
  4666. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4667. XMAC_CONFIG_ADDR_FILTER_EN |
  4668. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4669. XMAC_CONFIG_STRIP_CRC |
  4670. XMAC_CONFIG_PASS_FLOW_CTRL |
  4671. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4672. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4673. nw64_mac(XMAC_CONFIG, val);
  4674. nw64_mac(RXMAC_BT_CNT, 0);
  4675. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4676. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4677. nw64_mac(RXMAC_FRAG_CNT, 0);
  4678. nw64_mac(RXMAC_HIST_CNT1, 0);
  4679. nw64_mac(RXMAC_HIST_CNT2, 0);
  4680. nw64_mac(RXMAC_HIST_CNT3, 0);
  4681. nw64_mac(RXMAC_HIST_CNT4, 0);
  4682. nw64_mac(RXMAC_HIST_CNT5, 0);
  4683. nw64_mac(RXMAC_HIST_CNT6, 0);
  4684. nw64_mac(RXMAC_HIST_CNT7, 0);
  4685. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4686. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4687. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4688. nw64_mac(LINK_FAULT_CNT, 0);
  4689. }
  4690. static void niu_init_rx_bmac(struct niu *np)
  4691. {
  4692. struct niu_parent *parent = np->parent;
  4693. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4694. int first_rdc_table = tp->first_table_num;
  4695. unsigned long i;
  4696. u64 val;
  4697. nw64_mac(BMAC_ADD_FILT0, 0);
  4698. nw64_mac(BMAC_ADD_FILT1, 0);
  4699. nw64_mac(BMAC_ADD_FILT2, 0);
  4700. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4701. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4702. for (i = 0; i < MAC_NUM_HASH; i++)
  4703. nw64_mac(BMAC_HASH_TBL(i), 0);
  4704. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4705. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4706. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4707. val = nr64_mac(BRXMAC_CONFIG);
  4708. val &= ~(BRXMAC_CONFIG_ENABLE |
  4709. BRXMAC_CONFIG_STRIP_PAD |
  4710. BRXMAC_CONFIG_STRIP_FCS |
  4711. BRXMAC_CONFIG_PROMISC |
  4712. BRXMAC_CONFIG_PROMISC_GRP |
  4713. BRXMAC_CONFIG_ADDR_FILT_EN |
  4714. BRXMAC_CONFIG_DISCARD_DIS);
  4715. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4716. nw64_mac(BRXMAC_CONFIG, val);
  4717. val = nr64_mac(BMAC_ADDR_CMPEN);
  4718. val |= BMAC_ADDR_CMPEN_EN0;
  4719. nw64_mac(BMAC_ADDR_CMPEN, val);
  4720. }
  4721. static void niu_init_rx_mac(struct niu *np)
  4722. {
  4723. niu_set_primary_mac(np, np->dev->dev_addr);
  4724. if (np->flags & NIU_FLAGS_XMAC)
  4725. niu_init_rx_xmac(np);
  4726. else
  4727. niu_init_rx_bmac(np);
  4728. }
  4729. static void niu_enable_tx_xmac(struct niu *np, int on)
  4730. {
  4731. u64 val = nr64_mac(XMAC_CONFIG);
  4732. if (on)
  4733. val |= XMAC_CONFIG_TX_ENABLE;
  4734. else
  4735. val &= ~XMAC_CONFIG_TX_ENABLE;
  4736. nw64_mac(XMAC_CONFIG, val);
  4737. }
  4738. static void niu_enable_tx_bmac(struct niu *np, int on)
  4739. {
  4740. u64 val = nr64_mac(BTXMAC_CONFIG);
  4741. if (on)
  4742. val |= BTXMAC_CONFIG_ENABLE;
  4743. else
  4744. val &= ~BTXMAC_CONFIG_ENABLE;
  4745. nw64_mac(BTXMAC_CONFIG, val);
  4746. }
  4747. static void niu_enable_tx_mac(struct niu *np, int on)
  4748. {
  4749. if (np->flags & NIU_FLAGS_XMAC)
  4750. niu_enable_tx_xmac(np, on);
  4751. else
  4752. niu_enable_tx_bmac(np, on);
  4753. }
  4754. static void niu_enable_rx_xmac(struct niu *np, int on)
  4755. {
  4756. u64 val = nr64_mac(XMAC_CONFIG);
  4757. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4758. XMAC_CONFIG_PROMISCUOUS);
  4759. if (np->flags & NIU_FLAGS_MCAST)
  4760. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4761. if (np->flags & NIU_FLAGS_PROMISC)
  4762. val |= XMAC_CONFIG_PROMISCUOUS;
  4763. if (on)
  4764. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4765. else
  4766. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4767. nw64_mac(XMAC_CONFIG, val);
  4768. }
  4769. static void niu_enable_rx_bmac(struct niu *np, int on)
  4770. {
  4771. u64 val = nr64_mac(BRXMAC_CONFIG);
  4772. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4773. BRXMAC_CONFIG_PROMISC);
  4774. if (np->flags & NIU_FLAGS_MCAST)
  4775. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4776. if (np->flags & NIU_FLAGS_PROMISC)
  4777. val |= BRXMAC_CONFIG_PROMISC;
  4778. if (on)
  4779. val |= BRXMAC_CONFIG_ENABLE;
  4780. else
  4781. val &= ~BRXMAC_CONFIG_ENABLE;
  4782. nw64_mac(BRXMAC_CONFIG, val);
  4783. }
  4784. static void niu_enable_rx_mac(struct niu *np, int on)
  4785. {
  4786. if (np->flags & NIU_FLAGS_XMAC)
  4787. niu_enable_rx_xmac(np, on);
  4788. else
  4789. niu_enable_rx_bmac(np, on);
  4790. }
  4791. static int niu_init_mac(struct niu *np)
  4792. {
  4793. int err;
  4794. niu_init_xif(np);
  4795. err = niu_init_pcs(np);
  4796. if (err)
  4797. return err;
  4798. err = niu_reset_tx_mac(np);
  4799. if (err)
  4800. return err;
  4801. niu_init_tx_mac(np);
  4802. err = niu_reset_rx_mac(np);
  4803. if (err)
  4804. return err;
  4805. niu_init_rx_mac(np);
  4806. /* This looks hookey but the RX MAC reset we just did will
  4807. * undo some of the state we setup in niu_init_tx_mac() so we
  4808. * have to call it again. In particular, the RX MAC reset will
  4809. * set the XMAC_MAX register back to it's default value.
  4810. */
  4811. niu_init_tx_mac(np);
  4812. niu_enable_tx_mac(np, 1);
  4813. niu_enable_rx_mac(np, 1);
  4814. return 0;
  4815. }
  4816. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4817. {
  4818. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4819. }
  4820. static void niu_stop_tx_channels(struct niu *np)
  4821. {
  4822. int i;
  4823. for (i = 0; i < np->num_tx_rings; i++) {
  4824. struct tx_ring_info *rp = &np->tx_rings[i];
  4825. niu_stop_one_tx_channel(np, rp);
  4826. }
  4827. }
  4828. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4829. {
  4830. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4831. }
  4832. static void niu_reset_tx_channels(struct niu *np)
  4833. {
  4834. int i;
  4835. for (i = 0; i < np->num_tx_rings; i++) {
  4836. struct tx_ring_info *rp = &np->tx_rings[i];
  4837. niu_reset_one_tx_channel(np, rp);
  4838. }
  4839. }
  4840. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4841. {
  4842. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4843. }
  4844. static void niu_stop_rx_channels(struct niu *np)
  4845. {
  4846. int i;
  4847. for (i = 0; i < np->num_rx_rings; i++) {
  4848. struct rx_ring_info *rp = &np->rx_rings[i];
  4849. niu_stop_one_rx_channel(np, rp);
  4850. }
  4851. }
  4852. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4853. {
  4854. int channel = rp->rx_channel;
  4855. (void) niu_rx_channel_reset(np, channel);
  4856. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4857. nw64(RX_DMA_CTL_STAT(channel), 0);
  4858. (void) niu_enable_rx_channel(np, channel, 0);
  4859. }
  4860. static void niu_reset_rx_channels(struct niu *np)
  4861. {
  4862. int i;
  4863. for (i = 0; i < np->num_rx_rings; i++) {
  4864. struct rx_ring_info *rp = &np->rx_rings[i];
  4865. niu_reset_one_rx_channel(np, rp);
  4866. }
  4867. }
  4868. static void niu_disable_ipp(struct niu *np)
  4869. {
  4870. u64 rd, wr, val;
  4871. int limit;
  4872. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4873. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4874. limit = 100;
  4875. while (--limit >= 0 && (rd != wr)) {
  4876. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4877. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4878. }
  4879. if (limit < 0 &&
  4880. (rd != 0 && wr != 1)) {
  4881. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4882. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4883. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4884. }
  4885. val = nr64_ipp(IPP_CFIG);
  4886. val &= ~(IPP_CFIG_IPP_ENABLE |
  4887. IPP_CFIG_DFIFO_ECC_EN |
  4888. IPP_CFIG_DROP_BAD_CRC |
  4889. IPP_CFIG_CKSUM_EN);
  4890. nw64_ipp(IPP_CFIG, val);
  4891. (void) niu_ipp_reset(np);
  4892. }
  4893. static int niu_init_hw(struct niu *np)
  4894. {
  4895. int i, err;
  4896. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4897. niu_txc_enable_port(np, 1);
  4898. niu_txc_port_dma_enable(np, 1);
  4899. niu_txc_set_imask(np, 0);
  4900. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4901. for (i = 0; i < np->num_tx_rings; i++) {
  4902. struct tx_ring_info *rp = &np->tx_rings[i];
  4903. err = niu_init_one_tx_channel(np, rp);
  4904. if (err)
  4905. return err;
  4906. }
  4907. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4908. err = niu_init_rx_channels(np);
  4909. if (err)
  4910. goto out_uninit_tx_channels;
  4911. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4912. err = niu_init_classifier_hw(np);
  4913. if (err)
  4914. goto out_uninit_rx_channels;
  4915. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4916. err = niu_init_zcp(np);
  4917. if (err)
  4918. goto out_uninit_rx_channels;
  4919. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4920. err = niu_init_ipp(np);
  4921. if (err)
  4922. goto out_uninit_rx_channels;
  4923. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4924. err = niu_init_mac(np);
  4925. if (err)
  4926. goto out_uninit_ipp;
  4927. return 0;
  4928. out_uninit_ipp:
  4929. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4930. niu_disable_ipp(np);
  4931. out_uninit_rx_channels:
  4932. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4933. niu_stop_rx_channels(np);
  4934. niu_reset_rx_channels(np);
  4935. out_uninit_tx_channels:
  4936. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4937. niu_stop_tx_channels(np);
  4938. niu_reset_tx_channels(np);
  4939. return err;
  4940. }
  4941. static void niu_stop_hw(struct niu *np)
  4942. {
  4943. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4944. niu_enable_interrupts(np, 0);
  4945. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4946. niu_enable_rx_mac(np, 0);
  4947. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4948. niu_disable_ipp(np);
  4949. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4950. niu_stop_tx_channels(np);
  4951. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4952. niu_stop_rx_channels(np);
  4953. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4954. niu_reset_tx_channels(np);
  4955. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4956. niu_reset_rx_channels(np);
  4957. }
  4958. static void niu_set_irq_name(struct niu *np)
  4959. {
  4960. int port = np->port;
  4961. int i, j = 1;
  4962. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4963. if (port == 0) {
  4964. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4965. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4966. j = 3;
  4967. }
  4968. for (i = 0; i < np->num_ldg - j; i++) {
  4969. if (i < np->num_rx_rings)
  4970. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4971. np->dev->name, i);
  4972. else if (i < np->num_tx_rings + np->num_rx_rings)
  4973. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4974. i - np->num_rx_rings);
  4975. }
  4976. }
  4977. static int niu_request_irq(struct niu *np)
  4978. {
  4979. int i, j, err;
  4980. niu_set_irq_name(np);
  4981. err = 0;
  4982. for (i = 0; i < np->num_ldg; i++) {
  4983. struct niu_ldg *lp = &np->ldg[i];
  4984. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  4985. np->irq_name[i], lp);
  4986. if (err)
  4987. goto out_free_irqs;
  4988. }
  4989. return 0;
  4990. out_free_irqs:
  4991. for (j = 0; j < i; j++) {
  4992. struct niu_ldg *lp = &np->ldg[j];
  4993. free_irq(lp->irq, lp);
  4994. }
  4995. return err;
  4996. }
  4997. static void niu_free_irq(struct niu *np)
  4998. {
  4999. int i;
  5000. for (i = 0; i < np->num_ldg; i++) {
  5001. struct niu_ldg *lp = &np->ldg[i];
  5002. free_irq(lp->irq, lp);
  5003. }
  5004. }
  5005. static void niu_enable_napi(struct niu *np)
  5006. {
  5007. int i;
  5008. for (i = 0; i < np->num_ldg; i++)
  5009. napi_enable(&np->ldg[i].napi);
  5010. }
  5011. static void niu_disable_napi(struct niu *np)
  5012. {
  5013. int i;
  5014. for (i = 0; i < np->num_ldg; i++)
  5015. napi_disable(&np->ldg[i].napi);
  5016. }
  5017. static int niu_open(struct net_device *dev)
  5018. {
  5019. struct niu *np = netdev_priv(dev);
  5020. int err;
  5021. netif_carrier_off(dev);
  5022. err = niu_alloc_channels(np);
  5023. if (err)
  5024. goto out_err;
  5025. err = niu_enable_interrupts(np, 0);
  5026. if (err)
  5027. goto out_free_channels;
  5028. err = niu_request_irq(np);
  5029. if (err)
  5030. goto out_free_channels;
  5031. niu_enable_napi(np);
  5032. spin_lock_irq(&np->lock);
  5033. err = niu_init_hw(np);
  5034. if (!err) {
  5035. timer_setup(&np->timer, niu_timer, 0);
  5036. np->timer.expires = jiffies + HZ;
  5037. err = niu_enable_interrupts(np, 1);
  5038. if (err)
  5039. niu_stop_hw(np);
  5040. }
  5041. spin_unlock_irq(&np->lock);
  5042. if (err) {
  5043. niu_disable_napi(np);
  5044. goto out_free_irq;
  5045. }
  5046. netif_tx_start_all_queues(dev);
  5047. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5048. netif_carrier_on(dev);
  5049. add_timer(&np->timer);
  5050. return 0;
  5051. out_free_irq:
  5052. niu_free_irq(np);
  5053. out_free_channels:
  5054. niu_free_channels(np);
  5055. out_err:
  5056. return err;
  5057. }
  5058. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5059. {
  5060. cancel_work_sync(&np->reset_task);
  5061. niu_disable_napi(np);
  5062. netif_tx_stop_all_queues(dev);
  5063. del_timer_sync(&np->timer);
  5064. spin_lock_irq(&np->lock);
  5065. niu_stop_hw(np);
  5066. spin_unlock_irq(&np->lock);
  5067. }
  5068. static int niu_close(struct net_device *dev)
  5069. {
  5070. struct niu *np = netdev_priv(dev);
  5071. niu_full_shutdown(np, dev);
  5072. niu_free_irq(np);
  5073. niu_free_channels(np);
  5074. niu_handle_led(np, 0);
  5075. return 0;
  5076. }
  5077. static void niu_sync_xmac_stats(struct niu *np)
  5078. {
  5079. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5080. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5081. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5082. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5083. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5084. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5085. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5086. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5087. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5088. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5089. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5090. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5091. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5092. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5093. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5094. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5095. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5096. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5097. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5098. }
  5099. static void niu_sync_bmac_stats(struct niu *np)
  5100. {
  5101. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5102. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5103. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5104. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5105. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5106. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5107. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5108. }
  5109. static void niu_sync_mac_stats(struct niu *np)
  5110. {
