mcr20a.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423
  1. /*
  2. * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2
  8. * as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/gpio/consumer.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/workqueue.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/irq.h>
  23. #include <linux/skbuff.h>
  24. #include <linux/of_gpio.h>
  25. #include <linux/regmap.h>
  26. #include <linux/ieee802154.h>
  27. #include <linux/debugfs.h>
  28. #include <net/mac802154.h>
  29. #include <net/cfg802154.h>
  30. #include <linux/device.h>
  31. #include "mcr20a.h"
  32. #define SPI_COMMAND_BUFFER 3
  33. #define REGISTER_READ BIT(7)
  34. #define REGISTER_WRITE (0 << 7)
  35. #define REGISTER_ACCESS (0 << 6)
  36. #define PACKET_BUFF_BURST_ACCESS BIT(6)
  37. #define PACKET_BUFF_BYTE_ACCESS BIT(5)
  38. #define MCR20A_WRITE_REG(x) (x)
  39. #define MCR20A_READ_REG(x) (REGISTER_READ | (x))
  40. #define MCR20A_BURST_READ_PACKET_BUF (0xC0)
  41. #define MCR20A_BURST_WRITE_PACKET_BUF (0x40)
  42. #define MCR20A_CMD_REG 0x80
  43. #define MCR20A_CMD_REG_MASK 0x3f
  44. #define MCR20A_CMD_WRITE 0x40
  45. #define MCR20A_CMD_FB 0x20
  46. /* Number of Interrupt Request Status Register */
  47. #define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
  48. /* MCR20A CCA Type */
  49. enum {
  50. MCR20A_CCA_ED, // energy detect - CCA bit not active,
  51. // not to be used for T and CCCA sequences
  52. MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
  53. MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
  54. MCR20A_CCA_MODE3
  55. };
  56. enum {
  57. MCR20A_XCVSEQ_IDLE = 0x00,
  58. MCR20A_XCVSEQ_RX = 0x01,
  59. MCR20A_XCVSEQ_TX = 0x02,
  60. MCR20A_XCVSEQ_CCA = 0x03,
  61. MCR20A_XCVSEQ_TR = 0x04,
  62. MCR20A_XCVSEQ_CCCA = 0x05,
  63. };
  64. /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
  65. #define MCR20A_MIN_CHANNEL (11)
  66. #define MCR20A_MAX_CHANNEL (26)
  67. #define MCR20A_CHANNEL_SPACING (5)
  68. /* MCR20A CCA Threshold constans */
  69. #define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
  70. #define MCR20A_MAX_CCA_THRESHOLD (0x00U)
  71. /* version 0C */
  72. #define MCR20A_OVERWRITE_VERSION (0x0C)
  73. /* MCR20A PLL configurations */
  74. static const u8 PLL_INT[16] = {
  75. /* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B,
  76. /* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B,
  77. /* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C,
  78. /* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C,
  79. /* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D,
  80. /* 2480 */ 0x0D
  81. };
  82. static const u8 PLL_FRAC[16] = {
  83. /* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78,
  84. /* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0,
  85. /* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68,
  86. /* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0,
  87. /* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58,
  88. /* 2480 */ 0x80
  89. };
  90. static const struct reg_sequence mar20a_iar_overwrites[] = {
  91. { IAR_MISC_PAD_CTRL, 0x02 },
  92. { IAR_VCO_CTRL1, 0xB3 },
  93. { IAR_VCO_CTRL2, 0x07 },
  94. { IAR_PA_TUNING, 0x71 },
  95. { IAR_CHF_IBUF, 0x2F },
  96. { IAR_CHF_QBUF, 0x2F },
  97. { IAR_CHF_IRIN, 0x24 },
  98. { IAR_CHF_QRIN, 0x24 },
  99. { IAR_CHF_IL, 0x24 },
  100. { IAR_CHF_QL, 0x24 },
  101. { IAR_CHF_CC1, 0x32 },
  102. { IAR_CHF_CCL, 0x1D },
  103. { IAR_CHF_CC2, 0x2D },
  104. { IAR_CHF_IROUT, 0x24 },
  105. { IAR_CHF_QROUT, 0x24 },
  106. { IAR_PA_CAL, 0x28 },
  107. { IAR_AGC_THR1, 0x55 },
  108. { IAR_AGC_THR2, 0x2D },
  109. { IAR_ATT_RSSI1, 0x5F },
  110. { IAR_ATT_RSSI2, 0x8F },
  111. { IAR_RSSI_OFFSET, 0x61 },
  112. { IAR_CHF_PMA_GAIN, 0x03 },
  113. { IAR_CCA1_THRESH, 0x50 },
  114. { IAR_CORR_NVAL, 0x13 },
  115. { IAR_ACKDELAY, 0x3D },
  116. };
  117. #define MCR20A_VALID_CHANNELS (0x07FFF800)
  118. struct mcr20a_platform_data {
  119. int rst_gpio;
  120. };
  121. #define MCR20A_MAX_BUF (127)
  122. #define printdev(X) (&X->spi->dev)
  123. /* regmap information for Direct Access Register (DAR) access */
  124. #define MCR20A_DAR_WRITE 0x01
  125. #define MCR20A_DAR_READ 0x00
  126. #define MCR20A_DAR_NUMREGS 0x3F
  127. /* regmap information for Indirect Access Register (IAR) access */
  128. #define MCR20A_IAR_ACCESS 0x80
  129. #define MCR20A_IAR_NUMREGS 0xBEFF
  130. /* Read/Write SPI Commands for DAR and IAR registers. */
  131. #define MCR20A_READSHORT(reg) ((reg) << 1)
  132. #define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1)
  133. #define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5)
  134. #define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  135. /* Type definitions for link configuration of instantiable layers */
  136. #define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
  137. static bool
  138. mcr20a_dar_writeable(struct device *dev, unsigned int reg)
  139. {
  140. switch (reg) {
  141. case DAR_IRQ_STS1:
  142. case DAR_IRQ_STS2:
  143. case DAR_IRQ_STS3:
