keyboard.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * ebcdic keycode functions for s390 console drivers
  4. *
  5. * S390 version
  6. * Copyright IBM Corp. 2003
  7. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  8. */
  9. #include <linux/module.h>
  10. #include <linux/sched/signal.h>
  11. #include <linux/slab.h>
  12. #include <linux/sysrq.h>
  13. #include <linux/consolemap.h>
  14. #include <linux/kbd_kern.h>
  15. #include <linux/kbd_diacr.h>
  16. #include <linux/uaccess.h>
  17. #include "keyboard.h"
  18. /*
  19. * Handler Tables.
  20. */
  21. #define K_HANDLERS\
  22. k_self, k_fn, k_spec, k_ignore,\
  23. k_dead, k_ignore, k_ignore, k_ignore,\
  24. k_ignore, k_ignore, k_ignore, k_ignore,\
  25. k_ignore, k_ignore, k_ignore, k_ignore
  26. typedef void (k_handler_fn)(struct kbd_data *, unsigned char);
  27. static k_handler_fn K_HANDLERS;
  28. static k_handler_fn *k_handler[16] = { K_HANDLERS };
  29. /* maximum values each key_handler can handle */
  30. static const int kbd_max_vals[] = {
  31. 255, ARRAY_SIZE(func_table) - 1, NR_FN_HANDLER - 1, 0,
  32. NR_DEAD - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
  33. };
  34. static const int KBD_NR_TYPES = ARRAY_SIZE(kbd_max_vals);
  35. static const unsigned char ret_diacr[NR_DEAD] = {
  36. '`', /* dead_grave */
  37. '\'', /* dead_acute */
  38. '^', /* dead_circumflex */
  39. '~', /* dead_tilda */
  40. '"', /* dead_diaeresis */
  41. ',', /* dead_cedilla */
  42. '_', /* dead_macron */
  43. 'U', /* dead_breve */
  44. '.', /* dead_abovedot */
  45. '*', /* dead_abovering */
  46. '=', /* dead_doubleacute */
  47. 'c', /* dead_caron */
  48. 'k', /* dead_ogonek */
  49. 'i', /* dead_iota */
  50. '#', /* dead_voiced_sound */
  51. 'o', /* dead_semivoiced_sound */
  52. '!', /* dead_belowdot */
  53. '?', /* dead_hook */
  54. '+', /* dead_horn */
  55. '-', /* dead_stroke */
  56. ')', /* dead_abovecomma */
  57. '(', /* dead_abovereversedcomma */
  58. ':', /* dead_doublegrave */
  59. 'n', /* dead_invertedbreve */
  60. ';', /* dead_belowcomma */
  61. '$', /* dead_currency */
  62. '@', /* dead_greek */
  63. };
  64. /*
  65. * Alloc/free of kbd_data structures.
  66. */
  67. struct kbd_data *
  68. kbd_alloc(void) {
  69. struct kbd_data *kbd;
  70. int i;
  71. kbd = kzalloc(sizeof(struct kbd_data), GFP_KERNEL);
  72. if (!kbd)
  73. goto out;
  74. kbd->key_maps = kzalloc(sizeof(ebc_key_maps), GFP_KERNEL);
  75. if (!kbd->key_maps)
  76. goto out_kbd;
  77. for (i = 0; i < ARRAY_SIZE(ebc_key_maps); i++) {
  78. if (ebc_key_maps[i]) {
  79. kbd->key_maps[i] = kmemdup(ebc_key_maps[i],
  80. sizeof(u_short) * NR_KEYS,
  81. GFP_KERNEL);
  82. if (!kbd->key_maps[i])
  83. goto out_maps;
  84. }
  85. }
  86. kbd->func_table = kzalloc(sizeof(ebc_func_table), GFP_KERNEL);
  87. if (!kbd->func_table)
  88. goto out_maps;
  89. for (i = 0; i < ARRAY_SIZE(ebc_func_table); i++) {
  90. if (ebc_func_table[i]) {
  91. kbd->func_table[i] = kstrdup(ebc_func_table[i],
  92. GFP_KERNEL);
  93. if (!kbd->func_table[i])
  94. goto out_func;
  95. }
  96. }
  97. kbd->fn_handler =
  98. kcalloc(NR_FN_HANDLER, sizeof(fn_handler_fn *), GFP_KERNEL);
  99. if (!kbd->fn_handler)
  100. goto out_func;
  101. kbd->accent_table = kmemdup(ebc_accent_table,
  102. sizeof(struct kbdiacruc) * MAX_DIACR,
