mrf24j40.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #include <linux/spi/spi.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/module.h>
  20. #include <linux/of.h>
  21. #include <linux/regmap.h>
  22. #include <linux/ieee802154.h>
  23. #include <linux/irq.h>
  24. #include <net/cfg802154.h>
  25. #include <net/mac802154.h>
  26. /* MRF24J40 Short Address Registers */
  27. #define REG_RXMCR 0x00 /* Receive MAC control */
  28. #define BIT_PROMI BIT(0)
  29. #define BIT_ERRPKT BIT(1)
  30. #define BIT_NOACKRSP BIT(5)
  31. #define BIT_PANCOORD BIT(3)
  32. #define REG_PANIDL 0x01 /* PAN ID (low) */
  33. #define REG_PANIDH 0x02 /* PAN ID (high) */
  34. #define REG_SADRL 0x03 /* Short address (low) */
  35. #define REG_SADRH 0x04 /* Short address (high) */
  36. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  37. #define REG_EADR1 0x06
  38. #define REG_EADR2 0x07
  39. #define REG_EADR3 0x08
  40. #define REG_EADR4 0x09
  41. #define REG_EADR5 0x0A
  42. #define REG_EADR6 0x0B
  43. #define REG_EADR7 0x0C
  44. #define REG_RXFLUSH 0x0D
  45. #define REG_ORDER 0x10
  46. #define REG_TXMCR 0x11 /* Transmit MAC control */
  47. #define TXMCR_MIN_BE_SHIFT 3
  48. #define TXMCR_MIN_BE_MASK 0x18
  49. #define TXMCR_CSMA_RETRIES_SHIFT 0
  50. #define TXMCR_CSMA_RETRIES_MASK 0x07
  51. #define REG_ACKTMOUT 0x12
  52. #define REG_ESLOTG1 0x13
  53. #define REG_SYMTICKL 0x14
  54. #define REG_SYMTICKH 0x15
  55. #define REG_PACON0 0x16 /* Power Amplifier Control */
  56. #define REG_PACON1 0x17 /* Power Amplifier Control */
  57. #define REG_PACON2 0x18 /* Power Amplifier Control */
  58. #define REG_TXBCON0 0x1A
  59. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  60. #define BIT_TXNTRIG BIT(0)
  61. #define BIT_TXNSECEN BIT(1)
  62. #define BIT_TXNACKREQ BIT(2)
  63. #define REG_TXG1CON 0x1C
  64. #define REG_TXG2CON 0x1D
  65. #define REG_ESLOTG23 0x1E
  66. #define REG_ESLOTG45 0x1F
  67. #define REG_ESLOTG67 0x20
  68. #define REG_TXPEND 0x21
  69. #define REG_WAKECON 0x22
  70. #define REG_FROMOFFSET 0x23
  71. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  72. #define REG_TXBCON1 0x25
  73. #define REG_GATECLK 0x26
  74. #define REG_TXTIME 0x27
  75. #define REG_HSYMTMRL 0x28
  76. #define REG_HSYMTMRH 0x29
  77. #define REG_SOFTRST 0x2A /* Soft Reset */
  78. #define REG_SECCON0 0x2C
  79. #define REG_SECCON1 0x2D
  80. #define REG_TXSTBL 0x2E /* TX Stabilization */
  81. #define REG_RXSR 0x30
  82. #define REG_INTSTAT 0x31 /* Interrupt Status */
  83. #define BIT_TXNIF BIT(0)
  84. #define BIT_RXIF BIT(3)
  85. #define BIT_SECIF BIT(4)
  86. #define BIT_SECIGNORE BIT(7)
  87. #define REG_INTCON 0x32 /* Interrupt Control */
  88. #define BIT_TXNIE BIT(0)
  89. #define BIT_RXIE BIT(3)
  90. #define BIT_SECIE BIT(4)
  91. #define REG_GPIO 0x33 /* GPIO */
  92. #define REG_TRISGPIO 0x34 /* GPIO direction */
  93. #define REG_SLPACK 0x35
  94. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  95. #define BIT_RFRST BIT(2)
  96. #define REG_SECCR2 0x37
  97. #define REG_BBREG0 0x38
  98. #define REG_BBREG1 0x39 /* Baseband Registers */
  99. #define BIT_RXDECINV BIT(2)
  100. #define REG_BBREG2 0x3A /* */
  101. #define BBREG2_CCA_MODE_SHIFT 6
  102. #define BBREG2_CCA_MODE_MASK 0xc0
  103. #define REG_BBREG3 0x3B
  104. #define REG_BBREG4 0x3C
  105. #define REG_BBREG6 0x3E /* */
  106. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  107. /* MRF24J40 Long Address Registers */
  108. #define REG_RFCON0 0x200 /* RF Control Registers */
  109. #define RFCON0_CH_SHIFT 4
  110. #define RFCON0_CH_MASK 0xf0
  111. #define RFOPT_RECOMMEND 3
  112. #define REG_RFCON1 0x201
  113. #define REG_RFCON2 0x202
  114. #define REG_RFCON3 0x203
  115. #define TXPWRL_MASK 0xc0
  116. #define TXPWRL_SHIFT 6
  117. #define TXPWRL_30 0x3
  118. #define TXPWRL_20 0x2
  119. #define TXPWRL_10 0x1
  120. #define TXPWRL_0 0x0
  121. #define TXPWRS_MASK 0x38
  122. #define TXPWRS_SHIFT 3
  123. #define TXPWRS_6_3 0x7
  124. #define TXPWRS_4_9 0x6
  125. #define TXPWRS_3_7 0x5
  126. #define TXPWRS_2_8 0x4
  127. #define TXPWRS_1_9 0x3
  128. #define TXPWRS_1_2 0x2
  129. #define TXPWRS_0_5 0x1
  130. #define TXPWRS_0 0x0
  131. #define REG_RFCON5 0x205
  132. #define REG_RFCON6 0x206
  133. #define REG_RFCON7 0x207
  134. #define REG_RFCON8 0x208
  135. #define REG_SLPCAL0 0x209
  136. #define REG_SLPCAL1 0x20A
  137. #define REG_SLPCAL2 0x20B
  138. #define REG_RFSTATE 0x20F
  139. #define REG_RSSI 0x210
  140. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  141. #define BIT_INTEDGE BIT(1)
  142. #define REG_SLPCON1 0x220
  143. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  144. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  145. #define REG_REMCNTL 0x224
  146. #define REG_REMCNTH 0x225