  144. case DAR_PHY_CTRL1:
  145. case DAR_PHY_CTRL2:
  146. case DAR_PHY_CTRL3:
  147. case DAR_PHY_CTRL4:
  148. case DAR_SRC_CTRL:
  149. case DAR_SRC_ADDRS_SUM_LSB:
  150. case DAR_SRC_ADDRS_SUM_MSB:
  151. case DAR_T3CMP_LSB:
  152. case DAR_T3CMP_MSB:
  153. case DAR_T3CMP_USB:
  154. case DAR_T2PRIMECMP_LSB:
  155. case DAR_T2PRIMECMP_MSB:
  156. case DAR_T1CMP_LSB:
  157. case DAR_T1CMP_MSB:
  158. case DAR_T1CMP_USB:
  159. case DAR_T2CMP_LSB:
  160. case DAR_T2CMP_MSB:
  161. case DAR_T2CMP_USB:
  162. case DAR_T4CMP_LSB:
  163. case DAR_T4CMP_MSB:
  164. case DAR_T4CMP_USB:
  165. case DAR_PLL_INT0:
  166. case DAR_PLL_FRAC0_LSB:
  167. case DAR_PLL_FRAC0_MSB:
  168. case DAR_PA_PWR:
  169. /* no DAR_ACM */
  170. case DAR_OVERWRITE_VER:
  171. case DAR_CLK_OUT_CTRL:
  172. case DAR_PWR_MODES:
  173. return true;
  174. default:
  175. return false;
  176. }
  177. }
  178. static bool
  179. mcr20a_dar_readable(struct device *dev, unsigned int reg)
  180. {
  181. bool rc;
  182. /* all writeable are also readable */
  183. rc = mcr20a_dar_writeable(dev, reg);
  184. if (rc)
  185. return rc;
  186. /* readonly regs */
  187. switch (reg) {
  188. case DAR_RX_FRM_LEN:
  189. case DAR_CCA1_ED_FNL:
  190. case DAR_EVENT_TMR_LSB:
  191. case DAR_EVENT_TMR_MSB:
  192. case DAR_EVENT_TMR_USB:
  193. case DAR_TIMESTAMP_LSB:
  194. case DAR_TIMESTAMP_MSB:
  195. case DAR_TIMESTAMP_USB:
  196. case DAR_SEQ_STATE:
  197. case DAR_LQI_VALUE:
  198. case DAR_RSSI_CCA_CONT:
  199. return true;
  200. default:
  201. return false;
  202. }
  203. }
  204. static bool
  205. mcr20a_dar_volatile(struct device *dev, unsigned int reg)
  206. {
  207. /* can be changed during runtime */
  208. switch (reg) {
  209. case DAR_IRQ_STS1:
  210. case DAR_IRQ_STS2:
  211. case DAR_IRQ_STS3:
  212. /* use them in spi_async and regmap so it's volatile */
  213. return true;
  214. default:
  215. return false;
  216. }
  217. }
  218. static bool
  219. mcr20a_dar_precious(struct device *dev, unsigned int reg)
  220. {
  221. /* don't clear irq line on read */
  222. switch (reg) {
  223. case DAR_IRQ_STS1:
  224. case DAR_IRQ_STS2:
  225. case DAR_IRQ_STS3:
  226. return true;
  227. default:
  228. return false;
  229. }
  230. }
  231. static const struct regmap_config mcr20a_dar_regmap = {
  232. .name = "mcr20a_dar",
  233. .reg_bits = 8,
  234. .val_bits = 8,
  235. .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE,
  236. .read_flag_mask = REGISTER_ACCESS | REGISTER_READ,
  237. .cache_type = REGCACHE_RBTREE,
  238. .writeable_reg = mcr20a_dar_writeable,
  239. .readable_reg = mcr20a_dar_readable,
  240. .volatile_reg = mcr20a_dar_volatile,
  241. .precious_reg = mcr20a_dar_precious,
  242. .fast_io = true,
  243. .can_multi_write = true,
  244. };
  245. static bool
  246. mcr20a_iar_writeable(struct device *dev, unsigned int reg)
  247. {
  248. switch (reg) {
  249. case IAR_XTAL_TRIM:
  250. case IAR_PMC_LP_TRIM:
  251. case IAR_MACPANID0_LSB:
  252. case IAR_MACPANID0_MSB:
  253. case IAR_MACSHORTADDRS0_LSB:
  254. case IAR_MACSHORTADDRS0_MSB:
  255. case IAR_MACLONGADDRS0_0:
  256. case IAR_MACLONGADDRS0_8:
  257. case IAR_MACLONGADDRS0_16:
  258. case IAR_MACLONGADDRS0_24:
  259. case IAR_MACLONGADDRS0_32:
  260. case IAR_MACLONGADDRS0_40:
  261. case IAR_MACLONGADDRS0_48:
  262. case IAR_MACLONGADDRS0_56:
  263. case IAR_RX_FRAME_FILTER:
  264. case IAR_PLL_INT1:
  265. case IAR_PLL_FRAC1_LSB:
  266. case IAR_PLL_FRAC1_MSB:
  267. case IAR_MACPANID1_LSB:
  268. case IAR_MACPANID1_MSB:
  269. case IAR_MACSHORTADDRS1_LSB:
  270. case IAR_MACSHORTADDRS1_MSB:
  271. case IAR_MACLONGADDRS1_0:
  272. case IAR_MACLONGADDRS1_8:
  273. case IAR_MACLONGADDRS1_16:
  274. case IAR_MACLONGADDRS1_24:
  275. case IAR_MACLONGADDRS1_32:
  276. case IAR_MACLONGADDRS1_40:
  277. case IAR_MACLONGADDRS1_48:
  278. case IAR_MACLONGADDRS1_56:
  279. case IAR_DUAL_PAN_CTRL:
  280. case IAR_DUAL_PAN_DWELL:
  281. case IAR_CCA1_THRESH:
  282. case IAR_CCA1_ED_OFFSET_COMP:
  283. case IAR_LQI_OFFSET_COMP:
  284. case IAR_CCA_CTRL:
  285. case IAR_CCA2_CORR_PEAKS:
  286. case IAR_CCA2_CORR_THRESH:
  287. case IAR_TMR_PRESCALE:
  288. case IAR_ANT_PAD_CTRL:
  289. case IAR_MISC_PAD_CTRL:
  290. case IAR_BSM_CTRL:
  291. case IAR_RNG:
  292. case IAR_RX_WTR_MARK:
  293. case IAR_SOFT_RESET:
  294. case IAR_TXDELAY:
  295. case IAR_ACKDELAY:
  296. case IAR_CORR_NVAL:
  297. case IAR_ANT_AGC_CTRL:
  298. case IAR_AGC_THR1:
  299. case IAR_AGC_THR2:
  300. case IAR_PA_CAL:
  301. case IAR_ATT_RSSI1:
  302. case IAR_ATT_RSSI2:
  303. case IAR_RSSI_OFFSET:
  304. case IAR_XTAL_CTRL:
  305. case IAR_CHF_PMA_GAIN:
  306. case IAR_CHF_IBUF:
  307. case IAR_CHF_QBUF:
  308. case IAR_CHF_IRIN:
  309. case IAR_CHF_QRIN:
  310. case IAR_CHF_IL:
  311. case IAR_CHF_QL:
  312. case IAR_CHF_CC1:
  313. case IAR_CHF_CCL:
  314. case IAR_CHF_CC2:
  315. case IAR_CHF_IROUT:
  316. case IAR_CHF_QROUT:
  317. case IAR_PA_TUNING:
  318. case IAR_VCO_CTRL1:
  319. case IAR_VCO_CTRL2:
  320. return true;
  321. default:
  322. return false;
  323. }
  324. }
  325. static bool
