sungem.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  3. * sungem.c: Sun GEM ethernet driver.
  4. *
  5. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  6. *
  7. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  8. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  9. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  10. *
  11. * NAPI and NETPOLL support
  12. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  13. *
  14. */
  15. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/types.h>
  19. #include <linux/fcntl.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/ioport.h>
  22. #include <linux/in.h>
  23. #include <linux/sched.h>
  24. #include <linux/string.h>
  25. #include <linux/delay.h>
  26. #include <linux/errno.h>
  27. #include <linux/pci.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/crc32.h>
  35. #include <linux/random.h>
  36. #include <linux/workqueue.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/bitops.h>
  39. #include <linux/mm.h>
  40. #include <linux/gfp.h>
  41. #include <asm/io.h>
  42. #include <asm/byteorder.h>
  43. #include <linux/uaccess.h>
  44. #include <asm/irq.h>
  45. #ifdef CONFIG_SPARC
  46. #include <asm/idprom.h>
  47. #include <asm/prom.h>
  48. #endif
  49. #ifdef CONFIG_PPC_PMAC
  50. #include <asm/prom.h>
  51. #include <asm/machdep.h>
  52. #include <asm/pmac_feature.h>
  53. #endif
  54. #include <linux/sungem_phy.h>
  55. #include "sungem.h"
  56. #define STRIP_FCS
  57. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  58. NETIF_MSG_PROBE | \
  59. NETIF_MSG_LINK)
  60. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  61. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  62. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  63. SUPPORTED_Pause | SUPPORTED_Autoneg)
  64. #define DRV_NAME "sungem"
  65. #define DRV_VERSION "1.0"
  66. #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
  67. static char version[] =
  68. DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  69. MODULE_AUTHOR(DRV_AUTHOR);
  70. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  71. MODULE_LICENSE("GPL");
  72. #define GEM_MODULE_NAME "gem"
  73. static const struct pci_device_id gem_pci_tbl[] = {
  74. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  75. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  76. /* These models only differ from the original GEM in
  77. * that their tx/rx fifos are of a different size and
  78. * they only support 10/100 speeds. -DaveM
  79. *
  80. * Apple's GMAC does support gigabit on machines with
  81. * the BCM54xx PHYs. -BenH
  82. */
  83. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  84. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  85. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  86. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  87. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  88. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  89. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  90. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  91. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  92. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  93. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  94. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  95. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  96. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  97. {0, }
  98. };
  99. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  100. static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
  101. {
  102. u32 cmd;
  103. int limit = 10000;
  104. cmd = (1 << 30);
  105. cmd |= (2 << 28);
  106. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  107. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  108. cmd |= (MIF_FRAME_TAMSB);
  109. writel(cmd, gp->regs + MIF_FRAME);
  110. while (--limit) {
  111. cmd = readl(gp->regs + MIF_FRAME);
  112. if (cmd & MIF_FRAME_TALSB)
  113. break;
  114. udelay(10);
  115. }
  116. if (!limit)
  117. cmd = 0xffff;
  118. return cmd & MIF_FRAME_DATA;
  119. }
  120. static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
  121. {
  122. struct gem *gp = netdev_priv(dev);
  123. return __sungem_phy_read(gp, mii_id, reg);
  124. }
  125. static inline u16 sungem_phy_read(struct gem *gp, int reg)
  126. {
  127. return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
  128. }
  129. static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  130. {
  131. u32 cmd;
  132. int limit = 10000;
  133. cmd = (1 << 30);
  134. cmd |= (1 << 28);
  135. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  136. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  137. cmd |= (MIF_FRAME_TAMSB);
  138. cmd |= (val & MIF_FRAME_DATA);
  139. writel(cmd, gp->regs + MIF_FRAME);
  140. while (limit--) {
  141. cmd = readl(gp->regs + MIF_FRAME);
  142. if (cmd & MIF_FRAME_TALSB)
  143. break;
  144. udelay(10);
  145. }
  146. }
  147. static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
  148. {
  149. struct gem *gp = netdev_priv(dev);
  150. __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
  151. }
  152. static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
  153. {
  154. __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
  155. }
  156. static inline void gem_enable_ints(struct gem *gp)
  157. {
  158. /* Enable all interrupts but TXDONE */
  159. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  160. }
  161. static inline void gem_disable_ints(struct gem *gp)
  162. {
  163. /* Disable all interrupts, including TXDONE */
  164. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  165. (void)readl(gp->regs + GREG_IMASK); /* write posting */
  166. }
  167. static void gem_get_cell(struct gem *gp)
  168. {
  169. BUG_ON(gp->cell_enabled < 0);
  170. gp->cell_enabled++;
  171. #ifdef CONFIG_PPC_PMAC
  172. if (gp->cell_enabled == 1) {
  173. mb();
  174. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  175. udelay(10);
  176. }
  177. #endif /* CONFIG_PPC_PMAC */
  178. }
  179. /* Turn off the chip's clock */
  180. static void gem_put_cell(struct gem *gp)
  181. {
  182. BUG_ON(gp->cell_enabled <= 0);
  183. gp->cell_enabled--;
  184. #ifdef CONFIG_PPC_PMAC
  185. if (gp->cell_enabled == 0) {
  186. mb();
  187. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  188. udelay(10);
  189. }
  190. #endif /* CONFIG_PPC_PMAC */
  191. }
  192. static inline void gem_netif_stop(struct gem *gp)
  193. {
  194. netif_trans_update(gp->dev); /* prevent tx timeout */
  195. napi_disable(&gp->napi);
  196. netif_tx_disable(gp->dev);
  197. }
  198. static inline void gem_netif_start(struct gem *gp)
  199. {
  200. /* NOTE: unconditional netif_wake_queue is only
  201. * appropriate so long as all callers are assured to
  202. * have free tx slots.
  203. */
  204. netif_wake_queue(gp->dev);
  205. napi_enable(&gp->napi);
  206. }
  207. static void gem_schedule_reset(struct gem *gp)
  208. {
  209. gp->reset_task_pending = 1;
  210. schedule_work(&gp->reset_task);
  211. }
  212. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  213. {
  214. if (netif_msg_intr(gp))
  215. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  216. }
  217. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  218. {
  219. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  220. u32 pcs_miistat;
  221. if (netif_msg_intr(gp))
  222. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  223. gp->dev->name, pcs_istat);
  224. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  225. netdev_err(dev, "PCS irq but no link status change???\n");
  226. return 0;
  227. }
  228. /* The link status bit latches on zero, so you must
  229. * read it twice in such a case to see a transition
  230. * to the link being up.
  231. */
  232. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  233. if (!(pcs_miistat & PCS_MIISTAT_LS))
  234. pcs_miistat |=
  235. (readl(gp->regs + PCS_MIISTAT) &
  236. PCS_MIISTAT_LS);
  237. if (pcs_miistat & PCS_MIISTAT_ANC) {
  238. /* The remote-fault indication is only valid
  239. * when autoneg has completed.
  240. */
  241. if (pcs_miistat & PCS_MIISTAT_RF)
  242. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  243. else
  244. netdev_info(dev, "PCS AutoNEG complete\n");
  245. }
  246. if (pcs_miistat & PCS_MIISTAT_LS) {
  247. netdev_info(dev, "PCS link is now up\n");
  248. netif_carrier_on(gp->dev);
  249. } else {
  250. netdev_info(dev, "PCS link is now down\n");
  251. netif_carrier_off(gp->dev);
  252. /* If this happens and the link timer is not running,
  253. * reset so we re-negotiate.
  254. */
  255. if (!timer_pending(&gp->link_timer))
  256. return 1;
  257. }
  258. return 0;
  259. }
  260. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  261. {
  262. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  263. if (netif_msg_intr(gp))
  264. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  265. gp->dev->name, txmac_stat);
  266. /* Defer timer expiration is quite normal,
  267. * don't even log the event.
  268. */
  269. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  270. !(txmac_stat & ~MAC_TXSTAT_DTE))
  271. return 0;
  272. if (txmac_stat & MAC_TXSTAT_URUN) {
  273. netdev_err(dev, "TX MAC xmit underrun\n");
  274. dev->stats.tx_fifo_errors++;
  275. }
  276. if (txmac_stat & MAC_TXSTAT_MPE) {
  277. netdev_err(dev, "TX MAC max packet size error\n");
  278. dev->stats.tx_errors++;
  279. }
  280. /* The rest are all cases of one of the 16-bit TX
  281. * counters expiring.
  282. */
  283. if (txmac_stat & MAC_TXSTAT_NCE)
  284. dev->stats.collisions += 0x10000;
  285. if (txmac_stat & MAC_TXSTAT_ECE) {
  286. dev->stats.tx_aborted_errors += 0x10000;
  287. dev->stats.collisions += 0x10000;
  288. }
  289. if (txmac_stat & MAC_TXSTAT_LCE) {
  290. dev->stats.tx_aborted_errors += 0x10000;
  291. dev->stats.collisions += 0x10000;
  292. }
  293. /* We do not keep track of MAC_TXSTAT_FCE and
  294. * MAC_TXSTAT_PCE events.
  295. */
  296. return 0;
  297. }
  298. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  299. * so we do the following.
  300. *
  301. * If any part of the reset goes wrong, we return 1 and that causes the
  302. * whole chip to be reset.
  303. */
  304. static int gem_rxmac_reset(struct gem *gp)
  305. {
  306. struct net_device *dev = gp->dev;
  307. int limit, i;
  308. u64 desc_dma;
  309. u32 val;
  310. /* First, reset & disable MAC RX. */
  311. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  312. for (limit = 0; limit < 5000; limit++) {
  313. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  314. break;
  315. udelay(10);
  316. }
  317. if (limit == 5000) {
  318. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  319. return 1;
  320. }
  321. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  322. gp->regs + MAC_RXCFG);
  323. for (limit = 0; limit < 5000; limit++) {
  324. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  325. break;
  326. udelay(10);
  327. }
  328. if (limit == 5000) {
  329. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  330. return 1;
  331. }
  332. /* Second, disable RX DMA. */
  333. writel(0, gp->regs + RXDMA_CFG);
  334. for (limit = 0; limit < 5000; limit++) {
  335. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  336. break;
  337. udelay(10);
  338. }
  339. if (limit == 5000) {
  340. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  341. return 1;
  342. }
  343. mdelay(5);
  344. /* Execute RX reset command. */
  345. writel(gp->swrst_base | GREG_SWRST_RXRST,
  346. gp->regs + GREG_SWRST);
  347. for (limit = 0; limit < 5000; limit++) {
  348. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  349. break;
  350. udelay(10);
  351. }
  352. if (limit == 5000) {
  353. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  354. return 1;
  355. }
  356. /* Refresh the RX ring. */
  357. for (i = 0; i < RX_RING_SIZE; i++) {
  358. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  359. if (gp->rx_skbs[i] == NULL) {
  360. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  361. return 1;
  362. }
  363. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  364. }
  365. gp->rx_new = gp->rx_old = 0;
  366. /* Now we must reprogram the rest of RX unit. */
  367. desc_dma = (u64) gp->gblock_dvma;
  368. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  369. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  370. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  371. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  372. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  373. (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
  374. writel(val, gp->regs + RXDMA_CFG);
  375. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  376. writel(((5 & RXDMA_BLANK_IPKTS) |
  377. ((8 << 12) & RXDMA_BLANK_ITIME)),
  378. gp->regs + RXDMA_BLANK);
  379. else
  380. writel(((5 & RXDMA_BLANK_IPKTS) |
  381. ((4 << 12) & RXDMA_BLANK_ITIME)),
  382. gp->regs + RXDMA_BLANK);
  383. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  384. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  385. writel(val, gp->regs + RXDMA_PTHRESH);
  386. val = readl(gp->regs + RXDMA_CFG);
  387. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  388. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  389. val = readl(gp->regs + MAC_RXCFG);
  390. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  391. return 0;
  392. }
  393. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  394. {
  395. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  396. int ret = 0;
  397. if (netif_msg_intr(gp))
  398. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  399. gp->dev->name, rxmac_stat);
  400. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  401. u32 smac = readl(gp->regs + MAC_SMACHINE);
  402. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  403. dev->stats.rx_over_errors++;
  404. dev->stats.rx_fifo_errors++;
  405. ret = gem_rxmac_reset(gp);
  406. }
  407. if (rxmac_stat & MAC_RXSTAT_ACE)
  408. dev->stats.rx_frame_errors += 0x10000;
  409. if (rxmac_stat & MAC_RXSTAT_CCE)
  410. dev->stats.rx_crc_errors += 0x10000;
  411. if (rxmac_stat & MAC_RXSTAT_LCE)
  412. dev->stats.rx_length_errors += 0x10000;
  413. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  414. * events.