  5111. if (np->flags & NIU_FLAGS_XMAC)
  5112. niu_sync_xmac_stats(np);
  5113. else
  5114. niu_sync_bmac_stats(np);
  5115. }
  5116. static void niu_get_rx_stats(struct niu *np,
  5117. struct rtnl_link_stats64 *stats)
  5118. {
  5119. u64 pkts, dropped, errors, bytes;
  5120. struct rx_ring_info *rx_rings;
  5121. int i;
  5122. pkts = dropped = errors = bytes = 0;
  5123. rx_rings = READ_ONCE(np->rx_rings);
  5124. if (!rx_rings)
  5125. goto no_rings;
  5126. for (i = 0; i < np->num_rx_rings; i++) {
  5127. struct rx_ring_info *rp = &rx_rings[i];
  5128. niu_sync_rx_discard_stats(np, rp, 0);
  5129. pkts += rp->rx_packets;
  5130. bytes += rp->rx_bytes;
  5131. dropped += rp->rx_dropped;
  5132. errors += rp->rx_errors;
  5133. }
  5134. no_rings:
  5135. stats->rx_packets = pkts;
  5136. stats->rx_bytes = bytes;
  5137. stats->rx_dropped = dropped;
  5138. stats->rx_errors = errors;
  5139. }
  5140. static void niu_get_tx_stats(struct niu *np,
  5141. struct rtnl_link_stats64 *stats)
  5142. {
  5143. u64 pkts, errors, bytes;
  5144. struct tx_ring_info *tx_rings;
  5145. int i;
  5146. pkts = errors = bytes = 0;
  5147. tx_rings = READ_ONCE(np->tx_rings);
  5148. if (!tx_rings)
  5149. goto no_rings;
  5150. for (i = 0; i < np->num_tx_rings; i++) {
  5151. struct tx_ring_info *rp = &tx_rings[i];
  5152. pkts += rp->tx_packets;
  5153. bytes += rp->tx_bytes;
  5154. errors += rp->tx_errors;
  5155. }
  5156. no_rings:
  5157. stats->tx_packets = pkts;
  5158. stats->tx_bytes = bytes;
  5159. stats->tx_errors = errors;
  5160. }
  5161. static void niu_get_stats(struct net_device *dev,
  5162. struct rtnl_link_stats64 *stats)
  5163. {
  5164. struct niu *np = netdev_priv(dev);
  5165. if (netif_running(dev)) {
  5166. niu_get_rx_stats(np, stats);
  5167. niu_get_tx_stats(np, stats);
  5168. }
  5169. }
  5170. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5171. {
  5172. int i;
  5173. for (i = 0; i < 16; i++)
  5174. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5175. }
  5176. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5177. {
  5178. int i;
  5179. for (i = 0; i < 16; i++)
  5180. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5181. }
  5182. static void niu_load_hash(struct niu *np, u16 *hash)
  5183. {
  5184. if (np->flags & NIU_FLAGS_XMAC)
  5185. niu_load_hash_xmac(np, hash);
  5186. else
  5187. niu_load_hash_bmac(np, hash);
  5188. }
  5189. static void niu_set_rx_mode(struct net_device *dev)
  5190. {
  5191. struct niu *np = netdev_priv(dev);
  5192. int i, alt_cnt, err;
  5193. struct netdev_hw_addr *ha;
  5194. unsigned long flags;
  5195. u16 hash[16] = { 0, };
  5196. spin_lock_irqsave(&np->lock, flags);
  5197. niu_enable_rx_mac(np, 0);
  5198. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5199. if (dev->flags & IFF_PROMISC)
  5200. np->flags |= NIU_FLAGS_PROMISC;
  5201. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5202. np->flags |= NIU_FLAGS_MCAST;
  5203. alt_cnt = netdev_uc_count(dev);
  5204. if (alt_cnt > niu_num_alt_addr(np)) {
  5205. alt_cnt = 0;
  5206. np->flags |= NIU_FLAGS_PROMISC;
  5207. }
  5208. if (alt_cnt) {
  5209. int index = 0;
  5210. netdev_for_each_uc_addr(ha, dev) {
  5211. err = niu_set_alt_mac(np, index, ha->addr);
  5212. if (err)
  5213. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5214. err, index);
  5215. err = niu_enable_alt_mac(np, index, 1);
  5216. if (err)
  5217. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5218. err, index);
  5219. index++;
  5220. }
  5221. } else {
  5222. int alt_start;
  5223. if (np->flags & NIU_FLAGS_XMAC)
  5224. alt_start = 0;
  5225. else
  5226. alt_start = 1;
  5227. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5228. err = niu_enable_alt_mac(np, i, 0);
  5229. if (err)
  5230. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5231. err, i);
  5232. }
  5233. }
  5234. if (dev->flags & IFF_ALLMULTI) {
  5235. for (i = 0; i < 16; i++)
  5236. hash[i] = 0xffff;
  5237. } else if (!netdev_mc_empty(dev)) {
  5238. netdev_for_each_mc_addr(ha, dev) {
  5239. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5240. crc >>= 24;
  5241. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5242. }
  5243. }
  5244. if (np->flags & NIU_FLAGS_MCAST)
  5245. niu_load_hash(np, hash);
  5246. niu_enable_rx_mac(np, 1);
  5247. spin_unlock_irqrestore(&np->lock, flags);
  5248. }
  5249. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5250. {
  5251. struct niu *np = netdev_priv(dev);
  5252. struct sockaddr *addr = p;
  5253. unsigned long flags;
  5254. if (!is_valid_ether_addr(addr->sa_data))
  5255. return -EADDRNOTAVAIL;
  5256. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5257. if (!netif_running(dev))
  5258. return 0;
  5259. spin_lock_irqsave(&np->lock, flags);
  5260. niu_enable_rx_mac(np, 0);
  5261. niu_set_primary_mac(np, dev->dev_addr);
  5262. niu_enable_rx_mac(np, 1);
  5263. spin_unlock_irqrestore(&np->lock, flags);
  5264. return 0;
  5265. }
  5266. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5267. {
  5268. return -EOPNOTSUPP;
  5269. }
  5270. static void niu_netif_stop(struct niu *np)
  5271. {
  5272. netif_trans_update(np->dev); /* prevent tx timeout */
  5273. niu_disable_napi(np);
  5274. netif_tx_disable(np->dev);
  5275. }
  5276. static void niu_netif_start(struct niu *np)
  5277. {
  5278. /* NOTE: unconditional netif_wake_queue is only appropriate
  5279. * so long as all callers are assured to have free tx slots
  5280. * (such as after niu_init_hw).
  5281. */
  5282. netif_tx_wake_all_queues(np->dev);
  5283. niu_enable_napi(np);
  5284. niu_enable_interrupts(np, 1);
  5285. }
  5286. static void niu_reset_buffers(struct niu *np)
  5287. {
  5288. int i, j, k, err;
  5289. if (np->rx_rings) {
  5290. for (i = 0; i < np->num_rx_rings; i++) {
  5291. struct rx_ring_info *rp = &np->rx_rings[i];
  5292. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5293. struct page *page;
  5294. page = rp->rxhash[j];
  5295. while (page) {
  5296. struct page *next =
  5297. (struct page *) page->mapping;
  5298. u64 base = page->index;
  5299. base = base >> RBR_DESCR_ADDR_SHIFT;
  5300. rp->rbr[k++] = cpu_to_le32(base);
  5301. page = next;
  5302. }
  5303. }
  5304. for (; k < MAX_RBR_RING_SIZE; k++) {
  5305. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5306. if (unlikely(err))
  5307. break;
  5308. }
  5309. rp->rbr_index = rp->rbr_table_size - 1;
  5310. rp->rcr_index = 0;
  5311. rp->rbr_pending = 0;
  5312. rp->rbr_refill_pending = 0;
  5313. }
  5314. }
  5315. if (np->tx_rings) {
  5316. for (i = 0; i < np->num_tx_rings; i++) {
  5317. struct tx_ring_info *rp = &np->tx_rings[i];
  5318. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5319. if (rp->tx_buffs[j].skb)
  5320. (void) release_tx_packet(np, rp, j);
  5321. }
  5322. rp->pending = MAX_TX_RING_SIZE;
  5323. rp->prod = 0;
  5324. rp->cons = 0;
  5325. rp->wrap_bit = 0;
  5326. }
  5327. }
  5328. }
  5329. static void niu_reset_task(struct work_struct *work)
  5330. {
  5331. struct niu *np = container_of(work, struct niu, reset_task);
  5332. unsigned long flags;
  5333. int err;
  5334. spin_lock_irqsave(&np->lock, flags);
  5335. if (!netif_running(np->dev)) {
  5336. spin_unlock_irqrestore(&np->lock, flags);
  5337. return;
  5338. }
  5339. spin_unlock_irqrestore(&np->lock, flags);
  5340. del_timer_sync(&np->timer);
  5341. niu_netif_stop(np);
  5342. spin_lock_irqsave(&np->lock, flags);
  5343. niu_stop_hw(np);
  5344. spin_unlock_irqrestore(&np->lock, flags);
  5345. niu_reset_buffers(np);
  5346. spin_lock_irqsave(&np->lock, flags);
  5347. err = niu_init_hw(np);
  5348. if (!err) {
  5349. np->timer.expires = jiffies + HZ;
  5350. add_timer(&np->timer);
  5351. niu_netif_start(np);
  5352. }
  5353. spin_unlock_irqrestore(&np->lock, flags);
  5354. }
  5355. static void niu_tx_timeout(struct net_device *dev)
  5356. {
  5357. struct niu *np = netdev_priv(dev);
  5358. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5359. dev->name);
  5360. schedule_work(&np->reset_task);
  5361. }
  5362. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5363. u64 mapping, u64 len, u64 mark,
  5364. u64 n_frags)
  5365. {
  5366. __le64 *desc = &rp->descr[index];
  5367. *desc = cpu_to_le64(mark |
  5368. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5369. (len << TX_DESC_TR_LEN_SHIFT) |
  5370. (mapping & TX_DESC_SAD));
  5371. }
  5372. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5373. u64 pad_bytes, u64 len)
  5374. {
  5375. u16 eth_proto, eth_proto_inner;
  5376. u64 csum_bits, l3off, ihl, ret;
  5377. u8 ip_proto;
  5378. int ipv6;
  5379. eth_proto = be16_to_cpu(ehdr->h_proto);
  5380. eth_proto_inner = eth_proto;
  5381. if (eth_proto == ETH_P_8021Q) {
  5382. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5383. __be16 val = vp->h_vlan_encapsulated_proto;
  5384. eth_proto_inner = be16_to_cpu(val);
  5385. }
  5386. ipv6 = ihl = 0;
  5387. switch (skb->protocol) {
  5388. case cpu_to_be16(ETH_P_IP):
  5389. ip_proto = ip_hdr(skb)->protocol;
  5390. ihl = ip_hdr(skb)->ihl;
  5391. break;
  5392. case cpu_to_be16(ETH_P_IPV6):
  5393. ip_proto = ipv6_hdr(skb)->nexthdr;
  5394. ihl = (40 >> 2);
  5395. ipv6 = 1;
  5396. break;
  5397. default:
  5398. ip_proto = ihl = 0;
  5399. break;
  5400. }
  5401. csum_bits = TXHDR_CSUM_NONE;
  5402. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5403. u64 start, stuff;
  5404. csum_bits = (ip_proto == IPPROTO_TCP ?
  5405. TXHDR_CSUM_TCP :
  5406. (ip_proto == IPPROTO_UDP ?
  5407. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5408. start = skb_checksum_start_offset(skb) -
  5409. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5410. stuff = start + skb->csum_offset;
  5411. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5412. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5413. }
  5414. l3off = skb_network_offset(skb) -
  5415. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5416. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5417. (len << TXHDR_LEN_SHIFT) |
  5418. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5419. (ihl << TXHDR_IHL_SHIFT) |
  5420. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5421. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5422. (ipv6 ? TXHDR_IP_VER : 0) |
  5423. csum_bits);
  5424. return ret;
  5425. }
  5426. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5427. struct net_device *dev)
  5428. {
  5429. struct niu *np = netdev_priv(dev);
  5430. unsigned long align, headroom;
  5431. struct netdev_queue *txq;
  5432. struct tx_ring_info *rp;
  5433. struct tx_pkt_hdr *tp;
  5434. unsigned int len, nfg;
  5435. struct ethhdr *ehdr;
  5436. int prod, i, tlen;
  5437. u64 mapping, mrk;
  5438. i = skb_get_queue_mapping(skb);
  5439. rp = &np->tx_rings[i];
  5440. txq = netdev_get_tx_queue(dev, i);
  5441. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5442. netif_tx_stop_queue(txq);
  5443. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5444. rp->tx_errors++;
  5445. return NETDEV_TX_BUSY;
  5446. }
  5447. if (eth_skb_pad(skb))
  5448. goto out;
  5449. len = sizeof(struct tx_pkt_hdr) + 15;
  5450. if (skb_headroom(skb) < len) {
  5451. struct sk_buff *skb_new;
  5452. skb_new = skb_realloc_headroom(skb, len);
  5453. if (!skb_new)
  5454. goto out_drop;
  5455. kfree_skb(skb);
  5456. skb = skb_new;
  5457. } else
  5458. skb_orphan(skb);
  5459. align = ((unsigned long) skb->data & (16 - 1));
  5460. headroom = align + sizeof(struct tx_pkt_hdr);
  5461. ehdr = (struct ethhdr *) skb->data;
  5462. tp = skb_push(skb, headroom);
  5463. len = skb->len - sizeof(struct tx_pkt_hdr);
  5464. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5465. tp->resv = 0;
  5466. len = skb_headlen(skb);
  5467. mapping = np->ops->map_single(np->device, skb->data,
  5468. len, DMA_TO_DEVICE);
  5469. prod = rp->prod;
  5470. rp->tx_buffs[prod].skb = skb;
  5471. rp->tx_buffs[prod].mapping = mapping;
  5472. mrk = TX_DESC_SOP;
  5473. if (++rp->mark_counter == rp->mark_freq) {
  5474. rp->mark_counter = 0;
  5475. mrk |= TX_DESC_MARK;
  5476. rp->mark_pending++;
  5477. }
  5478. tlen = len;
  5479. nfg = skb_shinfo(skb)->nr_frags;
  5480. while (tlen > 0) {
  5481. tlen -= MAX_TX_DESC_LEN;
  5482. nfg++;
  5483. }
  5484. while (len > 0) {
  5485. unsigned int this_len = len;
  5486. if (this_len > MAX_TX_DESC_LEN)
  5487. this_len = MAX_TX_DESC_LEN;
  5488. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5489. mrk = nfg = 0;
  5490. prod = NEXT_TX(rp, prod);
  5491. mapping += this_len;
  5492. len -= this_len;
  5493. }
  5494. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5495. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5496. len = skb_frag_size(frag);
  5497. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5498. frag->page_offset, len,
  5499. DMA_TO_DEVICE);
  5500. rp->tx_buffs[prod].skb = NULL;
  5501. rp->tx_buffs[prod].mapping = mapping;
  5502. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5503. prod = NEXT_TX(rp, prod);
  5504. }
  5505. if (prod < rp->prod)
  5506. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5507. rp->prod = prod;
  5508. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5509. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5510. netif_tx_stop_queue(txq);
  5511. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5512. netif_tx_wake_queue(txq);
  5513. }
  5514. out:
  5515. return NETDEV_TX_OK;
  5516. out_drop:
  5517. rp->tx_errors++;
  5518. kfree_skb(skb);
  5519. goto out;
  5520. }
  5521. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5522. {
  5523. struct niu *np = netdev_priv(dev);
  5524. int err, orig_jumbo, new_jumbo;
  5525. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5526. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5527. dev->mtu = new_mtu;
  5528. if (!netif_running(dev) ||
  5529. (orig_jumbo == new_jumbo))
  5530. return 0;
  5531. niu_full_shutdown(np, dev);
  5532. niu_free_channels(np);
  5533. niu_enable_napi(np);
  5534. err = niu_alloc_channels(np);
  5535. if (err)
  5536. return err;
  5537. spin_lock_irq(&np->lock);
  5538. err = niu_init_hw(np);
  5539. if (!err) {
  5540. timer_setup(&np->timer, niu_timer, 0);
  5541. np->timer.expires = jiffies + HZ;
  5542. err = niu_enable_interrupts(np, 1);
  5543. if (err)
  5544. niu_stop_hw(np);
  5545. }
  5546. spin_unlock_irq(&np->lock);
  5547. if (!err) {
  5548. netif_tx_start_all_queues(dev);
  5549. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5550. netif_carrier_on(dev);
  5551. add_timer(&np->timer);
  5552. }
  5553. return err;
  5554. }
  5555. static void niu_get_drvinfo(struct net_device *dev,
  5556. struct ethtool_drvinfo *info)
  5557. {
  5558. struct niu *np = netdev_priv(dev);
  5559. struct niu_vpd *vpd = &np->vpd;
  5560. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5561. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5562. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5563. vpd->fcode_major, vpd->fcode_minor);
  5564. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5565. strlcpy(info->bus_info, pci_name(np->pdev),
  5566. sizeof(info->bus_info));
  5567. }
  5568. static int niu_get_link_ksettings(struct net_device *dev,
  5569. struct ethtool_link_ksettings *cmd)
  5570. {
  5571. struct niu *np = netdev_priv(dev);
  5572. struct niu_link_config *lp;
  5573. lp = &np->link_config;
  5574. memset(cmd, 0, sizeof(*cmd));
  5575. cmd->base.phy_address = np->phy_addr;
  5576. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  5577. lp->supported);
