spi-ti-qspi.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
  5. * Author: Sourav Poddar <sourav.poddar@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GPLv2.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/omap-dma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/err.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/of.h>
  31. #include <linux/of_device.h>
  32. #include <linux/pinctrl/consumer.h>
  33. #include <linux/mfd/syscon.h>
  34. #include <linux/regmap.h>
  35. #include <linux/sizes.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/spi/spi-mem.h>
  38. struct ti_qspi_regs {
  39. u32 clkctrl;
  40. };
  41. struct ti_qspi {
  42. struct completion transfer_complete;
  43. /* list synchronization */
  44. struct mutex list_lock;
  45. struct spi_master *master;
  46. void __iomem *base;
  47. void __iomem *mmap_base;
  48. size_t mmap_size;
  49. struct regmap *ctrl_base;
  50. unsigned int ctrl_reg;
  51. struct clk *fclk;
  52. struct device *dev;
  53. struct ti_qspi_regs ctx_reg;
  54. dma_addr_t mmap_phys_base;
  55. dma_addr_t rx_bb_dma_addr;
  56. void *rx_bb_addr;
  57. struct dma_chan *rx_chan;
  58. u32 spi_max_frequency;
  59. u32 cmd;
  60. u32 dc;
  61. bool mmap_enabled;
  62. int current_cs;
  63. };
  64. #define QSPI_PID (0x0)
  65. #define QSPI_SYSCONFIG (0x10)
  66. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  67. #define QSPI_SPI_DC_REG (0x44)
  68. #define QSPI_SPI_CMD_REG (0x48)
  69. #define QSPI_SPI_STATUS_REG (0x4c)
  70. #define QSPI_SPI_DATA_REG (0x50)
  71. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  72. #define QSPI_SPI_SWITCH_REG (0x64)
  73. #define QSPI_SPI_DATA_REG_1 (0x68)
  74. #define QSPI_SPI_DATA_REG_2 (0x6c)
  75. #define QSPI_SPI_DATA_REG_3 (0x70)
  76. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  77. #define QSPI_FCLK 192000000
  78. /* Clock Control */
  79. #define QSPI_CLK_EN (1 << 31)
  80. #define QSPI_CLK_DIV_MAX 0xffff
  81. /* Command */
  82. #define QSPI_EN_CS(n) (n << 28)
  83. #define QSPI_WLEN(n) ((n - 1) << 19)
  84. #define QSPI_3_PIN (1 << 18)
  85. #define QSPI_RD_SNGL (1 << 16)
  86. #define QSPI_WR_SNGL (2 << 16)
  87. #define QSPI_RD_DUAL (3 << 16)
  88. #define QSPI_RD_QUAD (7 << 16)
  89. #define QSPI_INVAL (4 << 16)
  90. #define QSPI_FLEN(n) ((n - 1) << 0)
  91. #define QSPI_WLEN_MAX_BITS 128
  92. #define QSPI_WLEN_MAX_BYTES 16
  93. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  94. /* STATUS REGISTER */
  95. #define BUSY 0x01
  96. #define WC 0x02
  97. /* Device Control */
  98. #define QSPI_DD(m, n) (m << (3 + n * 8))
  99. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  100. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  101. #define QSPI_CKPOL(n) (1 << (n * 8))
  102. #define QSPI_FRAME 4096
  103. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  104. #define MEM_CS_EN(n) ((n + 1) << 8)
  105. #define MEM_CS_MASK (7 << 8)
  106. #define MM_SWITCH 0x1
  107. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  108. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  109. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  110. #define QSPI_SETUP_ADDR_SHIFT 8
  111. #define QSPI_SETUP_DUMMY_SHIFT 10
  112. #define QSPI_DMA_BUFFER_SIZE SZ_64K
  113. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  114. unsigned long reg)
  115. {
  116. return readl(qspi->base + reg);
  117. }
  118. static inline void ti_qspi_write(struct ti_qspi *qspi,
  119. unsigned long val, unsigned long reg)
  120. {
  121. writel(val, qspi->base + reg);
  122. }
  123. static int ti_qspi_setup(struct spi_device *spi)
  124. {
  125. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  126. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  127. int clk_div = 0, ret;
  128. u32 clk_ctrl_reg, clk_rate, clk_mask;
  129. if (spi->master->busy) {
