spi-topcliff-pch.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/delay.h>
  16. #include <linux/pci.h>
  17. #include <linux/wait.h>
  18. #include <linux/spi/spi.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/sched.h>
  21. #include <linux/spi/spidev.h>
  22. #include <linux/module.h>
  23. #include <linux/device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/pch_dma.h>
  27. /* Register offsets */
  28. #define PCH_SPCR 0x00 /* SPI control register */
  29. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  30. #define PCH_SPSR 0x08 /* SPI status register */
  31. #define PCH_SPDWR 0x0C /* SPI write data register */
  32. #define PCH_SPDRR 0x10 /* SPI read data register */
  33. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  34. #define PCH_SRST 0x1C /* SPI reset register */
  35. #define PCH_ADDRESS_SIZE 0x20
  36. #define PCH_SPSR_TFD 0x000007C0
  37. #define PCH_SPSR_RFD 0x0000F800
  38. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  39. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  40. #define PCH_RX_THOLD 7
  41. #define PCH_RX_THOLD_MAX 15
  42. #define PCH_TX_THOLD 2
  43. #define PCH_MAX_BAUDRATE 5000000
  44. #define PCH_MAX_FIFO_DEPTH 16
  45. #define STATUS_RUNNING 1
  46. #define STATUS_EXITING 2
  47. #define PCH_SLEEP_TIME 10
  48. #define SSN_LOW 0x02U
  49. #define SSN_HIGH 0x03U
  50. #define SSN_NO_CONTROL 0x00U
  51. #define PCH_MAX_CS 0xFF
  52. #define PCI_DEVICE_ID_GE_SPI 0x8816
  53. #define SPCR_SPE_BIT (1 << 0)
  54. #define SPCR_MSTR_BIT (1 << 1)
  55. #define SPCR_LSBF_BIT (1 << 4)
  56. #define SPCR_CPHA_BIT (1 << 5)
  57. #define SPCR_CPOL_BIT (1 << 6)
  58. #define SPCR_TFIE_BIT (1 << 8)
  59. #define SPCR_RFIE_BIT (1 << 9)
  60. #define SPCR_FIE_BIT (1 << 10)
  61. #define SPCR_ORIE_BIT (1 << 11)
  62. #define SPCR_MDFIE_BIT (1 << 12)
  63. #define SPCR_FICLR_BIT (1 << 24)
  64. #define SPSR_TFI_BIT (1 << 0)
  65. #define SPSR_RFI_BIT (1 << 1)
  66. #define SPSR_FI_BIT (1 << 2)
  67. #define SPSR_ORF_BIT (1 << 3)
  68. #define SPBRR_SIZE_BIT (1 << 10)
  69. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  70. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  71. #define SPCR_RFIC_FIELD 20
  72. #define SPCR_TFIC_FIELD 16
  73. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  74. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  75. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  76. #define PCH_CLOCK_HZ 50000000
  77. #define PCH_MAX_SPBR 1023
  78. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  79. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  80. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  81. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  82. /*
  83. * Set the number of SPI instance max
  84. * Intel EG20T PCH : 1ch
  85. * LAPIS Semiconductor ML7213 IOH : 2ch
  86. * LAPIS Semiconductor ML7223 IOH : 1ch
  87. * LAPIS Semiconductor ML7831 IOH : 1ch
  88. */
  89. #define PCH_SPI_MAX_DEV 2
  90. #define PCH_BUF_SIZE 4096
  91. #define PCH_DMA_TRANS_SIZE 12
  92. static int use_dma = 1;
  93. struct pch_spi_dma_ctrl {
  94. struct dma_async_tx_descriptor *desc_tx;
  95. struct dma_async_tx_descriptor *desc_rx;
  96. struct pch_dma_slave param_tx;
  97. struct pch_dma_slave param_rx;
  98. struct dma_chan *chan_tx;
  99. struct dma_chan *chan_rx;
  100. struct scatterlist *sg_tx_p;
  101. struct scatterlist *sg_rx_p;
  102. struct scatterlist sg_tx;
  103. struct scatterlist sg_rx;
  104. int nent;
  105. void *tx_buf_virt;
  106. void *rx_buf_virt;
  107. dma_addr_t tx_buf_dma;
  108. dma_addr_t rx_buf_dma;
  109. };
  110. /**
  111. * struct pch_spi_data - Holds the SPI channel specific details
  112. * @io_remap_addr: The remapped PCI base address
  113. * @master: Pointer to the SPI master structure
  114. * @work: Reference to work queue handler
  115. * @wait: Wait queue for waking up upon receiving an
  116. * interrupt.
  117. * @transfer_complete: Status of SPI Transfer
  118. * @bcurrent_msg_processing: Status flag for message processing
  119. * @lock: Lock for protecting this structure
  120. * @queue: SPI Message queue
  121. * @status: Status of the SPI driver
  122. * @bpw_len: Length of data to be transferred in bits per
  123. * word
  124. * @transfer_active: Flag showing active transfer
  125. * @tx_index: Transmit data count; for bookkeeping during
  126. * transfer
  127. * @rx_index: Receive data count; for bookkeeping during
  128. * transfer
  129. * @tx_buff: Buffer for data to be transmitted
  130. * @rx_index: Buffer for Received data
  131. * @n_curnt_chip: The chip number that this SPI driver currently
  132. * operates on
  133. * @current_chip: Reference to the current chip that this SPI
  134. * driver currently operates on
  135. * @current_msg: The current message that this SPI driver is
  136. * handling
  137. * @cur_trans: The current transfer that this SPI driver is
  138. * handling
  139. * @board_dat: Reference to the SPI device data structure
  140. * @plat_dev: platform_device structure
  141. * @ch: SPI channel number
  142. * @irq_reg_sts: Status of IRQ registration
  143. */
  144. struct pch_spi_data {
  145. void __iomem *io_remap_addr;
  146. unsigned long io_base_addr;
  147. struct spi_master *master;
  148. struct work_struct work;
  149. wait_queue_head_t wait;
  150. u8 transfer_complete;
  151. u8 bcurrent_msg_processing;
  152. spinlock_t lock;
  153. struct list_head queue;
  154. u8 status;
  155. u32 bpw_len;
  156. u8 transfer_active;
  157. u32 tx_index;
  158. u32 rx_index;
  159. u16 *pkt_tx_buff;
  160. u16 *pkt_rx_buff;
  161. u8 n_curnt_chip;
  162. struct spi_device *current_chip;
  163. struct spi_message *current_msg;
  164. struct spi_transfer *cur_trans;
  165. struct pch_spi_board_data *board_dat;
  166. struct platform_device *plat_dev;
  167. int ch;
  168. struct pch_spi_dma_ctrl dma;
  169. int use_dma;
  170. u8 irq_reg_sts;
  171. int save_total_len;
  172. };
  173. /**
  174. * struct pch_spi_board_data - Holds the SPI device specific details
  175. * @pdev: Pointer to the PCI device
  176. * @suspend_sts: Status of suspend
  177. * @num: The number of SPI device instance
  178. */
  179. struct pch_spi_board_data {
  180. struct pci_dev *pdev;
  181. u8 suspend_sts;
  182. int num;
  183. };
  184. struct pch_pd_dev_save {
  185. int num;
  186. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  187. struct pch_spi_board_data *board_dat;
  188. };
  189. static const struct pci_device_id pch_spi_pcidev_id[] = {
  190. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  191. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  192. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  193. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  194. { }
  195. };
  196. /**
  197. * pch_spi_writereg() - Performs register writes
  198. * @master: Pointer to struct spi_master.