  415. */
  416. return ret;
  417. }
  418. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  419. {
  420. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  421. if (netif_msg_intr(gp))
  422. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  423. gp->dev->name, mac_cstat);
  424. /* This interrupt is just for pause frame and pause
  425. * tracking. It is useful for diagnostics and debug
  426. * but probably by default we will mask these events.
  427. */
  428. if (mac_cstat & MAC_CSTAT_PS)
  429. gp->pause_entered++;
  430. if (mac_cstat & MAC_CSTAT_PRCV)
  431. gp->pause_last_time_recvd = (mac_cstat >> 16);
  432. return 0;
  433. }
  434. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  435. {
  436. u32 mif_status = readl(gp->regs + MIF_STATUS);
  437. u32 reg_val, changed_bits;
  438. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  439. changed_bits = (mif_status & MIF_STATUS_STAT);
  440. gem_handle_mif_event(gp, reg_val, changed_bits);
  441. return 0;
  442. }
  443. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  444. {
  445. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  446. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  447. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  448. netdev_err(dev, "PCI error [%04x]", pci_estat);
  449. if (pci_estat & GREG_PCIESTAT_BADACK)
  450. pr_cont(" <No ACK64# during ABS64 cycle>");
  451. if (pci_estat & GREG_PCIESTAT_DTRTO)
  452. pr_cont(" <Delayed transaction timeout>");
  453. if (pci_estat & GREG_PCIESTAT_OTHER)
  454. pr_cont(" <other>");
  455. pr_cont("\n");
  456. } else {
  457. pci_estat |= GREG_PCIESTAT_OTHER;
  458. netdev_err(dev, "PCI error\n");
  459. }
  460. if (pci_estat & GREG_PCIESTAT_OTHER) {
  461. u16 pci_cfg_stat;
  462. /* Interrogate PCI config space for the
  463. * true cause.
  464. */
  465. pci_read_config_word(gp->pdev, PCI_STATUS,
  466. &pci_cfg_stat);
  467. netdev_err(dev, "Read PCI cfg space status [%04x]\n",
  468. pci_cfg_stat);
  469. if (pci_cfg_stat & PCI_STATUS_PARITY)
  470. netdev_err(dev, "PCI parity error detected\n");
  471. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  472. netdev_err(dev, "PCI target abort\n");
  473. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  474. netdev_err(dev, "PCI master acks target abort\n");
  475. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  476. netdev_err(dev, "PCI master abort\n");
  477. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  478. netdev_err(dev, "PCI system error SERR#\n");
  479. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  480. netdev_err(dev, "PCI parity error\n");
  481. /* Write the error bits back to clear them. */
  482. pci_cfg_stat &= (PCI_STATUS_PARITY |
  483. PCI_STATUS_SIG_TARGET_ABORT |
  484. PCI_STATUS_REC_TARGET_ABORT |
  485. PCI_STATUS_REC_MASTER_ABORT |
  486. PCI_STATUS_SIG_SYSTEM_ERROR |
  487. PCI_STATUS_DETECTED_PARITY);
  488. pci_write_config_word(gp->pdev,
  489. PCI_STATUS, pci_cfg_stat);
  490. }
  491. /* For all PCI errors, we should reset the chip. */
  492. return 1;
  493. }
  494. /* All non-normal interrupt conditions get serviced here.
  495. * Returns non-zero if we should just exit the interrupt
  496. * handler right now (ie. if we reset the card which invalidates
  497. * all of the other original irq status bits).
  498. */
  499. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  500. {
  501. if (gem_status & GREG_STAT_RXNOBUF) {
  502. /* Frame arrived, no free RX buffers available. */
  503. if (netif_msg_rx_err(gp))
  504. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  505. gp->dev->name);
  506. dev->stats.rx_dropped++;
  507. }
  508. if (gem_status & GREG_STAT_RXTAGERR) {
  509. /* corrupt RX tag framing */
  510. if (netif_msg_rx_err(gp))
  511. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  512. gp->dev->name);
  513. dev->stats.rx_errors++;
  514. return 1;
  515. }
  516. if (gem_status & GREG_STAT_PCS) {
  517. if (gem_pcs_interrupt(dev, gp, gem_status))
  518. return 1;
  519. }
  520. if (gem_status & GREG_STAT_TXMAC) {
  521. if (gem_txmac_interrupt(dev, gp, gem_status))
  522. return 1;
  523. }
  524. if (gem_status & GREG_STAT_RXMAC) {
  525. if (gem_rxmac_interrupt(dev, gp, gem_status))
  526. return 1;
  527. }
  528. if (gem_status & GREG_STAT_MAC) {
  529. if (gem_mac_interrupt(dev, gp, gem_status))
  530. return 1;
  531. }
  532. if (gem_status & GREG_STAT_MIF) {
  533. if (gem_mif_interrupt(dev, gp, gem_status))
  534. return 1;
  535. }
  536. if (gem_status & GREG_STAT_PCIERR) {
  537. if (gem_pci_interrupt(dev, gp, gem_status))
  538. return 1;
  539. }
  540. return 0;
  541. }
  542. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  543. {
  544. int entry, limit;
  545. entry = gp->tx_old;
  546. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  547. while (entry != limit) {
  548. struct sk_buff *skb;
  549. struct gem_txd *txd;
  550. dma_addr_t dma_addr;
  551. u32 dma_len;
  552. int frag;
  553. if (netif_msg_tx_done(gp))
  554. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  555. gp->dev->name, entry);
  556. skb = gp->tx_skbs[entry];
  557. if (skb_shinfo(skb)->nr_frags) {
  558. int last = entry + skb_shinfo(skb)->nr_frags;
  559. int walk = entry;
  560. int incomplete = 0;
  561. last &= (TX_RING_SIZE - 1);
  562. for (;;) {
  563. walk = NEXT_TX(walk);
  564. if (walk == limit)
  565. incomplete = 1;
  566. if (walk == last)
  567. break;
  568. }
  569. if (incomplete)
  570. break;
  571. }
  572. gp->tx_skbs[entry] = NULL;
  573. dev->stats.tx_bytes += skb->len;
  574. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  575. txd = &gp->init_block->txd[entry];
  576. dma_addr = le64_to_cpu(txd->buffer);
  577. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  578. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  579. entry = NEXT_TX(entry);
  580. }
  581. dev->stats.tx_packets++;
  582. dev_consume_skb_any(skb);
  583. }
  584. gp->tx_old = entry;
  585. /* Need to make the tx_old update visible to gem_start_xmit()
  586. * before checking for netif_queue_stopped(). Without the
  587. * memory barrier, there is a small possibility that gem_start_xmit()
  588. * will miss it and cause the queue to be stopped forever.
  589. */
  590. smp_mb();
  591. if (unlikely(netif_queue_stopped(dev) &&
  592. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
  593. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  594. __netif_tx_lock(txq, smp_processor_id());
  595. if (netif_queue_stopped(dev) &&
  596. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  597. netif_wake_queue(dev);
  598. __netif_tx_unlock(txq);
  599. }
  600. }
  601. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  602. {
  603. int cluster_start, curr, count, kick;
  604. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  605. count = 0;
  606. kick = -1;
  607. dma_wmb();
  608. while (curr != limit) {
  609. curr = NEXT_RX(curr);
  610. if (++count == 4) {
  611. struct gem_rxd *rxd =
  612. &gp->init_block->rxd[cluster_start];
  613. for (;;) {
  614. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  615. rxd++;
  616. cluster_start = NEXT_RX(cluster_start);
  617. if (cluster_start == curr)
  618. break;
  619. }
  620. kick = curr;
  621. count = 0;
  622. }
  623. }
  624. if (kick >= 0) {
  625. mb();
  626. writel(kick, gp->regs + RXDMA_KICK);
  627. }
  628. }
  629. #define ALIGNED_RX_SKB_ADDR(addr) \
  630. ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
  631. static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
  632. gfp_t gfp_flags)
  633. {
  634. struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
  635. if (likely(skb)) {
  636. unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
  637. skb_reserve(skb, offset);
  638. }
  639. return skb;
  640. }
  641. static int gem_rx(struct gem *gp, int work_to_do)
  642. {
  643. struct net_device *dev = gp->dev;
  644. int entry, drops, work_done = 0;
  645. u32 done;
  646. if (netif_msg_rx_status(gp))
  647. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  648. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  649. entry = gp->rx_new;
  650. drops = 0;
  651. done = readl(gp->regs + RXDMA_DONE);
  652. for (;;) {
  653. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  654. struct sk_buff *skb;
  655. u64 status = le64_to_cpu(rxd->status_word);
  656. dma_addr_t dma_addr;
  657. int len;
  658. if ((status & RXDCTRL_OWN) != 0)
  659. break;
  660. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  661. break;
  662. /* When writing back RX descriptor, GEM writes status
  663. * then buffer address, possibly in separate transactions.
  664. * If we don't wait for the chip to write both, we could
  665. * post a new buffer to this descriptor then have GEM spam
  666. * on the buffer address. We sync on the RX completion
  667. * register to prevent this from happening.