  5578. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  5579. lp->active_advertising);
  5580. cmd->base.autoneg = lp->active_autoneg;
  5581. cmd->base.speed = lp->active_speed;
  5582. cmd->base.duplex = lp->active_duplex;
  5583. cmd->base.port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5584. return 0;
  5585. }
  5586. static int niu_set_link_ksettings(struct net_device *dev,
  5587. const struct ethtool_link_ksettings *cmd)
  5588. {
  5589. struct niu *np = netdev_priv(dev);
  5590. struct niu_link_config *lp = &np->link_config;
  5591. ethtool_convert_link_mode_to_legacy_u32(&lp->advertising,
  5592. cmd->link_modes.advertising);
  5593. lp->speed = cmd->base.speed;
  5594. lp->duplex = cmd->base.duplex;
  5595. lp->autoneg = cmd->base.autoneg;
  5596. return niu_init_link(np);
  5597. }
  5598. static u32 niu_get_msglevel(struct net_device *dev)
  5599. {
  5600. struct niu *np = netdev_priv(dev);
  5601. return np->msg_enable;
  5602. }
  5603. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5604. {
  5605. struct niu *np = netdev_priv(dev);
  5606. np->msg_enable = value;
  5607. }
  5608. static int niu_nway_reset(struct net_device *dev)
  5609. {
  5610. struct niu *np = netdev_priv(dev);
  5611. if (np->link_config.autoneg)
  5612. return niu_init_link(np);
  5613. return 0;
  5614. }
  5615. static int niu_get_eeprom_len(struct net_device *dev)
  5616. {
  5617. struct niu *np = netdev_priv(dev);
  5618. return np->eeprom_len;
  5619. }
  5620. static int niu_get_eeprom(struct net_device *dev,
  5621. struct ethtool_eeprom *eeprom, u8 *data)
  5622. {
  5623. struct niu *np = netdev_priv(dev);
  5624. u32 offset, len, val;
  5625. offset = eeprom->offset;
  5626. len = eeprom->len;
  5627. if (offset + len < offset)
  5628. return -EINVAL;
  5629. if (offset >= np->eeprom_len)
  5630. return -EINVAL;
  5631. if (offset + len > np->eeprom_len)
  5632. len = eeprom->len = np->eeprom_len - offset;
  5633. if (offset & 3) {
  5634. u32 b_offset, b_count;
  5635. b_offset = offset & 3;
  5636. b_count = 4 - b_offset;
  5637. if (b_count > len)
  5638. b_count = len;
  5639. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5640. memcpy(data, ((char *)&val) + b_offset, b_count);
  5641. data += b_count;
  5642. len -= b_count;
  5643. offset += b_count;
  5644. }
  5645. while (len >= 4) {
  5646. val = nr64(ESPC_NCR(offset / 4));
  5647. memcpy(data, &val, 4);
  5648. data += 4;
  5649. len -= 4;
  5650. offset += 4;
  5651. }
  5652. if (len) {
  5653. val = nr64(ESPC_NCR(offset / 4));
  5654. memcpy(data, &val, len);
  5655. }
  5656. return 0;
  5657. }
  5658. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5659. {
  5660. switch (flow_type) {
  5661. case TCP_V4_FLOW:
  5662. case TCP_V6_FLOW:
  5663. *pid = IPPROTO_TCP;
  5664. break;
  5665. case UDP_V4_FLOW:
  5666. case UDP_V6_FLOW:
  5667. *pid = IPPROTO_UDP;
  5668. break;
  5669. case SCTP_V4_FLOW:
  5670. case SCTP_V6_FLOW:
  5671. *pid = IPPROTO_SCTP;
  5672. break;
  5673. case AH_V4_FLOW:
  5674. case AH_V6_FLOW:
  5675. *pid = IPPROTO_AH;
  5676. break;
  5677. case ESP_V4_FLOW:
  5678. case ESP_V6_FLOW:
  5679. *pid = IPPROTO_ESP;
  5680. break;
  5681. default:
  5682. *pid = 0;
  5683. break;
  5684. }
  5685. }
  5686. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5687. {
  5688. switch (class) {
  5689. case CLASS_CODE_TCP_IPV4:
  5690. *flow_type = TCP_V4_FLOW;
  5691. break;
  5692. case CLASS_CODE_UDP_IPV4:
  5693. *flow_type = UDP_V4_FLOW;
  5694. break;
  5695. case CLASS_CODE_AH_ESP_IPV4:
  5696. *flow_type = AH_V4_FLOW;
  5697. break;
  5698. case CLASS_CODE_SCTP_IPV4:
  5699. *flow_type = SCTP_V4_FLOW;
  5700. break;
  5701. case CLASS_CODE_TCP_IPV6:
  5702. *flow_type = TCP_V6_FLOW;
  5703. break;
  5704. case CLASS_CODE_UDP_IPV6:
  5705. *flow_type = UDP_V6_FLOW;
  5706. break;
  5707. case CLASS_CODE_AH_ESP_IPV6:
  5708. *flow_type = AH_V6_FLOW;
  5709. break;
  5710. case CLASS_CODE_SCTP_IPV6:
  5711. *flow_type = SCTP_V6_FLOW;
  5712. break;
  5713. case CLASS_CODE_USER_PROG1:
  5714. case CLASS_CODE_USER_PROG2:
  5715. case CLASS_CODE_USER_PROG3:
  5716. case CLASS_CODE_USER_PROG4:
  5717. *flow_type = IP_USER_FLOW;
  5718. break;
  5719. default:
  5720. return -EINVAL;
  5721. }
  5722. return 0;
  5723. }
  5724. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5725. {
  5726. switch (flow_type) {
  5727. case TCP_V4_FLOW:
  5728. *class = CLASS_CODE_TCP_IPV4;
  5729. break;
  5730. case UDP_V4_FLOW:
  5731. *class = CLASS_CODE_UDP_IPV4;
  5732. break;
  5733. case AH_ESP_V4_FLOW:
  5734. case AH_V4_FLOW:
  5735. case ESP_V4_FLOW:
  5736. *class = CLASS_CODE_AH_ESP_IPV4;
  5737. break;
  5738. case SCTP_V4_FLOW:
  5739. *class = CLASS_CODE_SCTP_IPV4;
  5740. break;
  5741. case TCP_V6_FLOW:
  5742. *class = CLASS_CODE_TCP_IPV6;
  5743. break;
  5744. case UDP_V6_FLOW:
  5745. *class = CLASS_CODE_UDP_IPV6;
  5746. break;
  5747. case AH_ESP_V6_FLOW:
  5748. case AH_V6_FLOW:
  5749. case ESP_V6_FLOW:
  5750. *class = CLASS_CODE_AH_ESP_IPV6;
  5751. break;
  5752. case SCTP_V6_FLOW:
  5753. *class = CLASS_CODE_SCTP_IPV6;
  5754. break;
  5755. default:
  5756. return 0;
  5757. }
  5758. return 1;
  5759. }
  5760. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5761. {
  5762. u64 ethflow = 0;
  5763. if (flow_key & FLOW_KEY_L2DA)
  5764. ethflow |= RXH_L2DA;
  5765. if (flow_key & FLOW_KEY_VLAN)
  5766. ethflow |= RXH_VLAN;
  5767. if (flow_key & FLOW_KEY_IPSA)
  5768. ethflow |= RXH_IP_SRC;
  5769. if (flow_key & FLOW_KEY_IPDA)
  5770. ethflow |= RXH_IP_DST;
  5771. if (flow_key & FLOW_KEY_PROTO)
  5772. ethflow |= RXH_L3_PROTO;
  5773. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5774. ethflow |= RXH_L4_B_0_1;
  5775. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5776. ethflow |= RXH_L4_B_2_3;
  5777. return ethflow;
  5778. }
  5779. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5780. {
  5781. u64 key = 0;
  5782. if (ethflow & RXH_L2DA)
  5783. key |= FLOW_KEY_L2DA;
  5784. if (ethflow & RXH_VLAN)
  5785. key |= FLOW_KEY_VLAN;
  5786. if (ethflow & RXH_IP_SRC)
  5787. key |= FLOW_KEY_IPSA;
  5788. if (ethflow & RXH_IP_DST)
  5789. key |= FLOW_KEY_IPDA;
  5790. if (ethflow & RXH_L3_PROTO)
  5791. key |= FLOW_KEY_PROTO;
  5792. if (ethflow & RXH_L4_B_0_1)
  5793. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5794. if (ethflow & RXH_L4_B_2_3)
  5795. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5796. *flow_key = key;
  5797. return 1;
  5798. }
  5799. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5800. {
  5801. u64 class;
  5802. nfc->data = 0;
  5803. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5804. return -EINVAL;
  5805. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5806. TCAM_KEY_DISC)
  5807. nfc->data = RXH_DISCARD;
  5808. else
  5809. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5810. CLASS_CODE_USER_PROG1]);
  5811. return 0;
  5812. }
  5813. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5814. struct ethtool_rx_flow_spec *fsp)
  5815. {
  5816. u32 tmp;
  5817. u16 prt;
  5818. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5819. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5820. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5821. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5822. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5823. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5824. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5825. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5826. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5827. TCAM_V4KEY2_TOS_SHIFT;
  5828. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5829. TCAM_V4KEY2_TOS_SHIFT;
  5830. switch (fsp->flow_type) {
  5831. case TCP_V4_FLOW:
  5832. case UDP_V4_FLOW:
  5833. case SCTP_V4_FLOW:
  5834. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5835. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5836. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5837. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5838. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5839. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5840. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5841. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5842. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5843. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5844. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5845. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5846. break;
  5847. case AH_V4_FLOW:
  5848. case ESP_V4_FLOW:
  5849. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5850. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5851. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5852. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5853. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5854. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5855. break;
  5856. case IP_USER_FLOW:
  5857. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5858. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5859. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5860. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5861. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5862. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5863. fsp->h_u.usr_ip4_spec.proto =
  5864. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5865. TCAM_V4KEY2_PROTO_SHIFT;
  5866. fsp->m_u.usr_ip4_spec.proto =
  5867. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5868. TCAM_V4KEY2_PROTO_SHIFT;
  5869. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5870. break;
  5871. default:
  5872. break;
  5873. }
  5874. }
  5875. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5876. struct ethtool_rxnfc *nfc)
  5877. {
  5878. struct niu_parent *parent = np->parent;
  5879. struct niu_tcam_entry *tp;
  5880. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5881. u16 idx;
  5882. u64 class;
  5883. int ret = 0;
  5884. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5885. tp = &parent->tcam[idx];
  5886. if (!tp->valid) {
  5887. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5888. parent->index, (u16)nfc->fs.location, idx);
  5889. return -EINVAL;
  5890. }
  5891. /* fill the flow spec entry */
  5892. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5893. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5894. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5895. if (ret < 0) {
  5896. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5897. parent->index);
  5898. goto out;
  5899. }
  5900. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5901. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5902. TCAM_V4KEY2_PROTO_SHIFT;
  5903. if (proto == IPPROTO_ESP) {
  5904. if (fsp->flow_type == AH_V4_FLOW)
  5905. fsp->flow_type = ESP_V4_FLOW;
  5906. else
  5907. fsp->flow_type = ESP_V6_FLOW;
  5908. }
  5909. }
  5910. switch (fsp->flow_type) {
  5911. case TCP_V4_FLOW:
  5912. case UDP_V4_FLOW:
  5913. case SCTP_V4_FLOW:
  5914. case AH_V4_FLOW:
  5915. case ESP_V4_FLOW:
  5916. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5917. break;
  5918. case TCP_V6_FLOW:
  5919. case UDP_V6_FLOW:
  5920. case SCTP_V6_FLOW:
  5921. case AH_V6_FLOW:
  5922. case ESP_V6_FLOW:
  5923. /* Not yet implemented */
  5924. ret = -EINVAL;
  5925. break;
  5926. case IP_USER_FLOW:
  5927. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5928. break;
  5929. default:
  5930. ret = -EINVAL;
  5931. break;
  5932. }
  5933. if (ret < 0)
  5934. goto out;
  5935. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5936. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5937. else
  5938. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5939. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5940. /* put the tcam size here */
  5941. nfc->data = tcam_get_size(np);
  5942. out:
  5943. return ret;
  5944. }
  5945. static int niu_get_ethtool_tcam_all(struct niu *np,
  5946. struct ethtool_rxnfc *nfc,
  5947. u32 *rule_locs)
  5948. {
  5949. struct niu_parent *parent = np->parent;
  5950. struct niu_tcam_entry *tp;
  5951. int i, idx, cnt;
  5952. unsigned long flags;
  5953. int ret = 0;
  5954. /* put the tcam size here */
  5955. nfc->data = tcam_get_size(np);
  5956. niu_lock_parent(np, flags);
  5957. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5958. idx = tcam_get_index(np, i);
  5959. tp = &parent->tcam[idx];
  5960. if (!tp->valid)
  5961. continue;
  5962. if (cnt == nfc->rule_cnt) {
  5963. ret = -EMSGSIZE;
  5964. break;
  5965. }
  5966. rule_locs[cnt] = i;
  5967. cnt++;
  5968. }
  5969. niu_unlock_parent(np, flags);
  5970. nfc->rule_cnt = cnt;
  5971. return ret;
  5972. }
  5973. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  5974. u32 *rule_locs)
  5975. {
  5976. struct niu *np = netdev_priv(dev);
  5977. int ret = 0;
  5978. switch (cmd->cmd) {
  5979. case ETHTOOL_GRXFH:
  5980. ret = niu_get_hash_opts(np, cmd);
  5981. break;
  5982. case ETHTOOL_GRXRINGS:
  5983. cmd->data = np->num_rx_rings;
  5984. break;
  5985. case ETHTOOL_GRXCLSRLCNT:
  5986. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  5987. break;
  5988. case ETHTOOL_GRXCLSRULE:
  5989. ret = niu_get_ethtool_tcam_entry(np, cmd);
  5990. break;
  5991. case ETHTOOL_GRXCLSRLALL:
  5992. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  5993. break;
  5994. default:
  5995. ret = -EINVAL;
  5996. break;
  5997. }
  5998. return ret;
  5999. }
  6000. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6001. {
  6002. u64 class;
  6003. u64 flow_key = 0;
  6004. unsigned long flags;
  6005. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6006. return -EINVAL;
  6007. if (class < CLASS_CODE_USER_PROG1 ||
  6008. class > CLASS_CODE_SCTP_IPV6)
  6009. return -EINVAL;
  6010. if (nfc->data & RXH_DISCARD) {
  6011. niu_lock_parent(np, flags);
  6012. flow_key = np->parent->tcam_key[class -
  6013. CLASS_CODE_USER_PROG1];
  6014. flow_key |= TCAM_KEY_DISC;
  6015. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6016. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6017. niu_unlock_parent(np, flags);
  6018. return 0;
  6019. } else {
  6020. /* Discard was set before, but is not set now */
  6021. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6022. TCAM_KEY_DISC) {
  6023. niu_lock_parent(np, flags);
  6024. flow_key = np->parent->tcam_key[class -
  6025. CLASS_CODE_USER_PROG1];
  6026. flow_key &= ~TCAM_KEY_DISC;
  6027. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6028. flow_key);
  6029. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6030. flow_key;
  6031. niu_unlock_parent(np, flags);
  6032. }
  6033. }
  6034. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6035. return -EINVAL;
  6036. niu_lock_parent(np, flags);
  6037. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6038. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6039. niu_unlock_parent(np, flags);
  6040. return 0;
  6041. }
  6042. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6043. struct niu_tcam_entry *tp,
  6044. int l2_rdc_tab, u64 class)
  6045. {
  6046. u8 pid = 0;
  6047. u32 sip, dip, sipm, dipm, spi, spim;
  6048. u16 sport, dport, spm, dpm;
  6049. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6050. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6051. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6052. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6053. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6054. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6055. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6056. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6057. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6058. tp->key[3] |= dip;