  199. * @idx: Register offset.
  200. * @val: Value to be written to register.
  201. */
  202. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  203. {
  204. struct pch_spi_data *data = spi_master_get_devdata(master);
  205. iowrite32(val, (data->io_remap_addr + idx));
  206. }
  207. /**
  208. * pch_spi_readreg() - Performs register reads
  209. * @master: Pointer to struct spi_master.
  210. * @idx: Register offset.
  211. */
  212. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  213. {
  214. struct pch_spi_data *data = spi_master_get_devdata(master);
  215. return ioread32(data->io_remap_addr + idx);
  216. }
  217. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  218. u32 set, u32 clr)
  219. {
  220. u32 tmp = pch_spi_readreg(master, idx);
  221. tmp = (tmp & ~clr) | set;
  222. pch_spi_writereg(master, idx, tmp);
  223. }
  224. static void pch_spi_set_master_mode(struct spi_master *master)
  225. {
  226. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  227. }
  228. /**
  229. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  230. * @master: Pointer to struct spi_master.
  231. */
  232. static void pch_spi_clear_fifo(struct spi_master *master)
  233. {
  234. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  235. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  236. }
  237. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  238. void __iomem *io_remap_addr)
  239. {
  240. u32 n_read, tx_index, rx_index, bpw_len;
  241. u16 *pkt_rx_buffer, *pkt_tx_buff;
  242. int read_cnt;
  243. u32 reg_spcr_val;
  244. void __iomem *spsr;
  245. void __iomem *spdrr;
  246. void __iomem *spdwr;
  247. spsr = io_remap_addr + PCH_SPSR;
  248. iowrite32(reg_spsr_val, spsr);
  249. if (data->transfer_active) {
  250. rx_index = data->rx_index;
  251. tx_index = data->tx_index;
  252. bpw_len = data->bpw_len;
  253. pkt_rx_buffer = data->pkt_rx_buff;
  254. pkt_tx_buff = data->pkt_tx_buff;
  255. spdrr = io_remap_addr + PCH_SPDRR;
  256. spdwr = io_remap_addr + PCH_SPDWR;
  257. n_read = PCH_READABLE(reg_spsr_val);
  258. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  259. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  260. if (tx_index < bpw_len)
  261. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  262. }
  263. /* disable RFI if not needed */
  264. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  265. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  266. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  267. /* reset rx threshold */
  268. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  269. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  270. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  271. }
  272. /* update counts */
  273. data->tx_index = tx_index;
  274. data->rx_index = rx_index;
  275. /* if transfer complete interrupt */
  276. if (reg_spsr_val & SPSR_FI_BIT) {
  277. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  278. /* disable interrupts */
  279. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  280. PCH_ALL);
  281. /* transfer is completed;
  282. inform pch_spi_process_messages */
  283. data->transfer_complete = true;
  284. data->transfer_active = false;
  285. wake_up(&data->wait);
  286. } else {
  287. dev_vdbg(&data->master->dev,
  288. "%s : Transfer is not completed",
  289. __func__);
  290. }
  291. }
  292. }
  293. }
  294. /**
  295. * pch_spi_handler() - Interrupt handler
  296. * @irq: The interrupt number.
  297. * @dev_id: Pointer to struct pch_spi_board_data.
  298. */
  299. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  300. {
  301. u32 reg_spsr_val;
  302. void __iomem *spsr;
  303. void __iomem *io_remap_addr;
  304. irqreturn_t ret = IRQ_NONE;
  305. struct pch_spi_data *data = dev_id;
  306. struct pch_spi_board_data *board_dat = data->board_dat;
  307. if (board_dat->suspend_sts) {
  308. dev_dbg(&board_dat->pdev->dev,
  309. "%s returning due to suspend\n", __func__);
  310. return IRQ_NONE;
  311. }
  312. io_remap_addr = data->io_remap_addr;
  313. spsr = io_remap_addr + PCH_SPSR;
  314. reg_spsr_val = ioread32(spsr);
  315. if (reg_spsr_val & SPSR_ORF_BIT) {
  316. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  317. if (data->current_msg->complete) {
  318. data->transfer_complete = true;
  319. data->current_msg->status = -EIO;
  320. data->current_msg->complete(data->current_msg->context);
  321. data->bcurrent_msg_processing = false;
  322. data->current_msg = NULL;
  323. data->cur_trans = NULL;
  324. }
  325. }
  326. if (data->use_dma)
  327. return IRQ_NONE;
  328. /* Check if the interrupt is for SPI device */
  329. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  330. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  331. ret = IRQ_HANDLED;
  332. }
  333. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  334. __func__, ret);
  335. return ret;
  336. }
  337. /**
  338. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  339. * @master: Pointer to struct spi_master.
  340. * @speed_hz: Baud rate.
  341. */
  342. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  343. {
  344. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  345. /* if baud rate is less than we can support limit it */
  346. if (n_spbr > PCH_MAX_SPBR)
  347. n_spbr = PCH_MAX_SPBR;
  348. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  349. }
  350. /**
  351. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  352. * @master: Pointer to struct spi_master.
  353. * @bits_per_word: Bits per word for SPI transfer.
  354. */
  355. static void pch_spi_set_bits_per_word(struct spi_master *master,
  356. u8 bits_per_word)
  357. {
  358. if (bits_per_word == 8)
  359. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  360. else
  361. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  362. }
  363. /**
  364. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  365. * @spi: Pointer to struct spi_device.