  668. */
  669. if (entry == done) {
  670. done = readl(gp->regs + RXDMA_DONE);
  671. if (entry == done)
  672. break;
  673. }
  674. /* We can now account for the work we're about to do */
  675. work_done++;
  676. skb = gp->rx_skbs[entry];
  677. len = (status & RXDCTRL_BUFSZ) >> 16;
  678. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  679. dev->stats.rx_errors++;
  680. if (len < ETH_ZLEN)
  681. dev->stats.rx_length_errors++;
  682. if (len & RXDCTRL_BAD)
  683. dev->stats.rx_crc_errors++;
  684. /* We'll just return it to GEM. */
  685. drop_it:
  686. dev->stats.rx_dropped++;
  687. goto next;
  688. }
  689. dma_addr = le64_to_cpu(rxd->buffer);
  690. if (len > RX_COPY_THRESHOLD) {
  691. struct sk_buff *new_skb;
  692. new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  693. if (new_skb == NULL) {
  694. drops++;
  695. goto drop_it;
  696. }
  697. pci_unmap_page(gp->pdev, dma_addr,
  698. RX_BUF_ALLOC_SIZE(gp),
  699. PCI_DMA_FROMDEVICE);
  700. gp->rx_skbs[entry] = new_skb;
  701. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  702. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  703. virt_to_page(new_skb->data),
  704. offset_in_page(new_skb->data),
  705. RX_BUF_ALLOC_SIZE(gp),
  706. PCI_DMA_FROMDEVICE));
  707. skb_reserve(new_skb, RX_OFFSET);
  708. /* Trim the original skb for the netif. */
  709. skb_trim(skb, len);
  710. } else {
  711. struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
  712. if (copy_skb == NULL) {
  713. drops++;
  714. goto drop_it;
  715. }
  716. skb_reserve(copy_skb, 2);
  717. skb_put(copy_skb, len);
  718. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  719. skb_copy_from_linear_data(skb, copy_skb->data, len);
  720. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  721. /* We'll reuse the original ring buffer. */
  722. skb = copy_skb;
  723. }
  724. if (likely(dev->features & NETIF_F_RXCSUM)) {
  725. __sum16 csum;
  726. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  727. skb->csum = csum_unfold(csum);
  728. skb->ip_summed = CHECKSUM_COMPLETE;
  729. }
  730. skb->protocol = eth_type_trans(skb, gp->dev);
  731. napi_gro_receive(&gp->napi, skb);
  732. dev->stats.rx_packets++;
  733. dev->stats.rx_bytes += len;
  734. next:
  735. entry = NEXT_RX(entry);
  736. }
  737. gem_post_rxds(gp, entry);
  738. gp->rx_new = entry;
  739. if (drops)
  740. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  741. return work_done;
  742. }
  743. static int gem_poll(struct napi_struct *napi, int budget)
  744. {
  745. struct gem *gp = container_of(napi, struct gem, napi);
  746. struct net_device *dev = gp->dev;
  747. int work_done;
  748. work_done = 0;
  749. do {
  750. /* Handle anomalies */
  751. if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
  752. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  753. int reset;
  754. /* We run the abnormal interrupt handling code with
  755. * the Tx lock. It only resets the Rx portion of the
  756. * chip, but we need to guard it against DMA being
  757. * restarted by the link poll timer
  758. */
  759. __netif_tx_lock(txq, smp_processor_id());
  760. reset = gem_abnormal_irq(dev, gp, gp->status);
  761. __netif_tx_unlock(txq);
  762. if (reset) {
  763. gem_schedule_reset(gp);
  764. napi_complete(napi);
  765. return work_done;
  766. }
  767. }
  768. /* Run TX completion thread */
  769. gem_tx(dev, gp, gp->status);
  770. /* Run RX thread. We don't use any locking here,
  771. * code willing to do bad things - like cleaning the
  772. * rx ring - must call napi_disable(), which
  773. * schedule_timeout()'s if polling is already disabled.
  774. */
  775. work_done += gem_rx(gp, budget - work_done);
  776. if (work_done >= budget)
  777. return work_done;
  778. gp->status = readl(gp->regs + GREG_STAT);
  779. } while (gp->status & GREG_STAT_NAPI);
  780. napi_complete_done(napi, work_done);
  781. gem_enable_ints(gp);
  782. return work_done;
  783. }
  784. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  785. {
  786. struct net_device *dev = dev_id;
  787. struct gem *gp = netdev_priv(dev);
  788. if (napi_schedule_prep(&gp->napi)) {
  789. u32 gem_status = readl(gp->regs + GREG_STAT);
  790. if (unlikely(gem_status == 0)) {
  791. napi_enable(&gp->napi);
  792. return IRQ_NONE;
  793. }
  794. if (netif_msg_intr(gp))
  795. printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
  796. gp->dev->name, gem_status);
  797. gp->status = gem_status;
  798. gem_disable_ints(gp);
  799. __napi_schedule(&gp->napi);
  800. }
  801. /* If polling was disabled at the time we received that
  802. * interrupt, we may return IRQ_HANDLED here while we
  803. * should return IRQ_NONE. No big deal...
  804. */
  805. return IRQ_HANDLED;
  806. }
  807. #ifdef CONFIG_NET_POLL_CONTROLLER
  808. static void gem_poll_controller(struct net_device *dev)
  809. {
  810. struct gem *gp = netdev_priv(dev);
  811. disable_irq(gp->pdev->irq);
  812. gem_interrupt(gp->pdev->irq, dev);
  813. enable_irq(gp->pdev->irq);
  814. }
  815. #endif
  816. static void gem_tx_timeout(struct net_device *dev)
  817. {
  818. struct gem *gp = netdev_priv(dev);
  819. netdev_err(dev, "transmit timed out, resetting\n");
  820. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  821. readl(gp->regs + TXDMA_CFG),
  822. readl(gp->regs + MAC_TXSTAT),
  823. readl(gp->regs + MAC_TXCFG));
  824. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  825. readl(gp->regs + RXDMA_CFG),
  826. readl(gp->regs + MAC_RXSTAT),
  827. readl(gp->regs + MAC_RXCFG));
  828. gem_schedule_reset(gp);
  829. }
  830. static __inline__ int gem_intme(int entry)
  831. {
  832. /* Algorithm: IRQ every 1/2 of descriptors. */
  833. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  834. return 1;
  835. return 0;
  836. }
  837. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  838. struct net_device *dev)
  839. {
  840. struct gem *gp = netdev_priv(dev);
  841. int entry;
  842. u64 ctrl;
  843. ctrl = 0;
  844. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  845. const u64 csum_start_off = skb_checksum_start_offset(skb);
  846. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  847. ctrl = (TXDCTRL_CENAB |
  848. (csum_start_off << 15) |
  849. (csum_stuff_off << 21));
  850. }
  851. if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
  852. /* This is a hard error, log it. */
  853. if (!netif_queue_stopped(dev)) {
  854. netif_stop_queue(dev);
  855. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  856. }
  857. return NETDEV_TX_BUSY;
  858. }
  859. entry = gp->tx_new;
  860. gp->tx_skbs[entry] = skb;
  861. if (skb_shinfo(skb)->nr_frags == 0) {
  862. struct gem_txd *txd = &gp->init_block->txd[entry];
  863. dma_addr_t mapping;
  864. u32 len;
  865. len = skb->len;
  866. mapping = pci_map_page(gp->pdev,
  867. virt_to_page(skb->data),
  868. offset_in_page(skb->data),
  869. len, PCI_DMA_TODEVICE);
  870. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  871. if (gem_intme(entry))
  872. ctrl |= TXDCTRL_INTME;
  873. txd->buffer = cpu_to_le64(mapping);
  874. dma_wmb();
  875. txd->control_word = cpu_to_le64(ctrl);
  876. entry = NEXT_TX(entry);
  877. } else {
  878. struct gem_txd *txd;
  879. u32 first_len;
  880. u64 intme;
  881. dma_addr_t first_mapping;
  882. int frag, first_entry = entry;
  883. intme = 0;
  884. if (gem_intme(entry))
  885. intme |= TXDCTRL_INTME;
  886. /* We must give this initial chunk to the device last.
  887. * Otherwise we could race with the device.
  888. */
  889. first_len = skb_headlen(skb);
  890. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  891. offset_in_page(skb->data),
  892. first_len, PCI_DMA_TODEVICE);
  893. entry = NEXT_TX(entry);
  894. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  895. const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  896. u32 len;
  897. dma_addr_t mapping;
  898. u64 this_ctrl;
  899. len = skb_frag_size(this_frag);
  900. mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
  901. 0, len, DMA_TO_DEVICE);
  902. this_ctrl = ctrl;
  903. if (frag == skb_shinfo(skb)->nr_frags - 1)
  904. this_ctrl |= TXDCTRL_EOF;
  905. txd = &gp->init_block->txd[entry];
  906. txd->buffer = cpu_to_le64(mapping);
  907. dma_wmb();
  908. txd->control_word = cpu_to_le64(this_ctrl | len);
  909. if (gem_intme(entry))
  910. intme |= TXDCTRL_INTME;
  911. entry = NEXT_TX(entry);
  912. }
  913. txd = &gp->init_block->txd[first_entry];
  914. txd->buffer = cpu_to_le64(first_mapping);
  915. dma_wmb();
  916. txd->control_word =
  917. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  918. }
  919. gp->tx_new = entry;
  920. if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
  921. netif_stop_queue(dev);
  922. /* netif_stop_queue() must be done before checking
  923. * checking tx index in TX_BUFFS_AVAIL() below, because
  924. * in gem_tx(), we update tx_old before checking for
  925. * netif_queue_stopped().
  926. */
  927. smp_mb();
  928. if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  929. netif_wake_queue(dev);
  930. }
  931. if (netif_msg_tx_queued(gp))
  932. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  933. dev->name, entry, skb->len);
  934. mb();
  935. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  936. return NETDEV_TX_OK;
  937. }
  938. static void gem_pcs_reset(struct gem *gp)
  939. {
  940. int limit;
  941. u32 val;
  942. /* Reset PCS unit. */
  943. val = readl(gp->regs + PCS_MIICTRL);
  944. val |= PCS_MIICTRL_RST;
  945. writel(val, gp->regs + PCS_MIICTRL);
  946. limit = 32;
  947. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  948. udelay(100);
  949. if (limit-- <= 0)
  950. break;
  951. }
  952. if (limit < 0)
  953. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  954. }
  955. static void gem_pcs_reinit_adv(struct gem *gp)
  956. {
  957. u32 val;
  958. /* Make sure PCS is disabled while changing advertisement
  959. * configuration.
  960. */
  961. val = readl(gp->regs + PCS_CFG);
  962. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  963. writel(val, gp->regs + PCS_CFG);
  964. /* Advertise all capabilities except asymmetric
  965. * pause.
  966. */
  967. val = readl(gp->regs + PCS_MIIADV);
  968. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  969. PCS_MIIADV_SP | PCS_MIIADV_AP);
  970. writel(val, gp->regs + PCS_MIIADV);
  971. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  972. * and re-enable PCS.
  973. */
  974. val = readl(gp->regs + PCS_MIICTRL);
  975. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  976. val &= ~PCS_MIICTRL_WB;
  977. writel(val, gp->regs + PCS_MIICTRL);
  978. val = readl(gp->regs + PCS_CFG);
  979. val |= PCS_CFG_ENABLE;
  980. writel(val, gp->regs + PCS_CFG);
  981. /* Make sure serialink loopback is off. The meaning
  982. * of this bit is logically inverted based upon whether
  983. * you are in Serialink or SERDES mode.
  984. */
  985. val = readl(gp->regs + PCS_SCTRL);
  986. if (gp->phy_type == phy_serialink)
  987. val &= ~PCS_SCTRL_LOOP;
  988. else
  989. val |= PCS_SCTRL_LOOP;
  990. writel(val, gp->regs + PCS_SCTRL);
  991. }
  992. #define STOP_TRIES 32
  993. static void gem_reset(struct gem *gp)
  994. {
  995. int limit;
  996. u32 val;
  997. /* Make sure we won't get any more interrupts */
  998. writel(0xffffffff, gp->regs + GREG_IMASK);
  999. /* Reset the chip */
  1000. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1001. gp->regs + GREG_SWRST);
  1002. limit = STOP_TRIES;
  1003. do {
  1004. udelay(20);
  1005. val = readl(gp->regs + GREG_SWRST);
  1006. if (limit-- <= 0)
  1007. break;
  1008. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1009. if (limit < 0)
  1010. netdev_err(gp->dev, "SW reset is ghetto\n");
  1011. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1012. gem_pcs_reinit_adv(gp);
  1013. }
  1014. static void gem_start_dma(struct gem *gp)
  1015. {
  1016. u32 val;
  1017. /* We are ready to rock, turn everything on. */
  1018. val = readl(gp->regs + TXDMA_CFG);
  1019. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1020. val = readl(gp->regs + RXDMA_CFG);
  1021. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1022. val = readl(gp->regs + MAC_TXCFG);
  1023. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1024. val = readl(gp->regs + MAC_RXCFG);
  1025. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1026. (void) readl(gp->regs + MAC_RXCFG);
  1027. udelay(100);
  1028. gem_enable_ints(gp);
  1029. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1030. }
  1031. /* DMA won't be actually stopped before about 4ms tho ...