  130. dev_dbg(qspi->dev, "master busy doing other transfers\n");
  131. return -EBUSY;
  132. }
  133. if (!qspi->spi_max_frequency) {
  134. dev_err(qspi->dev, "spi max frequency not defined\n");
  135. return -EINVAL;
  136. }
  137. clk_rate = clk_get_rate(qspi->fclk);
  138. clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
  139. if (clk_div < 0) {
  140. dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
  141. return -EINVAL;
  142. }
  143. if (clk_div > QSPI_CLK_DIV_MAX) {
  144. dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
  145. QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
  146. return -EINVAL;
  147. }
  148. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
  149. qspi->spi_max_frequency, clk_div);
  150. ret = pm_runtime_get_sync(qspi->dev);
  151. if (ret < 0) {
  152. pm_runtime_put_noidle(qspi->dev);
  153. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  154. return ret;
  155. }
  156. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  157. clk_ctrl_reg &= ~QSPI_CLK_EN;
  158. /* disable SCLK */
  159. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  160. /* enable SCLK */
  161. clk_mask = QSPI_CLK_EN | clk_div;
  162. ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
  163. ctx_reg->clkctrl = clk_mask;
  164. pm_runtime_mark_last_busy(qspi->dev);
  165. ret = pm_runtime_put_autosuspend(qspi->dev);
  166. if (ret < 0) {
  167. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  168. return ret;
  169. }
  170. return 0;
  171. }
  172. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  173. {
  174. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  175. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  176. }
  177. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  178. {
  179. u32 stat;
  180. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  181. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  182. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  183. cpu_relax();
  184. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  185. }
  186. WARN(stat & BUSY, "qspi busy\n");
  187. return stat & BUSY;
  188. }
  189. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  190. {
  191. u32 stat;
  192. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  193. do {
  194. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  195. if (stat & WC)
  196. return 0;
  197. cpu_relax();
  198. } while (time_after(timeout, jiffies));
  199. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  200. if (stat & WC)
  201. return 0;
  202. return -ETIMEDOUT;
  203. }
  204. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  205. int count)
  206. {
  207. int wlen, xfer_len;
  208. unsigned int cmd;
  209. const u8 *txbuf;
  210. u32 data;
  211. txbuf = t->tx_buf;
  212. cmd = qspi->cmd | QSPI_WR_SNGL;
  213. wlen = t->bits_per_word >> 3; /* in bytes */
  214. xfer_len = wlen;
  215. while (count) {
  216. if (qspi_is_busy(qspi))
  217. return -EBUSY;
  218. switch (wlen) {
  219. case 1:
  220. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  221. cmd, qspi->dc, *txbuf);
  222. if (count >= QSPI_WLEN_MAX_BYTES) {
  223. u32 *txp = (u32 *)txbuf;
  224. data = cpu_to_be32(*txp++);
  225. writel(data, qspi->base +
  226. QSPI_SPI_DATA_REG_3);
  227. data = cpu_to_be32(*txp++);
  228. writel(data, qspi->base +
  229. QSPI_SPI_DATA_REG_2);
  230. data = cpu_to_be32(*txp++);
  231. writel(data, qspi->base +
  232. QSPI_SPI_DATA_REG_1);
  233. data = cpu_to_be32(*txp++);
  234. writel(data, qspi->base +
  235. QSPI_SPI_DATA_REG);
  236. xfer_len = QSPI_WLEN_MAX_BYTES;
  237. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  238. } else {
  239. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  240. cmd = qspi->cmd | QSPI_WR_SNGL;
  241. xfer_len = wlen;
  242. cmd |= QSPI_WLEN(wlen);
  243. }
  244. break;