  326. mcr20a_iar_readable(struct device *dev, unsigned int reg)
  327. {
  328. bool rc;
  329. /* all writeable are also readable */
  330. rc = mcr20a_iar_writeable(dev, reg);
  331. if (rc)
  332. return rc;
  333. /* readonly regs */
  334. switch (reg) {
  335. case IAR_PART_ID:
  336. case IAR_DUAL_PAN_STS:
  337. case IAR_RX_BYTE_COUNT:
  338. case IAR_FILTERFAIL_CODE1:
  339. case IAR_FILTERFAIL_CODE2:
  340. case IAR_RSSI:
  341. return true;
  342. default:
  343. return false;
  344. }
  345. }
  346. static bool
  347. mcr20a_iar_volatile(struct device *dev, unsigned int reg)
  348. {
  349. /* can be changed during runtime */
  350. switch (reg) {
  351. case IAR_DUAL_PAN_STS:
  352. case IAR_RX_BYTE_COUNT:
  353. case IAR_FILTERFAIL_CODE1:
  354. case IAR_FILTERFAIL_CODE2:
  355. case IAR_RSSI:
  356. return true;
  357. default:
  358. return false;
  359. }
  360. }
  361. static const struct regmap_config mcr20a_iar_regmap = {
  362. .name = "mcr20a_iar",
  363. .reg_bits = 16,
  364. .val_bits = 8,
  365. .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
  366. .read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX,
  367. .cache_type = REGCACHE_RBTREE,
  368. .writeable_reg = mcr20a_iar_writeable,
  369. .readable_reg = mcr20a_iar_readable,
  370. .volatile_reg = mcr20a_iar_volatile,
  371. .fast_io = true,
  372. };
  373. struct mcr20a_local {
  374. struct spi_device *spi;
  375. struct ieee802154_hw *hw;
  376. struct mcr20a_platform_data *pdata;
  377. struct regmap *regmap_dar;
  378. struct regmap *regmap_iar;
  379. u8 *buf;
  380. bool is_tx;
  381. /* for writing tx buffer */
  382. struct spi_message tx_buf_msg;
  383. u8 tx_header[1];
  384. /* burst buffer write command */
  385. struct spi_transfer tx_xfer_header;
  386. u8 tx_len[1];
  387. /* len of tx packet */
  388. struct spi_transfer tx_xfer_len;
  389. /* data of tx packet */
  390. struct spi_transfer tx_xfer_buf;
  391. struct sk_buff *tx_skb;
  392. /* for read length rxfifo */
  393. struct spi_message reg_msg;
  394. u8 reg_cmd[1];
  395. u8 reg_data[MCR20A_IRQSTS_NUM];
  396. struct spi_transfer reg_xfer_cmd;
  397. struct spi_transfer reg_xfer_data;
  398. /* receive handling */
  399. struct spi_message rx_buf_msg;
  400. u8 rx_header[1];
  401. struct spi_transfer rx_xfer_header;
  402. u8 rx_lqi[1];
  403. struct spi_transfer rx_xfer_lqi;
  404. u8 rx_buf[MCR20A_MAX_BUF];
  405. struct spi_transfer rx_xfer_buf;
  406. /* isr handling for reading intstat */
  407. struct spi_message irq_msg;
  408. u8 irq_header[1];
  409. u8 irq_data[MCR20A_IRQSTS_NUM];
  410. struct spi_transfer irq_xfer_data;
  411. struct spi_transfer irq_xfer_header;
  412. };
  413. static void
  414. mcr20a_write_tx_buf_complete(void *context)
  415. {
  416. struct mcr20a_local *lp = context;
  417. int ret;
  418. dev_dbg(printdev(lp), "%s\n", __func__);
  419. lp->reg_msg.complete = NULL;
  420. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
  421. lp->reg_data[0] = MCR20A_XCVSEQ_TX;
  422. lp->reg_xfer_data.len = 1;
  423. ret = spi_async(lp->spi, &lp->reg_msg);
  424. if (ret)
  425. dev_err(printdev(lp), "failed to set SEQ TX\n");
  426. }
  427. static int
  428. mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
  429. {
  430. struct mcr20a_local *lp = hw->priv;
  431. dev_dbg(printdev(lp), "%s\n", __func__);
  432. lp->tx_skb = skb;
  433. print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
  434. skb->data, skb->len, 0);
  435. lp->is_tx = 1;
  436. lp->reg_msg.complete = NULL;
  437. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
  438. lp->reg_data[0] = MCR20A_XCVSEQ_IDLE;
  439. lp->reg_xfer_data.len = 1;
  440. return spi_async(lp->spi, &lp->reg_msg);
  441. }
  442. static int
  443. mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
  444. {
  445. WARN_ON(!level);
  446. *level = 0xbe;
  447. return 0;
  448. }
  449. static int
  450. mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  451. {
  452. struct mcr20a_local *lp = hw->priv;
  453. int ret;
  454. dev_dbg(printdev(lp), "%s\n", __func__);
  455. /* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
  456. ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
  457. if (ret)
  458. return ret;
  459. ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
  460. if (ret)
  461. return ret;
  462. ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
  463. PLL_FRAC[channel - 11]);
  464. if (ret)
  465. return ret;
  466. return 0;
  467. }
  468. static int
  469. mcr20a_start(struct ieee802154_hw *hw)
  470. {
  471. struct mcr20a_local *lp = hw->priv;
  472. int ret;
  473. dev_dbg(printdev(lp), "%s\n", __func__);
  474. /* No slotted operation */
  475. dev_dbg(printdev(lp), "no slotted operation\n");
  476. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  477. DAR_PHY_CTRL1_SLOTTED, 0x0);
  478. if (ret < 0)
  479. return ret;
  480. /* enable irq */
  481. enable_irq(lp->spi->irq);
  482. /* Unmask SEQ interrupt */
  483. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
  484. DAR_PHY_CTRL2_SEQMSK, 0x0);
  485. if (ret < 0)