  366. */
  367. static void pch_spi_setup_transfer(struct spi_device *spi)
  368. {
  369. u32 flags = 0;
  370. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  371. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  372. spi->max_speed_hz);
  373. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  374. /* set bits per word */
  375. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  376. if (!(spi->mode & SPI_LSB_FIRST))
  377. flags |= SPCR_LSBF_BIT;
  378. if (spi->mode & SPI_CPOL)
  379. flags |= SPCR_CPOL_BIT;
  380. if (spi->mode & SPI_CPHA)
  381. flags |= SPCR_CPHA_BIT;
  382. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  383. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  384. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  385. pch_spi_clear_fifo(spi->master);
  386. }
  387. /**
  388. * pch_spi_reset() - Clears SPI registers
  389. * @master: Pointer to struct spi_master.
  390. */
  391. static void pch_spi_reset(struct spi_master *master)
  392. {
  393. /* write 1 to reset SPI */
  394. pch_spi_writereg(master, PCH_SRST, 0x1);
  395. /* clear reset */
  396. pch_spi_writereg(master, PCH_SRST, 0x0);
  397. }
  398. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  399. {
  400. struct spi_transfer *transfer;
  401. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  402. int retval;
  403. unsigned long flags;
  404. spin_lock_irqsave(&data->lock, flags);
  405. /* validate Tx/Rx buffers and Transfer length */
  406. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  407. if (!transfer->tx_buf && !transfer->rx_buf) {
  408. dev_err(&pspi->dev,
  409. "%s Tx and Rx buffer NULL\n", __func__);
  410. retval = -EINVAL;
  411. goto err_return_spinlock;
  412. }
  413. if (!transfer->len) {
  414. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  415. __func__);
  416. retval = -EINVAL;
  417. goto err_return_spinlock;
  418. }
  419. dev_dbg(&pspi->dev,
  420. "%s Tx/Rx buffer valid. Transfer length valid\n",
  421. __func__);
  422. }
  423. spin_unlock_irqrestore(&data->lock, flags);
  424. /* We won't process any messages if we have been asked to terminate */
  425. if (data->status == STATUS_EXITING) {
  426. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  427. retval = -ESHUTDOWN;
  428. goto err_out;
  429. }
  430. /* If suspended ,return -EINVAL */
  431. if (data->board_dat->suspend_sts) {
  432. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  433. retval = -EINVAL;
  434. goto err_out;
  435. }
  436. /* set status of message */
  437. pmsg->actual_length = 0;
  438. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  439. pmsg->status = -EINPROGRESS;
  440. spin_lock_irqsave(&data->lock, flags);
  441. /* add message to queue */
  442. list_add_tail(&pmsg->queue, &data->queue);
  443. spin_unlock_irqrestore(&data->lock, flags);
  444. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  445. schedule_work(&data->work);
  446. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  447. retval = 0;
  448. err_out:
  449. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  450. return retval;
  451. err_return_spinlock:
  452. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  453. spin_unlock_irqrestore(&data->lock, flags);
  454. return retval;
  455. }
  456. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  457. struct spi_device *pspi)
  458. {
  459. if (data->current_chip != NULL) {
  460. if (pspi->chip_select != data->n_curnt_chip) {
  461. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  462. data->current_chip = NULL;
  463. }
  464. }
  465. data->current_chip = pspi;
  466. data->n_curnt_chip = data->current_chip->chip_select;
  467. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  468. pch_spi_setup_transfer(pspi);
  469. }
  470. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  471. {
  472. int size;
  473. u32 n_writes;
  474. int j;
  475. struct spi_message *pmsg, *tmp;
  476. const u8 *tx_buf;
  477. const u16 *tx_sbuf;
  478. /* set baud rate if needed */
  479. if (data->cur_trans->speed_hz) {
  480. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  481. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  482. }
  483. /* set bits per word if needed */
  484. if (data->cur_trans->bits_per_word &&
  485. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  486. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  487. pch_spi_set_bits_per_word(data->master,
  488. data->cur_trans->bits_per_word);
  489. *bpw = data->cur_trans->bits_per_word;
  490. } else {
  491. *bpw = data->current_msg->spi->bits_per_word;
  492. }
  493. /* reset Tx/Rx index */
  494. data->tx_index = 0;
  495. data->rx_index = 0;
  496. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  497. /* find alloc size */
  498. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  499. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  500. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  501. if (data->pkt_tx_buff != NULL) {
  502. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  503. if (!data->pkt_rx_buff)
  504. kfree(data->pkt_tx_buff);
  505. }
  506. if (!data->pkt_rx_buff) {
  507. /* flush queue and set status of all transfers to -ENOMEM */
  508. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  509. pmsg->status = -ENOMEM;
  510. if (pmsg->complete)
  511. pmsg->complete(pmsg->context);
  512. /* delete from queue */
  513. list_del_init(&pmsg->queue);
  514. }
  515. return;
  516. }
  517. /* copy Tx Data */
  518. if (data->cur_trans->tx_buf != NULL) {
  519. if (*bpw == 8) {
  520. tx_buf = data->cur_trans->tx_buf;
  521. for (j = 0; j < data->bpw_len; j++)
  522. data->pkt_tx_buff[j] = *tx_buf++;
  523. } else {
  524. tx_sbuf = data->cur_trans->tx_buf;
  525. for (j = 0; j < data->bpw_len; j++)
  526. data->pkt_tx_buff[j] = *tx_sbuf++;
  527. }
  528. }
  529. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  530. n_writes = data->bpw_len;
  531. if (n_writes > PCH_MAX_FIFO_DEPTH)
  532. n_writes = PCH_MAX_FIFO_DEPTH;
  533. dev_dbg(&data->master->dev,
  534. "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
  535. __func__);
  536. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  537. for (j = 0; j < n_writes; j++)
  538. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  539. /* update tx_index */
  540. data->tx_index = j;
  541. /* reset transfer complete flag */
  542. data->transfer_complete = false;
  543. data->transfer_active = true;
  544. }
  545. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  546. {
  547. struct spi_message *pmsg, *tmp;
  548. dev_dbg(&data->master->dev, "%s called\n", __func__);
  549. /* Invoke complete callback