  245. case 2:
  246. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  247. cmd, qspi->dc, *txbuf);
  248. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  249. break;
  250. case 4:
  251. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  252. cmd, qspi->dc, *txbuf);
  253. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  254. break;
  255. }
  256. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  257. if (ti_qspi_poll_wc(qspi)) {
  258. dev_err(qspi->dev, "write timed out\n");
  259. return -ETIMEDOUT;
  260. }
  261. txbuf += xfer_len;
  262. count -= xfer_len;
  263. }
  264. return 0;
  265. }
  266. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  267. int count)
  268. {
  269. int wlen;
  270. unsigned int cmd;
  271. u8 *rxbuf;
  272. rxbuf = t->rx_buf;
  273. cmd = qspi->cmd;
  274. switch (t->rx_nbits) {
  275. case SPI_NBITS_DUAL:
  276. cmd |= QSPI_RD_DUAL;
  277. break;
  278. case SPI_NBITS_QUAD:
  279. cmd |= QSPI_RD_QUAD;
  280. break;
  281. default:
  282. cmd |= QSPI_RD_SNGL;
  283. break;
  284. }
  285. wlen = t->bits_per_word >> 3; /* in bytes */
  286. while (count) {
  287. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  288. if (qspi_is_busy(qspi))
  289. return -EBUSY;
  290. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  291. if (ti_qspi_poll_wc(qspi)) {
  292. dev_err(qspi->dev, "read timed out\n");
  293. return -ETIMEDOUT;
  294. }
  295. switch (wlen) {
  296. case 1:
  297. *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
  298. break;
  299. case 2:
  300. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  301. break;
  302. case 4:
  303. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  304. break;
  305. }
  306. rxbuf += wlen;
  307. count -= wlen;
  308. }
  309. return 0;
  310. }
  311. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  312. int count)
  313. {
  314. int ret;
  315. if (t->tx_buf) {
  316. ret = qspi_write_msg(qspi, t, count);
  317. if (ret) {
  318. dev_dbg(qspi->dev, "Error while writing\n");
  319. return ret;
  320. }
  321. }
  322. if (t->rx_buf) {
  323. ret = qspi_read_msg(qspi, t, count);
  324. if (ret) {
  325. dev_dbg(qspi->dev, "Error while reading\n");
  326. return ret;
  327. }
  328. }
  329. return 0;
  330. }
  331. static void ti_qspi_dma_callback(void *param)
  332. {
  333. struct ti_qspi *qspi = param;
  334. complete(&qspi->transfer_complete);
  335. }
  336. static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
  337. dma_addr_t dma_src, size_t len)
  338. {
  339. struct dma_chan *chan = qspi->rx_chan;
  340. dma_cookie_t cookie;
  341. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  342. struct dma_async_tx_descriptor *tx;
  343. int ret;
  344. tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
  345. if (!tx) {
  346. dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
  347. return -EIO;
  348. }
  349. tx->callback = ti_qspi_dma_callback;
  350. tx->callback_param = qspi;
  351. cookie = tx->tx_submit(tx);
  352. reinit_completion(&qspi->transfer_complete);
  353. ret = dma_submit_error(cookie);
  354. if (ret) {
  355. dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
  356. return -EIO;
  357. }
  358. dma_async_issue_pending(chan);
  359. ret = wait_for_completion_timeout(&qspi->transfer_complete,
  360. msecs_to_jiffies(len));
  361. if (ret <= 0) {
  362. dmaengine_terminate_sync(chan);
  363. dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
  364. return -ETIMEDOUT;
  365. }
  366. return 0;
  367. }
  368. static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs,
  369. void *to, size_t readsize)
  370. {
  371. dma_addr_t dma_src = qspi->mmap_phys_base + offs;
  372. int ret = 0;
  373. /*
  374. * Use bounce buffer as FS like jffs2, ubifs may pass
  375. * buffers that does not belong to kernel lowmem region.