  486. return ret;
  487. /* Start the RX sequence */
  488. dev_dbg(printdev(lp), "start the RX sequence\n");
  489. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  490. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
  491. if (ret < 0)
  492. return ret;
  493. return 0;
  494. }
  495. static void
  496. mcr20a_stop(struct ieee802154_hw *hw)
  497. {
  498. struct mcr20a_local *lp = hw->priv;
  499. dev_dbg(printdev(lp), "%s\n", __func__);
  500. /* stop all running sequence */
  501. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  502. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
  503. /* disable irq */
  504. disable_irq(lp->spi->irq);
  505. }
  506. static int
  507. mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
  508. struct ieee802154_hw_addr_filt *filt,
  509. unsigned long changed)
  510. {
  511. struct mcr20a_local *lp = hw->priv;
  512. dev_dbg(printdev(lp), "%s\n", __func__);
  513. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  514. u16 addr = le16_to_cpu(filt->short_addr);
  515. regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
  516. regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
  517. }
  518. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  519. u16 pan = le16_to_cpu(filt->pan_id);
  520. regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
  521. regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
  522. }
  523. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  524. u8 addr[8], i;
  525. memcpy(addr, &filt->ieee_addr, 8);
  526. for (i = 0; i < 8; i++)
  527. regmap_write(lp->regmap_iar,
  528. IAR_MACLONGADDRS0_0 + i, addr[i]);
  529. }
  530. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  531. if (filt->pan_coord) {
  532. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  533. DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
  534. } else {
  535. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  536. DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
  537. }
  538. }
  539. return 0;
  540. }
  541. /* -30 dBm to 10 dBm */
  542. #define MCR20A_MAX_TX_POWERS 0x14
  543. static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
  544. -3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
  545. -1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
  546. };
  547. static int
  548. mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
  549. {
  550. struct mcr20a_local *lp = hw->priv;
  551. u32 i;
  552. dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
  553. for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
  554. if (lp->hw->phy->supported.tx_powers[i] == mbm)
  555. return regmap_write(lp->regmap_dar, DAR_PA_PWR,
  556. ((i + 8) & 0x1F));
  557. }
  558. return -EINVAL;
  559. }
  560. #define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
  561. static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
  562. static int
  563. mcr20a_set_cca_mode(struct ieee802154_hw *hw,
  564. const struct wpan_phy_cca *cca)
  565. {
  566. struct mcr20a_local *lp = hw->priv;
  567. unsigned int cca_mode = 0xff;
  568. bool cca_mode_and = false;
  569. int ret;
  570. dev_dbg(printdev(lp), "%s\n", __func__);
  571. /* mapping 802.15.4 to driver spec */
  572. switch (cca->mode) {
  573. case NL802154_CCA_ENERGY:
  574. cca_mode = MCR20A_CCA_MODE1;
  575. break;
  576. case NL802154_CCA_CARRIER:
  577. cca_mode = MCR20A_CCA_MODE2;
  578. break;
  579. case NL802154_CCA_ENERGY_CARRIER:
  580. switch (cca->opt) {
  581. case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
  582. cca_mode = MCR20A_CCA_MODE3;
  583. cca_mode_and = true;
  584. break;
  585. case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
  586. cca_mode = MCR20A_CCA_MODE3;
  587. cca_mode_and = false;
  588. break;
  589. default:
  590. return -EINVAL;
  591. }
  592. break;
  593. default:
  594. return -EINVAL;
  595. }
  596. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  597. DAR_PHY_CTRL4_CCATYPE_MASK,
  598. cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
  599. if (ret < 0)
  600. return ret;
  601. if (cca_mode == MCR20A_CCA_MODE3) {
  602. if (cca_mode_and) {
  603. ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
  604. IAR_CCA_CTRL_CCA3_AND_NOT_OR,
  605. 0x08);
  606. } else {
  607. ret = regmap_update_bits(lp->regmap_iar,
  608. IAR_CCA_CTRL,
  609. IAR_CCA_CTRL_CCA3_AND_NOT_OR,
  610. 0x00);
  611. }
  612. if (ret < 0)
  613. return ret;
  614. }
  615. return ret;
  616. }
  617. static int
  618. mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  619. {
  620. struct mcr20a_local *lp = hw->priv;
  621. u32 i;
  622. dev_dbg(printdev(lp), "%s\n", __func__);
  623. for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
  624. if (hw->phy->supported.cca_ed_levels[i] == mbm)
  625. return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
  626. }
  627. return 0;
  628. }
  629. static int
  630. mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
  631. {
  632. struct mcr20a_local *lp = hw->priv;
  633. int ret;
  634. u8 rx_frame_filter_reg = 0x0;