  1032. */
  1033. static void gem_stop_dma(struct gem *gp)
  1034. {
  1035. u32 val;
  1036. /* We are done rocking, turn everything off. */
  1037. val = readl(gp->regs + TXDMA_CFG);
  1038. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1039. val = readl(gp->regs + RXDMA_CFG);
  1040. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1041. val = readl(gp->regs + MAC_TXCFG);
  1042. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1043. val = readl(gp->regs + MAC_RXCFG);
  1044. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1045. (void) readl(gp->regs + MAC_RXCFG);
  1046. /* Need to wait a bit ... done by the caller */
  1047. }
  1048. // XXX dbl check what that function should do when called on PCS PHY
  1049. static void gem_begin_auto_negotiation(struct gem *gp,
  1050. const struct ethtool_link_ksettings *ep)
  1051. {
  1052. u32 advertise, features;
  1053. int autoneg;
  1054. int speed;
  1055. int duplex;
  1056. u32 advertising;
  1057. if (ep)
  1058. ethtool_convert_link_mode_to_legacy_u32(
  1059. &advertising, ep->link_modes.advertising);
  1060. if (gp->phy_type != phy_mii_mdio0 &&
  1061. gp->phy_type != phy_mii_mdio1)
  1062. goto non_mii;
  1063. /* Setup advertise */
  1064. if (found_mii_phy(gp))
  1065. features = gp->phy_mii.def->features;
  1066. else
  1067. features = 0;
  1068. advertise = features & ADVERTISE_MASK;
  1069. if (gp->phy_mii.advertising != 0)
  1070. advertise &= gp->phy_mii.advertising;
  1071. autoneg = gp->want_autoneg;
  1072. speed = gp->phy_mii.speed;
  1073. duplex = gp->phy_mii.duplex;
  1074. /* Setup link parameters */
  1075. if (!ep)
  1076. goto start_aneg;
  1077. if (ep->base.autoneg == AUTONEG_ENABLE) {
  1078. advertise = advertising;
  1079. autoneg = 1;
  1080. } else {
  1081. autoneg = 0;
  1082. speed = ep->base.speed;
  1083. duplex = ep->base.duplex;
  1084. }
  1085. start_aneg:
  1086. /* Sanitize settings based on PHY capabilities */
  1087. if ((features & SUPPORTED_Autoneg) == 0)
  1088. autoneg = 0;
  1089. if (speed == SPEED_1000 &&
  1090. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1091. speed = SPEED_100;
  1092. if (speed == SPEED_100 &&
  1093. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1094. speed = SPEED_10;
  1095. if (duplex == DUPLEX_FULL &&
  1096. !(features & (SUPPORTED_1000baseT_Full |
  1097. SUPPORTED_100baseT_Full |
  1098. SUPPORTED_10baseT_Full)))
  1099. duplex = DUPLEX_HALF;
  1100. if (speed == 0)
  1101. speed = SPEED_10;
  1102. /* If we are asleep, we don't try to actually setup the PHY, we
  1103. * just store the settings
  1104. */
  1105. if (!netif_device_present(gp->dev)) {
  1106. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1107. gp->phy_mii.speed = speed;
  1108. gp->phy_mii.duplex = duplex;
  1109. return;
  1110. }
  1111. /* Configure PHY & start aneg */
  1112. gp->want_autoneg = autoneg;
  1113. if (autoneg) {
  1114. if (found_mii_phy(gp))
  1115. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1116. gp->lstate = link_aneg;
  1117. } else {
  1118. if (found_mii_phy(gp))
  1119. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1120. gp->lstate = link_force_ok;
  1121. }
  1122. non_mii:
  1123. gp->timer_ticks = 0;
  1124. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1125. }
  1126. /* A link-up condition has occurred, initialize and enable the
  1127. * rest of the chip.
  1128. */
  1129. static int gem_set_link_modes(struct gem *gp)
  1130. {
  1131. struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
  1132. int full_duplex, speed, pause;
  1133. u32 val;
  1134. full_duplex = 0;
  1135. speed = SPEED_10;
  1136. pause = 0;
  1137. if (found_mii_phy(gp)) {
  1138. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1139. return 1;
  1140. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1141. speed = gp->phy_mii.speed;
  1142. pause = gp->phy_mii.pause;
  1143. } else if (gp->phy_type == phy_serialink ||
  1144. gp->phy_type == phy_serdes) {
  1145. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1146. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1147. full_duplex = 1;
  1148. speed = SPEED_1000;
  1149. }
  1150. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1151. speed, (full_duplex ? "full" : "half"));
  1152. /* We take the tx queue lock to avoid collisions between
  1153. * this code, the tx path and the NAPI-driven error path
  1154. */
  1155. __netif_tx_lock(txq, smp_processor_id());
  1156. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1157. if (full_duplex) {
  1158. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1159. } else {
  1160. /* MAC_TXCFG_NBO must be zero. */
  1161. }
  1162. writel(val, gp->regs + MAC_TXCFG);
  1163. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1164. if (!full_duplex &&
  1165. (gp->phy_type == phy_mii_mdio0 ||
  1166. gp->phy_type == phy_mii_mdio1)) {
  1167. val |= MAC_XIFCFG_DISE;
  1168. } else if (full_duplex) {
  1169. val |= MAC_XIFCFG_FLED;
  1170. }
  1171. if (speed == SPEED_1000)
  1172. val |= (MAC_XIFCFG_GMII);
  1173. writel(val, gp->regs + MAC_XIFCFG);
  1174. /* If gigabit and half-duplex, enable carrier extension
  1175. * mode. Else, disable it.
  1176. */
  1177. if (speed == SPEED_1000 && !full_duplex) {
  1178. val = readl(gp->regs + MAC_TXCFG);
  1179. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1180. val = readl(gp->regs + MAC_RXCFG);
  1181. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1182. } else {
  1183. val = readl(gp->regs + MAC_TXCFG);
  1184. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1185. val = readl(gp->regs + MAC_RXCFG);
  1186. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1187. }
  1188. if (gp->phy_type == phy_serialink ||
  1189. gp->phy_type == phy_serdes) {
  1190. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1191. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1192. pause = 1;
  1193. }
  1194. if (!full_duplex)
  1195. writel(512, gp->regs + MAC_STIME);
  1196. else
  1197. writel(64, gp->regs + MAC_STIME);
  1198. val = readl(gp->regs + MAC_MCCFG);
  1199. if (pause)
  1200. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1201. else
  1202. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1203. writel(val, gp->regs + MAC_MCCFG);
  1204. gem_start_dma(gp);
  1205. __netif_tx_unlock(txq);
  1206. if (netif_msg_link(gp)) {
  1207. if (pause) {
  1208. netdev_info(gp->dev,
  1209. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1210. gp->rx_fifo_sz,
  1211. gp->rx_pause_off,
  1212. gp->rx_pause_on);
  1213. } else {
  1214. netdev_info(gp->dev, "Pause is disabled\n");
  1215. }
  1216. }
  1217. return 0;
  1218. }
  1219. static int gem_mdio_link_not_up(struct gem *gp)
  1220. {
  1221. switch (gp->lstate) {
  1222. case link_force_ret:
  1223. netif_info(gp, link, gp->dev,
  1224. "Autoneg failed again, keeping forced mode\n");
  1225. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1226. gp->last_forced_speed, DUPLEX_HALF);
  1227. gp->timer_ticks = 5;
  1228. gp->lstate = link_force_ok;
  1229. return 0;
  1230. case link_aneg:
  1231. /* We try forced modes after a failed aneg only on PHYs that don't
  1232. * have "magic_aneg" bit set, which means they internally do the
  1233. * while forced-mode thingy. On these, we just restart aneg
  1234. */
  1235. if (gp->phy_mii.def->magic_aneg)
  1236. return 1;
  1237. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1238. /* Try forced modes. */
  1239. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1240. DUPLEX_HALF);
  1241. gp->timer_ticks = 5;
  1242. gp->lstate = link_force_try;
  1243. return 0;
  1244. case link_force_try:
  1245. /* Downgrade from 100 to 10 Mbps if necessary.
  1246. * If already at 10Mbps, warn user about the
  1247. * situation every 10 ticks.