  376. */
  377. while (readsize != 0) {
  378. size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
  379. readsize);
  380. ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
  381. dma_src, xfer_len);
  382. if (ret != 0)
  383. return ret;
  384. memcpy(to, qspi->rx_bb_addr, xfer_len);
  385. readsize -= xfer_len;
  386. dma_src += xfer_len;
  387. to += xfer_len;
  388. }
  389. return ret;
  390. }
  391. static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
  392. loff_t from)
  393. {
  394. struct scatterlist *sg;
  395. dma_addr_t dma_src = qspi->mmap_phys_base + from;
  396. dma_addr_t dma_dst;
  397. int i, len, ret;
  398. for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
  399. dma_dst = sg_dma_address(sg);
  400. len = sg_dma_len(sg);
  401. ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
  402. if (ret)
  403. return ret;
  404. dma_src += len;
  405. }
  406. return 0;
  407. }
  408. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  409. {
  410. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  411. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  412. if (qspi->ctrl_base) {
  413. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  414. MEM_CS_MASK,
  415. MEM_CS_EN(spi->chip_select));
  416. }
  417. qspi->mmap_enabled = true;
  418. qspi->current_cs = spi->chip_select;
  419. }
  420. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  421. {
  422. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  423. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  424. if (qspi->ctrl_base)
  425. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  426. MEM_CS_MASK, 0);
  427. qspi->mmap_enabled = false;
  428. qspi->current_cs = -1;
  429. }
  430. static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode,
  431. u8 data_nbits, u8 addr_width,
  432. u8 dummy_bytes)
  433. {
  434. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  435. u32 memval = opcode;
  436. switch (data_nbits) {
  437. case SPI_NBITS_QUAD:
  438. memval |= QSPI_SETUP_RD_QUAD;
  439. break;
  440. case SPI_NBITS_DUAL:
  441. memval |= QSPI_SETUP_RD_DUAL;
  442. break;
  443. default:
  444. memval |= QSPI_SETUP_RD_NORMAL;
  445. break;
  446. }
  447. memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  448. dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  449. ti_qspi_write(qspi, memval,
  450. QSPI_SPI_SETUP_REG(spi->chip_select));
  451. }
  452. static int ti_qspi_exec_mem_op(struct spi_mem *mem,
  453. const struct spi_mem_op *op)
  454. {
  455. struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master);
  456. u32 from = 0;
  457. int ret = 0;
  458. /* Only optimize read path. */
  459. if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
  460. !op->addr.nbytes || op->addr.nbytes > 4)
  461. return -ENOTSUPP;
  462. /* Address exceeds MMIO window size, fall back to regular mode. */
  463. from = op->addr.val;
  464. if (from + op->data.nbytes > qspi->mmap_size)
  465. return -ENOTSUPP;
  466. mutex_lock(&qspi->list_lock);
  467. if (!qspi->mmap_enabled || qspi->current_cs != mem->spi->chip_select)
  468. ti_qspi_enable_memory_map(mem->spi);
  469. ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth,
  470. op->addr.nbytes, op->dummy.nbytes);
  471. if (qspi->rx_chan) {
  472. struct sg_table sgt;
  473. if (virt_addr_valid(op->data.buf.in) &&
  474. !spi_controller_dma_map_mem_op_data(mem->spi->master, op,
  475. &sgt)) {
  476. ret = ti_qspi_dma_xfer_sg(qspi, sgt, from);
  477. spi_controller_dma_unmap_mem_op_data(mem->spi->master,
  478. op, &sgt);
  479. } else {
  480. ret = ti_qspi_dma_bounce_buffer(qspi, from,
  481. op->data.buf.in,
  482. op->data.nbytes);
  483. }
  484. } else {
  485. memcpy_fromio(op->data.buf.in, qspi->mmap_base + from,
  486. op->data.nbytes);
  487. }
  488. mutex_unlock(&qspi->list_lock);
  489. return ret;
  490. }
  491. static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
  492. .exec_op = ti_qspi_exec_mem_op,
  493. };
  494. static int ti_qspi_start_transfer_one(struct spi_master *master,