  550. * [To the spi core..indicating end of transfer] */
  551. data->current_msg->status = 0;
  552. if (data->current_msg->complete) {
  553. dev_dbg(&data->master->dev,
  554. "%s:Invoking callback of SPI core\n", __func__);
  555. data->current_msg->complete(data->current_msg->context);
  556. }
  557. /* update status in global variable */
  558. data->bcurrent_msg_processing = false;
  559. dev_dbg(&data->master->dev,
  560. "%s:data->bcurrent_msg_processing = false\n", __func__);
  561. data->current_msg = NULL;
  562. data->cur_trans = NULL;
  563. /* check if we have items in list and not suspending
  564. * return 1 if list empty */
  565. if ((list_empty(&data->queue) == 0) &&
  566. (!data->board_dat->suspend_sts) &&
  567. (data->status != STATUS_EXITING)) {
  568. /* We have some more work to do (either there is more tranint
  569. * bpw;sfer requests in the current message or there are
  570. *more messages)
  571. */
  572. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  573. schedule_work(&data->work);
  574. } else if (data->board_dat->suspend_sts ||
  575. data->status == STATUS_EXITING) {
  576. dev_dbg(&data->master->dev,
  577. "%s suspend/remove initiated, flushing queue\n",
  578. __func__);
  579. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  580. pmsg->status = -EIO;
  581. if (pmsg->complete)
  582. pmsg->complete(pmsg->context);
  583. /* delete from queue */
  584. list_del_init(&pmsg->queue);
  585. }
  586. }
  587. }
  588. static void pch_spi_set_ir(struct pch_spi_data *data)
  589. {
  590. /* enable interrupts, set threshold, enable SPI */
  591. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  592. /* set receive threshold to PCH_RX_THOLD */
  593. pch_spi_setclr_reg(data->master, PCH_SPCR,
  594. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  595. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  596. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  597. MASK_RFIC_SPCR_BITS | PCH_ALL);
  598. else
  599. /* set receive threshold to maximum */
  600. pch_spi_setclr_reg(data->master, PCH_SPCR,
  601. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  602. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  603. SPCR_SPE_BIT,
  604. MASK_RFIC_SPCR_BITS | PCH_ALL);
  605. /* Wait until the transfer completes; go to sleep after
  606. initiating the transfer. */
  607. dev_dbg(&data->master->dev,
  608. "%s:waiting for transfer to get over\n", __func__);
  609. wait_event_interruptible(data->wait, data->transfer_complete);
  610. /* clear all interrupts */
  611. pch_spi_writereg(data->master, PCH_SPSR,
  612. pch_spi_readreg(data->master, PCH_SPSR));
  613. /* Disable interrupts and SPI transfer */
  614. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  615. /* clear FIFO */
  616. pch_spi_clear_fifo(data->master);
  617. }
  618. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  619. {
  620. int j;
  621. u8 *rx_buf;
  622. u16 *rx_sbuf;
  623. /* copy Rx Data */
  624. if (!data->cur_trans->rx_buf)
  625. return;
  626. if (bpw == 8) {
  627. rx_buf = data->cur_trans->rx_buf;
  628. for (j = 0; j < data->bpw_len; j++)
  629. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  630. } else {
  631. rx_sbuf = data->cur_trans->rx_buf;
  632. for (j = 0; j < data->bpw_len; j++)
  633. *rx_sbuf++ = data->pkt_rx_buff[j];
  634. }
  635. }
  636. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  637. {
  638. int j;
  639. u8 *rx_buf;
  640. u16 *rx_sbuf;
  641. const u8 *rx_dma_buf;
  642. const u16 *rx_dma_sbuf;
  643. /* copy Rx Data */
  644. if (!data->cur_trans->rx_buf)
  645. return;
  646. if (bpw == 8) {
  647. rx_buf = data->cur_trans->rx_buf;
  648. rx_dma_buf = data->dma.rx_buf_virt;
  649. for (j = 0; j < data->bpw_len; j++)
  650. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  651. data->cur_trans->rx_buf = rx_buf;
  652. } else {
  653. rx_sbuf = data->cur_trans->rx_buf;
  654. rx_dma_sbuf = data->dma.rx_buf_virt;
  655. for (j = 0; j < data->bpw_len; j++)
  656. *rx_sbuf++ = *rx_dma_sbuf++;
  657. data->cur_trans->rx_buf = rx_sbuf;
  658. }
  659. }
  660. static int pch_spi_start_transfer(struct pch_spi_data *data)
  661. {
  662. struct pch_spi_dma_ctrl *dma;
  663. unsigned long flags;
  664. int rtn;
  665. dma = &data->dma;
  666. spin_lock_irqsave(&data->lock, flags);
  667. /* disable interrupts, SPI set enable */
  668. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  669. spin_unlock_irqrestore(&data->lock, flags);
  670. /* Wait until the transfer completes; go to sleep after
  671. initiating the transfer. */
  672. dev_dbg(&data->master->dev,
  673. "%s:waiting for transfer to get over\n", __func__);
  674. rtn = wait_event_interruptible_timeout(data->wait,
  675. data->transfer_complete,
  676. msecs_to_jiffies(2 * HZ));
  677. if (!rtn)
  678. dev_err(&data->master->dev,
  679. "%s wait-event timeout\n", __func__);
  680. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  681. DMA_FROM_DEVICE);
  682. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  683. DMA_FROM_DEVICE);
  684. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  685. async_tx_ack(dma->desc_rx);
  686. async_tx_ack(dma->desc_tx);
  687. kfree(dma->sg_tx_p);
  688. kfree(dma->sg_rx_p);
  689. spin_lock_irqsave(&data->lock, flags);
  690. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  691. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  692. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  693. SPCR_SPE_BIT);
  694. /* clear all interrupts */
  695. pch_spi_writereg(data->master, PCH_SPSR,
  696. pch_spi_readreg(data->master, PCH_SPSR));
  697. /* clear FIFO */
  698. pch_spi_clear_fifo(data->master);
  699. spin_unlock_irqrestore(&data->lock, flags);
  700. return rtn;
  701. }
  702. static void pch_dma_rx_complete(void *arg)
  703. {
  704. struct pch_spi_data *data = arg;
  705. /* transfer is completed;inform pch_spi_process_messages_dma */
  706. data->transfer_complete = true;
  707. wake_up_interruptible(&data->wait);
  708. }
  709. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  710. {
  711. struct pch_dma_slave *param = slave;
  712. if ((chan->chan_id == param->chan_id) &&
  713. (param->dma_dev == chan->device->dev)) {
  714. chan->private = param;
  715. return true;
  716. } else {
  717. return false;
  718. }
  719. }
  720. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  721. {
  722. dma_cap_mask_t mask;
  723. struct dma_chan *chan;
  724. struct pci_dev *dma_dev;
  725. struct pch_dma_slave *param;
  726. struct pch_spi_dma_ctrl *dma;
  727. unsigned int width;
  728. if (bpw == 8)
  729. width = PCH_DMA_WIDTH_1_BYTE;
  730. else