  635. dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
  636. if (on) {
  637. /* All frame types accepted*/
  638. rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
  639. rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
  640. IAR_RX_FRAME_FLT_NS_FT);
  641. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  642. DAR_PHY_CTRL4_PROMISCUOUS,
  643. DAR_PHY_CTRL4_PROMISCUOUS);
  644. if (ret < 0)
  645. return ret;
  646. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  647. rx_frame_filter_reg);
  648. if (ret < 0)
  649. return ret;
  650. } else {
  651. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  652. DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
  653. if (ret < 0)
  654. return ret;
  655. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  656. IAR_RX_FRAME_FLT_FRM_VER |
  657. IAR_RX_FRAME_FLT_BEACON_FT |
  658. IAR_RX_FRAME_FLT_DATA_FT |
  659. IAR_RX_FRAME_FLT_CMD_FT);
  660. if (ret < 0)
  661. return ret;
  662. }
  663. return 0;
  664. }
  665. static const struct ieee802154_ops mcr20a_hw_ops = {
  666. .owner = THIS_MODULE,
  667. .xmit_async = mcr20a_xmit,
  668. .ed = mcr20a_ed,
  669. .set_channel = mcr20a_set_channel,
  670. .start = mcr20a_start,
  671. .stop = mcr20a_stop,
  672. .set_hw_addr_filt = mcr20a_set_hw_addr_filt,
  673. .set_txpower = mcr20a_set_txpower,
  674. .set_cca_mode = mcr20a_set_cca_mode,
  675. .set_cca_ed_level = mcr20a_set_cca_ed_level,
  676. .set_promiscuous_mode = mcr20a_set_promiscuous_mode,
  677. };
  678. static int
  679. mcr20a_request_rx(struct mcr20a_local *lp)
  680. {
  681. dev_dbg(printdev(lp), "%s\n", __func__);
  682. /* Start the RX sequence */
  683. regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
  684. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
  685. return 0;
  686. }
  687. static void
  688. mcr20a_handle_rx_read_buf_complete(void *context)
  689. {
  690. struct mcr20a_local *lp = context;
  691. u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
  692. struct sk_buff *skb;
  693. dev_dbg(printdev(lp), "%s\n", __func__);
  694. dev_dbg(printdev(lp), "RX is done\n");
  695. if (!ieee802154_is_valid_psdu_len(len)) {
  696. dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
  697. len = IEEE802154_MTU;
  698. }
  699. len = len - 2; /* get rid of frame check field */
  700. skb = dev_alloc_skb(len);
  701. if (!skb)
  702. return;
  703. memcpy(skb_put(skb, len), lp->rx_buf, len);
  704. ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
  705. print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
  706. lp->rx_buf, len, 0);
  707. pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
  708. /* start RX sequence */
  709. mcr20a_request_rx(lp);
  710. }
  711. static void
  712. mcr20a_handle_rx_read_len_complete(void *context)
  713. {
  714. struct mcr20a_local *lp = context;
  715. u8 len;
  716. int ret;
  717. dev_dbg(printdev(lp), "%s\n", __func__);
  718. /* get the length of received frame */
  719. len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
  720. dev_dbg(printdev(lp), "frame len : %d\n", len);
  721. /* prepare to read the rx buf */
  722. lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
  723. lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
  724. lp->rx_xfer_buf.len = len;
  725. ret = spi_async(lp->spi, &lp->rx_buf_msg);
  726. if (ret)
  727. dev_err(printdev(lp), "failed to read rx buffer length\n");
  728. }
  729. static int
  730. mcr20a_handle_rx(struct mcr20a_local *lp)
  731. {
  732. dev_dbg(printdev(lp), "%s\n", __func__);
  733. lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
  734. lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
  735. lp->reg_xfer_data.len = 1;
  736. return spi_async(lp->spi, &lp->reg_msg);
  737. }
  738. static int
  739. mcr20a_handle_tx_complete(struct mcr20a_local *lp)
  740. {
  741. dev_dbg(printdev(lp), "%s\n", __func__);
  742. ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
  743. return mcr20a_request_rx(lp);
  744. }
  745. static int
  746. mcr20a_handle_tx(struct mcr20a_local *lp)
  747. {
  748. int ret;
  749. dev_dbg(printdev(lp), "%s\n", __func__);
  750. /* write tx buffer */
  751. lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF;
  752. /* add 2 bytes of FCS */
  753. lp->tx_len[0] = lp->tx_skb->len + 2;
  754. lp->tx_xfer_buf.tx_buf = lp->tx_skb->data;
  755. /* add 1 byte psduLength */
  756. lp->tx_xfer_buf.len = lp->tx_skb->len + 1;
  757. ret = spi_async(lp->spi, &lp->tx_buf_msg);
  758. if (ret) {
  759. dev_err(printdev(lp), "SPI write Failed for TX buf\n");
  760. return ret;
  761. }
  762. return 0;
  763. }
  764. static void
  765. mcr20a_irq_clean_complete(void *context)
  766. {
  767. struct mcr20a_local *lp = context;
  768. u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
  769. dev_dbg(printdev(lp), "%s\n", __func__);
  770. enable_irq(lp->spi->irq);
  771. dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
  772. lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
  773. switch (seq_state) {
  774. /* TX IRQ, RX IRQ and SEQ IRQ */