  6059. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6060. tp->key_mask[3] |= dipm;
  6061. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6062. TCAM_V4KEY2_TOS_SHIFT);
  6063. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6064. TCAM_V4KEY2_TOS_SHIFT);
  6065. switch (fsp->flow_type) {
  6066. case TCP_V4_FLOW:
  6067. case UDP_V4_FLOW:
  6068. case SCTP_V4_FLOW:
  6069. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6070. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6071. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6072. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6073. tp->key[2] |= (((u64)sport << 16) | dport);
  6074. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6075. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6076. break;
  6077. case AH_V4_FLOW:
  6078. case ESP_V4_FLOW:
  6079. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6080. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6081. tp->key[2] |= spi;
  6082. tp->key_mask[2] |= spim;
  6083. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6084. break;
  6085. case IP_USER_FLOW:
  6086. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6087. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6088. tp->key[2] |= spi;
  6089. tp->key_mask[2] |= spim;
  6090. pid = fsp->h_u.usr_ip4_spec.proto;
  6091. break;
  6092. default:
  6093. break;
  6094. }
  6095. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6096. if (pid) {
  6097. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6098. }
  6099. }
  6100. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6101. struct ethtool_rxnfc *nfc)
  6102. {
  6103. struct niu_parent *parent = np->parent;
  6104. struct niu_tcam_entry *tp;
  6105. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6106. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6107. int l2_rdc_table = rdc_table->first_table_num;
  6108. u16 idx;
  6109. u64 class;
  6110. unsigned long flags;
  6111. int err, ret;
  6112. ret = 0;
  6113. idx = nfc->fs.location;
  6114. if (idx >= tcam_get_size(np))
  6115. return -EINVAL;
  6116. if (fsp->flow_type == IP_USER_FLOW) {
  6117. int i;
  6118. int add_usr_cls = 0;
  6119. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6120. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6121. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6122. return -EINVAL;
  6123. niu_lock_parent(np, flags);
  6124. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6125. if (parent->l3_cls[i]) {
  6126. if (uspec->proto == parent->l3_cls_pid[i]) {
  6127. class = parent->l3_cls[i];
  6128. parent->l3_cls_refcnt[i]++;
  6129. add_usr_cls = 1;
  6130. break;
  6131. }
  6132. } else {
  6133. /* Program new user IP class */
  6134. switch (i) {
  6135. case 0:
  6136. class = CLASS_CODE_USER_PROG1;
  6137. break;
  6138. case 1:
  6139. class = CLASS_CODE_USER_PROG2;
  6140. break;
  6141. case 2:
  6142. class = CLASS_CODE_USER_PROG3;
  6143. break;
  6144. case 3:
  6145. class = CLASS_CODE_USER_PROG4;
  6146. break;
  6147. default:
  6148. break;
  6149. }
  6150. ret = tcam_user_ip_class_set(np, class, 0,
  6151. uspec->proto,
  6152. uspec->tos,
  6153. umask->tos);
  6154. if (ret)
  6155. goto out;
  6156. ret = tcam_user_ip_class_enable(np, class, 1);
  6157. if (ret)
  6158. goto out;
  6159. parent->l3_cls[i] = class;
  6160. parent->l3_cls_pid[i] = uspec->proto;
  6161. parent->l3_cls_refcnt[i]++;
  6162. add_usr_cls = 1;
  6163. break;
  6164. }
  6165. }
  6166. if (!add_usr_cls) {
  6167. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6168. parent->index, __func__, uspec->proto);
  6169. ret = -EINVAL;
  6170. goto out;
  6171. }
  6172. niu_unlock_parent(np, flags);
  6173. } else {
  6174. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6175. return -EINVAL;
  6176. }
  6177. }
  6178. niu_lock_parent(np, flags);
  6179. idx = tcam_get_index(np, idx);
  6180. tp = &parent->tcam[idx];
  6181. memset(tp, 0, sizeof(*tp));
  6182. /* fill in the tcam key and mask */
  6183. switch (fsp->flow_type) {
  6184. case TCP_V4_FLOW:
  6185. case UDP_V4_FLOW:
  6186. case SCTP_V4_FLOW:
  6187. case AH_V4_FLOW:
  6188. case ESP_V4_FLOW:
  6189. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6190. break;
  6191. case TCP_V6_FLOW:
  6192. case UDP_V6_FLOW:
  6193. case SCTP_V6_FLOW:
  6194. case AH_V6_FLOW:
  6195. case ESP_V6_FLOW:
  6196. /* Not yet implemented */
  6197. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6198. parent->index, __func__, fsp->flow_type);
  6199. ret = -EINVAL;
  6200. goto out;
  6201. case IP_USER_FLOW:
  6202. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6203. break;
  6204. default:
  6205. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6206. parent->index, __func__, fsp->flow_type);
  6207. ret = -EINVAL;
  6208. goto out;
  6209. }
  6210. /* fill in the assoc data */
  6211. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6212. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6213. } else {
  6214. if (fsp->ring_cookie >= np->num_rx_rings) {
  6215. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6216. parent->index, __func__,
  6217. (long long)fsp->ring_cookie);
  6218. ret = -EINVAL;
  6219. goto out;
  6220. }
  6221. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6222. (fsp->ring_cookie <<
  6223. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6224. }
  6225. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6226. if (err) {
  6227. ret = -EINVAL;
  6228. goto out;
  6229. }
  6230. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6231. if (err) {
  6232. ret = -EINVAL;
  6233. goto out;
  6234. }
  6235. /* validate the entry */
  6236. tp->valid = 1;
  6237. np->clas.tcam_valid_entries++;
  6238. out:
  6239. niu_unlock_parent(np, flags);
  6240. return ret;
  6241. }
  6242. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6243. {
  6244. struct niu_parent *parent = np->parent;
  6245. struct niu_tcam_entry *tp;
  6246. u16 idx;
  6247. unsigned long flags;
  6248. u64 class;
  6249. int ret = 0;
  6250. if (loc >= tcam_get_size(np))
  6251. return -EINVAL;
  6252. niu_lock_parent(np, flags);
  6253. idx = tcam_get_index(np, loc);
  6254. tp = &parent->tcam[idx];
  6255. /* if the entry is of a user defined class, then update*/
  6256. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6257. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6258. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6259. int i;
  6260. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6261. if (parent->l3_cls[i] == class) {
  6262. parent->l3_cls_refcnt[i]--;
  6263. if (!parent->l3_cls_refcnt[i]) {
  6264. /* disable class */
  6265. ret = tcam_user_ip_class_enable(np,
  6266. class,
  6267. 0);
  6268. if (ret)
  6269. goto out;
  6270. parent->l3_cls[i] = 0;
  6271. parent->l3_cls_pid[i] = 0;
  6272. }
  6273. break;
  6274. }
  6275. }
  6276. if (i == NIU_L3_PROG_CLS) {
  6277. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6278. parent->index, __func__,
  6279. (unsigned long long)class);
  6280. ret = -EINVAL;
  6281. goto out;
  6282. }
  6283. }
  6284. ret = tcam_flush(np, idx);
  6285. if (ret)
  6286. goto out;
  6287. /* invalidate the entry */
  6288. tp->valid = 0;
  6289. np->clas.tcam_valid_entries--;
  6290. out:
  6291. niu_unlock_parent(np, flags);
  6292. return ret;
  6293. }
  6294. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6295. {
  6296. struct niu *np = netdev_priv(dev);
  6297. int ret = 0;
  6298. switch (cmd->cmd) {
  6299. case ETHTOOL_SRXFH:
  6300. ret = niu_set_hash_opts(np, cmd);
  6301. break;
  6302. case ETHTOOL_SRXCLSRLINS:
  6303. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6304. break;
  6305. case ETHTOOL_SRXCLSRLDEL:
  6306. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6307. break;
  6308. default:
  6309. ret = -EINVAL;
  6310. break;
  6311. }
  6312. return ret;
  6313. }
  6314. static const struct {
  6315. const char string[ETH_GSTRING_LEN];
  6316. } niu_xmac_stat_keys[] = {
  6317. { "tx_frames" },
  6318. { "tx_bytes" },
  6319. { "tx_fifo_errors" },
  6320. { "tx_overflow_errors" },
  6321. { "tx_max_pkt_size_errors" },
  6322. { "tx_underflow_errors" },
  6323. { "rx_local_faults" },
  6324. { "rx_remote_faults" },
  6325. { "rx_link_faults" },
  6326. { "rx_align_errors" },
  6327. { "rx_frags" },
  6328. { "rx_mcasts" },
  6329. { "rx_bcasts" },
  6330. { "rx_hist_cnt1" },
  6331. { "rx_hist_cnt2" },
  6332. { "rx_hist_cnt3" },
  6333. { "rx_hist_cnt4" },
  6334. { "rx_hist_cnt5" },
  6335. { "rx_hist_cnt6" },
  6336. { "rx_hist_cnt7" },
  6337. { "rx_octets" },
  6338. { "rx_code_violations" },
  6339. { "rx_len_errors" },
  6340. { "rx_crc_errors" },
  6341. { "rx_underflows" },
  6342. { "rx_overflows" },
  6343. { "pause_off_state" },
  6344. { "pause_on_state" },
  6345. { "pause_received" },
  6346. };
  6347. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6348. static const struct {
  6349. const char string[ETH_GSTRING_LEN];
  6350. } niu_bmac_stat_keys[] = {
  6351. { "tx_underflow_errors" },
  6352. { "tx_max_pkt_size_errors" },
  6353. { "tx_bytes" },
  6354. { "tx_frames" },
  6355. { "rx_overflows" },
  6356. { "rx_frames" },
  6357. { "rx_align_errors" },
  6358. { "rx_crc_errors" },
  6359. { "rx_len_errors" },
  6360. { "pause_off_state" },
  6361. { "pause_on_state" },
  6362. { "pause_received" },
  6363. };
  6364. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6365. static const struct {
  6366. const char string[ETH_GSTRING_LEN];
  6367. } niu_rxchan_stat_keys[] = {
  6368. { "rx_channel" },
  6369. { "rx_packets" },
  6370. { "rx_bytes" },
  6371. { "rx_dropped" },
  6372. { "rx_errors" },
  6373. };
  6374. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6375. static const struct {
  6376. const char string[ETH_GSTRING_LEN];
  6377. } niu_txchan_stat_keys[] = {
  6378. { "tx_channel" },
  6379. { "tx_packets" },
  6380. { "tx_bytes" },
  6381. { "tx_errors" },
  6382. };
  6383. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6384. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6385. {
  6386. struct niu *np = netdev_priv(dev);
  6387. int i;
  6388. if (stringset != ETH_SS_STATS)
  6389. return;
  6390. if (np->flags & NIU_FLAGS_XMAC) {
  6391. memcpy(data, niu_xmac_stat_keys,
  6392. sizeof(niu_xmac_stat_keys));
  6393. data += sizeof(niu_xmac_stat_keys);
  6394. } else {
  6395. memcpy(data, niu_bmac_stat_keys,
  6396. sizeof(niu_bmac_stat_keys));
  6397. data += sizeof(niu_bmac_stat_keys);
  6398. }
  6399. for (i = 0; i < np->num_rx_rings; i++) {
  6400. memcpy(data, niu_rxchan_stat_keys,
  6401. sizeof(niu_rxchan_stat_keys));
  6402. data += sizeof(niu_rxchan_stat_keys);
  6403. }
  6404. for (i = 0; i < np->num_tx_rings; i++) {
  6405. memcpy(data, niu_txchan_stat_keys,
  6406. sizeof(niu_txchan_stat_keys));
  6407. data += sizeof(niu_txchan_stat_keys);
  6408. }
  6409. }
  6410. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6411. {
  6412. struct niu *np = netdev_priv(dev);
  6413. if (stringset != ETH_SS_STATS)
  6414. return -EINVAL;
  6415. return (np->flags & NIU_FLAGS_XMAC ?
  6416. NUM_XMAC_STAT_KEYS :
  6417. NUM_BMAC_STAT_KEYS) +
  6418. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6419. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6420. }
  6421. static void niu_get_ethtool_stats(struct net_device *dev,
  6422. struct ethtool_stats *stats, u64 *data)
  6423. {
  6424. struct niu *np = netdev_priv(dev);
  6425. int i;
  6426. niu_sync_mac_stats(np);
  6427. if (np->flags & NIU_FLAGS_XMAC) {
  6428. memcpy(data, &np->mac_stats.xmac,
  6429. sizeof(struct niu_xmac_stats));
  6430. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6431. } else {
  6432. memcpy(data, &np->mac_stats.bmac,
  6433. sizeof(struct niu_bmac_stats));
  6434. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6435. }
  6436. for (i = 0; i < np->num_rx_rings; i++) {
  6437. struct rx_ring_info *rp = &np->rx_rings[i];
  6438. niu_sync_rx_discard_stats(np, rp, 0);
  6439. data[0] = rp->rx_channel;
  6440. data[1] = rp->rx_packets;
  6441. data[2] = rp->rx_bytes;
  6442. data[3] = rp->rx_dropped;
  6443. data[4] = rp->rx_errors;
  6444. data += 5;
  6445. }
  6446. for (i = 0; i < np->num_tx_rings; i++) {
  6447. struct tx_ring_info *rp = &np->tx_rings[i];
  6448. data[0] = rp->tx_channel;
  6449. data[1] = rp->tx_packets;
  6450. data[2] = rp->tx_bytes;
  6451. data[3] = rp->tx_errors;
  6452. data += 4;
  6453. }
  6454. }
  6455. static u64 niu_led_state_save(struct niu *np)
  6456. {
  6457. if (np->flags & NIU_FLAGS_XMAC)
  6458. return nr64_mac(XMAC_CONFIG);
  6459. else
  6460. return nr64_mac(BMAC_XIF_CONFIG);
  6461. }
  6462. static void niu_led_state_restore(struct niu *np, u64 val)
  6463. {
  6464. if (np->flags & NIU_FLAGS_XMAC)
  6465. nw64_mac(XMAC_CONFIG, val);
  6466. else
  6467. nw64_mac(BMAC_XIF_CONFIG, val);
  6468. }
  6469. static void niu_force_led(struct niu *np, int on)
  6470. {
  6471. u64 val, reg, bit;
  6472. if (np->flags & NIU_FLAGS_XMAC) {
  6473. reg = XMAC_CONFIG;
  6474. bit = XMAC_CONFIG_FORCE_LED_ON;
  6475. } else {
  6476. reg = BMAC_XIF_CONFIG;
  6477. bit = BMAC_XIF_CONFIG_LINK_LED;
  6478. }
  6479. val = nr64_mac(reg);
  6480. if (on)
  6481. val |= bit;
  6482. else
  6483. val &= ~bit;
  6484. nw64_mac(reg, val);
  6485. }
  6486. static int niu_set_phys_id(struct net_device *dev,
  6487. enum ethtool_phys_id_state state)
  6488. {
  6489. struct niu *np = netdev_priv(dev);
  6490. if (!netif_running(dev))
  6491. return -EAGAIN;
  6492. switch (state) {
  6493. case ETHTOOL_ID_ACTIVE:
  6494. np->orig_led_state = niu_led_state_save(np);
  6495. return 1; /* cycle on/off once per second */
  6496. case ETHTOOL_ID_ON:
  6497. niu_force_led(np, 1);
  6498. break;
  6499. case ETHTOOL_ID_OFF:
  6500. niu_force_led(np, 0);
  6501. break;
  6502. case ETHTOOL_ID_INACTIVE:
  6503. niu_led_state_restore(np, np->orig_led_state);
  6504. }
  6505. return 0;
  6506. }
  6507. static const struct ethtool_ops niu_ethtool_ops = {
  6508. .get_drvinfo = niu_get_drvinfo,
  6509. .get_link = ethtool_op_get_link,
  6510. .get_msglevel = niu_get_msglevel,
  6511. .set_msglevel = niu_set_msglevel,
  6512. .nway_reset = niu_nway_reset,
  6513. .get_eeprom_len = niu_get_eeprom_len,
  6514. .get_eeprom = niu_get_eeprom,
  6515. .get_strings = niu_get_strings,
  6516. .get_sset_count = niu_get_sset_count,
  6517. .get_ethtool_stats = niu_get_ethtool_stats,
  6518. .set_phys_id = niu_set_phys_id,
  6519. .get_rxnfc = niu_get_nfc,
  6520. .set_rxnfc = niu_set_nfc,
  6521. .get_link_ksettings = niu_get_link_ksettings,
  6522. .set_link_ksettings = niu_set_link_ksettings,
  6523. };
  6524. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6525. int ldg, int ldn)
  6526. {
  6527. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6528. return -EINVAL;
  6529. if (ldn < 0 || ldn > LDN_MAX)
  6530. return -EINVAL;
  6531. parent->ldg_map[ldn] = ldg;
  6532. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6533. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6534. * the firmware, and we're not supposed to change them.
  6535. * Validate the mapping, because if it's wrong we probably
  6536. * won't get any interrupts and that's painful to debug.