  1248. */
  1249. if (gp->phy_mii.speed == SPEED_100) {
  1250. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1251. DUPLEX_HALF);
  1252. gp->timer_ticks = 5;
  1253. netif_info(gp, link, gp->dev,
  1254. "switching to forced 10bt\n");
  1255. return 0;
  1256. } else
  1257. return 1;
  1258. default:
  1259. return 0;
  1260. }
  1261. }
  1262. static void gem_link_timer(struct timer_list *t)
  1263. {
  1264. struct gem *gp = from_timer(gp, t, link_timer);
  1265. struct net_device *dev = gp->dev;
  1266. int restart_aneg = 0;
  1267. /* There's no point doing anything if we're going to be reset */
  1268. if (gp->reset_task_pending)
  1269. return;
  1270. if (gp->phy_type == phy_serialink ||
  1271. gp->phy_type == phy_serdes) {
  1272. u32 val = readl(gp->regs + PCS_MIISTAT);
  1273. if (!(val & PCS_MIISTAT_LS))
  1274. val = readl(gp->regs + PCS_MIISTAT);
  1275. if ((val & PCS_MIISTAT_LS) != 0) {
  1276. if (gp->lstate == link_up)
  1277. goto restart;
  1278. gp->lstate = link_up;
  1279. netif_carrier_on(dev);
  1280. (void)gem_set_link_modes(gp);
  1281. }
  1282. goto restart;
  1283. }
  1284. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1285. /* Ok, here we got a link. If we had it due to a forced
  1286. * fallback, and we were configured for autoneg, we do
  1287. * retry a short autoneg pass. If you know your hub is
  1288. * broken, use ethtool ;)
  1289. */
  1290. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1291. gp->lstate = link_force_ret;
  1292. gp->last_forced_speed = gp->phy_mii.speed;
  1293. gp->timer_ticks = 5;
  1294. if (netif_msg_link(gp))
  1295. netdev_info(dev,
  1296. "Got link after fallback, retrying autoneg once...\n");
  1297. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1298. } else if (gp->lstate != link_up) {
  1299. gp->lstate = link_up;
  1300. netif_carrier_on(dev);
  1301. if (gem_set_link_modes(gp))
  1302. restart_aneg = 1;
  1303. }
  1304. } else {
  1305. /* If the link was previously up, we restart the
  1306. * whole process
  1307. */
  1308. if (gp->lstate == link_up) {
  1309. gp->lstate = link_down;
  1310. netif_info(gp, link, dev, "Link down\n");
  1311. netif_carrier_off(dev);
  1312. gem_schedule_reset(gp);
  1313. /* The reset task will restart the timer */
  1314. return;
  1315. } else if (++gp->timer_ticks > 10) {
  1316. if (found_mii_phy(gp))
  1317. restart_aneg = gem_mdio_link_not_up(gp);
  1318. else
  1319. restart_aneg = 1;
  1320. }
  1321. }
  1322. if (restart_aneg) {
  1323. gem_begin_auto_negotiation(gp, NULL);
  1324. return;
  1325. }
  1326. restart:
  1327. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1328. }
  1329. static void gem_clean_rings(struct gem *gp)
  1330. {
  1331. struct gem_init_block *gb = gp->init_block;
  1332. struct sk_buff *skb;
  1333. int i;
  1334. dma_addr_t dma_addr;
  1335. for (i = 0; i < RX_RING_SIZE; i++) {
  1336. struct gem_rxd *rxd;
  1337. rxd = &gb->rxd[i];
  1338. if (gp->rx_skbs[i] != NULL) {
  1339. skb = gp->rx_skbs[i];
  1340. dma_addr = le64_to_cpu(rxd->buffer);
  1341. pci_unmap_page(gp->pdev, dma_addr,
  1342. RX_BUF_ALLOC_SIZE(gp),
  1343. PCI_DMA_FROMDEVICE);
  1344. dev_kfree_skb_any(skb);
  1345. gp->rx_skbs[i] = NULL;
  1346. }
  1347. rxd->status_word = 0;
  1348. dma_wmb();
  1349. rxd->buffer = 0;
  1350. }
  1351. for (i = 0; i < TX_RING_SIZE; i++) {
  1352. if (gp->tx_skbs[i] != NULL) {
  1353. struct gem_txd *txd;
  1354. int frag;
  1355. skb = gp->tx_skbs[i];
  1356. gp->tx_skbs[i] = NULL;
  1357. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1358. int ent = i & (TX_RING_SIZE - 1);
  1359. txd = &gb->txd[ent];
  1360. dma_addr = le64_to_cpu(txd->buffer);
  1361. pci_unmap_page(gp->pdev, dma_addr,
  1362. le64_to_cpu(txd->control_word) &
  1363. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1364. if (frag != skb_shinfo(skb)->nr_frags)
  1365. i++;
  1366. }
  1367. dev_kfree_skb_any(skb);
  1368. }
  1369. }
  1370. }
  1371. static void gem_init_rings(struct gem *gp)
  1372. {
  1373. struct gem_init_block *gb = gp->init_block;
  1374. struct net_device *dev = gp->dev;
  1375. int i;
  1376. dma_addr_t dma_addr;
  1377. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1378. gem_clean_rings(gp);
  1379. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1380. (unsigned)VLAN_ETH_FRAME_LEN);
  1381. for (i = 0; i < RX_RING_SIZE; i++) {
  1382. struct sk_buff *skb;
  1383. struct gem_rxd *rxd = &gb->rxd[i];
  1384. skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
  1385. if (!skb) {
  1386. rxd->buffer = 0;
  1387. rxd->status_word = 0;
  1388. continue;
  1389. }
  1390. gp->rx_skbs[i] = skb;
  1391. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1392. dma_addr = pci_map_page(gp->pdev,
  1393. virt_to_page(skb->data),
  1394. offset_in_page(skb->data),
  1395. RX_BUF_ALLOC_SIZE(gp),
  1396. PCI_DMA_FROMDEVICE);
  1397. rxd->buffer = cpu_to_le64(dma_addr);
  1398. dma_wmb();
  1399. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1400. skb_reserve(skb, RX_OFFSET);
  1401. }
  1402. for (i = 0; i < TX_RING_SIZE; i++) {
  1403. struct gem_txd *txd = &gb->txd[i];
  1404. txd->control_word = 0;
  1405. dma_wmb();
  1406. txd->buffer = 0;
  1407. }
  1408. wmb();
  1409. }
  1410. /* Init PHY interface and start link poll state machine */
  1411. static void gem_init_phy(struct gem *gp)
  1412. {
  1413. u32 mifcfg;
  1414. /* Revert MIF CFG setting done on stop_phy */
  1415. mifcfg = readl(gp->regs + MIF_CFG);
  1416. mifcfg &= ~MIF_CFG_BBMODE;
  1417. writel(mifcfg, gp->regs + MIF_CFG);
  1418. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1419. int i;
  1420. /* Those delay sucks, the HW seem to love them though, I'll
  1421. * serisouly consider breaking some locks here to be able
  1422. * to schedule instead
  1423. */
  1424. for (i = 0; i < 3; i++) {
  1425. #ifdef CONFIG_PPC_PMAC
  1426. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1427. msleep(20);
  1428. #endif
  1429. /* Some PHYs used by apple have problem getting back to us,
  1430. * we do an additional reset here
  1431. */
  1432. sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
  1433. msleep(20);
  1434. if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
  1435. break;
  1436. if (i == 2)
  1437. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1438. }
  1439. }
  1440. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1441. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1442. u32 val;
  1443. /* Init datapath mode register. */
  1444. if (gp->phy_type == phy_mii_mdio0 ||
  1445. gp->phy_type == phy_mii_mdio1) {
  1446. val = PCS_DMODE_MGM;
  1447. } else if (gp->phy_type == phy_serialink) {
  1448. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1449. } else {
  1450. val = PCS_DMODE_ESM;
  1451. }
  1452. writel(val, gp->regs + PCS_DMODE);
  1453. }
  1454. if (gp->phy_type == phy_mii_mdio0 ||
  1455. gp->phy_type == phy_mii_mdio1) {
  1456. /* Reset and detect MII PHY */
  1457. sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1458. /* Init PHY */
  1459. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1460. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1461. } else {
  1462. gem_pcs_reset(gp);
  1463. gem_pcs_reinit_adv(gp);
  1464. }
  1465. /* Default aneg parameters */
  1466. gp->timer_ticks = 0;
  1467. gp->lstate = link_down;
  1468. netif_carrier_off(gp->dev);
  1469. /* Print things out */
  1470. if (gp->phy_type == phy_mii_mdio0 ||
  1471. gp->phy_type == phy_mii_mdio1)
  1472. netdev_info(gp->dev, "Found %s PHY\n",
  1473. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  1474. gem_begin_auto_negotiation(gp, NULL);
  1475. }
  1476. static void gem_init_dma(struct gem *gp)
  1477. {
  1478. u64 desc_dma = (u64) gp->gblock_dvma;
  1479. u32 val;
  1480. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1481. writel(val, gp->regs + TXDMA_CFG);
  1482. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1483. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1484. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1485. writel(0, gp->regs + TXDMA_KICK);
  1486. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1487. (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
  1488. writel(val, gp->regs + RXDMA_CFG);
  1489. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1490. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1491. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1492. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1493. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1494. writel(val, gp->regs + RXDMA_PTHRESH);
  1495. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1496. writel(((5 & RXDMA_BLANK_IPKTS) |
  1497. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1498. gp->regs + RXDMA_BLANK);
  1499. else
  1500. writel(((5 & RXDMA_BLANK_IPKTS) |
  1501. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1502. gp->regs + RXDMA_BLANK);
  1503. }
  1504. static u32 gem_setup_multicast(struct gem *gp)
  1505. {
  1506. u32 rxcfg = 0;
  1507. int i;
  1508. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1509. (netdev_mc_count(gp->dev) > 256)) {
  1510. for (i=0; i<16; i++)
  1511. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1512. rxcfg |= MAC_RXCFG_HFE;
  1513. } else if (gp->dev->flags & IFF_PROMISC) {
  1514. rxcfg |= MAC_RXCFG_PROM;
  1515. } else {
  1516. u16 hash_table[16];
  1517. u32 crc;
  1518. struct netdev_hw_addr *ha;
  1519. int i;
  1520. memset(hash_table, 0, sizeof(hash_table));
  1521. netdev_for_each_mc_addr(ha, gp->dev) {
  1522. crc = ether_crc_le(6, ha->addr);
  1523. crc >>= 24;
  1524. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1525. }
  1526. for (i=0; i<16; i++)
  1527. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1528. rxcfg |= MAC_RXCFG_HFE;
  1529. }
  1530. return rxcfg;
  1531. }
  1532. static void gem_init_mac(struct gem *gp)
  1533. {
  1534. unsigned char *e = &gp->dev->dev_addr[0];
  1535. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1536. writel(0x00, gp->regs + MAC_IPG0);
  1537. writel(0x08, gp->regs + MAC_IPG1);
  1538. writel(0x04, gp->regs + MAC_IPG2);
  1539. writel(0x40, gp->regs + MAC_STIME);
  1540. writel(0x40, gp->regs + MAC_MINFSZ);
  1541. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1542. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1543. writel(0x07, gp->regs + MAC_PASIZE);
  1544. writel(0x04, gp->regs + MAC_JAMSIZE);
  1545. writel(0x10, gp->regs + MAC_ATTLIM);
  1546. writel(0x8808, gp->regs + MAC_MCTYPE);
  1547. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1548. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1549. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1550. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1551. writel(0, gp->regs + MAC_ADDR3);
  1552. writel(0, gp->regs + MAC_ADDR4);
  1553. writel(0, gp->regs + MAC_ADDR5);
  1554. writel(0x0001, gp->regs + MAC_ADDR6);
  1555. writel(0xc200, gp->regs + MAC_ADDR7);
  1556. writel(0x0180, gp->regs + MAC_ADDR8);
  1557. writel(0, gp->regs + MAC_AFILT0);
  1558. writel(0, gp->regs + MAC_AFILT1);
  1559. writel(0, gp->regs + MAC_AFILT2);
  1560. writel(0, gp->regs + MAC_AF21MSK);
  1561. writel(0, gp->regs + MAC_AF0MSK);
  1562. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1563. #ifdef STRIP_FCS
  1564. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1565. #endif
  1566. writel(0, gp->regs + MAC_NCOLL);
  1567. writel(0, gp->regs + MAC_FASUCC);
  1568. writel(0, gp->regs + MAC_ECOLL);
  1569. writel(0, gp->regs + MAC_LCOLL);
  1570. writel(0, gp->regs + MAC_DTIMER);
  1571. writel(0, gp->regs + MAC_PATMPS);
  1572. writel(0, gp->regs + MAC_RFCTR);
  1573. writel(0, gp->regs + MAC_LERR);
  1574. writel(0, gp->regs + MAC_AERR);
  1575. writel(0, gp->regs + MAC_FCSERR);
  1576. writel(0, gp->regs + MAC_RXCVERR);
  1577. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1578. * them once a link is established.
  1579. */
  1580. writel(0, gp->regs + MAC_TXCFG);
  1581. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1582. writel(0, gp->regs + MAC_MCCFG);
  1583. writel(0, gp->regs + MAC_XIFCFG);
  1584. /* Setup MAC interrupts. We want to get all of the interesting
  1585. * counter expiration events, but we do not want to hear about
  1586. * normal rx/tx as the DMA engine tells us that.
  1587. */
  1588. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1589. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1590. /* Don't enable even the PAUSE interrupts for now, we
  1591. * make no use of those events other than to record them.
  1592. */
  1593. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1594. /* Don't enable GEM's WOL in normal operations
  1595. */
  1596. if (gp->has_wol)
  1597. writel(0, gp->regs + WOL_WAKECSR);
  1598. }
  1599. static void gem_init_pause_thresholds(struct gem *gp)
  1600. {
  1601. u32 cfg;
  1602. /* Calculate pause thresholds. Setting the OFF threshold to the
  1603. * full RX fifo size effectively disables PAUSE generation which
  1604. * is what we do for 10/100 only GEMs which have FIFOs too small
  1605. * to make real gains from PAUSE.
  1606. */
  1607. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1608. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1609. } else {
  1610. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1611. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1612. int on = off - max_frame;
  1613. gp->rx_pause_off = off;
  1614. gp->rx_pause_on = on;
  1615. }
  1616. /* Configure the chip "burst" DMA mode & enable some
  1617. * HW bug fixes on Apple version
  1618. */
  1619. cfg = 0;
  1620. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1621. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1622. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1623. cfg |= GREG_CFG_IBURST;
  1624. #endif
  1625. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1626. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1627. writel(cfg, gp->regs + GREG_CFG);
  1628. /* If Infinite Burst didn't stick, then use different
  1629. * thresholds (and Apple bug fixes don't exist)
  1630. */
  1631. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1632. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1633. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1634. writel(cfg, gp->regs + GREG_CFG);
  1635. }
  1636. }
  1637. static int gem_check_invariants(struct gem *gp)
  1638. {
  1639. struct pci_dev *pdev = gp->pdev;
  1640. u32 mif_cfg;
  1641. /* On Apple's sungem, we can't rely on registers as the chip
  1642. * was been powered down by the firmware. The PHY is looked
  1643. * up later on.