  495. struct spi_message *m)
  496. {
  497. struct ti_qspi *qspi = spi_master_get_devdata(master);
  498. struct spi_device *spi = m->spi;
  499. struct spi_transfer *t;
  500. int status = 0, ret;
  501. unsigned int frame_len_words, transfer_len_words;
  502. int wlen;
  503. /* setup device control reg */
  504. qspi->dc = 0;
  505. if (spi->mode & SPI_CPHA)
  506. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  507. if (spi->mode & SPI_CPOL)
  508. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  509. if (spi->mode & SPI_CS_HIGH)
  510. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  511. frame_len_words = 0;
  512. list_for_each_entry(t, &m->transfers, transfer_list)
  513. frame_len_words += t->len / (t->bits_per_word >> 3);
  514. frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
  515. /* setup command reg */
  516. qspi->cmd = 0;
  517. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  518. qspi->cmd |= QSPI_FLEN(frame_len_words);
  519. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  520. mutex_lock(&qspi->list_lock);
  521. if (qspi->mmap_enabled)
  522. ti_qspi_disable_memory_map(spi);
  523. list_for_each_entry(t, &m->transfers, transfer_list) {
  524. qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
  525. QSPI_WLEN(t->bits_per_word));
  526. wlen = t->bits_per_word >> 3;
  527. transfer_len_words = min(t->len / wlen, frame_len_words);
  528. ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
  529. if (ret) {
  530. dev_dbg(qspi->dev, "transfer message failed\n");
  531. mutex_unlock(&qspi->list_lock);
  532. return -EINVAL;
  533. }
  534. m->actual_length += transfer_len_words * wlen;
  535. frame_len_words -= transfer_len_words;
  536. if (frame_len_words == 0)
  537. break;
  538. }
  539. mutex_unlock(&qspi->list_lock);
  540. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  541. m->status = status;
  542. spi_finalize_current_message(master);
  543. return status;
  544. }
  545. static int ti_qspi_runtime_resume(struct device *dev)
  546. {
  547. struct ti_qspi *qspi;
  548. qspi = dev_get_drvdata(dev);
  549. ti_qspi_restore_ctx(qspi);
  550. return 0;
  551. }
  552. static void ti_qspi_dma_cleanup(struct ti_qspi *qspi)
  553. {
  554. if (qspi->rx_bb_addr)
  555. dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
  556. qspi->rx_bb_addr,
  557. qspi->rx_bb_dma_addr);
  558. if (qspi->rx_chan)
  559. dma_release_channel(qspi->rx_chan);
  560. }
  561. static const struct of_device_id ti_qspi_match[] = {
  562. {.compatible = "ti,dra7xxx-qspi" },
  563. {.compatible = "ti,am4372-qspi" },
  564. {},
  565. };
  566. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  567. static int ti_qspi_probe(struct platform_device *pdev)
  568. {
  569. struct ti_qspi *qspi;
  570. struct spi_master *master;
  571. struct resource *r, *res_mmap;
  572. struct device_node *np = pdev->dev.of_node;
  573. u32 max_freq;
  574. int ret = 0, num_cs, irq;
  575. dma_cap_mask_t mask;
  576. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  577. if (!master)
  578. return -ENOMEM;
  579. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  580. master->flags = SPI_MASTER_HALF_DUPLEX;
  581. master->setup = ti_qspi_setup;
  582. master->auto_runtime_pm = true;
  583. master->transfer_one_message = ti_qspi_start_transfer_one;
  584. master->dev.of_node = pdev->dev.of_node;
  585. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  586. SPI_BPW_MASK(8);
  587. master->mem_ops = &ti_qspi_mem_ops;
  588. if (!of_property_read_u32(np, "num-cs", &num_cs))
  589. master->num_chipselect = num_cs;
  590. qspi = spi_master_get_devdata(master);
  591. qspi->master = master;
  592. qspi->dev = &pdev->dev;
  593. platform_set_drvdata(pdev, qspi);
  594. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  595. if (r == NULL) {
  596. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  597. if (r == NULL) {
  598. dev_err(&pdev->dev, "missing platform data\n");
  599. ret = -ENODEV;
  600. goto free_master;
  601. }
  602. }
  603. res_mmap = platform_get_resource_byname(pdev,