  103. GFP_KERNEL);
  104. if (!kbd->accent_table)
  105. goto out_fn_handler;
  106. kbd->accent_table_size = ebc_accent_table_size;
  107. return kbd;
  108. out_fn_handler:
  109. kfree(kbd->fn_handler);
  110. out_func:
  111. for (i = 0; i < ARRAY_SIZE(ebc_func_table); i++)
  112. kfree(kbd->func_table[i]);
  113. kfree(kbd->func_table);
  114. out_maps:
  115. for (i = 0; i < ARRAY_SIZE(ebc_key_maps); i++)
  116. kfree(kbd->key_maps[i]);
  117. kfree(kbd->key_maps);
  118. out_kbd:
  119. kfree(kbd);
  120. out:
  121. return NULL;
  122. }
  123. void
  124. kbd_free(struct kbd_data *kbd)
  125. {
  126. int i;
  127. kfree(kbd->accent_table);
  128. kfree(kbd->fn_handler);
  129. for (i = 0; i < ARRAY_SIZE(ebc_func_table); i++)
  130. kfree(kbd->func_table[i]);
  131. kfree(kbd->func_table);
  132. for (i = 0; i < ARRAY_SIZE(ebc_key_maps); i++)
  133. kfree(kbd->key_maps[i]);
  134. kfree(kbd->key_maps);
  135. kfree(kbd);
  136. }
  137. /*
  138. * Generate ascii -> ebcdic translation table from kbd_data.
  139. */
  140. void
  141. kbd_ascebc(struct kbd_data *kbd, unsigned char *ascebc)
  142. {
  143. unsigned short *keymap, keysym;
  144. int i, j, k;
  145. memset(ascebc, 0x40, 256);
  146. for (i = 0; i < ARRAY_SIZE(ebc_key_maps); i++) {
  147. keymap = kbd->key_maps[i];
  148. if (!keymap)
  149. continue;
  150. for (j = 0; j < NR_KEYS; j++) {
  151. k = ((i & 1) << 7) + j;
  152. keysym = keymap[j];
  153. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  154. KTYP(keysym) == (KT_LETTER | 0xf0))
  155. ascebc[KVAL(keysym)] = k;
  156. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  157. ascebc[ret_diacr[KVAL(keysym)]] = k;
  158. }
  159. }
  160. }
  161. #if 0
  162. /*
  163. * Generate ebcdic -> ascii translation table from kbd_data.
  164. */
  165. void
  166. kbd_ebcasc(struct kbd_data *kbd, unsigned char *ebcasc)
  167. {
  168. unsigned short *keymap, keysym;
  169. int i, j, k;
  170. memset(ebcasc, ' ', 256);
  171. for (i = 0; i < ARRAY_SIZE(ebc_key_maps); i++) {
  172. keymap = kbd->key_maps[i];
  173. if (!keymap)
  174. continue;
  175. for (j = 0; j < NR_KEYS; j++) {
  176. keysym = keymap[j];
  177. k = ((i & 1) << 7) + j;
  178. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  179. KTYP(keysym) == (KT_LETTER | 0xf0))
  180. ebcasc[k] = KVAL(keysym);
  181. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  182. ebcasc[k] = ret_diacr[KVAL(keysym)];
  183. }
  184. }
  185. }
  186. #endif
  187. /*
  188. * We have a combining character DIACR here, followed by the character CH.
  189. * If the combination occurs in the table, return the corresponding value.
  190. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  191. * Otherwise, conclude that DIACR was not combining after all,
  192. * queue it and return CH.
  193. */
  194. static unsigned int
  195. handle_diacr(struct kbd_data *kbd, unsigned int ch)
  196. {
  197. int i, d;
  198. d = kbd->diacr;
  199. kbd->diacr = 0;
  200. for (i = 0; i < kbd->accent_table_size; i++) {
  201. if (kbd->accent_table[i].diacr == d &&
  202. kbd->accent_table[i].base == ch)
  203. return kbd->accent_table[i].result;
  204. }
  205. if (ch == ' ' || ch == d)
  206. return d;
  207. kbd_put_queue(kbd->port, d);
  208. return ch;
  209. }
  210. /*
  211. * Handle dead key.