  6537. */
  6538. if (nr64(LDG_NUM(ldn)) != ldg) {
  6539. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6540. np->port, ldn, ldg,
  6541. (unsigned long long) nr64(LDG_NUM(ldn)));
  6542. return -EINVAL;
  6543. }
  6544. } else
  6545. nw64(LDG_NUM(ldn), ldg);
  6546. return 0;
  6547. }
  6548. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6549. {
  6550. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6551. return -EINVAL;
  6552. nw64(LDG_TIMER_RES, res);
  6553. return 0;
  6554. }
  6555. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6556. {
  6557. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6558. (func < 0 || func > 3) ||
  6559. (vector < 0 || vector > 0x1f))
  6560. return -EINVAL;
  6561. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6562. return 0;
  6563. }
  6564. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6565. {
  6566. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6567. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6568. int limit;
  6569. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6570. return -EINVAL;
  6571. frame = frame_base;
  6572. nw64(ESPC_PIO_STAT, frame);
  6573. limit = 64;
  6574. do {
  6575. udelay(5);
  6576. frame = nr64(ESPC_PIO_STAT);
  6577. if (frame & ESPC_PIO_STAT_READ_END)
  6578. break;
  6579. } while (limit--);
  6580. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6581. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6582. (unsigned long long) frame);
  6583. return -ENODEV;
  6584. }
  6585. frame = frame_base;
  6586. nw64(ESPC_PIO_STAT, frame);
  6587. limit = 64;
  6588. do {
  6589. udelay(5);
  6590. frame = nr64(ESPC_PIO_STAT);
  6591. if (frame & ESPC_PIO_STAT_READ_END)
  6592. break;
  6593. } while (limit--);
  6594. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6595. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6596. (unsigned long long) frame);
  6597. return -ENODEV;
  6598. }
  6599. frame = nr64(ESPC_PIO_STAT);
  6600. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6601. }
  6602. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6603. {
  6604. int err = niu_pci_eeprom_read(np, off);
  6605. u16 val;
  6606. if (err < 0)
  6607. return err;
  6608. val = (err << 8);
  6609. err = niu_pci_eeprom_read(np, off + 1);
  6610. if (err < 0)
  6611. return err;
  6612. val |= (err & 0xff);
  6613. return val;
  6614. }
  6615. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6616. {
  6617. int err = niu_pci_eeprom_read(np, off);
  6618. u16 val;
  6619. if (err < 0)
  6620. return err;
  6621. val = (err & 0xff);
  6622. err = niu_pci_eeprom_read(np, off + 1);
  6623. if (err < 0)
  6624. return err;
  6625. val |= (err & 0xff) << 8;
  6626. return val;
  6627. }
  6628. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6629. int namebuf_len)
  6630. {
  6631. int i;
  6632. for (i = 0; i < namebuf_len; i++) {
  6633. int err = niu_pci_eeprom_read(np, off + i);
  6634. if (err < 0)
  6635. return err;
  6636. *namebuf++ = err;
  6637. if (!err)
  6638. break;
  6639. }
  6640. if (i >= namebuf_len)
  6641. return -EINVAL;
  6642. return i + 1;
  6643. }
  6644. static void niu_vpd_parse_version(struct niu *np)
  6645. {
  6646. struct niu_vpd *vpd = &np->vpd;
  6647. int len = strlen(vpd->version) + 1;
  6648. const char *s = vpd->version;
  6649. int i;
  6650. for (i = 0; i < len - 5; i++) {
  6651. if (!strncmp(s + i, "FCode ", 6))
  6652. break;
  6653. }
  6654. if (i >= len - 5)
  6655. return;
  6656. s += i + 5;
  6657. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6658. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6659. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6660. vpd->fcode_major, vpd->fcode_minor);
  6661. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6662. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6663. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6664. np->flags |= NIU_FLAGS_VPD_VALID;
  6665. }
  6666. /* ESPC_PIO_EN_ENABLE must be set */
  6667. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6668. {
  6669. unsigned int found_mask = 0;
  6670. #define FOUND_MASK_MODEL 0x00000001
  6671. #define FOUND_MASK_BMODEL 0x00000002
  6672. #define FOUND_MASK_VERS 0x00000004
  6673. #define FOUND_MASK_MAC 0x00000008
  6674. #define FOUND_MASK_NMAC 0x00000010
  6675. #define FOUND_MASK_PHY 0x00000020
  6676. #define FOUND_MASK_ALL 0x0000003f
  6677. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6678. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6679. while (start < end) {
  6680. int len, err, prop_len;
  6681. char namebuf[64];
  6682. u8 *prop_buf;
  6683. int max_len;
  6684. if (found_mask == FOUND_MASK_ALL) {
  6685. niu_vpd_parse_version(np);
  6686. return 1;
  6687. }
  6688. err = niu_pci_eeprom_read(np, start + 2);
  6689. if (err < 0)
  6690. return err;
  6691. len = err;
  6692. start += 3;
  6693. prop_len = niu_pci_eeprom_read(np, start + 4);
  6694. if (prop_len < 0)
  6695. return prop_len;
  6696. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6697. if (err < 0)
  6698. return err;
  6699. prop_buf = NULL;
  6700. max_len = 0;
  6701. if (!strcmp(namebuf, "model")) {
  6702. prop_buf = np->vpd.model;
  6703. max_len = NIU_VPD_MODEL_MAX;
  6704. found_mask |= FOUND_MASK_MODEL;
  6705. } else if (!strcmp(namebuf, "board-model")) {
  6706. prop_buf = np->vpd.board_model;
  6707. max_len = NIU_VPD_BD_MODEL_MAX;
  6708. found_mask |= FOUND_MASK_BMODEL;
  6709. } else if (!strcmp(namebuf, "version")) {
  6710. prop_buf = np->vpd.version;
  6711. max_len = NIU_VPD_VERSION_MAX;
  6712. found_mask |= FOUND_MASK_VERS;
  6713. } else if (!strcmp(namebuf, "local-mac-address")) {
  6714. prop_buf = np->vpd.local_mac;
  6715. max_len = ETH_ALEN;
  6716. found_mask |= FOUND_MASK_MAC;
  6717. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6718. prop_buf = &np->vpd.mac_num;
  6719. max_len = 1;
  6720. found_mask |= FOUND_MASK_NMAC;
  6721. } else if (!strcmp(namebuf, "phy-type")) {
  6722. prop_buf = np->vpd.phy_type;
  6723. max_len = NIU_VPD_PHY_TYPE_MAX;
  6724. found_mask |= FOUND_MASK_PHY;
  6725. }
  6726. if (max_len && prop_len > max_len) {
  6727. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6728. return -EINVAL;
  6729. }
  6730. if (prop_buf) {
  6731. u32 off = start + 5 + err;
  6732. int i;
  6733. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6734. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6735. namebuf, prop_len);
  6736. for (i = 0; i < prop_len; i++) {
  6737. err = niu_pci_eeprom_read(np, off + i);
  6738. if (err < 0)
  6739. return err;
  6740. *prop_buf++ = err;
  6741. }
  6742. }
  6743. start += len;
  6744. }
  6745. return 0;
  6746. }
  6747. /* ESPC_PIO_EN_ENABLE must be set */
  6748. static int niu_pci_vpd_fetch(struct niu *np, u32 start)
  6749. {
  6750. u32 offset;
  6751. int err;
  6752. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6753. if (err < 0)
  6754. return err;
  6755. offset = err + 3;
  6756. while (start + offset < ESPC_EEPROM_SIZE) {
  6757. u32 here = start + offset;
  6758. u32 end;
  6759. err = niu_pci_eeprom_read(np, here);
  6760. if (err < 0)
  6761. return err;
  6762. if (err != 0x90)
  6763. return -EINVAL;
  6764. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6765. if (err < 0)
  6766. return err;
  6767. here = start + offset + 3;
  6768. end = start + offset + err;
  6769. offset += err;
  6770. err = niu_pci_vpd_scan_props(np, here, end);
  6771. if (err < 0)
  6772. return err;
  6773. if (err == 1)
  6774. return -EINVAL;
  6775. }
  6776. return 0;
  6777. }
  6778. /* ESPC_PIO_EN_ENABLE must be set */
  6779. static u32 niu_pci_vpd_offset(struct niu *np)
  6780. {
  6781. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6782. int err;
  6783. while (start < end) {
  6784. ret = start;
  6785. /* ROM header signature? */
  6786. err = niu_pci_eeprom_read16(np, start + 0);
  6787. if (err != 0x55aa)
  6788. return 0;
  6789. /* Apply offset to PCI data structure. */
  6790. err = niu_pci_eeprom_read16(np, start + 23);
  6791. if (err < 0)
  6792. return 0;
  6793. start += err;
  6794. /* Check for "PCIR" signature. */
  6795. err = niu_pci_eeprom_read16(np, start + 0);
  6796. if (err != 0x5043)
  6797. return 0;
  6798. err = niu_pci_eeprom_read16(np, start + 2);
  6799. if (err != 0x4952)
  6800. return 0;
  6801. /* Check for OBP image type. */
  6802. err = niu_pci_eeprom_read(np, start + 20);
  6803. if (err < 0)
  6804. return 0;
  6805. if (err != 0x01) {
  6806. err = niu_pci_eeprom_read(np, ret + 2);
  6807. if (err < 0)
  6808. return 0;
  6809. start = ret + (err * 512);
  6810. continue;
  6811. }
  6812. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6813. if (err < 0)
  6814. return err;
  6815. ret += err;
  6816. err = niu_pci_eeprom_read(np, ret + 0);
  6817. if (err != 0x82)
  6818. return 0;
  6819. return ret;
  6820. }
  6821. return 0;
  6822. }
  6823. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6824. {
  6825. if (!strcmp(phy_prop, "mif")) {
  6826. /* 1G copper, MII */
  6827. np->flags &= ~(NIU_FLAGS_FIBER |
  6828. NIU_FLAGS_10G);
  6829. np->mac_xcvr = MAC_XCVR_MII;
  6830. } else if (!strcmp(phy_prop, "xgf")) {
  6831. /* 10G fiber, XPCS */
  6832. np->flags |= (NIU_FLAGS_10G |
  6833. NIU_FLAGS_FIBER);
  6834. np->mac_xcvr = MAC_XCVR_XPCS;
  6835. } else if (!strcmp(phy_prop, "pcs")) {
  6836. /* 1G fiber, PCS */
  6837. np->flags &= ~NIU_FLAGS_10G;
  6838. np->flags |= NIU_FLAGS_FIBER;
  6839. np->mac_xcvr = MAC_XCVR_PCS;
  6840. } else if (!strcmp(phy_prop, "xgc")) {
  6841. /* 10G copper, XPCS */
  6842. np->flags |= NIU_FLAGS_10G;
  6843. np->flags &= ~NIU_FLAGS_FIBER;
  6844. np->mac_xcvr = MAC_XCVR_XPCS;
  6845. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6846. /* 10G Serdes or 1G Serdes, default to 10G */
  6847. np->flags |= NIU_FLAGS_10G;
  6848. np->flags &= ~NIU_FLAGS_FIBER;
  6849. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6850. np->mac_xcvr = MAC_XCVR_XPCS;
  6851. } else {
  6852. return -EINVAL;
  6853. }
  6854. return 0;
  6855. }
  6856. static int niu_pci_vpd_get_nports(struct niu *np)
  6857. {
  6858. int ports = 0;
  6859. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6860. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6861. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6862. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6863. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6864. ports = 4;
  6865. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6866. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6867. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6868. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6869. ports = 2;
  6870. }
  6871. return ports;
  6872. }
  6873. static void niu_pci_vpd_validate(struct niu *np)
  6874. {
  6875. struct net_device *dev = np->dev;
  6876. struct niu_vpd *vpd = &np->vpd;
  6877. u8 val8;
  6878. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6879. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6880. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6881. return;
  6882. }
  6883. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6884. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6885. np->flags |= NIU_FLAGS_10G;
  6886. np->flags &= ~NIU_FLAGS_FIBER;
  6887. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6888. np->mac_xcvr = MAC_XCVR_PCS;
  6889. if (np->port > 1) {
  6890. np->flags |= NIU_FLAGS_FIBER;
  6891. np->flags &= ~NIU_FLAGS_10G;
  6892. }
  6893. if (np->flags & NIU_FLAGS_10G)
  6894. np->mac_xcvr = MAC_XCVR_XPCS;
  6895. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6896. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6897. NIU_FLAGS_HOTPLUG_PHY);
  6898. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6899. dev_err(np->device, "Illegal phy string [%s]\n",
  6900. np->vpd.phy_type);
  6901. dev_err(np->device, "Falling back to SPROM\n");
  6902. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6903. return;
  6904. }
  6905. memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
  6906. val8 = dev->dev_addr[5];
  6907. dev->dev_addr[5] += np->port;
  6908. if (dev->dev_addr[5] < val8)
  6909. dev->dev_addr[4]++;
  6910. }
  6911. static int niu_pci_probe_sprom(struct niu *np)
  6912. {
  6913. struct net_device *dev = np->dev;
  6914. int len, i;
  6915. u64 val, sum;
  6916. u8 val8;
  6917. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6918. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6919. len = val / 4;
  6920. np->eeprom_len = len;
  6921. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6922. "SPROM: Image size %llu\n", (unsigned long long)val);
  6923. sum = 0;
  6924. for (i = 0; i < len; i++) {
  6925. val = nr64(ESPC_NCR(i));
  6926. sum += (val >> 0) & 0xff;
  6927. sum += (val >> 8) & 0xff;
  6928. sum += (val >> 16) & 0xff;
  6929. sum += (val >> 24) & 0xff;
  6930. }
  6931. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6932. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6933. if ((sum & 0xff) != 0xab) {
  6934. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6935. return -EINVAL;
  6936. }
  6937. val = nr64(ESPC_PHY_TYPE);
  6938. switch (np->port) {
  6939. case 0:
  6940. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6941. ESPC_PHY_TYPE_PORT0_SHIFT;
  6942. break;
  6943. case 1:
  6944. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6945. ESPC_PHY_TYPE_PORT1_SHIFT;
  6946. break;
  6947. case 2:
  6948. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6949. ESPC_PHY_TYPE_PORT2_SHIFT;
  6950. break;
  6951. case 3:
  6952. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6953. ESPC_PHY_TYPE_PORT3_SHIFT;
  6954. break;
  6955. default:
  6956. dev_err(np->device, "Bogus port number %u\n",
  6957. np->port);
  6958. return -EINVAL;
  6959. }
  6960. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6961. "SPROM: PHY type %x\n", val8);
  6962. switch (val8) {
  6963. case ESPC_PHY_TYPE_1G_COPPER:
  6964. /* 1G copper, MII */
  6965. np->flags &= ~(NIU_FLAGS_FIBER |
  6966. NIU_FLAGS_10G);
  6967. np->mac_xcvr = MAC_XCVR_MII;
  6968. break;
  6969. case ESPC_PHY_TYPE_1G_FIBER:
  6970. /* 1G fiber, PCS */
  6971. np->flags &= ~NIU_FLAGS_10G;
  6972. np->flags |= NIU_FLAGS_FIBER;
  6973. np->mac_xcvr = MAC_XCVR_PCS;
  6974. break;
  6975. case ESPC_PHY_TYPE_10G_COPPER:
  6976. /* 10G copper, XPCS */
  6977. np->flags |= NIU_FLAGS_10G;
  6978. np->flags &= ~NIU_FLAGS_FIBER;
  6979. np->mac_xcvr = MAC_XCVR_XPCS;
  6980. break;
  6981. case ESPC_PHY_TYPE_10G_FIBER:
  6982. /* 10G fiber, XPCS */
  6983. np->flags |= (NIU_FLAGS_10G |
  6984. NIU_FLAGS_FIBER);
  6985. np->mac_xcvr = MAC_XCVR_XPCS;
  6986. break;
  6987. default:
  6988. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  6989. return -EINVAL;
  6990. }
  6991. val = nr64(ESPC_MAC_ADDR0);
  6992. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6993. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  6994. dev->dev_addr[0] = (val >> 0) & 0xff;
  6995. dev->dev_addr[1] = (val >> 8) & 0xff;
  6996. dev->dev_addr[2] = (val >> 16) & 0xff;
  6997. dev->dev_addr[3] = (val >> 24) & 0xff;
  6998. val = nr64(ESPC_MAC_ADDR1);
  6999. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7000. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7001. dev->dev_addr[4] = (val >> 0) & 0xff;
  7002. dev->dev_addr[5] = (val >> 8) & 0xff;
  7003. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7004. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7005. dev->dev_addr);
  7006. return -EINVAL;
  7007. }
  7008. val8 = dev->dev_addr[5];
  7009. dev->dev_addr[5] += np->port;
  7010. if (dev->dev_addr[5] < val8)
  7011. dev->dev_addr[4]++;
  7012. val = nr64(ESPC_MOD_STR_LEN);
  7013. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7014. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7015. if (val >= 8 * 4)
  7016. return -EINVAL;
  7017. for (i = 0; i < val; i += 4) {
  7018. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7019. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7020. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7021. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7022. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7023. }
  7024. np->vpd.model[val] = '\0';
  7025. val = nr64(ESPC_BD_MOD_STR_LEN);
  7026. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7027. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7028. if (val >= 4 * 4)
  7029. return -EINVAL;
  7030. for (i = 0; i < val; i += 4) {
  7031. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7032. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7033. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7034. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7035. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7036. }
  7037. np->vpd.board_model[val] = '\0';
  7038. np->vpd.mac_num =
  7039. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7040. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7041. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7042. return 0;
  7043. }
  7044. static int niu_get_and_validate_port(struct niu *np)
  7045. {
  7046. struct niu_parent *parent = np->parent;
  7047. if (np->port <= 1)
  7048. np->flags |= NIU_FLAGS_XMAC;
  7049. if (!parent->num_ports) {
  7050. if (parent->plat_type == PLAT_TYPE_NIU) {
  7051. parent->num_ports = 2;
  7052. } else {
  7053. parent->num_ports = niu_pci_vpd_get_nports(np);
  7054. if (!parent->num_ports) {
  7055. /* Fall back to SPROM as last resort.