  731. width = PCH_DMA_WIDTH_2_BYTES;
  732. dma = &data->dma;
  733. dma_cap_zero(mask);
  734. dma_cap_set(DMA_SLAVE, mask);
  735. /* Get DMA's dev information */
  736. dma_dev = pci_get_slot(data->board_dat->pdev->bus,
  737. PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
  738. /* Set Tx DMA */
  739. param = &dma->param_tx;
  740. param->dma_dev = &dma_dev->dev;
  741. param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
  742. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  743. param->width = width;
  744. chan = dma_request_channel(mask, pch_spi_filter, param);
  745. if (!chan) {
  746. dev_err(&data->master->dev,
  747. "ERROR: dma_request_channel FAILS(Tx)\n");
  748. data->use_dma = 0;
  749. return;
  750. }
  751. dma->chan_tx = chan;
  752. /* Set Rx DMA */
  753. param = &dma->param_rx;
  754. param->dma_dev = &dma_dev->dev;
  755. param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
  756. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  757. param->width = width;
  758. chan = dma_request_channel(mask, pch_spi_filter, param);
  759. if (!chan) {
  760. dev_err(&data->master->dev,
  761. "ERROR: dma_request_channel FAILS(Rx)\n");
  762. dma_release_channel(dma->chan_tx);
  763. dma->chan_tx = NULL;
  764. data->use_dma = 0;
  765. return;
  766. }
  767. dma->chan_rx = chan;
  768. }
  769. static void pch_spi_release_dma(struct pch_spi_data *data)
  770. {
  771. struct pch_spi_dma_ctrl *dma;
  772. dma = &data->dma;
  773. if (dma->chan_tx) {
  774. dma_release_channel(dma->chan_tx);
  775. dma->chan_tx = NULL;
  776. }
  777. if (dma->chan_rx) {
  778. dma_release_channel(dma->chan_rx);
  779. dma->chan_rx = NULL;
  780. }
  781. }
  782. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  783. {
  784. const u8 *tx_buf;
  785. const u16 *tx_sbuf;
  786. u8 *tx_dma_buf;
  787. u16 *tx_dma_sbuf;
  788. struct scatterlist *sg;
  789. struct dma_async_tx_descriptor *desc_tx;
  790. struct dma_async_tx_descriptor *desc_rx;
  791. int num;
  792. int i;
  793. int size;
  794. int rem;
  795. int head;
  796. unsigned long flags;
  797. struct pch_spi_dma_ctrl *dma;
  798. dma = &data->dma;
  799. /* set baud rate if needed */
  800. if (data->cur_trans->speed_hz) {
  801. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  802. spin_lock_irqsave(&data->lock, flags);
  803. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  804. spin_unlock_irqrestore(&data->lock, flags);
  805. }
  806. /* set bits per word if needed */
  807. if (data->cur_trans->bits_per_word &&
  808. (data->current_msg->spi->bits_per_word !=
  809. data->cur_trans->bits_per_word)) {
  810. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  811. spin_lock_irqsave(&data->lock, flags);
  812. pch_spi_set_bits_per_word(data->master,
  813. data->cur_trans->bits_per_word);
  814. spin_unlock_irqrestore(&data->lock, flags);
  815. *bpw = data->cur_trans->bits_per_word;
  816. } else {
  817. *bpw = data->current_msg->spi->bits_per_word;
  818. }
  819. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  820. if (data->bpw_len > PCH_BUF_SIZE) {
  821. data->bpw_len = PCH_BUF_SIZE;
  822. data->cur_trans->len -= PCH_BUF_SIZE;
  823. }
  824. /* copy Tx Data */
  825. if (data->cur_trans->tx_buf != NULL) {
  826. if (*bpw == 8) {
  827. tx_buf = data->cur_trans->tx_buf;
  828. tx_dma_buf = dma->tx_buf_virt;
  829. for (i = 0; i < data->bpw_len; i++)
  830. *tx_dma_buf++ = *tx_buf++;
  831. } else {
  832. tx_sbuf = data->cur_trans->tx_buf;
  833. tx_dma_sbuf = dma->tx_buf_virt;
  834. for (i = 0; i < data->bpw_len; i++)
  835. *tx_dma_sbuf++ = *tx_sbuf++;
  836. }
  837. }
  838. /* Calculate Rx parameter for DMA transmitting */
  839. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  840. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  841. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  842. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  843. } else {
  844. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  845. rem = PCH_DMA_TRANS_SIZE;
  846. }
  847. size = PCH_DMA_TRANS_SIZE;
  848. } else {
  849. num = 1;
  850. size = data->bpw_len;
  851. rem = data->bpw_len;
  852. }
  853. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  854. __func__, num, size, rem);
  855. spin_lock_irqsave(&data->lock, flags);
  856. /* set receive fifo threshold and transmit fifo threshold */
  857. pch_spi_setclr_reg(data->master, PCH_SPCR,
  858. ((size - 1) << SPCR_RFIC_FIELD) |
  859. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  860. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  861. spin_unlock_irqrestore(&data->lock, flags);
  862. /* RX */
  863. dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
  864. if (!dma->sg_rx_p)
  865. return;
  866. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  867. /* offset, length setting */
  868. sg = dma->sg_rx_p;
  869. for (i = 0; i < num; i++, sg++) {
  870. if (i == (num - 2)) {
  871. sg->offset = size * i;
  872. sg->offset = sg->offset * (*bpw / 8);
  873. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  874. sg->offset);
  875. sg_dma_len(sg) = rem;
  876. } else if (i == (num - 1)) {
  877. sg->offset = size * (i - 1) + rem;
  878. sg->offset = sg->offset * (*bpw / 8);
  879. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  880. sg->offset);
  881. sg_dma_len(sg) = size;
  882. } else {
  883. sg->offset = size * i;
  884. sg->offset = sg->offset * (*bpw / 8);
  885. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  886. sg->offset);
  887. sg_dma_len(sg) = size;
  888. }
  889. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  890. }
  891. sg = dma->sg_rx_p;
  892. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  893. num, DMA_DEV_TO_MEM,
  894. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  895. if (!desc_rx) {
  896. dev_err(&data->master->dev,
  897. "%s:dmaengine_prep_slave_sg Failed\n", __func__);
  898. return;
  899. }
  900. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  901. desc_rx->callback = pch_dma_rx_complete;
  902. desc_rx->callback_param = data;
  903. dma->nent = num;
  904. dma->desc_rx = desc_rx;
  905. /* Calculate Tx parameter for DMA transmitting */
  906. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  907. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  908. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  909. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  910. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  911. } else {
  912. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  913. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  914. PCH_DMA_TRANS_SIZE - head;
  915. }
  916. size = PCH_DMA_TRANS_SIZE;