  1644. */
  1645. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1646. gp->phy_type = phy_mii_mdio0;
  1647. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1648. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1649. gp->swrst_base = 0;
  1650. mif_cfg = readl(gp->regs + MIF_CFG);
  1651. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1652. mif_cfg |= MIF_CFG_MDI0;
  1653. writel(mif_cfg, gp->regs + MIF_CFG);
  1654. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1655. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1656. /* We hard-code the PHY address so we can properly bring it out of
  1657. * reset later on, we can't really probe it at this point, though
  1658. * that isn't an issue.
  1659. */
  1660. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1661. gp->mii_phy_addr = 1;
  1662. else
  1663. gp->mii_phy_addr = 0;
  1664. return 0;
  1665. }
  1666. mif_cfg = readl(gp->regs + MIF_CFG);
  1667. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1668. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1669. /* One of the MII PHYs _must_ be present
  1670. * as this chip has no gigabit PHY.
  1671. */
  1672. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1673. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1674. mif_cfg);
  1675. return -1;
  1676. }
  1677. }
  1678. /* Determine initial PHY interface type guess. MDIO1 is the
  1679. * external PHY and thus takes precedence over MDIO0.
  1680. */
  1681. if (mif_cfg & MIF_CFG_MDI1) {
  1682. gp->phy_type = phy_mii_mdio1;
  1683. mif_cfg |= MIF_CFG_PSELECT;
  1684. writel(mif_cfg, gp->regs + MIF_CFG);
  1685. } else if (mif_cfg & MIF_CFG_MDI0) {
  1686. gp->phy_type = phy_mii_mdio0;
  1687. mif_cfg &= ~MIF_CFG_PSELECT;
  1688. writel(mif_cfg, gp->regs + MIF_CFG);
  1689. } else {
  1690. #ifdef CONFIG_SPARC
  1691. const char *p;
  1692. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1693. if (p && !strcmp(p, "serdes"))
  1694. gp->phy_type = phy_serdes;
  1695. else
  1696. #endif
  1697. gp->phy_type = phy_serialink;
  1698. }
  1699. if (gp->phy_type == phy_mii_mdio1 ||
  1700. gp->phy_type == phy_mii_mdio0) {
  1701. int i;
  1702. for (i = 0; i < 32; i++) {
  1703. gp->mii_phy_addr = i;
  1704. if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
  1705. break;
  1706. }
  1707. if (i == 32) {
  1708. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1709. pr_err("RIO MII phy will not respond\n");
  1710. return -1;
  1711. }
  1712. gp->phy_type = phy_serdes;
  1713. }
  1714. }
  1715. /* Fetch the FIFO configurations now too. */
  1716. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1717. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1718. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1719. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1720. if (gp->tx_fifo_sz != (9 * 1024) ||
  1721. gp->rx_fifo_sz != (20 * 1024)) {
  1722. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1723. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1724. return -1;
  1725. }
  1726. gp->swrst_base = 0;
  1727. } else {
  1728. if (gp->tx_fifo_sz != (2 * 1024) ||
  1729. gp->rx_fifo_sz != (2 * 1024)) {
  1730. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1731. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1732. return -1;
  1733. }
  1734. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1735. }
  1736. }
  1737. return 0;
  1738. }
  1739. static void gem_reinit_chip(struct gem *gp)
  1740. {
  1741. /* Reset the chip */
  1742. gem_reset(gp);
  1743. /* Make sure ints are disabled */
  1744. gem_disable_ints(gp);
  1745. /* Allocate & setup ring buffers */
  1746. gem_init_rings(gp);
  1747. /* Configure pause thresholds */
  1748. gem_init_pause_thresholds(gp);
  1749. /* Init DMA & MAC engines */
  1750. gem_init_dma(gp);
  1751. gem_init_mac(gp);
  1752. }
  1753. static void gem_stop_phy(struct gem *gp, int wol)
  1754. {
  1755. u32 mifcfg;
  1756. /* Let the chip settle down a bit, it seems that helps
  1757. * for sleep mode on some models
  1758. */
  1759. msleep(10);
  1760. /* Make sure we aren't polling PHY status change. We
  1761. * don't currently use that feature though
  1762. */
  1763. mifcfg = readl(gp->regs + MIF_CFG);
  1764. mifcfg &= ~MIF_CFG_POLL;
  1765. writel(mifcfg, gp->regs + MIF_CFG);
  1766. if (wol && gp->has_wol) {
  1767. unsigned char *e = &gp->dev->dev_addr[0];
  1768. u32 csr;
  1769. /* Setup wake-on-lan for MAGIC packet */
  1770. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1771. gp->regs + MAC_RXCFG);
  1772. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1773. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1774. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1775. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1776. csr = WOL_WAKECSR_ENABLE;
  1777. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1778. csr |= WOL_WAKECSR_MII;
  1779. writel(csr, gp->regs + WOL_WAKECSR);
  1780. } else {
  1781. writel(0, gp->regs + MAC_RXCFG);
  1782. (void)readl(gp->regs + MAC_RXCFG);
  1783. /* Machine sleep will die in strange ways if we
  1784. * dont wait a bit here, looks like the chip takes
  1785. * some time to really shut down
  1786. */
  1787. msleep(10);
  1788. }
  1789. writel(0, gp->regs + MAC_TXCFG);
  1790. writel(0, gp->regs + MAC_XIFCFG);
  1791. writel(0, gp->regs + TXDMA_CFG);
  1792. writel(0, gp->regs + RXDMA_CFG);
  1793. if (!wol) {
  1794. gem_reset(gp);
  1795. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1796. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1797. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1798. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1799. /* According to Apple, we must set the MDIO pins to this begnign
  1800. * state or we may 1) eat more current, 2) damage some PHYs
  1801. */
  1802. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1803. writel(0, gp->regs + MIF_BBCLK);
  1804. writel(0, gp->regs + MIF_BBDATA);
  1805. writel(0, gp->regs + MIF_BBOENAB);
  1806. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1807. (void) readl(gp->regs + MAC_XIFCFG);
  1808. }
  1809. }
  1810. static int gem_do_start(struct net_device *dev)
  1811. {
  1812. struct gem *gp = netdev_priv(dev);
  1813. int rc;
  1814. /* Enable the cell */
  1815. gem_get_cell(gp);
  1816. /* Make sure PCI access and bus master are enabled */
  1817. rc = pci_enable_device(gp->pdev);
  1818. if (rc) {
  1819. netdev_err(dev, "Failed to enable chip on PCI bus !\n");
  1820. /* Put cell and forget it for now, it will be considered as
  1821. * still asleep, a new sleep cycle may bring it back
  1822. */
  1823. gem_put_cell(gp);
  1824. return -ENXIO;
  1825. }
  1826. pci_set_master(gp->pdev);
  1827. /* Init & setup chip hardware */
  1828. gem_reinit_chip(gp);
  1829. /* An interrupt might come in handy */
  1830. rc = request_irq(gp->pdev->irq, gem_interrupt,
  1831. IRQF_SHARED, dev->name, (void *)dev);
  1832. if (rc) {
  1833. netdev_err(dev, "failed to request irq !\n");
  1834. gem_reset(gp);
  1835. gem_clean_rings(gp);
  1836. gem_put_cell(gp);
  1837. return rc;
  1838. }
  1839. /* Mark us as attached again if we come from resume(), this has
  1840. * no effect if we weren't detached and needs to be done now.
  1841. */
  1842. netif_device_attach(dev);
  1843. /* Restart NAPI & queues */
  1844. gem_netif_start(gp);
  1845. /* Detect & init PHY, start autoneg etc... this will
  1846. * eventually result in starting DMA operations when
  1847. * the link is up
  1848. */
  1849. gem_init_phy(gp);
  1850. return 0;
  1851. }
  1852. static void gem_do_stop(struct net_device *dev, int wol)
  1853. {
  1854. struct gem *gp = netdev_priv(dev);
  1855. /* Stop NAPI and stop tx queue */
  1856. gem_netif_stop(gp);
  1857. /* Make sure ints are disabled. We don't care about
  1858. * synchronizing as NAPI is disabled, thus a stray
  1859. * interrupt will do nothing bad (our irq handler
  1860. * just schedules NAPI)
  1861. */
  1862. gem_disable_ints(gp);
  1863. /* Stop the link timer */
  1864. del_timer_sync(&gp->link_timer);
  1865. /* We cannot cancel the reset task while holding the
  1866. * rtnl lock, we'd get an A->B / B->A deadlock stituation
  1867. * if we did. This is not an issue however as the reset
  1868. * task is synchronized vs. us (rtnl_lock) and will do
  1869. * nothing if the device is down or suspended. We do
  1870. * still clear reset_task_pending to avoid a spurrious
  1871. * reset later on in case we do resume before it gets
  1872. * scheduled.
  1873. */
  1874. gp->reset_task_pending = 0;
  1875. /* If we are going to sleep with WOL */
  1876. gem_stop_dma(gp);
  1877. msleep(10);
  1878. if (!wol)
  1879. gem_reset(gp);
  1880. msleep(10);
  1881. /* Get rid of rings */
  1882. gem_clean_rings(gp);
  1883. /* No irq needed anymore */
  1884. free_irq(gp->pdev->irq, (void *) dev);
  1885. /* Shut the PHY down eventually and setup WOL */
  1886. gem_stop_phy(gp, wol);
  1887. /* Make sure bus master is disabled */
  1888. pci_disable_device(gp->pdev);
  1889. /* Cell not needed neither if no WOL */
  1890. if (!wol)
  1891. gem_put_cell(gp);
  1892. }
  1893. static void gem_reset_task(struct work_struct *work)
  1894. {
  1895. struct gem *gp = container_of(work, struct gem, reset_task);
  1896. /* Lock out the network stack (essentially shield ourselves
  1897. * against a racing open, close, control call, or suspend
  1898. */
  1899. rtnl_lock();
  1900. /* Skip the reset task if suspended or closed, or if it's
  1901. * been cancelled by gem_do_stop (see comment there)
  1902. */
  1903. if (!netif_device_present(gp->dev) ||
  1904. !netif_running(gp->dev) ||
  1905. !gp->reset_task_pending) {
  1906. rtnl_unlock();
  1907. return;
  1908. }
  1909. /* Stop the link timer */
  1910. del_timer_sync(&gp->link_timer);
  1911. /* Stop NAPI and tx */
  1912. gem_netif_stop(gp);
  1913. /* Reset the chip & rings */
  1914. gem_reinit_chip(gp);
  1915. if (gp->lstate == link_up)
  1916. gem_set_link_modes(gp);
  1917. /* Restart NAPI and Tx */
  1918. gem_netif_start(gp);
  1919. /* We are back ! */
  1920. gp->reset_task_pending = 0;
  1921. /* If the link is not up, restart autoneg, else restart the
  1922. * polling timer
  1923. */
  1924. if (gp->lstate != link_up)
  1925. gem_begin_auto_negotiation(gp, NULL);
  1926. else
  1927. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1928. rtnl_unlock();
  1929. }
  1930. static int gem_open(struct net_device *dev)
  1931. {
  1932. /* We allow open while suspended, we just do nothing,
  1933. * the chip will be initialized in resume()
  1934. */
  1935. if (netif_device_present(dev))
  1936. return gem_do_start(dev);
  1937. return 0;
  1938. }
  1939. static int gem_close(struct net_device *dev)
  1940. {
  1941. if (netif_device_present(dev))
  1942. gem_do_stop(dev, 0);
  1943. return 0;
  1944. }
  1945. #ifdef CONFIG_PM
  1946. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1947. {
  1948. struct net_device *dev = pci_get_drvdata(pdev);
  1949. struct gem *gp = netdev_priv(dev);
  1950. /* Lock the network stack first to avoid racing with open/close,
  1951. * reset task and setting calls
  1952. */
  1953. rtnl_lock();
  1954. /* Not running, mark ourselves non-present, no need for
  1955. * a lock here
  1956. */
  1957. if (!netif_running(dev)) {
  1958. netif_device_detach(dev);
  1959. rtnl_unlock();
  1960. return 0;
  1961. }
  1962. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1963. (gp->wake_on_lan && netif_running(dev)) ?