  212. */
  213. static void
  214. k_dead(struct kbd_data *kbd, unsigned char value)
  215. {
  216. value = ret_diacr[value];
  217. kbd->diacr = (kbd->diacr ? handle_diacr(kbd, value) : value);
  218. }
  219. /*
  220. * Normal character handler.
  221. */
  222. static void
  223. k_self(struct kbd_data *kbd, unsigned char value)
  224. {
  225. if (kbd->diacr)
  226. value = handle_diacr(kbd, value);
  227. kbd_put_queue(kbd->port, value);
  228. }
  229. /*
  230. * Special key handlers
  231. */
  232. static void
  233. k_ignore(struct kbd_data *kbd, unsigned char value)
  234. {
  235. }
  236. /*
  237. * Function key handler.
  238. */
  239. static void
  240. k_fn(struct kbd_data *kbd, unsigned char value)
  241. {
  242. if (kbd->func_table[value])
  243. kbd_puts_queue(kbd->port, kbd->func_table[value]);
  244. }
  245. static void
  246. k_spec(struct kbd_data *kbd, unsigned char value)
  247. {
  248. if (value >= NR_FN_HANDLER)
  249. return;
  250. if (kbd->fn_handler[value])
  251. kbd->fn_handler[value](kbd);
  252. }
  253. /*
  254. * Put utf8 character to tty flip buffer.
  255. * UTF-8 is defined for words of up to 31 bits,
  256. * but we need only 16 bits here
  257. */
  258. static void
  259. to_utf8(struct tty_port *port, ushort c)
  260. {
  261. if (c < 0x80)
  262. /* 0******* */
  263. kbd_put_queue(port, c);
  264. else if (c < 0x800) {
  265. /* 110***** 10****** */
  266. kbd_put_queue(port, 0xc0 | (c >> 6));
  267. kbd_put_queue(port, 0x80 | (c & 0x3f));
  268. } else {
  269. /* 1110**** 10****** 10****** */
  270. kbd_put_queue(port, 0xe0 | (c >> 12));
  271. kbd_put_queue(port, 0x80 | ((c >> 6) & 0x3f));
  272. kbd_put_queue(port, 0x80 | (c & 0x3f));
  273. }
  274. }
  275. /*
  276. * Process keycode.
  277. */
  278. void
  279. kbd_keycode(struct kbd_data *kbd, unsigned int keycode)
  280. {
  281. unsigned short keysym;
  282. unsigned char type, value;
  283. if (!kbd)
  284. return;
  285. if (keycode >= 384)
  286. keysym = kbd->key_maps[5][keycode - 384];
  287. else if (keycode >= 256)
  288. keysym = kbd->key_maps[4][keycode - 256];
  289. else if (keycode >= 128)
  290. keysym = kbd->key_maps[1][keycode - 128];
  291. else
  292. keysym = kbd->key_maps[0][keycode];
  293. type = KTYP(keysym);
  294. if (type >= 0xf0) {
  295. type -= 0xf0;
  296. if (type == KT_LETTER)
  297. type = KT_LATIN;
  298. value = KVAL(keysym);
  299. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  300. if (kbd->sysrq) {
  301. if (kbd->sysrq == K(KT_LATIN, '-')) {
  302. kbd->sysrq = 0;
  303. handle_sysrq(value);
  304. return;
  305. }
  306. if (value == '-') {
  307. kbd->sysrq = K(KT_LATIN, '-');
  308. return;
  309. }
  310. /* Incomplete sysrq sequence. */
  311. (*k_handler[KTYP(kbd->sysrq)])(kbd, KVAL(kbd->sysrq));
  312. kbd->sysrq = 0;
  313. } else if ((type == KT_LATIN && value == '^') ||
  314. (type == KT_DEAD && ret_diacr[value] == '^')) {
  315. kbd->sysrq = K(type, value);
  316. return;
  317. }
  318. #endif
  319. (*k_handler[type])(kbd, value);
  320. } else
  321. to_utf8(kbd->port, keysym);
  322. }
  323. /*
  324. * Ioctl stuff.