  147. #define REG_MAINCNT0 0x226
  148. #define REG_MAINCNT1 0x227
  149. #define REG_MAINCNT2 0x228
  150. #define REG_MAINCNT3 0x229
  151. #define REG_TESTMODE 0x22F /* Test mode */
  152. #define REG_ASSOEAR0 0x230
  153. #define REG_ASSOEAR1 0x231
  154. #define REG_ASSOEAR2 0x232
  155. #define REG_ASSOEAR3 0x233
  156. #define REG_ASSOEAR4 0x234
  157. #define REG_ASSOEAR5 0x235
  158. #define REG_ASSOEAR6 0x236
  159. #define REG_ASSOEAR7 0x237
  160. #define REG_ASSOSAR0 0x238
  161. #define REG_ASSOSAR1 0x239
  162. #define REG_UNONCE0 0x240
  163. #define REG_UNONCE1 0x241
  164. #define REG_UNONCE2 0x242
  165. #define REG_UNONCE3 0x243
  166. #define REG_UNONCE4 0x244
  167. #define REG_UNONCE5 0x245
  168. #define REG_UNONCE6 0x246
  169. #define REG_UNONCE7 0x247
  170. #define REG_UNONCE8 0x248
  171. #define REG_UNONCE9 0x249
  172. #define REG_UNONCE10 0x24A
  173. #define REG_UNONCE11 0x24B
  174. #define REG_UNONCE12 0x24C
  175. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  176. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  177. #define MRF24J40_CHAN_MIN 11
  178. #define MRF24J40_CHAN_MAX 26
  179. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  180. - ((u32)1 << MRF24J40_CHAN_MIN))
  181. #define TX_FIFO_SIZE 128 /* From datasheet */
  182. #define RX_FIFO_SIZE 144 /* From datasheet */
  183. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  184. enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
  185. /* Device Private Data */
  186. struct mrf24j40 {
  187. struct spi_device *spi;
  188. struct ieee802154_hw *hw;
  189. struct regmap *regmap_short;
  190. struct regmap *regmap_long;
  191. /* for writing txfifo */
  192. struct spi_message tx_msg;
  193. u8 tx_hdr_buf[2];
  194. struct spi_transfer tx_hdr_trx;
  195. u8 tx_len_buf[2];
  196. struct spi_transfer tx_len_trx;
  197. struct spi_transfer tx_buf_trx;
  198. struct sk_buff *tx_skb;
  199. /* post transmit message to send frame out */
  200. struct spi_message tx_post_msg;
  201. u8 tx_post_buf[2];
  202. struct spi_transfer tx_post_trx;
  203. /* for protect/unprotect/read length rxfifo */
  204. struct spi_message rx_msg;
  205. u8 rx_buf[3];
  206. struct spi_transfer rx_trx;
  207. /* receive handling */
  208. struct spi_message rx_buf_msg;
  209. u8 rx_addr_buf[2];
  210. struct spi_transfer rx_addr_trx;
  211. u8 rx_lqi_buf[2];
  212. struct spi_transfer rx_lqi_trx;
  213. u8 rx_fifo_buf[RX_FIFO_SIZE];
  214. struct spi_transfer rx_fifo_buf_trx;
  215. /* isr handling for reading intstat */
  216. struct spi_message irq_msg;
  217. u8 irq_buf[2];
  218. struct spi_transfer irq_trx;
  219. };
  220. /* regmap information for short address register access */
  221. #define MRF24J40_SHORT_WRITE 0x01
  222. #define MRF24J40_SHORT_READ 0x00
  223. #define MRF24J40_SHORT_NUMREGS 0x3F
  224. /* regmap information for long address register access */
  225. #define MRF24J40_LONG_ACCESS 0x80
  226. #define MRF24J40_LONG_NUMREGS 0x38F
  227. /* Read/Write SPI Commands for Short and Long Address registers. */
  228. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  229. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  230. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  231. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  232. /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
  233. #define MAX_SPI_SPEED_HZ 10000000
  234. #define printdev(X) (&X->spi->dev)
  235. static bool
  236. mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
  237. {
  238. switch (reg) {
  239. case REG_RXMCR:
  240. case REG_PANIDL:
  241. case REG_PANIDH:
  242. case REG_SADRL:
  243. case REG_SADRH:
  244. case REG_EADR0:
  245. case REG_EADR1:
  246. case REG_EADR2:
  247. case REG_EADR3:
  248. case REG_EADR4:
  249. case REG_EADR5:
  250. case REG_EADR6:
  251. case REG_EADR7:
  252. case REG_RXFLUSH:
  253. case REG_ORDER:
  254. case REG_TXMCR:
  255. case REG_ACKTMOUT:
  256. case REG_ESLOTG1:
  257. case REG_SYMTICKL:
  258. case REG_SYMTICKH:
  259. case REG_PACON0:
  260. case REG_PACON1:
  261. case REG_PACON2:
  262. case REG_TXBCON0:
  263. case REG_TXNCON:
  264. case REG_TXG1CON:
  265. case REG_TXG2CON:
  266. case REG_ESLOTG23:
  267. case REG_ESLOTG45:
  268. case REG_ESLOTG67:
  269. case REG_TXPEND:
  270. case REG_WAKECON:
  271. case REG_FROMOFFSET:
  272. case REG_TXBCON1:
  273. case REG_GATECLK:
  274. case REG_TXTIME:
  275. case REG_HSYMTMRL:
  276. case REG_HSYMTMRH:
  277. case REG_SOFTRST:
  278. case REG_SECCON0:
  279. case REG_SECCON1:
  280. case REG_TXSTBL:
  281. case REG_RXSR:
  282. case REG_INTCON:
  283. case REG_TRISGPIO:
  284. case REG_GPIO:
  285. case REG_RFCTL:
  286. case REG_SECCR2:
  287. case REG_SLPACK:
  288. case REG_BBREG0:
  289. case REG_BBREG1:
  290. case REG_BBREG2:
  291. case REG_BBREG3:
  292. case REG_BBREG4:
  293. case REG_BBREG6:
  294. case REG_CCAEDTH:
  295. return true;
  296. default:
  297. return false;
  298. }
  299. }
  300. static bool
  301. mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
  302. {
  303. bool rc;
  304. /* all writeable are also readable */
  305. rc = mrf24j40_short_reg_writeable(dev, reg);
  306. if (rc)
  307. return rc;
  308. /* readonly regs */
  309. switch (reg) {
  310. case REG_TXSTAT:
  311. case REG_INTSTAT:
  312. return true;
  313. default:
  314. return false;
  315. }
  316. }
  317. static bool
  318. mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
  319. {
  320. /* can be changed during runtime */
  321. switch (reg) {
  322. case REG_TXSTAT:
  323. case REG_INTSTAT:
  324. case REG_RXFLUSH:
  325. case REG_TXNCON:
  326. case REG_SOFTRST:
  327. case REG_RFCTL:
  328. case REG_TXBCON0:
  329. case REG_TXG1CON:
  330. case REG_TXG2CON:
  331. case REG_TXBCON1:
  332. case REG_SECCON0:
  333. case REG_RXSR:
  334. case REG_SLPACK:
  335. case REG_SECCR2:
  336. case REG_BBREG6:
  337. /* use them in spi_async and regmap so it's volatile */
  338. case REG_BBREG1:
  339. return true;
  340. default:
  341. return false;
  342. }
  343. }
  344. static bool
  345. mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
  346. {
  347. /* don't clear irq line on read */
  348. switch (reg) {
  349. case REG_INTSTAT:
  350. return true;
  351. default:
  352. return false;
  353. }
  354. }
  355. static const struct regmap_config mrf24j40_short_regmap = {
  356. .name = "mrf24j40_short",
  357. .reg_bits = 7,
  358. .val_bits = 8,
  359. .pad_bits = 1,
  360. .write_flag_mask = MRF24J40_SHORT_WRITE,
  361. .read_flag_mask = MRF24J40_SHORT_READ,
  362. .cache_type = REGCACHE_RBTREE,
  363. .max_register = MRF24J40_SHORT_NUMREGS,
  364. .writeable_reg = mrf24j40_short_reg_writeable,
  365. .readable_reg = mrf24j40_short_reg_readable,
  366. .volatile_reg = mrf24j40_short_reg_volatile,
  367. .precious_reg = mrf24j40_short_reg_precious,
  368. };
  369. static bool
  370. mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
  371. {
  372. switch (reg) {
  373. case REG_RFCON0:
  374. case REG_RFCON1:
  375. case REG_RFCON2:
  376. case REG_RFCON3:
  377. case REG_RFCON5:
  378. case REG_RFCON6:
  379. case REG_RFCON7:
  380. case REG_RFCON8:
  381. case REG_SLPCAL2:
  382. case REG_SLPCON0:
  383. case REG_SLPCON1:
  384. case REG_WAKETIMEL:
  385. case REG_WAKETIMEH:
  386. case REG_REMCNTL:
  387. case REG_REMCNTH:
  388. case REG_MAINCNT0:
  389. case REG_MAINCNT1:
  390. case REG_MAINCNT2:
  391. case REG_MAINCNT3:
  392. case REG_TESTMODE:
  393. case REG_ASSOEAR0:
  394. case REG_ASSOEAR1:
  395. case REG_ASSOEAR2:
  396. case REG_ASSOEAR3:
  397. case REG_ASSOEAR4:
  398. case REG_ASSOEAR5:
  399. case REG_ASSOEAR6:
  400. case REG_ASSOEAR7:
  401. case REG_ASSOSAR0:
  402. case REG_ASSOSAR1:
  403. case REG_UNONCE0:
  404. case REG_UNONCE1:
  405. case REG_UNONCE2:
  406. case REG_UNONCE3:
  407. case REG_UNONCE4:
  408. case REG_UNONCE5:
  409. case REG_UNONCE6:
  410. case REG_UNONCE7:
  411. case REG_UNONCE8:
  412. case REG_UNONCE9:
  413. case REG_UNONCE10:
  414. case REG_UNONCE11:
  415. case REG_UNONCE12:
  416. return true;
  417. default:
  418. return false;
  419. }
  420. }
  421. static bool
  422. mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
  423. {
  424. bool rc;
  425. /* all writeable are also readable */
  426. rc = mrf24j40_long_reg_writeable(dev, reg);
  427. if (rc)
  428. return rc;
  429. /* readonly regs */
  430. switch (reg) {
  431. case REG_SLPCAL0:
  432. case REG_SLPCAL1:
  433. case REG_RFSTATE:
  434. case REG_RSSI:
  435. return true;
  436. default:
  437. return false;
  438. }
  439. }
  440. static bool
  441. mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
  442. {
  443. /* can be changed during runtime */
  444. switch (reg) {
  445. case REG_SLPCAL0:
  446. case REG_SLPCAL1:
  447. case REG_SLPCAL2:
  448. case REG_RFSTATE:
  449. case REG_RSSI:
  450. case REG_MAINCNT3:
  451. return true;
  452. default:
  453. return false;
  454. }
  455. }
  456. static const struct regmap_config mrf24j40_long_regmap = {
  457. .name = "mrf24j40_long",
  458. .reg_bits = 11,
  459. .val_bits = 8,
  460. .pad_bits = 5,
  461. .write_flag_mask = MRF24J40_LONG_ACCESS,
  462. .read_flag_mask = MRF24J40_LONG_ACCESS,
  463. .cache_type = REGCACHE_RBTREE,
  464. .max_register = MRF24J40_LONG_NUMREGS,
  465. .writeable_reg = mrf24j40_long_reg_writeable,
  466. .readable_reg = mrf24j40_long_reg_readable,
  467. .volatile_reg = mrf24j40_long_reg_volatile,
  468. };
  469. static int mrf24j40_long_regmap_write(void *context, const void *data,
  470. size_t count)
  471. {