  917. } else {
  918. num = 1;
  919. size = data->bpw_len;
  920. rem = data->bpw_len;
  921. head = 0;
  922. }
  923. dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
  924. if (!dma->sg_tx_p)
  925. return;
  926. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  927. /* offset, length setting */
  928. sg = dma->sg_tx_p;
  929. for (i = 0; i < num; i++, sg++) {
  930. if (i == 0) {
  931. sg->offset = 0;
  932. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  933. sg->offset);
  934. sg_dma_len(sg) = size + head;
  935. } else if (i == (num - 1)) {
  936. sg->offset = head + size * i;
  937. sg->offset = sg->offset * (*bpw / 8);
  938. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  939. sg->offset);
  940. sg_dma_len(sg) = rem;
  941. } else {
  942. sg->offset = head + size * i;
  943. sg->offset = sg->offset * (*bpw / 8);
  944. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  945. sg->offset);
  946. sg_dma_len(sg) = size;
  947. }
  948. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  949. }
  950. sg = dma->sg_tx_p;
  951. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  952. sg, num, DMA_MEM_TO_DEV,
  953. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  954. if (!desc_tx) {
  955. dev_err(&data->master->dev,
  956. "%s:dmaengine_prep_slave_sg Failed\n", __func__);
  957. return;
  958. }
  959. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  960. desc_tx->callback = NULL;
  961. desc_tx->callback_param = data;
  962. dma->nent = num;
  963. dma->desc_tx = desc_tx;
  964. dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
  965. spin_lock_irqsave(&data->lock, flags);
  966. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  967. desc_rx->tx_submit(desc_rx);
  968. desc_tx->tx_submit(desc_tx);
  969. spin_unlock_irqrestore(&data->lock, flags);
  970. /* reset transfer complete flag */
  971. data->transfer_complete = false;
  972. }
  973. static void pch_spi_process_messages(struct work_struct *pwork)
  974. {
  975. struct spi_message *pmsg, *tmp;
  976. struct pch_spi_data *data;
  977. int bpw;
  978. data = container_of(pwork, struct pch_spi_data, work);
  979. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  980. spin_lock(&data->lock);
  981. /* check if suspend has been initiated;if yes flush queue */
  982. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  983. dev_dbg(&data->master->dev,
  984. "%s suspend/remove initiated, flushing queue\n", __func__);
  985. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  986. pmsg->status = -EIO;
  987. if (pmsg->complete) {
  988. spin_unlock(&data->lock);
  989. pmsg->complete(pmsg->context);
  990. spin_lock(&data->lock);
  991. }
  992. /* delete from queue */
  993. list_del_init(&pmsg->queue);
  994. }
  995. spin_unlock(&data->lock);
  996. return;
  997. }
  998. data->bcurrent_msg_processing = true;
  999. dev_dbg(&data->master->dev,
  1000. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1001. /* Get the message from the queue and delete it from there. */
  1002. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1003. queue);
  1004. list_del_init(&data->current_msg->queue);
  1005. data->current_msg->status = 0;
  1006. pch_spi_select_chip(data, data->current_msg->spi);
  1007. spin_unlock(&data->lock);
  1008. if (data->use_dma)
  1009. pch_spi_request_dma(data,
  1010. data->current_msg->spi->bits_per_word);
  1011. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1012. do {
  1013. int cnt;
  1014. /* If we are already processing a message get the next
  1015. transfer structure from the message otherwise retrieve
  1016. the 1st transfer request from the message. */
  1017. spin_lock(&data->lock);
  1018. if (data->cur_trans == NULL) {
  1019. data->cur_trans =
  1020. list_entry(data->current_msg->transfers.next,
  1021. struct spi_transfer, transfer_list);
  1022. dev_dbg(&data->master->dev,
  1023. "%s :Getting 1st transfer message\n",
  1024. __func__);
  1025. } else {
  1026. data->cur_trans =
  1027. list_entry(data->cur_trans->transfer_list.next,
  1028. struct spi_transfer, transfer_list);
  1029. dev_dbg(&data->master->dev,
  1030. "%s :Getting next transfer message\n",
  1031. __func__);
  1032. }
  1033. spin_unlock(&data->lock);
  1034. if (!data->cur_trans->len)
  1035. goto out;
  1036. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1037. data->save_total_len = data->cur_trans->len;
  1038. if (data->use_dma) {
  1039. int i;
  1040. char *save_rx_buf = data->cur_trans->rx_buf;
  1041. for (i = 0; i < cnt; i ++) {
  1042. pch_spi_handle_dma(data, &bpw);
  1043. if (!pch_spi_start_transfer(data)) {
  1044. data->transfer_complete = true;
  1045. data->current_msg->status = -EIO;
  1046. data->current_msg->complete
  1047. (data->current_msg->context);
  1048. data->bcurrent_msg_processing = false;
  1049. data->current_msg = NULL;
  1050. data->cur_trans = NULL;
  1051. goto out;
  1052. }
  1053. pch_spi_copy_rx_data_for_dma(data, bpw);
  1054. }
  1055. data->cur_trans->rx_buf = save_rx_buf;
  1056. } else {
  1057. pch_spi_set_tx(data, &bpw);
  1058. pch_spi_set_ir(data);
  1059. pch_spi_copy_rx_data(data, bpw);
  1060. kfree(data->pkt_rx_buff);
  1061. data->pkt_rx_buff = NULL;
  1062. kfree(data->pkt_tx_buff);
  1063. data->pkt_tx_buff = NULL;
  1064. }
  1065. /* increment message count */
  1066. data->cur_trans->len = data->save_total_len;
  1067. data->current_msg->actual_length += data->cur_trans->len;
  1068. dev_dbg(&data->master->dev,
  1069. "%s:data->current_msg->actual_length=%d\n",
  1070. __func__, data->current_msg->actual_length);
  1071. /* check for delay */
  1072. if (data->cur_trans->delay_usecs) {
  1073. dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
  1074. __func__, data->cur_trans->delay_usecs);
  1075. udelay(data->cur_trans->delay_usecs);
  1076. }
  1077. spin_lock(&data->lock);
  1078. /* No more transfer in this message. */
  1079. if ((data->cur_trans->transfer_list.next) ==
  1080. &(data->current_msg->transfers)) {
  1081. pch_spi_nomore_transfer(data);
  1082. }
  1083. spin_unlock(&data->lock);
  1084. } while (data->cur_trans != NULL);
  1085. out:
  1086. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1087. if (data->use_dma)
  1088. pch_spi_release_dma(data);
  1089. }
  1090. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1091. struct pch_spi_data *data)
  1092. {
  1093. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1094. flush_work(&data->work);
  1095. }
  1096. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1097. struct pch_spi_data *data)
  1098. {
  1099. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1100. /* reset PCH SPI h/w */