  325. */
  326. static int
  327. do_kdsk_ioctl(struct kbd_data *kbd, struct kbentry __user *user_kbe,
  328. int cmd, int perm)
  329. {
  330. struct kbentry tmp;
  331. unsigned long kb_index, kb_table;
  332. ushort *key_map, val, ov;
  333. if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
  334. return -EFAULT;
  335. kb_index = (unsigned long) tmp.kb_index;
  336. #if NR_KEYS < 256
  337. if (kb_index >= NR_KEYS)
  338. return -EINVAL;
  339. #endif
  340. kb_table = (unsigned long) tmp.kb_table;
  341. #if MAX_NR_KEYMAPS < 256
  342. if (kb_table >= MAX_NR_KEYMAPS)
  343. return -EINVAL;
  344. kb_table = array_index_nospec(kb_table , MAX_NR_KEYMAPS);
  345. #endif
  346. switch (cmd) {
  347. case KDGKBENT:
  348. key_map = kbd->key_maps[kb_table];
  349. if (key_map) {
  350. val = U(key_map[kb_index]);
  351. if (KTYP(val) >= KBD_NR_TYPES)
  352. val = K_HOLE;
  353. } else
  354. val = (kb_index ? K_HOLE : K_NOSUCHMAP);
  355. return put_user(val, &user_kbe->kb_value);
  356. case KDSKBENT:
  357. if (!perm)
  358. return -EPERM;
  359. if (!kb_index && tmp.kb_value == K_NOSUCHMAP) {
  360. /* disallocate map */
  361. key_map = kbd->key_maps[kb_table];
  362. if (key_map) {
  363. kbd->key_maps[kb_table] = NULL;
  364. kfree(key_map);
  365. }
  366. break;
  367. }
  368. if (KTYP(tmp.kb_value) >= KBD_NR_TYPES)
  369. return -EINVAL;
  370. if (KVAL(tmp.kb_value) > kbd_max_vals[KTYP(tmp.kb_value)])
  371. return -EINVAL;
  372. if (!(key_map = kbd->key_maps[kb_table])) {
  373. int j;
  374. key_map = kmalloc(sizeof(plain_map),
  375. GFP_KERNEL);
  376. if (!key_map)
  377. return -ENOMEM;
  378. kbd->key_maps[kb_table] = key_map;
  379. for (j = 0; j < NR_KEYS; j++)
  380. key_map[j] = U(K_HOLE);
  381. }
  382. ov = U(key_map[kb_index]);
  383. if (tmp.kb_value == ov)
  384. break; /* nothing to do */
  385. /*
  386. * Attention Key.
  387. */
  388. if (((ov == K_SAK) || (tmp.kb_value == K_SAK)) &&
  389. !capable(CAP_SYS_ADMIN))
  390. return -EPERM;
  391. key_map[kb_index] = U(tmp.kb_value);
  392. break;
  393. }
  394. return 0;
  395. }
  396. static int
  397. do_kdgkb_ioctl(struct kbd_data *kbd, struct kbsentry __user *u_kbs,
  398. int cmd, int perm)
  399. {
  400. unsigned char kb_func;
  401. char *p;
  402. int len;
  403. /* Get u_kbs->kb_func. */
  404. if (get_user(kb_func, &u_kbs->kb_func))
  405. return -EFAULT;
  406. #if MAX_NR_FUNC < 256
  407. if (kb_func >= MAX_NR_FUNC)
  408. return -EINVAL;
  409. #endif
  410. switch (cmd) {
  411. case KDGKBSENT:
  412. p = kbd->func_table[kb_func];
  413. if (p) {
  414. len = strlen(p);
  415. if (len >= sizeof(u_kbs->kb_string))
  416. len = sizeof(u_kbs->kb_string) - 1;
  417. if (copy_to_user(u_kbs->kb_string, p, len))
  418. return -EFAULT;
  419. } else
  420. len = 0;
  421. if (put_user('\0', u_kbs->kb_string + len))
  422. return -EFAULT;
  423. break;
  424. case KDSKBSENT:
  425. if (!perm)
  426. return -EPERM;
  427. p = strndup_user(u_kbs->kb_string, sizeof(u_kbs->kb_string));
  428. if (IS_ERR(p))
  429. return PTR_ERR(p);