  472. struct spi_device *spi = context;
  473. u8 buf[3];
  474. if (count > 3)
  475. return -EINVAL;
  476. /* regmap supports read/write mask only in frist byte
  477. * long write access need to set the 12th bit, so we
  478. * make special handling for write.
  479. */
  480. memcpy(buf, data, count);
  481. buf[1] |= (1 << 4);
  482. return spi_write(spi, buf, count);
  483. }
  484. static int
  485. mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
  486. void *val, size_t val_size)
  487. {
  488. struct spi_device *spi = context;
  489. return spi_write_then_read(spi, reg, reg_size, val, val_size);
  490. }
  491. static const struct regmap_bus mrf24j40_long_regmap_bus = {
  492. .write = mrf24j40_long_regmap_write,
  493. .read = mrf24j40_long_regmap_read,
  494. .reg_format_endian_default = REGMAP_ENDIAN_BIG,
  495. .val_format_endian_default = REGMAP_ENDIAN_BIG,
  496. };
  497. static void write_tx_buf_complete(void *context)
  498. {
  499. struct mrf24j40 *devrec = context;
  500. __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
  501. u8 val = BIT_TXNTRIG;
  502. int ret;
  503. if (ieee802154_is_secen(fc))
  504. val |= BIT_TXNSECEN;
  505. if (ieee802154_is_ackreq(fc))
  506. val |= BIT_TXNACKREQ;
  507. devrec->tx_post_msg.complete = NULL;
  508. devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
  509. devrec->tx_post_buf[1] = val;
  510. ret = spi_async(devrec->spi, &devrec->tx_post_msg);
  511. if (ret)
  512. dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
  513. }
  514. /* This function relies on an undocumented write method. Once a write command
  515. and address is set, as many bytes of data as desired can be clocked into
  516. the device. The datasheet only shows setting one byte at a time. */
  517. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  518. const u8 *data, size_t length)
  519. {
  520. u16 cmd;
  521. int ret;
  522. /* Range check the length. 2 bytes are used for the length fields.*/
  523. if (length > TX_FIFO_SIZE-2) {
  524. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  525. length = TX_FIFO_SIZE-2;
  526. }
  527. cmd = MRF24J40_WRITELONG(reg);
  528. devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
  529. devrec->tx_hdr_buf[1] = cmd & 0xff;
  530. devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  531. devrec->tx_len_buf[1] = length; /* Total length */
  532. devrec->tx_buf_trx.tx_buf = data;
  533. devrec->tx_buf_trx.len = length;
  534. ret = spi_async(devrec->spi, &devrec->tx_msg);
  535. if (ret)
  536. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  537. return ret;
  538. }
  539. static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
  540. {
  541. struct mrf24j40 *devrec = hw->priv;
  542. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  543. devrec->tx_skb = skb;
  544. return write_tx_buf(devrec, 0x000, skb->data, skb->len);
  545. }
  546. static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
  547. {
  548. /* TODO: */
  549. pr_warn("mrf24j40: ed not implemented\n");
  550. *level = 0;
  551. return 0;
  552. }
  553. static int mrf24j40_start(struct ieee802154_hw *hw)
  554. {
  555. struct mrf24j40 *devrec = hw->priv;
  556. dev_dbg(printdev(devrec), "start\n");
  557. /* Clear TXNIE and RXIE. Enable interrupts */
  558. return regmap_update_bits(devrec->regmap_short, REG_INTCON,
  559. BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
  560. }
  561. static void mrf24j40_stop(struct ieee802154_hw *hw)
  562. {
  563. struct mrf24j40 *devrec = hw->priv;
  564. dev_dbg(printdev(devrec), "stop\n");
  565. /* Set TXNIE and RXIE. Disable Interrupts */
  566. regmap_update_bits(devrec->regmap_short, REG_INTCON,
  567. BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
  568. }
  569. static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  570. {
  571. struct mrf24j40 *devrec = hw->priv;
  572. u8 val;
  573. int ret;
  574. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  575. WARN_ON(page != 0);
  576. WARN_ON(channel < MRF24J40_CHAN_MIN);
  577. WARN_ON(channel > MRF24J40_CHAN_MAX);
  578. /* Set Channel TODO */
  579. val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
  580. ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
  581. RFCON0_CH_MASK, val);
  582. if (ret)
  583. return ret;
  584. /* RF Reset */
  585. ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
  586. BIT_RFRST);
  587. if (ret)
  588. return ret;
  589. ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
  590. if (!ret)
  591. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  592. return ret;
  593. }
  594. static int mrf24j40_filter(struct ieee802154_hw *hw,
  595. struct ieee802154_hw_addr_filt *filt,
  596. unsigned long changed)
  597. {
  598. struct mrf24j40 *devrec = hw->priv;