  1964. "enabled" : "disabled");
  1965. /* Tell the network stack we're gone. gem_do_stop() below will
  1966. * synchronize with TX, stop NAPI etc...
  1967. */
  1968. netif_device_detach(dev);
  1969. /* Switch off chip, remember WOL setting */
  1970. gp->asleep_wol = !!gp->wake_on_lan;
  1971. gem_do_stop(dev, gp->asleep_wol);
  1972. /* Unlock the network stack */
  1973. rtnl_unlock();
  1974. return 0;
  1975. }
  1976. static int gem_resume(struct pci_dev *pdev)
  1977. {
  1978. struct net_device *dev = pci_get_drvdata(pdev);
  1979. struct gem *gp = netdev_priv(dev);
  1980. /* See locking comment in gem_suspend */
  1981. rtnl_lock();
  1982. /* Not running, mark ourselves present, no need for
  1983. * a lock here
  1984. */
  1985. if (!netif_running(dev)) {
  1986. netif_device_attach(dev);
  1987. rtnl_unlock();
  1988. return 0;
  1989. }
  1990. /* Restart chip. If that fails there isn't much we can do, we
  1991. * leave things stopped.
  1992. */
  1993. gem_do_start(dev);
  1994. /* If we had WOL enabled, the cell clock was never turned off during
  1995. * sleep, so we end up beeing unbalanced. Fix that here
  1996. */
  1997. if (gp->asleep_wol)
  1998. gem_put_cell(gp);
  1999. /* Unlock the network stack */
  2000. rtnl_unlock();
  2001. return 0;
  2002. }
  2003. #endif /* CONFIG_PM */
  2004. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2005. {
  2006. struct gem *gp = netdev_priv(dev);
  2007. /* I have seen this being called while the PM was in progress,
  2008. * so we shield against this. Let's also not poke at registers
  2009. * while the reset task is going on.
  2010. *
  2011. * TODO: Move stats collection elsewhere (link timer ?) and
  2012. * make this a nop to avoid all those synchro issues
  2013. */
  2014. if (!netif_device_present(dev) || !netif_running(dev))
  2015. goto bail;
  2016. /* Better safe than sorry... */
  2017. if (WARN_ON(!gp->cell_enabled))
  2018. goto bail;
  2019. dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2020. writel(0, gp->regs + MAC_FCSERR);
  2021. dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
  2022. writel(0, gp->regs + MAC_AERR);
  2023. dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
  2024. writel(0, gp->regs + MAC_LERR);
  2025. dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2026. dev->stats.collisions +=
  2027. (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
  2028. writel(0, gp->regs + MAC_ECOLL);
  2029. writel(0, gp->regs + MAC_LCOLL);
  2030. bail:
  2031. return &dev->stats;
  2032. }
  2033. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2034. {
  2035. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2036. struct gem *gp = netdev_priv(dev);
  2037. unsigned char *e = &dev->dev_addr[0];
  2038. if (!is_valid_ether_addr(macaddr->sa_data))
  2039. return -EADDRNOTAVAIL;
  2040. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2041. /* We'll just catch it later when the device is up'd or resumed */
  2042. if (!netif_running(dev) || !netif_device_present(dev))
  2043. return 0;
  2044. /* Better safe than sorry... */
  2045. if (WARN_ON(!gp->cell_enabled))
  2046. return 0;
  2047. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2048. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2049. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2050. return 0;
  2051. }
  2052. static void gem_set_multicast(struct net_device *dev)
  2053. {
  2054. struct gem *gp = netdev_priv(dev);
  2055. u32 rxcfg, rxcfg_new;
  2056. int limit = 10000;
  2057. if (!netif_running(dev) || !netif_device_present(dev))
  2058. return;
  2059. /* Better safe than sorry... */
  2060. if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
  2061. return;
  2062. rxcfg = readl(gp->regs + MAC_RXCFG);
  2063. rxcfg_new = gem_setup_multicast(gp);
  2064. #ifdef STRIP_FCS
  2065. rxcfg_new |= MAC_RXCFG_SFCS;
  2066. #endif
  2067. gp->mac_rx_cfg = rxcfg_new;
  2068. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2069. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2070. if (!limit--)
  2071. break;
  2072. udelay(10);
  2073. }
  2074. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2075. rxcfg |= rxcfg_new;
  2076. writel(rxcfg, gp->regs + MAC_RXCFG);
  2077. }
  2078. /* Jumbo-grams don't seem to work :-( */
  2079. #define GEM_MIN_MTU ETH_MIN_MTU
  2080. #if 1
  2081. #define GEM_MAX_MTU ETH_DATA_LEN
  2082. #else
  2083. #define GEM_MAX_MTU 9000
  2084. #endif
  2085. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2086. {
  2087. struct gem *gp = netdev_priv(dev);
  2088. dev->mtu = new_mtu;
  2089. /* We'll just catch it later when the device is up'd or resumed */
  2090. if (!netif_running(dev) || !netif_device_present(dev))
  2091. return 0;
  2092. /* Better safe than sorry... */
  2093. if (WARN_ON(!gp->cell_enabled))
  2094. return 0;
  2095. gem_netif_stop(gp);
  2096. gem_reinit_chip(gp);
  2097. if (gp->lstate == link_up)
  2098. gem_set_link_modes(gp);
  2099. gem_netif_start(gp);
  2100. return 0;
  2101. }
  2102. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2103. {
  2104. struct gem *gp = netdev_priv(dev);
  2105. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  2106. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  2107. strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
  2108. }
  2109. static int gem_get_link_ksettings(struct net_device *dev,
  2110. struct ethtool_link_ksettings *cmd)
  2111. {
  2112. struct gem *gp = netdev_priv(dev);
  2113. u32 supported, advertising;
  2114. if (gp->phy_type == phy_mii_mdio0 ||
  2115. gp->phy_type == phy_mii_mdio1) {
  2116. if (gp->phy_mii.def)
  2117. supported = gp->phy_mii.def->features;
  2118. else
  2119. supported = (SUPPORTED_10baseT_Half |
  2120. SUPPORTED_10baseT_Full);
  2121. /* XXX hardcoded stuff for now */
  2122. cmd->base.port = PORT_MII;
  2123. cmd->base.phy_address = 0; /* XXX fixed PHYAD */
  2124. /* Return current PHY settings */
  2125. cmd->base.autoneg = gp->want_autoneg;
  2126. cmd->base.speed = gp->phy_mii.speed;
  2127. cmd->base.duplex = gp->phy_mii.duplex;
  2128. advertising = gp->phy_mii.advertising;
  2129. /* If we started with a forced mode, we don't have a default
  2130. * advertise set, we need to return something sensible so
  2131. * userland can re-enable autoneg properly.
  2132. */
  2133. if (advertising == 0)
  2134. advertising = supported;
  2135. } else { // XXX PCS ?
  2136. supported =
  2137. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2138. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2139. SUPPORTED_Autoneg);
  2140. advertising = supported;
  2141. cmd->base.speed = 0;
  2142. cmd->base.duplex = 0;
  2143. cmd->base.port = 0;
  2144. cmd->base.phy_address = 0;
  2145. cmd->base.autoneg = 0;
  2146. /* serdes means usually a Fibre connector, with most fixed */
  2147. if (gp->phy_type == phy_serdes) {
  2148. cmd->base.port = PORT_FIBRE;
  2149. supported = (SUPPORTED_1000baseT_Half |
  2150. SUPPORTED_1000baseT_Full |
  2151. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2152. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2153. advertising = supported;
  2154. if (gp->lstate == link_up)
  2155. cmd->base.speed = SPEED_1000;
  2156. cmd->base.duplex = DUPLEX_FULL;
  2157. cmd->base.autoneg = 1;
  2158. }
  2159. }
  2160. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  2161. supported);
  2162. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  2163. advertising);
  2164. return 0;
  2165. }
  2166. static int gem_set_link_ksettings(struct net_device *dev,
  2167. const struct ethtool_link_ksettings *cmd)
  2168. {
  2169. struct gem *gp = netdev_priv(dev);
  2170. u32 speed = cmd->base.speed;
  2171. u32 advertising;
  2172. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  2173. cmd->link_modes.advertising);
  2174. /* Verify the settings we care about. */
  2175. if (cmd->base.autoneg != AUTONEG_ENABLE &&
  2176. cmd->base.autoneg != AUTONEG_DISABLE)
  2177. return -EINVAL;
  2178. if (cmd->base.autoneg == AUTONEG_ENABLE &&
  2179. advertising == 0)
  2180. return -EINVAL;
  2181. if (cmd->base.autoneg == AUTONEG_DISABLE &&
  2182. ((speed != SPEED_1000 &&
  2183. speed != SPEED_100 &&
  2184. speed != SPEED_10) ||
  2185. (cmd->base.duplex != DUPLEX_HALF &&
  2186. cmd->base.duplex != DUPLEX_FULL)))
  2187. return -EINVAL;
  2188. /* Apply settings and restart link process. */
  2189. if (netif_device_present(gp->dev)) {
  2190. del_timer_sync(&gp->link_timer);
  2191. gem_begin_auto_negotiation(gp, cmd);
  2192. }
  2193. return 0;
  2194. }
  2195. static int gem_nway_reset(struct net_device *dev)
  2196. {
  2197. struct gem *gp = netdev_priv(dev);
  2198. if (!gp->want_autoneg)
  2199. return -EINVAL;
  2200. /* Restart link process */
  2201. if (netif_device_present(gp->dev)) {
  2202. del_timer_sync(&gp->link_timer);
  2203. gem_begin_auto_negotiation(gp, NULL);
  2204. }
  2205. return 0;
  2206. }
  2207. static u32 gem_get_msglevel(struct net_device *dev)
  2208. {
  2209. struct gem *gp = netdev_priv(dev);
  2210. return gp->msg_enable;
  2211. }
  2212. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2213. {
  2214. struct gem *gp = netdev_priv(dev);
  2215. gp->msg_enable = value;
  2216. }
  2217. /* Add more when I understand how to program the chip */
  2218. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2219. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2220. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2221. {
  2222. struct gem *gp = netdev_priv(dev);
  2223. /* Add more when I understand how to program the chip */
  2224. if (gp->has_wol) {
  2225. wol->supported = WOL_SUPPORTED_MASK;
  2226. wol->wolopts = gp->wake_on_lan;
  2227. } else {
  2228. wol->supported = 0;
  2229. wol->wolopts = 0;
  2230. }
  2231. }
  2232. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2233. {
  2234. struct gem *gp = netdev_priv(dev);
  2235. if (!gp->has_wol)
  2236. return -EOPNOTSUPP;
  2237. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2238. return 0;
  2239. }
  2240. static const struct ethtool_ops gem_ethtool_ops = {
  2241. .get_drvinfo = gem_get_drvinfo,
  2242. .get_link = ethtool_op_get_link,
  2243. .nway_reset = gem_nway_reset,
  2244. .get_msglevel = gem_get_msglevel,
  2245. .set_msglevel = gem_set_msglevel,
  2246. .get_wol = gem_get_wol,