  7056. * This will fail on most cards.
  7057. */
  7058. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7059. ESPC_NUM_PORTS_MACS_VAL;
  7060. /* All of the current probing methods fail on
  7061. * Maramba on-board parts.
  7062. */
  7063. if (!parent->num_ports)
  7064. parent->num_ports = 4;
  7065. }
  7066. }
  7067. }
  7068. if (np->port >= parent->num_ports)
  7069. return -ENODEV;
  7070. return 0;
  7071. }
  7072. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7073. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7074. {
  7075. u32 id = (dev_id_1 << 16) | dev_id_2;
  7076. u8 idx;
  7077. if (dev_id_1 < 0 || dev_id_2 < 0)
  7078. return 0;
  7079. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7080. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7081. * test covers the 8706 as well.
  7082. */
  7083. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7084. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7085. return 0;
  7086. } else {
  7087. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7088. return 0;
  7089. }
  7090. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7091. parent->index, id,
  7092. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7093. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7094. phy_port);
  7095. if (p->cur[type] >= NIU_MAX_PORTS) {
  7096. pr_err("Too many PHY ports\n");
  7097. return -EINVAL;
  7098. }
  7099. idx = p->cur[type];
  7100. p->phy_id[type][idx] = id;
  7101. p->phy_port[type][idx] = phy_port;
  7102. p->cur[type] = idx + 1;
  7103. return 0;
  7104. }
  7105. static int port_has_10g(struct phy_probe_info *p, int port)
  7106. {
  7107. int i;
  7108. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7109. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7110. return 1;
  7111. }
  7112. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7113. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7114. return 1;
  7115. }
  7116. return 0;
  7117. }
  7118. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7119. {
  7120. int port, cnt;
  7121. cnt = 0;
  7122. *lowest = 32;
  7123. for (port = 8; port < 32; port++) {
  7124. if (port_has_10g(p, port)) {
  7125. if (!cnt)
  7126. *lowest = port;
  7127. cnt++;
  7128. }
  7129. }
  7130. return cnt;
  7131. }
  7132. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7133. {
  7134. *lowest = 32;
  7135. if (p->cur[PHY_TYPE_MII])
  7136. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7137. return p->cur[PHY_TYPE_MII];
  7138. }
  7139. static void niu_n2_divide_channels(struct niu_parent *parent)
  7140. {
  7141. int num_ports = parent->num_ports;
  7142. int i;
  7143. for (i = 0; i < num_ports; i++) {
  7144. parent->rxchan_per_port[i] = (16 / num_ports);
  7145. parent->txchan_per_port[i] = (16 / num_ports);
  7146. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7147. parent->index, i,
  7148. parent->rxchan_per_port[i],
  7149. parent->txchan_per_port[i]);
  7150. }
  7151. }
  7152. static void niu_divide_channels(struct niu_parent *parent,
  7153. int num_10g, int num_1g)
  7154. {
  7155. int num_ports = parent->num_ports;
  7156. int rx_chans_per_10g, rx_chans_per_1g;
  7157. int tx_chans_per_10g, tx_chans_per_1g;
  7158. int i, tot_rx, tot_tx;
  7159. if (!num_10g || !num_1g) {
  7160. rx_chans_per_10g = rx_chans_per_1g =
  7161. (NIU_NUM_RXCHAN / num_ports);
  7162. tx_chans_per_10g = tx_chans_per_1g =
  7163. (NIU_NUM_TXCHAN / num_ports);
  7164. } else {
  7165. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7166. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7167. (rx_chans_per_1g * num_1g)) /
  7168. num_10g;
  7169. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7170. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7171. (tx_chans_per_1g * num_1g)) /
  7172. num_10g;
  7173. }
  7174. tot_rx = tot_tx = 0;
  7175. for (i = 0; i < num_ports; i++) {
  7176. int type = phy_decode(parent->port_phy, i);
  7177. if (type == PORT_TYPE_10G) {
  7178. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7179. parent->txchan_per_port[i] = tx_chans_per_10g;
  7180. } else {
  7181. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7182. parent->txchan_per_port[i] = tx_chans_per_1g;
  7183. }
  7184. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7185. parent->index, i,
  7186. parent->rxchan_per_port[i],
  7187. parent->txchan_per_port[i]);
  7188. tot_rx += parent->rxchan_per_port[i];
  7189. tot_tx += parent->txchan_per_port[i];
  7190. }
  7191. if (tot_rx > NIU_NUM_RXCHAN) {
  7192. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7193. parent->index, tot_rx);
  7194. for (i = 0; i < num_ports; i++)
  7195. parent->rxchan_per_port[i] = 1;
  7196. }
  7197. if (tot_tx > NIU_NUM_TXCHAN) {
  7198. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7199. parent->index, tot_tx);
  7200. for (i = 0; i < num_ports; i++)
  7201. parent->txchan_per_port[i] = 1;
  7202. }
  7203. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7204. pr_warn("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7205. parent->index, tot_rx, tot_tx);
  7206. }
  7207. }
  7208. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7209. int num_10g, int num_1g)
  7210. {
  7211. int i, num_ports = parent->num_ports;
  7212. int rdc_group, rdc_groups_per_port;
  7213. int rdc_channel_base;
  7214. rdc_group = 0;
  7215. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7216. rdc_channel_base = 0;
  7217. for (i = 0; i < num_ports; i++) {
  7218. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7219. int grp, num_channels = parent->rxchan_per_port[i];
  7220. int this_channel_offset;
  7221. tp->first_table_num = rdc_group;
  7222. tp->num_tables = rdc_groups_per_port;
  7223. this_channel_offset = 0;
  7224. for (grp = 0; grp < tp->num_tables; grp++) {
  7225. struct rdc_table *rt = &tp->tables[grp];
  7226. int slot;
  7227. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7228. parent->index, i, tp->first_table_num + grp);
  7229. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7230. rt->rxdma_channel[slot] =
  7231. rdc_channel_base + this_channel_offset;
  7232. pr_cont("%d ", rt->rxdma_channel[slot]);
  7233. if (++this_channel_offset == num_channels)
  7234. this_channel_offset = 0;
  7235. }
  7236. pr_cont("]\n");
  7237. }
  7238. parent->rdc_default[i] = rdc_channel_base;
  7239. rdc_channel_base += num_channels;
  7240. rdc_group += rdc_groups_per_port;
  7241. }
  7242. }
  7243. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7244. struct phy_probe_info *info)
  7245. {
  7246. unsigned long flags;
  7247. int port, err;
  7248. memset(info, 0, sizeof(*info));
  7249. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7250. niu_lock_parent(np, flags);
  7251. err = 0;
  7252. for (port = 8; port < 32; port++) {
  7253. int dev_id_1, dev_id_2;
  7254. dev_id_1 = mdio_read(np, port,
  7255. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7256. dev_id_2 = mdio_read(np, port,
  7257. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7258. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7259. PHY_TYPE_PMA_PMD);
  7260. if (err)
  7261. break;
  7262. dev_id_1 = mdio_read(np, port,
  7263. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7264. dev_id_2 = mdio_read(np, port,
  7265. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7266. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7267. PHY_TYPE_PCS);
  7268. if (err)
  7269. break;
  7270. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7271. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7272. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7273. PHY_TYPE_MII);
  7274. if (err)
  7275. break;
  7276. }
  7277. niu_unlock_parent(np, flags);
  7278. return err;
  7279. }
  7280. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7281. {
  7282. struct phy_probe_info *info = &parent->phy_probe_info;
  7283. int lowest_10g, lowest_1g;
  7284. int num_10g, num_1g;
  7285. u32 val;
  7286. int err;
  7287. num_10g = num_1g = 0;
  7288. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7289. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7290. num_10g = 0;
  7291. num_1g = 2;
  7292. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7293. parent->num_ports = 4;
  7294. val = (phy_encode(PORT_TYPE_1G, 0) |
  7295. phy_encode(PORT_TYPE_1G, 1) |
  7296. phy_encode(PORT_TYPE_1G, 2) |
  7297. phy_encode(PORT_TYPE_1G, 3));
  7298. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7299. num_10g = 2;
  7300. num_1g = 0;
  7301. parent->num_ports = 2;
  7302. val = (phy_encode(PORT_TYPE_10G, 0) |
  7303. phy_encode(PORT_TYPE_10G, 1));
  7304. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7305. (parent->plat_type == PLAT_TYPE_NIU)) {
  7306. /* this is the Monza case */
  7307. if (np->flags & NIU_FLAGS_10G) {
  7308. val = (phy_encode(PORT_TYPE_10G, 0) |
  7309. phy_encode(PORT_TYPE_10G, 1));
  7310. } else {
  7311. val = (phy_encode(PORT_TYPE_1G, 0) |
  7312. phy_encode(PORT_TYPE_1G, 1));
  7313. }
  7314. } else {
  7315. err = fill_phy_probe_info(np, parent, info);
  7316. if (err)
  7317. return err;
  7318. num_10g = count_10g_ports(info, &lowest_10g);
  7319. num_1g = count_1g_ports(info, &lowest_1g);
  7320. switch ((num_10g << 4) | num_1g) {
  7321. case 0x24:
  7322. if (lowest_1g == 10)
  7323. parent->plat_type = PLAT_TYPE_VF_P0;
  7324. else if (lowest_1g == 26)
  7325. parent->plat_type = PLAT_TYPE_VF_P1;
  7326. else
  7327. goto unknown_vg_1g_port;
  7328. /* fallthru */
  7329. case 0x22:
  7330. val = (phy_encode(PORT_TYPE_10G, 0) |
  7331. phy_encode(PORT_TYPE_10G, 1) |
  7332. phy_encode(PORT_TYPE_1G, 2) |
  7333. phy_encode(PORT_TYPE_1G, 3));
  7334. break;
  7335. case 0x20:
  7336. val = (phy_encode(PORT_TYPE_10G, 0) |
  7337. phy_encode(PORT_TYPE_10G, 1));
  7338. break;
  7339. case 0x10:
  7340. val = phy_encode(PORT_TYPE_10G, np->port);
  7341. break;
  7342. case 0x14:
  7343. if (lowest_1g == 10)
  7344. parent->plat_type = PLAT_TYPE_VF_P0;
  7345. else if (lowest_1g == 26)
  7346. parent->plat_type = PLAT_TYPE_VF_P1;
  7347. else
  7348. goto unknown_vg_1g_port;
  7349. /* fallthru */
  7350. case 0x13:
  7351. if ((lowest_10g & 0x7) == 0)
  7352. val = (phy_encode(PORT_TYPE_10G, 0) |
  7353. phy_encode(PORT_TYPE_1G, 1) |
  7354. phy_encode(PORT_TYPE_1G, 2) |
  7355. phy_encode(PORT_TYPE_1G, 3));
  7356. else
  7357. val = (phy_encode(PORT_TYPE_1G, 0) |
  7358. phy_encode(PORT_TYPE_10G, 1) |
  7359. phy_encode(PORT_TYPE_1G, 2) |
  7360. phy_encode(PORT_TYPE_1G, 3));
  7361. break;
  7362. case 0x04:
  7363. if (lowest_1g == 10)
  7364. parent->plat_type = PLAT_TYPE_VF_P0;
  7365. else if (lowest_1g == 26)
  7366. parent->plat_type = PLAT_TYPE_VF_P1;
  7367. else
  7368. goto unknown_vg_1g_port;
  7369. val = (phy_encode(PORT_TYPE_1G, 0) |
  7370. phy_encode(PORT_TYPE_1G, 1) |
  7371. phy_encode(PORT_TYPE_1G, 2) |
  7372. phy_encode(PORT_TYPE_1G, 3));
  7373. break;
  7374. default:
  7375. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7376. num_10g, num_1g);
  7377. return -EINVAL;
  7378. }
  7379. }
  7380. parent->port_phy = val;
  7381. if (parent->plat_type == PLAT_TYPE_NIU)
  7382. niu_n2_divide_channels(parent);
  7383. else
  7384. niu_divide_channels(parent, num_10g, num_1g);
  7385. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7386. return 0;
  7387. unknown_vg_1g_port:
  7388. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7389. return -EINVAL;
  7390. }
  7391. static int niu_probe_ports(struct niu *np)
  7392. {
  7393. struct niu_parent *parent = np->parent;
  7394. int err, i;
  7395. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7396. err = walk_phys(np, parent);
  7397. if (err)
  7398. return err;
  7399. niu_set_ldg_timer_res(np, 2);
  7400. for (i = 0; i <= LDN_MAX; i++)
  7401. niu_ldn_irq_enable(np, i, 0);
  7402. }
  7403. if (parent->port_phy == PORT_PHY_INVALID)
  7404. return -EINVAL;
  7405. return 0;
  7406. }
  7407. static int niu_classifier_swstate_init(struct niu *np)
  7408. {
  7409. struct niu_classifier *cp = &np->clas;
  7410. cp->tcam_top = (u16) np->port;
  7411. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7412. cp->h1_init = 0xffffffff;
  7413. cp->h2_init = 0xffff;
  7414. return fflp_early_init(np);
  7415. }
  7416. static void niu_link_config_init(struct niu *np)
  7417. {
  7418. struct niu_link_config *lp = &np->link_config;
  7419. lp->advertising = (ADVERTISED_10baseT_Half |
  7420. ADVERTISED_10baseT_Full |
  7421. ADVERTISED_100baseT_Half |
  7422. ADVERTISED_100baseT_Full |
  7423. ADVERTISED_1000baseT_Half |
  7424. ADVERTISED_1000baseT_Full |
  7425. ADVERTISED_10000baseT_Full |
  7426. ADVERTISED_Autoneg);
  7427. lp->speed = lp->active_speed = SPEED_INVALID;
  7428. lp->duplex = DUPLEX_FULL;
  7429. lp->active_duplex = DUPLEX_INVALID;
  7430. lp->autoneg = 1;
  7431. #if 0
  7432. lp->loopback_mode = LOOPBACK_MAC;
  7433. lp->active_speed = SPEED_10000;
  7434. lp->active_duplex = DUPLEX_FULL;
  7435. #else
  7436. lp->loopback_mode = LOOPBACK_DISABLED;
  7437. #endif
  7438. }
  7439. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7440. {
  7441. switch (np->port) {
  7442. case 0:
  7443. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7444. np->ipp_off = 0x00000;
  7445. np->pcs_off = 0x04000;
  7446. np->xpcs_off = 0x02000;
  7447. break;
  7448. case 1:
  7449. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7450. np->ipp_off = 0x08000;
  7451. np->pcs_off = 0x0a000;
  7452. np->xpcs_off = 0x08000;
  7453. break;
  7454. case 2:
  7455. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7456. np->ipp_off = 0x04000;
  7457. np->pcs_off = 0x0e000;
  7458. np->xpcs_off = ~0UL;
  7459. break;
  7460. case 3:
  7461. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7462. np->ipp_off = 0x0c000;
  7463. np->pcs_off = 0x12000;
  7464. np->xpcs_off = ~0UL;
  7465. break;
  7466. default:
  7467. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7468. return -EINVAL;
  7469. }
  7470. return 0;
  7471. }
  7472. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7473. {
  7474. struct msix_entry msi_vec[NIU_NUM_LDG];
  7475. struct niu_parent *parent = np->parent;
  7476. struct pci_dev *pdev = np->pdev;
  7477. int i, num_irqs;
  7478. u8 first_ldg;
  7479. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7480. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7481. ldg_num_map[i] = first_ldg + i;
  7482. num_irqs = (parent->rxchan_per_port[np->port] +
  7483. parent->txchan_per_port[np->port] +
  7484. (np->port == 0 ? 3 : 1));
  7485. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7486. for (i = 0; i < num_irqs; i++) {
  7487. msi_vec[i].vector = 0;
  7488. msi_vec[i].entry = i;
  7489. }
  7490. num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
  7491. if (num_irqs < 0) {
  7492. np->flags &= ~NIU_FLAGS_MSIX;
  7493. return;
  7494. }
  7495. np->flags |= NIU_FLAGS_MSIX;
  7496. for (i = 0; i < num_irqs; i++)
  7497. np->ldg[i].irq = msi_vec[i].vector;
  7498. np->num_ldg = num_irqs;
  7499. }
  7500. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7501. {
  7502. #ifdef CONFIG_SPARC64
  7503. struct platform_device *op = np->op;
  7504. const u32 *int_prop;
  7505. int i;
  7506. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7507. if (!int_prop)
  7508. return -ENODEV;
  7509. for (i = 0; i < op->archdata.num_irqs; i++) {
  7510. ldg_num_map[i] = int_prop[i];
  7511. np->ldg[i].irq = op->archdata.irqs[i];
  7512. }
  7513. np->num_ldg = op->archdata.num_irqs;
  7514. return 0;
  7515. #else
  7516. return -EINVAL;
  7517. #endif
  7518. }
  7519. static int niu_ldg_init(struct niu *np)
  7520. {
  7521. struct niu_parent *parent = np->parent;
  7522. u8 ldg_num_map[NIU_NUM_LDG];
  7523. int first_chan, num_chan;
  7524. int i, err, ldg_rotor;
  7525. u8 port;
  7526. np->num_ldg = 1;
  7527. np->ldg[0].irq = np->dev->irq;
  7528. if (parent->plat_type == PLAT_TYPE_NIU) {
  7529. err = niu_n2_irq_init(np, ldg_num_map);
  7530. if (err)
  7531. return err;
  7532. } else
  7533. niu_try_msix(np, ldg_num_map);
  7534. port = np->port;
  7535. for (i = 0; i < np->num_ldg; i++) {
  7536. struct niu_ldg *lp = &np->ldg[i];
  7537. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7538. lp->np = np;
  7539. lp->ldg_num = ldg_num_map[i];
  7540. lp->timer = 2; /* XXX */
  7541. /* On N2 NIU the firmware has setup the SID mappings so they go
  7542. * to the correct values that will route the LDG to the proper
  7543. * interrupt in the NCU interrupt table.