  604. IORESOURCE_MEM, "qspi_mmap");
  605. if (res_mmap == NULL) {
  606. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  607. if (res_mmap == NULL) {
  608. dev_err(&pdev->dev,
  609. "memory mapped resource not required\n");
  610. }
  611. }
  612. if (res_mmap)
  613. qspi->mmap_size = resource_size(res_mmap);
  614. irq = platform_get_irq(pdev, 0);
  615. if (irq < 0) {
  616. dev_err(&pdev->dev, "no irq resource?\n");
  617. ret = irq;
  618. goto free_master;
  619. }
  620. mutex_init(&qspi->list_lock);
  621. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  622. if (IS_ERR(qspi->base)) {
  623. ret = PTR_ERR(qspi->base);
  624. goto free_master;
  625. }
  626. if (of_property_read_bool(np, "syscon-chipselects")) {
  627. qspi->ctrl_base =
  628. syscon_regmap_lookup_by_phandle(np,
  629. "syscon-chipselects");
  630. if (IS_ERR(qspi->ctrl_base)) {
  631. ret = PTR_ERR(qspi->ctrl_base);
  632. goto free_master;
  633. }
  634. ret = of_property_read_u32_index(np,
  635. "syscon-chipselects",
  636. 1, &qspi->ctrl_reg);
  637. if (ret) {
  638. dev_err(&pdev->dev,
  639. "couldn't get ctrl_mod reg index\n");
  640. goto free_master;
  641. }
  642. }
  643. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  644. if (IS_ERR(qspi->fclk)) {
  645. ret = PTR_ERR(qspi->fclk);
  646. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  647. }
  648. pm_runtime_use_autosuspend(&pdev->dev);
  649. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  650. pm_runtime_enable(&pdev->dev);
  651. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  652. qspi->spi_max_frequency = max_freq;
  653. dma_cap_zero(mask);
  654. dma_cap_set(DMA_MEMCPY, mask);
  655. qspi->rx_chan = dma_request_chan_by_mask(&mask);
  656. if (IS_ERR(qspi->rx_chan)) {
  657. dev_err(qspi->dev,
  658. "No Rx DMA available, trying mmap mode\n");
  659. qspi->rx_chan = NULL;
  660. ret = 0;
  661. goto no_dma;
  662. }
  663. qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
  664. QSPI_DMA_BUFFER_SIZE,
  665. &qspi->rx_bb_dma_addr,
  666. GFP_KERNEL | GFP_DMA);
  667. if (!qspi->rx_bb_addr) {
  668. dev_err(qspi->dev,
  669. "dma_alloc_coherent failed, using PIO mode\n");
  670. dma_release_channel(qspi->rx_chan);
  671. goto no_dma;
  672. }
  673. master->dma_rx = qspi->rx_chan;
  674. init_completion(&qspi->transfer_complete);
  675. if (res_mmap)
  676. qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
  677. no_dma:
  678. if (!qspi->rx_chan && res_mmap) {
  679. qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
  680. if (IS_ERR(qspi->mmap_base)) {
  681. dev_info(&pdev->dev,
  682. "mmap failed with error %ld using PIO mode\n",
  683. PTR_ERR(qspi->mmap_base));
  684. qspi->mmap_base = NULL;
  685. master->mem_ops = NULL;
  686. }
  687. }
  688. qspi->mmap_enabled = false;
  689. qspi->current_cs = -1;
  690. ret = devm_spi_register_master(&pdev->dev, master);
  691. if (!ret)
  692. return 0;
  693. ti_qspi_dma_cleanup(qspi);
  694. pm_runtime_disable(&pdev->dev);
  695. free_master:
  696. spi_master_put(master);
  697. return ret;
  698. }
  699. static int ti_qspi_remove(struct platform_device *pdev)
  700. {
  701. struct ti_qspi *qspi = platform_get_drvdata(pdev);
  702. int rc;
  703. rc = spi_master_suspend(qspi->master);
  704. if (rc)
  705. return rc;
  706. pm_runtime_put_sync(&pdev->dev);
  707. pm_runtime_disable(&pdev->dev);
  708. ti_qspi_dma_cleanup(qspi);
  709. return 0;
  710. }
  711. static const struct dev_pm_ops ti_qspi_pm_ops = {
  712. .runtime_resume = ti_qspi_runtime_resume,
  713. };
  714. static struct platform_driver ti_qspi_driver = {
  715. .probe = ti_qspi_probe,
  716. .remove = ti_qspi_remove,
  717. .driver = {
  718. .name = "ti-qspi",
  719. .pm = &ti_qspi_pm_ops,
  720. .of_match_table = ti_qspi_match,
  721. }
  722. };
  723. module_platform_driver(ti_qspi_driver);
  724. MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
  725. MODULE_LICENSE("GPL v2");
  726. MODULE_DESCRIPTION("TI QSPI controller driver");
  727. MODULE_ALIAS("platform:ti-qspi");