  599. dev_dbg(printdev(devrec), "filter\n");
  600. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  601. /* Short Addr */
  602. u8 addrh, addrl;
  603. addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
  604. addrl = le16_to_cpu(filt->short_addr) & 0xff;
  605. regmap_write(devrec->regmap_short, REG_SADRH, addrh);
  606. regmap_write(devrec->regmap_short, REG_SADRL, addrl);
  607. dev_dbg(printdev(devrec),
  608. "Set short addr to %04hx\n", filt->short_addr);
  609. }
  610. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  611. /* Device Address */
  612. u8 i, addr[8];
  613. memcpy(addr, &filt->ieee_addr, 8);
  614. for (i = 0; i < 8; i++)
  615. regmap_write(devrec->regmap_short, REG_EADR0 + i,
  616. addr[i]);
  617. #ifdef DEBUG
  618. pr_debug("Set long addr to: ");
  619. for (i = 0; i < 8; i++)
  620. pr_debug("%02hhx ", addr[7 - i]);
  621. pr_debug("\n");
  622. #endif
  623. }
  624. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  625. /* PAN ID */
  626. u8 panidl, panidh;
  627. panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
  628. panidl = le16_to_cpu(filt->pan_id) & 0xff;
  629. regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
  630. regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
  631. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  632. }
  633. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  634. /* Pan Coordinator */
  635. u8 val;
  636. int ret;
  637. if (filt->pan_coord)
  638. val = BIT_PANCOORD;
  639. else
  640. val = 0;
  641. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  642. BIT_PANCOORD, val);
  643. if (ret)
  644. return ret;
  645. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  646. * REG_ORDER is maintained as default (no beacon/superframe).
  647. */
  648. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  649. filt->pan_coord ? "on" : "off");
  650. }
  651. return 0;
  652. }
  653. static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
  654. {
  655. int ret;
  656. /* Turn back on reception of packets off the air. */
  657. devrec->rx_msg.complete = NULL;
  658. devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
  659. devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
  660. ret = spi_async(devrec->spi, &devrec->rx_msg);
  661. if (ret)
  662. dev_err(printdev(devrec), "failed to unlock rx buffer\n");
  663. }
  664. static void mrf24j40_handle_rx_read_buf_complete(void *context)
  665. {
  666. struct mrf24j40 *devrec = context;
  667. u8 len = devrec->rx_buf[2];
  668. u8 rx_local_buf[RX_FIFO_SIZE];
  669. struct sk_buff *skb;
  670. memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
  671. mrf24j40_handle_rx_read_buf_unlock(devrec);
  672. skb = dev_alloc_skb(IEEE802154_MTU);
  673. if (!skb) {
  674. dev_err(printdev(devrec), "failed to allocate skb\n");
  675. return;
  676. }
  677. skb_put_data(skb, rx_local_buf, len);
  678. ieee802154_rx_irqsafe(devrec->hw, skb, 0);
  679. #ifdef DEBUG
  680. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
  681. rx_local_buf, len, 0);
  682. pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  683. devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
  684. #endif
  685. }
  686. static void mrf24j40_handle_rx_read_buf(void *context)
  687. {
  688. struct mrf24j40 *devrec = context;
  689. u16 cmd;
  690. int ret;
  691. /* if length is invalid read the full MTU */
  692. if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
  693. devrec->rx_buf[2] = IEEE802154_MTU;
  694. cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
  695. devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
  696. devrec->rx_addr_buf[1] = cmd & 0xff;
  697. devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
  698. ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
  699. if (ret) {
  700. dev_err(printdev(devrec), "failed to read rx buffer\n");
  701. mrf24j40_handle_rx_read_buf_unlock(devrec);
  702. }
  703. }
  704. static void mrf24j40_handle_rx_read_len(void *context)
  705. {
  706. struct mrf24j40 *devrec = context;
  707. u16 cmd;
  708. int ret;
  709. /* read the length of received frame */
  710. devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
  711. devrec->rx_trx.len = 3;
  712. cmd = MRF24J40_READLONG(REG_RX_FIFO);
  713. devrec->rx_buf[0] = cmd >> 8 & 0xff;
  714. devrec->rx_buf[1] = cmd & 0xff;
  715. ret = spi_async(devrec->spi, &devrec->rx_msg);
  716. if (ret) {
  717. dev_err(printdev(devrec), "failed to read rx buffer length\n");
  718. mrf24j40_handle_rx_read_buf_unlock(devrec);
  719. }
  720. }
  721. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  722. {
  723. /* Turn off reception of packets off the air. This prevents the
  724. * device from overwriting the buffer while we're reading it.