  7544. */
  7545. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7546. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7547. if (err)
  7548. return err;
  7549. }
  7550. }
  7551. /* We adopt the LDG assignment ordering used by the N2 NIU
  7552. * 'interrupt' properties because that simplifies a lot of
  7553. * things. This ordering is:
  7554. *
  7555. * MAC
  7556. * MIF (if port zero)
  7557. * SYSERR (if port zero)
  7558. * RX channels
  7559. * TX channels
  7560. */
  7561. ldg_rotor = 0;
  7562. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7563. LDN_MAC(port));
  7564. if (err)
  7565. return err;
  7566. ldg_rotor++;
  7567. if (ldg_rotor == np->num_ldg)
  7568. ldg_rotor = 0;
  7569. if (port == 0) {
  7570. err = niu_ldg_assign_ldn(np, parent,
  7571. ldg_num_map[ldg_rotor],
  7572. LDN_MIF);
  7573. if (err)
  7574. return err;
  7575. ldg_rotor++;
  7576. if (ldg_rotor == np->num_ldg)
  7577. ldg_rotor = 0;
  7578. err = niu_ldg_assign_ldn(np, parent,
  7579. ldg_num_map[ldg_rotor],
  7580. LDN_DEVICE_ERROR);
  7581. if (err)
  7582. return err;
  7583. ldg_rotor++;
  7584. if (ldg_rotor == np->num_ldg)
  7585. ldg_rotor = 0;
  7586. }
  7587. first_chan = 0;
  7588. for (i = 0; i < port; i++)
  7589. first_chan += parent->rxchan_per_port[i];
  7590. num_chan = parent->rxchan_per_port[port];
  7591. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7592. err = niu_ldg_assign_ldn(np, parent,
  7593. ldg_num_map[ldg_rotor],
  7594. LDN_RXDMA(i));
  7595. if (err)
  7596. return err;
  7597. ldg_rotor++;
  7598. if (ldg_rotor == np->num_ldg)
  7599. ldg_rotor = 0;
  7600. }
  7601. first_chan = 0;
  7602. for (i = 0; i < port; i++)
  7603. first_chan += parent->txchan_per_port[i];
  7604. num_chan = parent->txchan_per_port[port];
  7605. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7606. err = niu_ldg_assign_ldn(np, parent,
  7607. ldg_num_map[ldg_rotor],
  7608. LDN_TXDMA(i));
  7609. if (err)
  7610. return err;
  7611. ldg_rotor++;
  7612. if (ldg_rotor == np->num_ldg)
  7613. ldg_rotor = 0;
  7614. }
  7615. return 0;
  7616. }
  7617. static void niu_ldg_free(struct niu *np)
  7618. {
  7619. if (np->flags & NIU_FLAGS_MSIX)
  7620. pci_disable_msix(np->pdev);
  7621. }
  7622. static int niu_get_of_props(struct niu *np)
  7623. {
  7624. #ifdef CONFIG_SPARC64
  7625. struct net_device *dev = np->dev;
  7626. struct device_node *dp;
  7627. const char *phy_type;
  7628. const u8 *mac_addr;
  7629. const char *model;
  7630. int prop_len;
  7631. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7632. dp = np->op->dev.of_node;
  7633. else
  7634. dp = pci_device_to_OF_node(np->pdev);
  7635. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7636. if (!phy_type) {
  7637. netdev_err(dev, "%pOF: OF node lacks phy-type property\n", dp);
  7638. return -EINVAL;
  7639. }
  7640. if (!strcmp(phy_type, "none"))
  7641. return -ENODEV;
  7642. strcpy(np->vpd.phy_type, phy_type);
  7643. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7644. netdev_err(dev, "%pOF: Illegal phy string [%s]\n",
  7645. dp, np->vpd.phy_type);
  7646. return -EINVAL;
  7647. }
  7648. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7649. if (!mac_addr) {
  7650. netdev_err(dev, "%pOF: OF node lacks local-mac-address property\n",
  7651. dp);
  7652. return -EINVAL;
  7653. }
  7654. if (prop_len != dev->addr_len) {
  7655. netdev_err(dev, "%pOF: OF MAC address prop len (%d) is wrong\n",
  7656. dp, prop_len);
  7657. }
  7658. memcpy(dev->dev_addr, mac_addr, dev->addr_len);
  7659. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7660. netdev_err(dev, "%pOF: OF MAC address is invalid\n", dp);
  7661. netdev_err(dev, "%pOF: [ %pM ]\n", dp, dev->dev_addr);
  7662. return -EINVAL;
  7663. }
  7664. model = of_get_property(dp, "model", &prop_len);
  7665. if (model)
  7666. strcpy(np->vpd.model, model);
  7667. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7668. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7669. NIU_FLAGS_HOTPLUG_PHY);
  7670. }
  7671. return 0;
  7672. #else
  7673. return -EINVAL;
  7674. #endif
  7675. }
  7676. static int niu_get_invariants(struct niu *np)
  7677. {
  7678. int err, have_props;
  7679. u32 offset;
  7680. err = niu_get_of_props(np);
  7681. if (err == -ENODEV)
  7682. return err;
  7683. have_props = !err;
  7684. err = niu_init_mac_ipp_pcs_base(np);
  7685. if (err)
  7686. return err;
  7687. if (have_props) {
  7688. err = niu_get_and_validate_port(np);
  7689. if (err)
  7690. return err;
  7691. } else {
  7692. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7693. return -EINVAL;
  7694. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7695. offset = niu_pci_vpd_offset(np);
  7696. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7697. "%s() VPD offset [%08x]\n", __func__, offset);
  7698. if (offset) {
  7699. err = niu_pci_vpd_fetch(np, offset);
  7700. if (err < 0)
  7701. return err;
  7702. }
  7703. nw64(ESPC_PIO_EN, 0);
  7704. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7705. niu_pci_vpd_validate(np);
  7706. err = niu_get_and_validate_port(np);
  7707. if (err)
  7708. return err;
  7709. }
  7710. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7711. err = niu_get_and_validate_port(np);
  7712. if (err)
  7713. return err;
  7714. err = niu_pci_probe_sprom(np);
  7715. if (err)
  7716. return err;
  7717. }
  7718. }
  7719. err = niu_probe_ports(np);
  7720. if (err)
  7721. return err;
  7722. niu_ldg_init(np);
  7723. niu_classifier_swstate_init(np);
  7724. niu_link_config_init(np);
  7725. err = niu_determine_phy_disposition(np);
  7726. if (!err)
  7727. err = niu_init_link(np);
  7728. return err;
  7729. }
  7730. static LIST_HEAD(niu_parent_list);
  7731. static DEFINE_MUTEX(niu_parent_lock);
  7732. static int niu_parent_index;
  7733. static ssize_t show_port_phy(struct device *dev,
  7734. struct device_attribute *attr, char *buf)
  7735. {
  7736. struct platform_device *plat_dev = to_platform_device(dev);
  7737. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7738. u32 port_phy = p->port_phy;
  7739. char *orig_buf = buf;
  7740. int i;
  7741. if (port_phy == PORT_PHY_UNKNOWN ||
  7742. port_phy == PORT_PHY_INVALID)
  7743. return 0;
  7744. for (i = 0; i < p->num_ports; i++) {
  7745. const char *type_str;
  7746. int type;
  7747. type = phy_decode(port_phy, i);
  7748. if (type == PORT_TYPE_10G)
  7749. type_str = "10G";
  7750. else
  7751. type_str = "1G";
  7752. buf += sprintf(buf,
  7753. (i == 0) ? "%s" : " %s",
  7754. type_str);
  7755. }
  7756. buf += sprintf(buf, "\n");
  7757. return buf - orig_buf;
  7758. }
  7759. static ssize_t show_plat_type(struct device *dev,
  7760. struct device_attribute *attr, char *buf)
  7761. {
  7762. struct platform_device *plat_dev = to_platform_device(dev);
  7763. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7764. const char *type_str;
  7765. switch (p->plat_type) {
  7766. case PLAT_TYPE_ATLAS:
  7767. type_str = "atlas";
  7768. break;
  7769. case PLAT_TYPE_NIU:
  7770. type_str = "niu";
  7771. break;
  7772. case PLAT_TYPE_VF_P0:
  7773. type_str = "vf_p0";
  7774. break;
  7775. case PLAT_TYPE_VF_P1:
  7776. type_str = "vf_p1";
  7777. break;
  7778. default:
  7779. type_str = "unknown";
  7780. break;
  7781. }
  7782. return sprintf(buf, "%s\n", type_str);
  7783. }
  7784. static ssize_t __show_chan_per_port(struct device *dev,
  7785. struct device_attribute *attr, char *buf,
  7786. int rx)
  7787. {
  7788. struct platform_device *plat_dev = to_platform_device(dev);
  7789. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7790. char *orig_buf = buf;
  7791. u8 *arr;
  7792. int i;
  7793. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7794. for (i = 0; i < p->num_ports; i++) {
  7795. buf += sprintf(buf,
  7796. (i == 0) ? "%d" : " %d",
  7797. arr[i]);
  7798. }
  7799. buf += sprintf(buf, "\n");
  7800. return buf - orig_buf;
  7801. }
  7802. static ssize_t show_rxchan_per_port(struct device *dev,
  7803. struct device_attribute *attr, char *buf)
  7804. {
  7805. return __show_chan_per_port(dev, attr, buf, 1);
  7806. }
  7807. static ssize_t show_txchan_per_port(struct device *dev,
  7808. struct device_attribute *attr, char *buf)
  7809. {
  7810. return __show_chan_per_port(dev, attr, buf, 1);
  7811. }
  7812. static ssize_t show_num_ports(struct device *dev,
  7813. struct device_attribute *attr, char *buf)
  7814. {
  7815. struct platform_device *plat_dev = to_platform_device(dev);
  7816. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7817. return sprintf(buf, "%d\n", p->num_ports);
  7818. }
  7819. static struct device_attribute niu_parent_attributes[] = {
  7820. __ATTR(port_phy, 0444, show_port_phy, NULL),
  7821. __ATTR(plat_type, 0444, show_plat_type, NULL),
  7822. __ATTR(rxchan_per_port, 0444, show_rxchan_per_port, NULL),
  7823. __ATTR(txchan_per_port, 0444, show_txchan_per_port, NULL),
  7824. __ATTR(num_ports, 0444, show_num_ports, NULL),
  7825. {}
  7826. };
  7827. static struct niu_parent *niu_new_parent(struct niu *np,
  7828. union niu_parent_id *id, u8 ptype)
  7829. {
  7830. struct platform_device *plat_dev;
  7831. struct niu_parent *p;
  7832. int i;
  7833. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7834. NULL, 0);
  7835. if (IS_ERR(plat_dev))
  7836. return NULL;
  7837. for (i = 0; niu_parent_attributes[i].attr.name; i++) {
  7838. int err = device_create_file(&plat_dev->dev,
  7839. &niu_parent_attributes[i]);
  7840. if (err)
  7841. goto fail_unregister;
  7842. }
  7843. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7844. if (!p)
  7845. goto fail_unregister;
  7846. p->index = niu_parent_index++;
  7847. plat_dev->dev.platform_data = p;
  7848. p->plat_dev = plat_dev;
  7849. memcpy(&p->id, id, sizeof(*id));
  7850. p->plat_type = ptype;
  7851. INIT_LIST_HEAD(&p->list);
  7852. atomic_set(&p->refcnt, 0);
  7853. list_add(&p->list, &niu_parent_list);
  7854. spin_lock_init(&p->lock);
  7855. p->rxdma_clock_divider = 7500;
  7856. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7857. if (p->plat_type == PLAT_TYPE_NIU)
  7858. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7859. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7860. int index = i - CLASS_CODE_USER_PROG1;
  7861. p->tcam_key[index] = TCAM_KEY_TSEL;
  7862. p->flow_key[index] = (FLOW_KEY_IPSA |
  7863. FLOW_KEY_IPDA |
  7864. FLOW_KEY_PROTO |
  7865. (FLOW_KEY_L4_BYTE12 <<
  7866. FLOW_KEY_L4_0_SHIFT) |
  7867. (FLOW_KEY_L4_BYTE12 <<
  7868. FLOW_KEY_L4_1_SHIFT));
  7869. }
  7870. for (i = 0; i < LDN_MAX + 1; i++)
  7871. p->ldg_map[i] = LDG_INVALID;
  7872. return p;
  7873. fail_unregister:
  7874. platform_device_unregister(plat_dev);
  7875. return NULL;
  7876. }
  7877. static struct niu_parent *niu_get_parent(struct niu *np,
  7878. union niu_parent_id *id, u8 ptype)
  7879. {
  7880. struct niu_parent *p, *tmp;
  7881. int port = np->port;
  7882. mutex_lock(&niu_parent_lock);
  7883. p = NULL;
  7884. list_for_each_entry(tmp, &niu_parent_list, list) {
  7885. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7886. p = tmp;
  7887. break;
  7888. }
  7889. }
  7890. if (!p)
  7891. p = niu_new_parent(np, id, ptype);
  7892. if (p) {
  7893. char port_name[8];
  7894. int err;
  7895. sprintf(port_name, "port%d", port);
  7896. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7897. &np->device->kobj,
  7898. port_name);
  7899. if (!err) {
  7900. p->ports[port] = np;
  7901. atomic_inc(&p->refcnt);
  7902. }
  7903. }
  7904. mutex_unlock(&niu_parent_lock);
  7905. return p;
  7906. }
  7907. static void niu_put_parent(struct niu *np)
  7908. {
  7909. struct niu_parent *p = np->parent;
  7910. u8 port = np->port;
  7911. char port_name[8];
  7912. BUG_ON(!p || p->ports[port] != np);
  7913. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7914. "%s() port[%u]\n", __func__, port);
  7915. sprintf(port_name, "port%d", port);
  7916. mutex_lock(&niu_parent_lock);
  7917. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7918. p->ports[port] = NULL;
  7919. np->parent = NULL;
  7920. if (atomic_dec_and_test(&p->refcnt)) {
  7921. list_del(&p->list);
  7922. platform_device_unregister(p->plat_dev);
  7923. }
  7924. mutex_unlock(&niu_parent_lock);
  7925. }
  7926. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7927. u64 *handle, gfp_t flag)
  7928. {
  7929. dma_addr_t dh;
  7930. void *ret;
  7931. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7932. if (ret)
  7933. *handle = dh;
  7934. return ret;
  7935. }
  7936. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7937. void *cpu_addr, u64 handle)
  7938. {
  7939. dma_free_coherent(dev, size, cpu_addr, handle);
  7940. }
  7941. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7942. unsigned long offset, size_t size,
  7943. enum dma_data_direction direction)
  7944. {
  7945. return dma_map_page(dev, page, offset, size, direction);
  7946. }
  7947. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7948. size_t size, enum dma_data_direction direction)
  7949. {
  7950. dma_unmap_page(dev, dma_address, size, direction);
  7951. }
  7952. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7953. size_t size,
  7954. enum dma_data_direction direction)
  7955. {
  7956. return dma_map_single(dev, cpu_addr, size, direction);
  7957. }
  7958. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7959. size_t size,
  7960. enum dma_data_direction direction)
  7961. {
  7962. dma_unmap_single(dev, dma_address, size, direction);
  7963. }
  7964. static const struct niu_ops niu_pci_ops = {
  7965. .alloc_coherent = niu_pci_alloc_coherent,
  7966. .free_coherent = niu_pci_free_coherent,
  7967. .map_page = niu_pci_map_page,
  7968. .unmap_page = niu_pci_unmap_page,
  7969. .map_single = niu_pci_map_single,
  7970. .unmap_single = niu_pci_unmap_single,
  7971. };
  7972. static void niu_driver_version(void)
  7973. {
  7974. static int niu_version_printed;
  7975. if (niu_version_printed++ == 0)
  7976. pr_info("%s", version);
  7977. }
  7978. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  7979. struct pci_dev *pdev,
  7980. struct platform_device *op,
  7981. const struct niu_ops *ops, u8 port)
  7982. {
  7983. struct net_device *dev;
  7984. struct niu *np;
  7985. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  7986. if (!dev)
  7987. return NULL;
  7988. SET_NETDEV_DEV(dev, gen_dev);
  7989. np = netdev_priv(dev);
  7990. np->dev = dev;
  7991. np->pdev = pdev;
  7992. np->op = op;
  7993. np->device = gen_dev;
  7994. np->ops = ops;