  775. case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
  776. if (lp->is_tx) {
  777. lp->is_tx = 0;
  778. dev_dbg(printdev(lp), "TX is done. No ACK\n");
  779. mcr20a_handle_tx_complete(lp);
  780. }
  781. break;
  782. case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ):
  783. /* rx is starting */
  784. dev_dbg(printdev(lp), "RX is starting\n");
  785. mcr20a_handle_rx(lp);
  786. break;
  787. case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
  788. if (lp->is_tx) {
  789. /* tx is done */
  790. lp->is_tx = 0;
  791. dev_dbg(printdev(lp), "TX is done. Get ACK\n");
  792. mcr20a_handle_tx_complete(lp);
  793. } else {
  794. /* rx is starting */
  795. dev_dbg(printdev(lp), "RX is starting\n");
  796. mcr20a_handle_rx(lp);
  797. }
  798. break;
  799. case (DAR_IRQSTS1_SEQIRQ):
  800. if (lp->is_tx) {
  801. dev_dbg(printdev(lp), "TX is starting\n");
  802. mcr20a_handle_tx(lp);
  803. } else {
  804. dev_dbg(printdev(lp), "MCR20A is stop\n");
  805. }
  806. break;
  807. }
  808. }
  809. static void mcr20a_irq_status_complete(void *context)
  810. {
  811. int ret;
  812. struct mcr20a_local *lp = context;
  813. dev_dbg(printdev(lp), "%s\n", __func__);
  814. regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
  815. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
  816. lp->reg_msg.complete = mcr20a_irq_clean_complete;
  817. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
  818. memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
  819. lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
  820. ret = spi_async(lp->spi, &lp->reg_msg);
  821. if (ret)
  822. dev_err(printdev(lp), "failed to clean irq status\n");
  823. }
  824. static irqreturn_t mcr20a_irq_isr(int irq, void *data)
  825. {
  826. struct mcr20a_local *lp = data;
  827. int ret;
  828. disable_irq_nosync(irq);
  829. lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
  830. /* read IRQSTSx */
  831. ret = spi_async(lp->spi, &lp->irq_msg);
  832. if (ret) {
  833. enable_irq(irq);
  834. return IRQ_NONE;
  835. }
  836. return IRQ_HANDLED;
  837. }
  838. static int mcr20a_get_platform_data(struct spi_device *spi,
  839. struct mcr20a_platform_data *pdata)
  840. {
  841. int ret = 0;
  842. if (!spi->dev.of_node)
  843. return -EINVAL;
  844. pdata->rst_gpio = of_get_named_gpio(spi->dev.of_node, "rst_b-gpio", 0);
  845. dev_dbg(&spi->dev, "rst_b-gpio: %d\n", pdata->rst_gpio);
  846. return ret;
  847. }
  848. static void mcr20a_hw_setup(struct mcr20a_local *lp)
  849. {
  850. u8 i;
  851. struct ieee802154_hw *hw = lp->hw;
  852. struct wpan_phy *phy = lp->hw->phy;
  853. dev_dbg(printdev(lp), "%s\n", __func__);
  854. phy->symbol_duration = 16;
  855. phy->lifs_period = 40;
  856. phy->sifs_period = 12;
  857. hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
  858. IEEE802154_HW_AFILT |
  859. IEEE802154_HW_PROMISCUOUS;
  860. phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
  861. WPAN_PHY_FLAG_CCA_MODE;
  862. phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
  863. BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
  864. phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
  865. BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
  866. /* initiating cca_ed_levels */
  867. for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
  868. ++i) {
  869. mcr20a_ed_levels[i] = -i * 100;
  870. }
  871. phy->supported.cca_ed_levels = mcr20a_ed_levels;
  872. phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
  873. phy->cca.mode = NL802154_CCA_ENERGY;
  874. phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
  875. phy->current_page = 0;
  876. /* MCR20A default reset value */
  877. phy->current_channel = 20;
  878. phy->symbol_duration = 16;
  879. phy->supported.tx_powers = mcr20a_powers;
  880. phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
  881. phy->cca_ed_level = phy->supported.cca_ed_levels[75];
  882. phy->transmit_power = phy->supported.tx_powers[0x0F];
  883. }
  884. static void
  885. mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
  886. {
  887. spi_message_init(&lp->tx_buf_msg);
  888. lp->tx_buf_msg.context = lp;
  889. lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
  890. lp->tx_xfer_header.len = 1;
  891. lp->tx_xfer_header.tx_buf = lp->tx_header;
  892. lp->tx_xfer_len.len = 1;
  893. lp->tx_xfer_len.tx_buf = lp->tx_len;
  894. spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
  895. spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
  896. spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
  897. }
  898. static void
  899. mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
  900. {
  901. spi_message_init(&lp->reg_msg);
  902. lp->reg_msg.context = lp;
  903. lp->reg_xfer_cmd.len = 1;
  904. lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
  905. lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
  906. lp->reg_xfer_data.rx_buf = lp->reg_data;
  907. lp->reg_xfer_data.tx_buf = lp->reg_data;
  908. spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
  909. spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