  430. kfree(kbd->func_table[kb_func]);
  431. kbd->func_table[kb_func] = p;
  432. break;
  433. }
  434. return 0;
  435. }
  436. int kbd_ioctl(struct kbd_data *kbd, unsigned int cmd, unsigned long arg)
  437. {
  438. struct tty_struct *tty;
  439. void __user *argp;
  440. unsigned int ct;
  441. int perm;
  442. argp = (void __user *)arg;
  443. /*
  444. * To have permissions to do most of the vt ioctls, we either have
  445. * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
  446. */
  447. tty = tty_port_tty_get(kbd->port);
  448. /* FIXME this test is pretty racy */
  449. perm = current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG);
  450. tty_kref_put(tty);
  451. switch (cmd) {
  452. case KDGKBTYPE:
  453. return put_user(KB_101, (char __user *)argp);
  454. case KDGKBENT:
  455. case KDSKBENT:
  456. return do_kdsk_ioctl(kbd, argp, cmd, perm);
  457. case KDGKBSENT:
  458. case KDSKBSENT:
  459. return do_kdgkb_ioctl(kbd, argp, cmd, perm);
  460. case KDGKBDIACR:
  461. {
  462. struct kbdiacrs __user *a = argp;
  463. struct kbdiacr diacr;
  464. int i;
  465. if (put_user(kbd->accent_table_size, &a->kb_cnt))
  466. return -EFAULT;
  467. for (i = 0; i < kbd->accent_table_size; i++) {
  468. diacr.diacr = kbd->accent_table[i].diacr;
  469. diacr.base = kbd->accent_table[i].base;
  470. diacr.result = kbd->accent_table[i].result;
  471. if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr)))
  472. return -EFAULT;
  473. }
  474. return 0;
  475. }
  476. case KDGKBDIACRUC:
  477. {
  478. struct kbdiacrsuc __user *a = argp;
  479. ct = kbd->accent_table_size;
  480. if (put_user(ct, &a->kb_cnt))
  481. return -EFAULT;
  482. if (copy_to_user(a->kbdiacruc, kbd->accent_table,
  483. ct * sizeof(struct kbdiacruc)))
  484. return -EFAULT;
  485. return 0;
  486. }
  487. case KDSKBDIACR:
  488. {
  489. struct kbdiacrs __user *a = argp;
  490. struct kbdiacr diacr;
  491. int i;
  492. if (!perm)
  493. return -EPERM;
  494. if (get_user(ct, &a->kb_cnt))
  495. return -EFAULT;
  496. if (ct >= MAX_DIACR)
  497. return -EINVAL;
  498. kbd->accent_table_size = ct;
  499. for (i = 0; i < ct; i++) {
  500. if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr)))
  501. return -EFAULT;
  502. kbd->accent_table[i].diacr = diacr.diacr;
  503. kbd->accent_table[i].base = diacr.base;
  504. kbd->accent_table[i].result = diacr.result;
  505. }
  506. return 0;
  507. }
  508. case KDSKBDIACRUC:
  509. {
  510. struct kbdiacrsuc __user *a = argp;
  511. if (!perm)
  512. return -EPERM;
  513. if (get_user(ct, &a->kb_cnt))
  514. return -EFAULT;
  515. if (ct >= MAX_DIACR)
  516. return -EINVAL;
  517. kbd->accent_table_size = ct;
  518. if (copy_from_user(kbd->accent_table, a->kbdiacruc,
  519. ct * sizeof(struct kbdiacruc)))
  520. return -EFAULT;
  521. return 0;
  522. }
  523. default:
  524. return -ENOIOCTLCMD;
  525. }
  526. }
  527. EXPORT_SYMBOL(kbd_ioctl);
  528. EXPORT_SYMBOL(kbd_ascebc);
  529. EXPORT_SYMBOL(kbd_free);
  530. EXPORT_SYMBOL(kbd_alloc);
  531. EXPORT_SYMBOL(kbd_keycode);