  2247. .set_wol = gem_set_wol,
  2248. .get_link_ksettings = gem_get_link_ksettings,
  2249. .set_link_ksettings = gem_set_link_ksettings,
  2250. };
  2251. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2252. {
  2253. struct gem *gp = netdev_priv(dev);
  2254. struct mii_ioctl_data *data = if_mii(ifr);
  2255. int rc = -EOPNOTSUPP;
  2256. /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
  2257. * netif_device_present() is true and holds rtnl_lock for us
  2258. * so we have nothing to worry about
  2259. */
  2260. switch (cmd) {
  2261. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2262. data->phy_id = gp->mii_phy_addr;
  2263. /* Fallthrough... */
  2264. case SIOCGMIIREG: /* Read MII PHY register. */
  2265. data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
  2266. data->reg_num & 0x1f);
  2267. rc = 0;
  2268. break;
  2269. case SIOCSMIIREG: /* Write MII PHY register. */
  2270. __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2271. data->val_in);
  2272. rc = 0;
  2273. break;
  2274. }
  2275. return rc;
  2276. }
  2277. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2278. /* Fetch MAC address from vital product data of PCI ROM. */
  2279. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2280. {
  2281. int this_offset;
  2282. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2283. void __iomem *p = rom_base + this_offset;
  2284. int i;
  2285. if (readb(p + 0) != 0x90 ||
  2286. readb(p + 1) != 0x00 ||
  2287. readb(p + 2) != 0x09 ||
  2288. readb(p + 3) != 0x4e ||
  2289. readb(p + 4) != 0x41 ||
  2290. readb(p + 5) != 0x06)
  2291. continue;
  2292. this_offset += 6;
  2293. p += 6;
  2294. for (i = 0; i < 6; i++)
  2295. dev_addr[i] = readb(p + i);
  2296. return 1;
  2297. }
  2298. return 0;
  2299. }
  2300. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2301. {
  2302. size_t size;
  2303. void __iomem *p = pci_map_rom(pdev, &size);
  2304. if (p) {
  2305. int found;
  2306. found = readb(p) == 0x55 &&
  2307. readb(p + 1) == 0xaa &&
  2308. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2309. pci_unmap_rom(pdev, p);
  2310. if (found)
  2311. return;
  2312. }
  2313. /* Sun MAC prefix then 3 random bytes. */
  2314. dev_addr[0] = 0x08;
  2315. dev_addr[1] = 0x00;
  2316. dev_addr[2] = 0x20;
  2317. get_random_bytes(dev_addr + 3, 3);
  2318. }
  2319. #endif /* not Sparc and not PPC */
  2320. static int gem_get_device_address(struct gem *gp)
  2321. {
  2322. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2323. struct net_device *dev = gp->dev;
  2324. const unsigned char *addr;
  2325. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2326. if (addr == NULL) {
  2327. #ifdef CONFIG_SPARC
  2328. addr = idprom->id_ethaddr;
  2329. #else
  2330. printk("\n");
  2331. pr_err("%s: can't get mac-address\n", dev->name);
  2332. return -1;
  2333. #endif
  2334. }
  2335. memcpy(dev->dev_addr, addr, ETH_ALEN);
  2336. #else
  2337. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2338. #endif
  2339. return 0;
  2340. }
  2341. static void gem_remove_one(struct pci_dev *pdev)
  2342. {
  2343. struct net_device *dev = pci_get_drvdata(pdev);
  2344. if (dev) {
  2345. struct gem *gp = netdev_priv(dev);
  2346. unregister_netdev(dev);
  2347. /* Ensure reset task is truly gone */
  2348. cancel_work_sync(&gp->reset_task);
  2349. /* Free resources */
  2350. pci_free_consistent(pdev,
  2351. sizeof(struct gem_init_block),
  2352. gp->init_block,
  2353. gp->gblock_dvma);
  2354. iounmap(gp->regs);
  2355. pci_release_regions(pdev);
  2356. free_netdev(dev);
  2357. }
  2358. }
  2359. static const struct net_device_ops gem_netdev_ops = {
  2360. .ndo_open = gem_open,
  2361. .ndo_stop = gem_close,
  2362. .ndo_start_xmit = gem_start_xmit,
  2363. .ndo_get_stats = gem_get_stats,
  2364. .ndo_set_rx_mode = gem_set_multicast,
  2365. .ndo_do_ioctl = gem_ioctl,
  2366. .ndo_tx_timeout = gem_tx_timeout,
  2367. .ndo_change_mtu = gem_change_mtu,
  2368. .ndo_validate_addr = eth_validate_addr,
  2369. .ndo_set_mac_address = gem_set_mac_address,
  2370. #ifdef CONFIG_NET_POLL_CONTROLLER
  2371. .ndo_poll_controller = gem_poll_controller,
  2372. #endif
  2373. };
  2374. static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  2375. {
  2376. unsigned long gemreg_base, gemreg_len;
  2377. struct net_device *dev;
  2378. struct gem *gp;
  2379. int err, pci_using_dac;
  2380. printk_once(KERN_INFO "%s", version);
  2381. /* Apple gmac note: during probe, the chip is powered up by
  2382. * the arch code to allow the code below to work (and to let
  2383. * the chip be probed on the config space. It won't stay powered
  2384. * up until the interface is brought up however, so we can't rely
  2385. * on register configuration done at this point.
  2386. */
  2387. err = pci_enable_device(pdev);
  2388. if (err) {
  2389. pr_err("Cannot enable MMIO operation, aborting\n");
  2390. return err;
  2391. }
  2392. pci_set_master(pdev);
  2393. /* Configure DMA attributes. */
  2394. /* All of the GEM documentation states that 64-bit DMA addressing
  2395. * is fully supported and should work just fine. However the
  2396. * front end for RIO based GEMs is different and only supports
  2397. * 32-bit addressing.
  2398. *
  2399. * For now we assume the various PPC GEMs are 32-bit only as well.
  2400. */
  2401. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2402. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2403. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2404. pci_using_dac = 1;
  2405. } else {
  2406. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2407. if (err) {
  2408. pr_err("No usable DMA configuration, aborting\n");
  2409. goto err_disable_device;
  2410. }
  2411. pci_using_dac = 0;
  2412. }
  2413. gemreg_base = pci_resource_start(pdev, 0);
  2414. gemreg_len = pci_resource_len(pdev, 0);
  2415. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2416. pr_err("Cannot find proper PCI device base address, aborting\n");
  2417. err = -ENODEV;
  2418. goto err_disable_device;
  2419. }
  2420. dev = alloc_etherdev(sizeof(*gp));
  2421. if (!dev) {
  2422. err = -ENOMEM;
  2423. goto err_disable_device;
  2424. }
  2425. SET_NETDEV_DEV(dev, &pdev->dev);
  2426. gp = netdev_priv(dev);
  2427. err = pci_request_regions(pdev, DRV_NAME);
  2428. if (err) {
  2429. pr_err("Cannot obtain PCI resources, aborting\n");
  2430. goto err_out_free_netdev;
  2431. }
  2432. gp->pdev = pdev;
  2433. gp->dev = dev;
  2434. gp->msg_enable = DEFAULT_MSG;
  2435. timer_setup(&gp->link_timer, gem_link_timer, 0);
  2436. INIT_WORK(&gp->reset_task, gem_reset_task);
  2437. gp->lstate = link_down;
  2438. gp->timer_ticks = 0;
  2439. netif_carrier_off(dev);
  2440. gp->regs = ioremap(gemreg_base, gemreg_len);
  2441. if (!gp->regs) {
  2442. pr_err("Cannot map device registers, aborting\n");
  2443. err = -EIO;
  2444. goto err_out_free_res;
  2445. }
  2446. /* On Apple, we want a reference to the Open Firmware device-tree
  2447. * node. We use it for clock control.
  2448. */
  2449. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2450. gp->of_node = pci_device_to_OF_node(pdev);
  2451. #endif
  2452. /* Only Apple version supports WOL afaik */
  2453. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2454. gp->has_wol = 1;
  2455. /* Make sure cell is enabled */
  2456. gem_get_cell(gp);
  2457. /* Make sure everything is stopped and in init state */
  2458. gem_reset(gp);
  2459. /* Fill up the mii_phy structure (even if we won't use it) */
  2460. gp->phy_mii.dev = dev;
  2461. gp->phy_mii.mdio_read = _sungem_phy_read;
  2462. gp->phy_mii.mdio_write = _sungem_phy_write;
  2463. #ifdef CONFIG_PPC_PMAC
  2464. gp->phy_mii.platform_data = gp->of_node;
  2465. #endif
  2466. /* By default, we start with autoneg */
  2467. gp->want_autoneg = 1;
  2468. /* Check fifo sizes, PHY type, etc... */
  2469. if (gem_check_invariants(gp)) {
  2470. err = -ENODEV;
  2471. goto err_out_iounmap;
  2472. }
  2473. /* It is guaranteed that the returned buffer will be at least
  2474. * PAGE_SIZE aligned.
  2475. */
  2476. gp->init_block = (struct gem_init_block *)
  2477. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2478. &gp->gblock_dvma);
  2479. if (!gp->init_block) {
  2480. pr_err("Cannot allocate init block, aborting\n");
  2481. err = -ENOMEM;
  2482. goto err_out_iounmap;
  2483. }
  2484. err = gem_get_device_address(gp);
  2485. if (err)
  2486. goto err_out_free_consistent;
  2487. dev->netdev_ops = &gem_netdev_ops;
  2488. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2489. dev->ethtool_ops = &gem_ethtool_ops;
  2490. dev->watchdog_timeo = 5 * HZ;
  2491. dev->dma = 0;
  2492. /* Set that now, in case PM kicks in now */
  2493. pci_set_drvdata(pdev, dev);
  2494. /* We can do scatter/gather and HW checksum */
  2495. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
  2496. dev->features = dev->hw_features;
  2497. if (pci_using_dac)
  2498. dev->features |= NETIF_F_HIGHDMA;
  2499. /* MTU range: 68 - 1500 (Jumbo mode is broken) */
  2500. dev->min_mtu = GEM_MIN_MTU;
  2501. dev->max_mtu = GEM_MAX_MTU;
  2502. /* Register with kernel */
  2503. if (register_netdev(dev)) {
  2504. pr_err("Cannot register net device, aborting\n");
  2505. err = -ENOMEM;
  2506. goto err_out_free_consistent;
  2507. }
  2508. /* Undo the get_cell with appropriate locking (we could use
  2509. * ndo_init/uninit but that would be even more clumsy imho)
  2510. */
  2511. rtnl_lock();
  2512. gem_put_cell(gp);
  2513. rtnl_unlock();
  2514. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2515. dev->dev_addr);
  2516. return 0;
  2517. err_out_free_consistent:
  2518. gem_remove_one(pdev);
  2519. err_out_iounmap:
  2520. gem_put_cell(gp);
  2521. iounmap(gp->regs);
  2522. err_out_free_res:
  2523. pci_release_regions(pdev);
  2524. err_out_free_netdev:
  2525. free_netdev(dev);
  2526. err_disable_device:
  2527. pci_disable_device(pdev);
  2528. return err;
  2529. }
  2530. static struct pci_driver gem_driver = {
  2531. .name = GEM_MODULE_NAME,
  2532. .id_table = gem_pci_tbl,
  2533. .probe = gem_init_one,
  2534. .remove = gem_remove_one,
  2535. #ifdef CONFIG_PM
  2536. .suspend = gem_suspend,
  2537. .resume = gem_resume,
  2538. #endif /* CONFIG_PM */
  2539. };
  2540. module_pci_driver(gem_driver);