  725. */
  726. devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
  727. devrec->rx_trx.len = 2;
  728. devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
  729. devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
  730. return spi_async(devrec->spi, &devrec->rx_msg);
  731. }
  732. static int
  733. mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
  734. u8 retries)
  735. {
  736. struct mrf24j40 *devrec = hw->priv;
  737. u8 val;
  738. /* min_be */
  739. val = min_be << TXMCR_MIN_BE_SHIFT;
  740. /* csma backoffs */
  741. val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
  742. return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
  743. TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
  744. val);
  745. }
  746. static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
  747. const struct wpan_phy_cca *cca)
  748. {
  749. struct mrf24j40 *devrec = hw->priv;
  750. u8 val;
  751. /* mapping 802.15.4 to driver spec */
  752. switch (cca->mode) {
  753. case NL802154_CCA_ENERGY:
  754. val = 2;
  755. break;
  756. case NL802154_CCA_CARRIER:
  757. val = 1;
  758. break;
  759. case NL802154_CCA_ENERGY_CARRIER:
  760. switch (cca->opt) {
  761. case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
  762. val = 3;
  763. break;
  764. default:
  765. return -EINVAL;
  766. }
  767. break;
  768. default:
  769. return -EINVAL;
  770. }
  771. return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
  772. BBREG2_CCA_MODE_MASK,
  773. val << BBREG2_CCA_MODE_SHIFT);
  774. }
  775. /* array for representing ed levels */
  776. static const s32 mrf24j40_ed_levels[] = {
  777. -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
  778. -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
  779. -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
  780. -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
  781. -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
  782. -4000, -3900, -3800, -3700, -3600, -3500
  783. };
  784. /* map ed levels to register value */
  785. static const s32 mrf24j40_ed_levels_map[][2] = {
  786. { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
  787. { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
  788. { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
  789. { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
  790. { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
  791. { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
  792. { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
  793. { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
  794. { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
  795. { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
  796. { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
  797. { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
  798. { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
  799. { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
  800. };
  801. static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  802. {
  803. struct mrf24j40 *devrec = hw->priv;
  804. int i;
  805. for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
  806. if (mrf24j40_ed_levels_map[i][0] == mbm)
  807. return regmap_write(devrec->regmap_short, REG_CCAEDTH,
  808. mrf24j40_ed_levels_map[i][1]);
  809. }
  810. return -EINVAL;
  811. }
  812. static const s32 mrf24j40ma_powers[] = {
  813. 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
  814. -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
  815. -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
  816. };
  817. static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
  818. {
  819. struct mrf24j40 *devrec = hw->priv;
  820. s32 small_scale;
  821. u8 val;
  822. if (0 >= mbm && mbm > -1000) {
  823. val = TXPWRL_0 << TXPWRL_SHIFT;
  824. small_scale = mbm;
  825. } else if (-1000 >= mbm && mbm > -2000) {
  826. val = TXPWRL_10 << TXPWRL_SHIFT;
  827. small_scale = mbm + 1000;
  828. } else if (-2000 >= mbm && mbm > -3000) {
  829. val = TXPWRL_20 << TXPWRL_SHIFT;
  830. small_scale = mbm + 2000;
  831. } else if (-3000 >= mbm && mbm > -4000) {
  832. val = TXPWRL_30 << TXPWRL_SHIFT;
  833. small_scale = mbm + 3000;
  834. } else {
  835. return -EINVAL;
  836. }
  837. switch (small_scale) {
  838. case 0:
  839. val |= (TXPWRS_0 << TXPWRS_SHIFT);
  840. break;
  841. case -50:
  842. val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
  843. break;
  844. case -120:
  845. val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
  846. break;
  847. case -190:
  848. val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
  849. break;
  850. case -280:
  851. val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
  852. break;
  853. case -370:
  854. val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
  855. break;
  856. case -490:
  857. val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
  858. break;
  859. case -630:
  860. val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
  861. break;
  862. default:
  863. return -EINVAL;
  864. }
  865. return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
  866. TXPWRL_MASK | TXPWRS_MASK, val);
  867. }
  868. static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
  869. {
  870. struct mrf24j40 *devrec = hw->priv;
  871. int ret;
  872. if (on) {
  873. /* set PROMI, ERRPKT and NOACKRSP */
  874. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  875. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
  876. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
  877. } else {
  878. /* clear PROMI, ERRPKT and NOACKRSP */
  879. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
  880. BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
  881. 0);
  882. }
  883. return ret;
  884. }
  885. static const struct ieee802154_ops mrf24j40_ops = {
  886. .owner = THIS_MODULE,
  887. .xmit_async = mrf24j40_tx,
  888. .ed = mrf24j40_ed,
  889. .start = mrf24j40_start,
  890. .stop = mrf24j40_stop,
  891. .set_channel = mrf24j40_set_channel,
  892. .set_hw_addr_filt = mrf24j40_filter,
  893. .set_csma_params = mrf24j40_csma_params,
  894. .set_cca_mode = mrf24j40_set_cca_mode,
  895. .set_cca_ed_level = mrf24j40_set_cca_ed_level,
  896. .set_txpower = mrf24j40_set_txpower,
  897. .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
  898. };
  899. static void mrf24j40_intstat_complete(void *context)
  900. {
  901. struct mrf24j40 *devrec = context;
  902. u8 intstat = devrec->irq_buf[1];
  903. enable_irq(devrec->spi->irq);
  904. /* Ignore Rx security decryption */
  905. if (intstat & BIT_SECIF)
  906. regmap_write_async(devrec->regmap_short, REG_SECCON0,
  907. BIT_SECIGNORE);
  908. /* Check for TX complete */
  909. if (intstat & BIT_TXNIF)
  910. ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
  911. /* Check for Rx */
  912. if (intstat & BIT_RXIF)
  913. mrf24j40_handle_rx(devrec);
  914. }
  915. static irqreturn_t mrf24j40_isr(int irq, void *data)
  916. {
  917. struct mrf24j40 *devrec = data;
  918. int ret;
  919. disable_irq_nosync(irq);
  920. devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
  921. devrec->irq_buf[1] = 0;
  922. /* Read the interrupt status */
  923. ret = spi_async(devrec->spi, &devrec->irq_msg);
  924. if (ret) {
  925. enable_irq(irq);
  926. return IRQ_NONE;
  927. }
  928. return IRQ_HANDLED;
  929. }
  930. static int mrf24j40_hw_init(struct mrf24j40 *devrec)
  931. {
  932. u32 irq_type;
  933. int ret;
  934. /* Initialize the device.