  1101. pch_spi_reset(data->master);
  1102. dev_dbg(&board_dat->pdev->dev,
  1103. "%s pch_spi_reset invoked successfully\n", __func__);
  1104. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1105. return 0;
  1106. }
  1107. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1108. struct pch_spi_data *data)
  1109. {
  1110. struct pch_spi_dma_ctrl *dma;
  1111. dma = &data->dma;
  1112. if (dma->tx_buf_dma)
  1113. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1114. dma->tx_buf_virt, dma->tx_buf_dma);
  1115. if (dma->rx_buf_dma)
  1116. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1117. dma->rx_buf_virt, dma->rx_buf_dma);
  1118. }
  1119. static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1120. struct pch_spi_data *data)
  1121. {
  1122. struct pch_spi_dma_ctrl *dma;
  1123. int ret;
  1124. dma = &data->dma;
  1125. ret = 0;
  1126. /* Get Consistent memory for Tx DMA */
  1127. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1128. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1129. if (!dma->tx_buf_virt)
  1130. ret = -ENOMEM;
  1131. /* Get Consistent memory for Rx DMA */
  1132. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1133. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1134. if (!dma->rx_buf_virt)
  1135. ret = -ENOMEM;
  1136. return ret;
  1137. }
  1138. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1139. {
  1140. int ret;
  1141. struct spi_master *master;
  1142. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1143. struct pch_spi_data *data;
  1144. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1145. master = spi_alloc_master(&board_dat->pdev->dev,
  1146. sizeof(struct pch_spi_data));
  1147. if (!master) {
  1148. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1149. plat_dev->id);
  1150. return -ENOMEM;
  1151. }
  1152. data = spi_master_get_devdata(master);
  1153. data->master = master;
  1154. platform_set_drvdata(plat_dev, data);
  1155. /* baseaddress + address offset) */
  1156. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1157. PCH_ADDRESS_SIZE * plat_dev->id;
  1158. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
  1159. if (!data->io_remap_addr) {
  1160. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1161. ret = -ENOMEM;
  1162. goto err_pci_iomap;
  1163. }
  1164. data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
  1165. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1166. plat_dev->id, data->io_remap_addr);
  1167. /* initialize members of SPI master */
  1168. master->num_chipselect = PCH_MAX_CS;
  1169. master->transfer = pch_spi_transfer;
  1170. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1171. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1172. master->max_speed_hz = PCH_MAX_BAUDRATE;
  1173. data->board_dat = board_dat;
  1174. data->plat_dev = plat_dev;
  1175. data->n_curnt_chip = 255;
  1176. data->status = STATUS_RUNNING;
  1177. data->ch = plat_dev->id;
  1178. data->use_dma = use_dma;
  1179. INIT_LIST_HEAD(&data->queue);
  1180. spin_lock_init(&data->lock);
  1181. INIT_WORK(&data->work, pch_spi_process_messages);
  1182. init_waitqueue_head(&data->wait);
  1183. ret = pch_spi_get_resources(board_dat, data);
  1184. if (ret) {
  1185. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1186. goto err_spi_get_resources;
  1187. }
  1188. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1189. IRQF_SHARED, KBUILD_MODNAME, data);
  1190. if (ret) {
  1191. dev_err(&plat_dev->dev,
  1192. "%s request_irq failed\n", __func__);
  1193. goto err_request_irq;
  1194. }
  1195. data->irq_reg_sts = true;
  1196. pch_spi_set_master_mode(master);
  1197. if (use_dma) {
  1198. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1199. ret = pch_alloc_dma_buf(board_dat, data);
  1200. if (ret)
  1201. goto err_spi_register_master;
  1202. }
  1203. ret = spi_register_master(master);
  1204. if (ret != 0) {
  1205. dev_err(&plat_dev->dev,
  1206. "%s spi_register_master FAILED\n", __func__);
  1207. goto err_spi_register_master;
  1208. }
  1209. return 0;
  1210. err_spi_register_master:
  1211. pch_free_dma_buf(board_dat, data);
  1212. free_irq(board_dat->pdev->irq, data);
  1213. err_request_irq:
  1214. pch_spi_free_resources(board_dat, data);
  1215. err_spi_get_resources:
  1216. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1217. err_pci_iomap:
  1218. spi_master_put(master);
  1219. return ret;
  1220. }
  1221. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1222. {
  1223. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1224. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1225. int count;
  1226. unsigned long flags;
  1227. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1228. __func__, plat_dev->id, board_dat->pdev->irq);
  1229. if (use_dma)
  1230. pch_free_dma_buf(board_dat, data);
  1231. /* check for any pending messages; no action is taken if the queue
  1232. * is still full; but at least we tried. Unload anyway */
  1233. count = 500;
  1234. spin_lock_irqsave(&data->lock, flags);
  1235. data->status = STATUS_EXITING;
  1236. while ((list_empty(&data->queue) == 0) && --count) {
  1237. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1238. __func__);
  1239. spin_unlock_irqrestore(&data->lock, flags);
  1240. msleep(PCH_SLEEP_TIME);
  1241. spin_lock_irqsave(&data->lock, flags);
  1242. }
  1243. spin_unlock_irqrestore(&data->lock, flags);
  1244. pch_spi_free_resources(board_dat, data);
  1245. /* disable interrupts & free IRQ */
  1246. if (data->irq_reg_sts) {
  1247. /* disable interrupts */
  1248. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1249. data->irq_reg_sts = false;
  1250. free_irq(board_dat->pdev->irq, data);
  1251. }
  1252. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1253. spi_unregister_master(data->master);
  1254. return 0;
  1255. }
  1256. #ifdef CONFIG_PM
  1257. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1258. pm_message_t state)
  1259. {
  1260. u8 count;
  1261. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1262. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1263. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1264. if (!board_dat) {
  1265. dev_err(&pd_dev->dev,
  1266. "%s pci_get_drvdata returned NULL\n", __func__);
  1267. return -EFAULT;
  1268. }
  1269. /* check if the current message is processed:
  1270. Only after thats done the transfer will be suspended */
  1271. count = 255;
  1272. while ((--count) > 0) {
  1273. if (!(data->bcurrent_msg_processing))
  1274. break;
  1275. msleep(PCH_SLEEP_TIME);
  1276. }
  1277. /* Free IRQ */
  1278. if (data->irq_reg_sts) {
  1279. /* disable all interrupts */