  910. spi_message_init(&lp->rx_buf_msg);
  911. lp->rx_buf_msg.context = lp;
  912. lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
  913. lp->rx_xfer_header.len = 1;
  914. lp->rx_xfer_header.tx_buf = lp->rx_header;
  915. lp->rx_xfer_header.rx_buf = lp->rx_header;
  916. lp->rx_xfer_buf.rx_buf = lp->rx_buf;
  917. lp->rx_xfer_lqi.len = 1;
  918. lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
  919. spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
  920. spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
  921. spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
  922. }
  923. static void
  924. mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
  925. {
  926. spi_message_init(&lp->irq_msg);
  927. lp->irq_msg.context = lp;
  928. lp->irq_msg.complete = mcr20a_irq_status_complete;
  929. lp->irq_xfer_header.len = 1;
  930. lp->irq_xfer_header.tx_buf = lp->irq_header;
  931. lp->irq_xfer_header.rx_buf = lp->irq_header;
  932. lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM;
  933. lp->irq_xfer_data.rx_buf = lp->irq_data;
  934. spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
  935. spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
  936. }
  937. static int
  938. mcr20a_phy_init(struct mcr20a_local *lp)
  939. {
  940. u8 index;
  941. unsigned int phy_reg = 0;
  942. int ret;
  943. dev_dbg(printdev(lp), "%s\n", __func__);
  944. /* Disable Tristate on COCO MISO for SPI reads */
  945. ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
  946. if (ret)
  947. goto err_ret;
  948. /* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
  949. * immediately after init
  950. */
  951. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
  952. if (ret)
  953. goto err_ret;
  954. /* Clear all PP IRQ bits in IRQSTS2 */
  955. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
  956. DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
  957. DAR_IRQSTS2_WAKE_IRQ);
  958. if (ret)
  959. goto err_ret;
  960. /* Disable all timer interrupts */
  961. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
  962. if (ret)
  963. goto err_ret;
  964. /* PHY_CTRL1 : default HW settings + AUTOACK enabled */
  965. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  966. DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
  967. /* PHY_CTRL2 : disable all interrupts */
  968. ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
  969. if (ret)
  970. goto err_ret;
  971. /* PHY_CTRL3 : disable all timers and remaining interrupts */
  972. ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
  973. DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
  974. DAR_PHY_CTRL3_WAKE_MSK);
  975. if (ret)
  976. goto err_ret;
  977. /* SRC_CTRL : enable Acknowledge Frame Pending and
  978. * Source Address Matching Enable
  979. */
  980. ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
  981. DAR_SRC_CTRL_ACK_FRM_PND |
  982. (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
  983. if (ret)
  984. goto err_ret;
  985. /* RX_FRAME_FILTER */
  986. /* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
  987. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  988. IAR_RX_FRAME_FLT_FRM_VER |
  989. IAR_RX_FRAME_FLT_BEACON_FT |
  990. IAR_RX_FRAME_FLT_DATA_FT |
  991. IAR_RX_FRAME_FLT_CMD_FT);
  992. if (ret)
  993. goto err_ret;
  994. dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
  995. MCR20A_OVERWRITE_VERSION);
  996. /* Overwrites direct registers */
  997. ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
  998. MCR20A_OVERWRITE_VERSION);
  999. if (ret)
  1000. goto err_ret;
  1001. /* Overwrites indirect registers */
  1002. ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
  1003. ARRAY_SIZE(mar20a_iar_overwrites));
  1004. if (ret)
  1005. goto err_ret;
  1006. /* Clear HW indirect queue */
  1007. dev_dbg(printdev(lp), "clear HW indirect queue\n");
  1008. for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
  1009. phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
  1010. DAR_SRC_CTRL_INDEX_SHIFT)
  1011. | (DAR_SRC_CTRL_SRCADDR_EN)
  1012. | (DAR_SRC_CTRL_INDEX_DISABLE));
  1013. ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
  1014. if (ret)
  1015. goto err_ret;
  1016. phy_reg = 0;
  1017. }
  1018. /* Assign HW Indirect hash table to PAN0 */
  1019. ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
  1020. if (ret)
  1021. goto err_ret;
  1022. /* Clear current lvl */
  1023. phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
  1024. /* Set new lvl */
  1025. phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
  1026. IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
  1027. ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
  1028. if (ret)
  1029. goto err_ret;
  1030. /* Set CCA threshold to -75 dBm */
  1031. ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
  1032. if (ret)
  1033. goto err_ret;
  1034. /* Set prescaller to obtain 1 symbol (16us) timebase */
  1035. ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
  1036. if (ret)
  1037. goto err_ret;