  935. From datasheet section 3.2: Initialization. */
  936. ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
  937. if (ret)
  938. goto err_ret;
  939. ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
  940. if (ret)
  941. goto err_ret;
  942. ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
  943. if (ret)
  944. goto err_ret;
  945. ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
  946. if (ret)
  947. goto err_ret;
  948. ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
  949. if (ret)
  950. goto err_ret;
  951. ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
  952. if (ret)
  953. goto err_ret;
  954. ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
  955. if (ret)
  956. goto err_ret;
  957. ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
  958. if (ret)
  959. goto err_ret;
  960. ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
  961. if (ret)
  962. goto err_ret;
  963. ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
  964. if (ret)
  965. goto err_ret;
  966. ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
  967. if (ret)
  968. goto err_ret;
  969. ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
  970. if (ret)
  971. goto err_ret;
  972. ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
  973. if (ret)
  974. goto err_ret;
  975. ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
  976. if (ret)
  977. goto err_ret;
  978. ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
  979. if (ret)
  980. goto err_ret;
  981. udelay(192);
  982. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  983. ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
  984. if (ret)
  985. goto err_ret;
  986. if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
  987. /* Enable external amplifier.
  988. * From MRF24J40MC datasheet section 1.3: Operation.
  989. */
  990. regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
  991. 0x07);
  992. /* Set GPIO3 as output. */
  993. regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
  994. 0x08);
  995. /* Set GPIO3 HIGH to enable U5 voltage regulator */
  996. regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
  997. /* Reduce TX pwr to meet FCC requirements.
  998. * From MRF24J40MC datasheet section 3.1.1
  999. */
  1000. regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
  1001. }
  1002. irq_type = irq_get_trigger_type(devrec->spi->irq);
  1003. if (irq_type == IRQ_TYPE_EDGE_RISING ||
  1004. irq_type == IRQ_TYPE_EDGE_FALLING)
  1005. dev_warn(&devrec->spi->dev,
  1006. "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
  1007. switch (irq_type) {
  1008. case IRQ_TYPE_EDGE_RISING:
  1009. case IRQ_TYPE_LEVEL_HIGH:
  1010. /* set interrupt polarity to rising */
  1011. ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
  1012. BIT_INTEDGE, BIT_INTEDGE);
  1013. if (ret)
  1014. goto err_ret;
  1015. break;
  1016. default:
  1017. /* default is falling edge */
  1018. break;
  1019. }
  1020. return 0;
  1021. err_ret:
  1022. return ret;
  1023. }
  1024. static void
  1025. mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
  1026. {
  1027. spi_message_init(&devrec->tx_msg);
  1028. devrec->tx_msg.context = devrec;
  1029. devrec->tx_msg.complete = write_tx_buf_complete;
  1030. devrec->tx_hdr_trx.len = 2;
  1031. devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
  1032. spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
  1033. devrec->tx_len_trx.len = 2;
  1034. devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
  1035. spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
  1036. spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
  1037. spi_message_init(&devrec->tx_post_msg);
  1038. devrec->tx_post_msg.context = devrec;
  1039. devrec->tx_post_trx.len = 2;
  1040. devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
  1041. spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
  1042. }
  1043. static void
  1044. mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
  1045. {
  1046. spi_message_init(&devrec->rx_msg);
  1047. devrec->rx_msg.context = devrec;
  1048. devrec->rx_trx.len = 2;
  1049. devrec->rx_trx.tx_buf = devrec->rx_buf;
  1050. devrec->rx_trx.rx_buf = devrec->rx_buf;
  1051. spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
  1052. spi_message_init(&devrec->rx_buf_msg);
  1053. devrec->rx_buf_msg.context = devrec;
  1054. devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
  1055. devrec->rx_addr_trx.len = 2;
  1056. devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
  1057. spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
  1058. devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
  1059. spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
  1060. devrec->rx_lqi_trx.len = 2;
  1061. devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
  1062. spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
  1063. }
  1064. static void
  1065. mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
  1066. {
  1067. spi_message_init(&devrec->irq_msg);
  1068. devrec->irq_msg.context = devrec;
  1069. devrec->irq_msg.complete = mrf24j40_intstat_complete;
  1070. devrec->irq_trx.len = 2;
  1071. devrec->irq_trx.tx_buf = devrec->irq_buf;
  1072. devrec->irq_trx.rx_buf = devrec->irq_buf;
  1073. spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
  1074. }
  1075. static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
  1076. {
  1077. ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
  1078. devrec->hw->phy->current_channel = 11;
  1079. /* mrf24j40 supports max_minbe 0 - 3 */
  1080. devrec->hw->phy->supported.max_minbe = 3;
  1081. /* datasheet doesn't say anything about max_be, but we have min_be
  1082. * So we assume the max_be default.