  1280. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1281. pch_spi_reset(data->master);
  1282. free_irq(board_dat->pdev->irq, data);
  1283. data->irq_reg_sts = false;
  1284. dev_dbg(&pd_dev->dev,
  1285. "%s free_irq invoked successfully.\n", __func__);
  1286. }
  1287. return 0;
  1288. }
  1289. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1290. {
  1291. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1292. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1293. int retval;
  1294. if (!board_dat) {
  1295. dev_err(&pd_dev->dev,
  1296. "%s pci_get_drvdata returned NULL\n", __func__);
  1297. return -EFAULT;
  1298. }
  1299. if (!data->irq_reg_sts) {
  1300. /* register IRQ */
  1301. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1302. IRQF_SHARED, KBUILD_MODNAME, data);
  1303. if (retval < 0) {
  1304. dev_err(&pd_dev->dev,
  1305. "%s request_irq failed\n", __func__);
  1306. return retval;
  1307. }
  1308. /* reset PCH SPI h/w */
  1309. pch_spi_reset(data->master);
  1310. pch_spi_set_master_mode(data->master);
  1311. data->irq_reg_sts = true;
  1312. }
  1313. return 0;
  1314. }
  1315. #else
  1316. #define pch_spi_pd_suspend NULL
  1317. #define pch_spi_pd_resume NULL
  1318. #endif
  1319. static struct platform_driver pch_spi_pd_driver = {
  1320. .driver = {
  1321. .name = "pch-spi",
  1322. },
  1323. .probe = pch_spi_pd_probe,
  1324. .remove = pch_spi_pd_remove,
  1325. .suspend = pch_spi_pd_suspend,
  1326. .resume = pch_spi_pd_resume
  1327. };
  1328. static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1329. {
  1330. struct pch_spi_board_data *board_dat;
  1331. struct platform_device *pd_dev = NULL;
  1332. int retval;
  1333. int i;
  1334. struct pch_pd_dev_save *pd_dev_save;
  1335. pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
  1336. if (!pd_dev_save)
  1337. return -ENOMEM;
  1338. board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
  1339. if (!board_dat) {
  1340. retval = -ENOMEM;
  1341. goto err_no_mem;
  1342. }
  1343. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1344. if (retval) {
  1345. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1346. goto pci_request_regions;
  1347. }
  1348. board_dat->pdev = pdev;
  1349. board_dat->num = id->driver_data;
  1350. pd_dev_save->num = id->driver_data;
  1351. pd_dev_save->board_dat = board_dat;
  1352. retval = pci_enable_device(pdev);
  1353. if (retval) {
  1354. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1355. goto pci_enable_device;
  1356. }
  1357. for (i = 0; i < board_dat->num; i++) {
  1358. pd_dev = platform_device_alloc("pch-spi", i);
  1359. if (!pd_dev) {
  1360. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1361. retval = -ENOMEM;
  1362. goto err_platform_device;
  1363. }
  1364. pd_dev_save->pd_save[i] = pd_dev;
  1365. pd_dev->dev.parent = &pdev->dev;
  1366. retval = platform_device_add_data(pd_dev, board_dat,
  1367. sizeof(*board_dat));
  1368. if (retval) {
  1369. dev_err(&pdev->dev,
  1370. "platform_device_add_data failed\n");
  1371. platform_device_put(pd_dev);
  1372. goto err_platform_device;
  1373. }
  1374. retval = platform_device_add(pd_dev);
  1375. if (retval) {
  1376. dev_err(&pdev->dev, "platform_device_add failed\n");
  1377. platform_device_put(pd_dev);
  1378. goto err_platform_device;
  1379. }
  1380. }
  1381. pci_set_drvdata(pdev, pd_dev_save);
  1382. return 0;
  1383. err_platform_device:
  1384. while (--i >= 0)
  1385. platform_device_unregister(pd_dev_save->pd_save[i]);
  1386. pci_disable_device(pdev);
  1387. pci_enable_device:
  1388. pci_release_regions(pdev);
  1389. pci_request_regions:
  1390. kfree(board_dat);
  1391. err_no_mem:
  1392. kfree(pd_dev_save);
  1393. return retval;
  1394. }
  1395. static void pch_spi_remove(struct pci_dev *pdev)
  1396. {
  1397. int i;
  1398. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1399. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1400. for (i = 0; i < pd_dev_save->num; i++)
  1401. platform_device_unregister(pd_dev_save->pd_save[i]);
  1402. pci_disable_device(pdev);
  1403. pci_release_regions(pdev);
  1404. kfree(pd_dev_save->board_dat);
  1405. kfree(pd_dev_save);
  1406. }
  1407. #ifdef CONFIG_PM
  1408. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1409. {
  1410. int retval;
  1411. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1412. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1413. pd_dev_save->board_dat->suspend_sts = true;
  1414. /* save config space */
  1415. retval = pci_save_state(pdev);
  1416. if (retval == 0) {
  1417. pci_enable_wake(pdev, PCI_D3hot, 0);
  1418. pci_disable_device(pdev);
  1419. pci_set_power_state(pdev, PCI_D3hot);
  1420. } else {
  1421. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1422. }
  1423. return retval;
  1424. }
  1425. static int pch_spi_resume(struct pci_dev *pdev)
  1426. {
  1427. int retval;
  1428. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1429. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1430. pci_set_power_state(pdev, PCI_D0);
  1431. pci_restore_state(pdev);
  1432. retval = pci_enable_device(pdev);
  1433. if (retval < 0) {
  1434. dev_err(&pdev->dev,
  1435. "%s pci_enable_device failed\n", __func__);
  1436. } else {
  1437. pci_enable_wake(pdev, PCI_D3hot, 0);
  1438. /* set suspend status to false */
  1439. pd_dev_save->board_dat->suspend_sts = false;
  1440. }
  1441. return retval;
  1442. }
  1443. #else
  1444. #define pch_spi_suspend NULL
  1445. #define pch_spi_resume NULL
  1446. #endif
  1447. static struct pci_driver pch_spi_pcidev_driver = {
  1448. .name = "pch_spi",
  1449. .id_table = pch_spi_pcidev_id,
  1450. .probe = pch_spi_probe,
  1451. .remove = pch_spi_remove,
  1452. .suspend = pch_spi_suspend,
  1453. .resume = pch_spi_resume,
  1454. };
  1455. static int __init pch_spi_init(void)
  1456. {
  1457. int ret;
  1458. ret = platform_driver_register(&pch_spi_pd_driver);
  1459. if (ret)
  1460. return ret;
  1461. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1462. if (ret) {
  1463. platform_driver_unregister(&pch_spi_pd_driver);
  1464. return ret;
  1465. }
  1466. return 0;
  1467. }
  1468. module_init(pch_spi_init);
  1469. static void __exit pch_spi_exit(void)
  1470. {
  1471. pci_unregister_driver(&pch_spi_pcidev_driver);
  1472. platform_driver_unregister(&pch_spi_pd_driver);
  1473. }
  1474. module_exit(pch_spi_exit);
  1475. module_param(use_dma, int, 0644);
  1476. MODULE_PARM_DESC(use_dma,
  1477. "to use DMA for data transfers pass 1 else 0; default 1");
  1478. MODULE_LICENSE("GPL");
  1479. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1480. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);