  7995. np->msg_enable = niu_debug;
  7996. spin_lock_init(&np->lock);
  7997. INIT_WORK(&np->reset_task, niu_reset_task);
  7998. np->port = port;
  7999. return dev;
  8000. }
  8001. static const struct net_device_ops niu_netdev_ops = {
  8002. .ndo_open = niu_open,
  8003. .ndo_stop = niu_close,
  8004. .ndo_start_xmit = niu_start_xmit,
  8005. .ndo_get_stats64 = niu_get_stats,
  8006. .ndo_set_rx_mode = niu_set_rx_mode,
  8007. .ndo_validate_addr = eth_validate_addr,
  8008. .ndo_set_mac_address = niu_set_mac_addr,
  8009. .ndo_do_ioctl = niu_ioctl,
  8010. .ndo_tx_timeout = niu_tx_timeout,
  8011. .ndo_change_mtu = niu_change_mtu,
  8012. };
  8013. static void niu_assign_netdev_ops(struct net_device *dev)
  8014. {
  8015. dev->netdev_ops = &niu_netdev_ops;
  8016. dev->ethtool_ops = &niu_ethtool_ops;
  8017. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8018. }
  8019. static void niu_device_announce(struct niu *np)
  8020. {
  8021. struct net_device *dev = np->dev;
  8022. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8023. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8024. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8025. dev->name,
  8026. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8027. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8028. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8029. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8030. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8031. np->vpd.phy_type);
  8032. } else {
  8033. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8034. dev->name,
  8035. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8036. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8037. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8038. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8039. "COPPER")),
  8040. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8041. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8042. np->vpd.phy_type);
  8043. }
  8044. }
  8045. static void niu_set_basic_features(struct net_device *dev)
  8046. {
  8047. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8048. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8049. }
  8050. static int niu_pci_init_one(struct pci_dev *pdev,
  8051. const struct pci_device_id *ent)
  8052. {
  8053. union niu_parent_id parent_id;
  8054. struct net_device *dev;
  8055. struct niu *np;
  8056. int err;
  8057. u64 dma_mask;
  8058. niu_driver_version();
  8059. err = pci_enable_device(pdev);
  8060. if (err) {
  8061. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8062. return err;
  8063. }
  8064. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8065. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8066. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8067. err = -ENODEV;
  8068. goto err_out_disable_pdev;
  8069. }
  8070. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8071. if (err) {
  8072. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8073. goto err_out_disable_pdev;
  8074. }
  8075. if (!pci_is_pcie(pdev)) {
  8076. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8077. err = -ENODEV;
  8078. goto err_out_free_res;
  8079. }
  8080. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8081. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8082. if (!dev) {
  8083. err = -ENOMEM;
  8084. goto err_out_free_res;
  8085. }
  8086. np = netdev_priv(dev);
  8087. memset(&parent_id, 0, sizeof(parent_id));
  8088. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8089. parent_id.pci.bus = pdev->bus->number;
  8090. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8091. np->parent = niu_get_parent(np, &parent_id,
  8092. PLAT_TYPE_ATLAS);
  8093. if (!np->parent) {
  8094. err = -ENOMEM;
  8095. goto err_out_free_dev;
  8096. }
  8097. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8098. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8099. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8100. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8101. PCI_EXP_DEVCTL_RELAX_EN);
  8102. dma_mask = DMA_BIT_MASK(44);
  8103. err = pci_set_dma_mask(pdev, dma_mask);
  8104. if (!err) {
  8105. dev->features |= NETIF_F_HIGHDMA;
  8106. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8107. if (err) {
  8108. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8109. goto err_out_release_parent;
  8110. }
  8111. }
  8112. if (err) {
  8113. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8114. if (err) {
  8115. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8116. goto err_out_release_parent;
  8117. }
  8118. }
  8119. niu_set_basic_features(dev);
  8120. dev->priv_flags |= IFF_UNICAST_FLT;
  8121. np->regs = pci_ioremap_bar(pdev, 0);
  8122. if (!np->regs) {
  8123. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8124. err = -ENOMEM;
  8125. goto err_out_release_parent;
  8126. }
  8127. pci_set_master(pdev);
  8128. pci_save_state(pdev);
  8129. dev->irq = pdev->irq;
  8130. /* MTU range: 68 - 9216 */
  8131. dev->min_mtu = ETH_MIN_MTU;
  8132. dev->max_mtu = NIU_MAX_MTU;
  8133. niu_assign_netdev_ops(dev);
  8134. err = niu_get_invariants(np);
  8135. if (err) {
  8136. if (err != -ENODEV)
  8137. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8138. goto err_out_iounmap;
  8139. }
  8140. err = register_netdev(dev);
  8141. if (err) {
  8142. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8143. goto err_out_iounmap;
  8144. }
  8145. pci_set_drvdata(pdev, dev);
  8146. niu_device_announce(np);
  8147. return 0;
  8148. err_out_iounmap:
  8149. if (np->regs) {
  8150. iounmap(np->regs);
  8151. np->regs = NULL;
  8152. }
  8153. err_out_release_parent:
  8154. niu_put_parent(np);
  8155. err_out_free_dev:
  8156. free_netdev(dev);
  8157. err_out_free_res:
  8158. pci_release_regions(pdev);
  8159. err_out_disable_pdev:
  8160. pci_disable_device(pdev);
  8161. return err;
  8162. }
  8163. static void niu_pci_remove_one(struct pci_dev *pdev)
  8164. {
  8165. struct net_device *dev = pci_get_drvdata(pdev);
  8166. if (dev) {
  8167. struct niu *np = netdev_priv(dev);
  8168. unregister_netdev(dev);
  8169. if (np->regs) {
  8170. iounmap(np->regs);
  8171. np->regs = NULL;
  8172. }
  8173. niu_ldg_free(np);
  8174. niu_put_parent(np);
  8175. free_netdev(dev);
  8176. pci_release_regions(pdev);
  8177. pci_disable_device(pdev);
  8178. }
  8179. }
  8180. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8181. {
  8182. struct net_device *dev = pci_get_drvdata(pdev);
  8183. struct niu *np = netdev_priv(dev);
  8184. unsigned long flags;
  8185. if (!netif_running(dev))
  8186. return 0;
  8187. flush_work(&np->reset_task);
  8188. niu_netif_stop(np);
  8189. del_timer_sync(&np->timer);
  8190. spin_lock_irqsave(&np->lock, flags);
  8191. niu_enable_interrupts(np, 0);
  8192. spin_unlock_irqrestore(&np->lock, flags);
  8193. netif_device_detach(dev);
  8194. spin_lock_irqsave(&np->lock, flags);
  8195. niu_stop_hw(np);
  8196. spin_unlock_irqrestore(&np->lock, flags);
  8197. pci_save_state(pdev);
  8198. return 0;
  8199. }
  8200. static int niu_resume(struct pci_dev *pdev)
  8201. {
  8202. struct net_device *dev = pci_get_drvdata(pdev);
  8203. struct niu *np = netdev_priv(dev);
  8204. unsigned long flags;
  8205. int err;
  8206. if (!netif_running(dev))
  8207. return 0;
  8208. pci_restore_state(pdev);
  8209. netif_device_attach(dev);
  8210. spin_lock_irqsave(&np->lock, flags);
  8211. err = niu_init_hw(np);
  8212. if (!err) {
  8213. np->timer.expires = jiffies + HZ;
  8214. add_timer(&np->timer);
  8215. niu_netif_start(np);
  8216. }
  8217. spin_unlock_irqrestore(&np->lock, flags);
  8218. return err;
  8219. }
  8220. static struct pci_driver niu_pci_driver = {
  8221. .name = DRV_MODULE_NAME,
  8222. .id_table = niu_pci_tbl,
  8223. .probe = niu_pci_init_one,
  8224. .remove = niu_pci_remove_one,
  8225. .suspend = niu_suspend,
  8226. .resume = niu_resume,
  8227. };
  8228. #ifdef CONFIG_SPARC64
  8229. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8230. u64 *dma_addr, gfp_t flag)
  8231. {
  8232. unsigned long order = get_order(size);
  8233. unsigned long page = __get_free_pages(flag, order);
  8234. if (page == 0UL)
  8235. return NULL;
  8236. memset((char *)page, 0, PAGE_SIZE << order);
  8237. *dma_addr = __pa(page);
  8238. return (void *) page;
  8239. }
  8240. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8241. void *cpu_addr, u64 handle)
  8242. {
  8243. unsigned long order = get_order(size);
  8244. free_pages((unsigned long) cpu_addr, order);
  8245. }
  8246. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8247. unsigned long offset, size_t size,
  8248. enum dma_data_direction direction)
  8249. {
  8250. return page_to_phys(page) + offset;
  8251. }
  8252. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8253. size_t size, enum dma_data_direction direction)
  8254. {
  8255. /* Nothing to do. */
  8256. }
  8257. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8258. size_t size,
  8259. enum dma_data_direction direction)
  8260. {
  8261. return __pa(cpu_addr);
  8262. }
  8263. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8264. size_t size,
  8265. enum dma_data_direction direction)
  8266. {
  8267. /* Nothing to do. */
  8268. }
  8269. static const struct niu_ops niu_phys_ops = {
  8270. .alloc_coherent = niu_phys_alloc_coherent,
  8271. .free_coherent = niu_phys_free_coherent,
  8272. .map_page = niu_phys_map_page,
  8273. .unmap_page = niu_phys_unmap_page,
  8274. .map_single = niu_phys_map_single,
  8275. .unmap_single = niu_phys_unmap_single,
  8276. };
  8277. static int niu_of_probe(struct platform_device *op)
  8278. {
  8279. union niu_parent_id parent_id;
  8280. struct net_device *dev;
  8281. struct niu *np;
  8282. const u32 *reg;
  8283. int err;
  8284. niu_driver_version();
  8285. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8286. if (!reg) {
  8287. dev_err(&op->dev, "%pOF: No 'reg' property, aborting\n",
  8288. op->dev.of_node);
  8289. return -ENODEV;
  8290. }
  8291. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8292. &niu_phys_ops, reg[0] & 0x1);
  8293. if (!dev) {
  8294. err = -ENOMEM;
  8295. goto err_out;
  8296. }
  8297. np = netdev_priv(dev);
  8298. memset(&parent_id, 0, sizeof(parent_id));
  8299. parent_id.of = of_get_parent(op->dev.of_node);
  8300. np->parent = niu_get_parent(np, &parent_id,
  8301. PLAT_TYPE_NIU);
  8302. if (!np->parent) {
  8303. err = -ENOMEM;
  8304. goto err_out_free_dev;
  8305. }
  8306. niu_set_basic_features(dev);
  8307. np->regs = of_ioremap(&op->resource[1], 0,
  8308. resource_size(&op->resource[1]),
  8309. "niu regs");
  8310. if (!np->regs) {
  8311. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8312. err = -ENOMEM;
  8313. goto err_out_release_parent;
  8314. }
  8315. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8316. resource_size(&op->resource[2]),
  8317. "niu vregs-1");
  8318. if (!np->vir_regs_1) {
  8319. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8320. err = -ENOMEM;
  8321. goto err_out_iounmap;
  8322. }
  8323. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8324. resource_size(&op->resource[3]),
  8325. "niu vregs-2");
  8326. if (!np->vir_regs_2) {
  8327. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8328. err = -ENOMEM;
  8329. goto err_out_iounmap;
  8330. }
  8331. niu_assign_netdev_ops(dev);
  8332. err = niu_get_invariants(np);
  8333. if (err) {
  8334. if (err != -ENODEV)
  8335. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8336. goto err_out_iounmap;
  8337. }
  8338. err = register_netdev(dev);
  8339. if (err) {
  8340. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8341. goto err_out_iounmap;
  8342. }
  8343. platform_set_drvdata(op, dev);
  8344. niu_device_announce(np);
  8345. return 0;
  8346. err_out_iounmap:
  8347. if (np->vir_regs_1) {
  8348. of_iounmap(&op->resource[2], np->vir_regs_1,
  8349. resource_size(&op->resource[2]));
  8350. np->vir_regs_1 = NULL;
  8351. }
  8352. if (np->vir_regs_2) {
  8353. of_iounmap(&op->resource[3], np->vir_regs_2,
  8354. resource_size(&op->resource[3]));
  8355. np->vir_regs_2 = NULL;
  8356. }
  8357. if (np->regs) {
  8358. of_iounmap(&op->resource[1], np->regs,
  8359. resource_size(&op->resource[1]));
  8360. np->regs = NULL;
  8361. }
  8362. err_out_release_parent:
  8363. niu_put_parent(np);
  8364. err_out_free_dev:
  8365. free_netdev(dev);
  8366. err_out:
  8367. return err;
  8368. }
  8369. static int niu_of_remove(struct platform_device *op)
  8370. {
  8371. struct net_device *dev = platform_get_drvdata(op);
  8372. if (dev) {
  8373. struct niu *np = netdev_priv(dev);
  8374. unregister_netdev(dev);
  8375. if (np->vir_regs_1) {
  8376. of_iounmap(&op->resource[2], np->vir_regs_1,
  8377. resource_size(&op->resource[2]));
  8378. np->vir_regs_1 = NULL;
  8379. }
  8380. if (np->vir_regs_2) {
  8381. of_iounmap(&op->resource[3], np->vir_regs_2,
  8382. resource_size(&op->resource[3]));
  8383. np->vir_regs_2 = NULL;
  8384. }
  8385. if (np->regs) {
  8386. of_iounmap(&op->resource[1], np->regs,
  8387. resource_size(&op->resource[1]));
  8388. np->regs = NULL;
  8389. }
  8390. niu_ldg_free(np);
  8391. niu_put_parent(np);
  8392. free_netdev(dev);
  8393. }
  8394. return 0;
  8395. }
  8396. static const struct of_device_id niu_match[] = {
  8397. {
  8398. .name = "network",
  8399. .compatible = "SUNW,niusl",
  8400. },
  8401. {},
  8402. };
  8403. MODULE_DEVICE_TABLE(of, niu_match);
  8404. static struct platform_driver niu_of_driver = {
  8405. .driver = {
  8406. .name = "niu",
  8407. .of_match_table = niu_match,
  8408. },
  8409. .probe = niu_of_probe,
  8410. .remove = niu_of_remove,
  8411. };
  8412. #endif /* CONFIG_SPARC64 */
  8413. static int __init niu_init(void)
  8414. {
  8415. int err = 0;
  8416. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8417. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8418. #ifdef CONFIG_SPARC64
  8419. err = platform_driver_register(&niu_of_driver);
  8420. #endif
  8421. if (!err) {
  8422. err = pci_register_driver(&niu_pci_driver);
  8423. #ifdef CONFIG_SPARC64
  8424. if (err)
  8425. platform_driver_unregister(&niu_of_driver);
  8426. #endif
  8427. }
  8428. return err;
  8429. }
  8430. static void __exit niu_exit(void)
  8431. {
  8432. pci_unregister_driver(&niu_pci_driver);
  8433. #ifdef CONFIG_SPARC64
  8434. platform_driver_unregister(&niu_of_driver);
  8435. #endif
  8436. }
  8437. module_init(niu_init);
  8438. module_exit(niu_exit);