  1083. */
  1084. devrec->hw->phy->supported.min_maxbe = 5;
  1085. devrec->hw->phy->supported.max_maxbe = 5;
  1086. devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
  1087. devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
  1088. BIT(NL802154_CCA_CARRIER) |
  1089. BIT(NL802154_CCA_ENERGY_CARRIER);
  1090. devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
  1091. devrec->hw->phy->cca_ed_level = -6900;
  1092. devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
  1093. devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
  1094. switch (spi_get_device_id(devrec->spi)->driver_data) {
  1095. case MRF24J40:
  1096. case MRF24J40MA:
  1097. devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
  1098. devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
  1099. devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
  1100. break;
  1101. default:
  1102. break;
  1103. }
  1104. }
  1105. static int mrf24j40_probe(struct spi_device *spi)
  1106. {
  1107. int ret = -ENOMEM, irq_type;
  1108. struct ieee802154_hw *hw;
  1109. struct mrf24j40 *devrec;
  1110. dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
  1111. /* Register with the 802154 subsystem */
  1112. hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
  1113. if (!hw)
  1114. goto err_ret;
  1115. devrec = hw->priv;
  1116. devrec->spi = spi;
  1117. spi_set_drvdata(spi, devrec);
  1118. devrec->hw = hw;
  1119. devrec->hw->parent = &spi->dev;
  1120. devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
  1121. devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
  1122. IEEE802154_HW_CSMA_PARAMS |
  1123. IEEE802154_HW_PROMISCUOUS;
  1124. devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
  1125. WPAN_PHY_FLAG_CCA_ED_LEVEL;
  1126. mrf24j40_setup_tx_spi_messages(devrec);
  1127. mrf24j40_setup_rx_spi_messages(devrec);
  1128. mrf24j40_setup_irq_spi_messages(devrec);
  1129. devrec->regmap_short = devm_regmap_init_spi(spi,
  1130. &mrf24j40_short_regmap);
  1131. if (IS_ERR(devrec->regmap_short)) {
  1132. ret = PTR_ERR(devrec->regmap_short);
  1133. dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
  1134. ret);
  1135. goto err_register_device;
  1136. }
  1137. devrec->regmap_long = devm_regmap_init(&spi->dev,
  1138. &mrf24j40_long_regmap_bus,
  1139. spi, &mrf24j40_long_regmap);
  1140. if (IS_ERR(devrec->regmap_long)) {
  1141. ret = PTR_ERR(devrec->regmap_long);
  1142. dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
  1143. ret);
  1144. goto err_register_device;
  1145. }
  1146. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
  1147. dev_warn(&spi->dev, "spi clock above possible maximum: %d",
  1148. MAX_SPI_SPEED_HZ);
  1149. ret = -EINVAL;
  1150. goto err_register_device;
  1151. }
  1152. ret = mrf24j40_hw_init(devrec);
  1153. if (ret)
  1154. goto err_register_device;
  1155. mrf24j40_phy_setup(devrec);
  1156. /* request IRQF_TRIGGER_LOW as fallback default */
  1157. irq_type = irq_get_trigger_type(spi->irq);
  1158. if (!irq_type)
  1159. irq_type = IRQF_TRIGGER_LOW;
  1160. ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
  1161. irq_type, dev_name(&spi->dev), devrec);
  1162. if (ret) {
  1163. dev_err(printdev(devrec), "Unable to get IRQ");
  1164. goto err_register_device;
  1165. }
  1166. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  1167. ret = ieee802154_register_hw(devrec->hw);
  1168. if (ret)
  1169. goto err_register_device;
  1170. return 0;
  1171. err_register_device:
  1172. ieee802154_free_hw(devrec->hw);
  1173. err_ret:
  1174. return ret;
  1175. }
  1176. static int mrf24j40_remove(struct spi_device *spi)
  1177. {
  1178. struct mrf24j40 *devrec = spi_get_drvdata(spi);
  1179. dev_dbg(printdev(devrec), "remove\n");
  1180. ieee802154_unregister_hw(devrec->hw);
  1181. ieee802154_free_hw(devrec->hw);
  1182. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  1183. * complete? */
  1184. return 0;
  1185. }
  1186. static const struct of_device_id mrf24j40_of_match[] = {
  1187. { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
  1188. { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
  1189. { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
  1190. { },
  1191. };
  1192. MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
  1193. static const struct spi_device_id mrf24j40_ids[] = {
  1194. { "mrf24j40", MRF24J40 },
  1195. { "mrf24j40ma", MRF24J40MA },
  1196. { "mrf24j40mc", MRF24J40MC },
  1197. { },
  1198. };
  1199. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  1200. static struct spi_driver mrf24j40_driver = {
  1201. .driver = {
  1202. .of_match_table = of_match_ptr(mrf24j40_of_match),
  1203. .name = "mrf24j40",
  1204. },
  1205. .id_table = mrf24j40_ids,
  1206. .probe = mrf24j40_probe,
  1207. .remove = mrf24j40_remove,
  1208. };
  1209. module_spi_driver(mrf24j40_driver);
  1210. MODULE_LICENSE("GPL");
  1211. MODULE_AUTHOR("Alan Ott");
  1212. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");