  1038. /* Enable autodoze mode. */
  1039. ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
  1040. DAR_PWR_MODES_AUTODOZE,
  1041. DAR_PWR_MODES_AUTODOZE);
  1042. if (ret)
  1043. goto err_ret;
  1044. /* Disable clk_out */
  1045. ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
  1046. DAR_CLK_OUT_CTRL_EN, 0x0);
  1047. if (ret)
  1048. goto err_ret;
  1049. return 0;
  1050. err_ret:
  1051. return ret;
  1052. }
  1053. static int
  1054. mcr20a_probe(struct spi_device *spi)
  1055. {
  1056. struct ieee802154_hw *hw;
  1057. struct mcr20a_local *lp;
  1058. struct mcr20a_platform_data *pdata;
  1059. int irq_type;
  1060. int ret = -ENOMEM;
  1061. dev_dbg(&spi->dev, "%s\n", __func__);
  1062. if (!spi->irq) {
  1063. dev_err(&spi->dev, "no IRQ specified\n");
  1064. return -EINVAL;
  1065. }
  1066. pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  1067. if (!pdata)
  1068. return -ENOMEM;
  1069. /* set mcr20a platform data */
  1070. ret = mcr20a_get_platform_data(spi, pdata);
  1071. if (ret < 0) {
  1072. dev_crit(&spi->dev, "mcr20a_get_platform_data failed.\n");
  1073. goto free_pdata;
  1074. }
  1075. /* init reset gpio */
  1076. if (gpio_is_valid(pdata->rst_gpio)) {
  1077. ret = devm_gpio_request_one(&spi->dev, pdata->rst_gpio,
  1078. GPIOF_OUT_INIT_HIGH, "reset");
  1079. if (ret)
  1080. goto free_pdata;
  1081. }
  1082. /* reset mcr20a */
  1083. if (gpio_is_valid(pdata->rst_gpio)) {
  1084. usleep_range(10, 20);
  1085. gpio_set_value_cansleep(pdata->rst_gpio, 0);
  1086. usleep_range(10, 20);
  1087. gpio_set_value_cansleep(pdata->rst_gpio, 1);
  1088. usleep_range(120, 240);
  1089. }
  1090. /* allocate ieee802154_hw and private data */
  1091. hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
  1092. if (!hw) {
  1093. dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
  1094. ret = -ENOMEM;
  1095. goto free_pdata;
  1096. }
  1097. /* init mcr20a local data */
  1098. lp = hw->priv;
  1099. lp->hw = hw;
  1100. lp->spi = spi;
  1101. lp->spi->dev.platform_data = pdata;
  1102. lp->pdata = pdata;
  1103. /* init ieee802154_hw */
  1104. hw->parent = &spi->dev;
  1105. ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
  1106. /* init buf */
  1107. lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
  1108. if (!lp->buf) {
  1109. ret = -ENOMEM;
  1110. goto free_dev;
  1111. }
  1112. mcr20a_setup_tx_spi_messages(lp);
  1113. mcr20a_setup_rx_spi_messages(lp);
  1114. mcr20a_setup_irq_spi_messages(lp);
  1115. /* setup regmap */
  1116. lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
  1117. if (IS_ERR(lp->regmap_dar)) {
  1118. ret = PTR_ERR(lp->regmap_dar);
  1119. dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
  1120. ret);
  1121. goto free_dev;
  1122. }
  1123. lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
  1124. if (IS_ERR(lp->regmap_iar)) {
  1125. ret = PTR_ERR(lp->regmap_iar);
  1126. dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
  1127. goto free_dev;
  1128. }
  1129. mcr20a_hw_setup(lp);
  1130. spi_set_drvdata(spi, lp);
  1131. ret = mcr20a_phy_init(lp);
  1132. if (ret < 0) {
  1133. dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
  1134. goto free_dev;
  1135. }
  1136. irq_type = irq_get_trigger_type(spi->irq);
  1137. if (!irq_type)
  1138. irq_type = IRQF_TRIGGER_FALLING;
  1139. ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
  1140. irq_type, dev_name(&spi->dev), lp);
  1141. if (ret) {
  1142. dev_err(&spi->dev, "could not request_irq for mcr20a\n");
  1143. ret = -ENODEV;
  1144. goto free_dev;
  1145. }
  1146. /* disable_irq by default and wait for starting hardware */
  1147. disable_irq(spi->irq);
  1148. ret = ieee802154_register_hw(hw);
  1149. if (ret) {
  1150. dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
  1151. goto free_dev;
  1152. }
  1153. return ret;
  1154. free_dev:
  1155. ieee802154_free_hw(lp->hw);
  1156. free_pdata:
  1157. kfree(pdata);
  1158. return ret;
  1159. }
  1160. static int mcr20a_remove(struct spi_device *spi)
  1161. {
  1162. struct mcr20a_local *lp = spi_get_drvdata(spi);
  1163. dev_dbg(&spi->dev, "%s\n", __func__);
  1164. ieee802154_unregister_hw(lp->hw);
  1165. ieee802154_free_hw(lp->hw);
  1166. return 0;
  1167. }
  1168. static const struct of_device_id mcr20a_of_match[] = {
  1169. { .compatible = "nxp,mcr20a", },
  1170. { },
  1171. };
  1172. MODULE_DEVICE_TABLE(of, mcr20a_of_match);
  1173. static const struct spi_device_id mcr20a_device_id[] = {
  1174. { .name = "mcr20a", },
  1175. { },
  1176. };
  1177. MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
  1178. static struct spi_driver mcr20a_driver = {
  1179. .id_table = mcr20a_device_id,
  1180. .driver = {
  1181. .of_match_table = of_match_ptr(mcr20a_of_match),
  1182. .name = "mcr20a",
  1183. },
  1184. .probe = mcr20a_probe,
  1185. .remove = mcr20a_remove,
  1186. };
  1187. module_spi_driver(mcr20a_driver);
  1188. MODULE_DESCRIPTION("MCR20A Transceiver Driver");
  1189. MODULE_LICENSE("GPL v2");
  1190. MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");