intelfbhw.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/delay.h>
  26. #include <linux/fb.h>
  27. #include <linux/ioport.h>
  28. #include <linux/init.h>
  29. #include <linux/pci.h>
  30. #include <linux/vmalloc.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/interrupt.h>
  33. #include <asm/io.h>
  34. #include "intelfb.h"
  35. #include "intelfbhw.h"
  36. struct pll_min_max {
  37. int min_m, max_m, min_m1, max_m1;
  38. int min_m2, max_m2, min_n, max_n;
  39. int min_p, max_p, min_p1, max_p1;
  40. int min_vco, max_vco, p_transition_clk, ref_clk;
  41. int p_inc_lo, p_inc_hi;
  42. };
  43. #define PLLS_I8xx 0
  44. #define PLLS_I9xx 1
  45. #define PLLS_MAX 2
  46. static struct pll_min_max plls[PLLS_MAX] = {
  47. { 108, 140, 18, 26,
  48. 6, 16, 3, 16,
  49. 4, 128, 0, 31,
  50. 930000, 1400000, 165000, 48000,
  51. 4, 2 }, /* I8xx */
  52. { 75, 120, 10, 20,
  53. 5, 9, 4, 7,
  54. 5, 80, 1, 8,
  55. 1400000, 2800000, 200000, 96000,
  56. 10, 5 } /* I9xx */
  57. };
  58. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  59. {
  60. u32 tmp;
  61. if (!pdev || !dinfo)
  62. return 1;
  63. switch (pdev->device) {
  64. case PCI_DEVICE_ID_INTEL_830M:
  65. dinfo->name = "Intel(R) 830M";
  66. dinfo->chipset = INTEL_830M;
  67. dinfo->mobile = 1;
  68. dinfo->pll_index = PLLS_I8xx;
  69. return 0;
  70. case PCI_DEVICE_ID_INTEL_845G:
  71. dinfo->name = "Intel(R) 845G";
  72. dinfo->chipset = INTEL_845G;
  73. dinfo->mobile = 0;
  74. dinfo->pll_index = PLLS_I8xx;
  75. return 0;
  76. case PCI_DEVICE_ID_INTEL_854:
  77. dinfo->mobile = 1;
  78. dinfo->name = "Intel(R) 854";
  79. dinfo->chipset = INTEL_854;
  80. return 0;
  81. case PCI_DEVICE_ID_INTEL_85XGM:
  82. tmp = 0;
  83. dinfo->mobile = 1;
  84. dinfo->pll_index = PLLS_I8xx;
  85. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  86. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  87. INTEL_85X_VARIANT_MASK) {
  88. case INTEL_VAR_855GME:
  89. dinfo->name = "Intel(R) 855GME";
  90. dinfo->chipset = INTEL_855GME;
  91. return 0;
  92. case INTEL_VAR_855GM:
  93. dinfo->name = "Intel(R) 855GM";
  94. dinfo->chipset = INTEL_855GM;
  95. return 0;
  96. case INTEL_VAR_852GME:
  97. dinfo->name = "Intel(R) 852GME";
  98. dinfo->chipset = INTEL_852GME;
  99. return 0;
  100. case INTEL_VAR_852GM:
  101. dinfo->name = "Intel(R) 852GM";
  102. dinfo->chipset = INTEL_852GM;
  103. return 0;
  104. default:
  105. dinfo->name = "Intel(R) 852GM/855GM";
  106. dinfo->chipset = INTEL_85XGM;
  107. return 0;
  108. }
  109. break;
  110. case PCI_DEVICE_ID_INTEL_865G:
  111. dinfo->name = "Intel(R) 865G";
  112. dinfo->chipset = INTEL_865G;
  113. dinfo->mobile = 0;
  114. dinfo->pll_index = PLLS_I8xx;
  115. return 0;
  116. case PCI_DEVICE_ID_INTEL_915G:
  117. dinfo->name = "Intel(R) 915G";
  118. dinfo->chipset = INTEL_915G;
  119. dinfo->mobile = 0;
  120. dinfo->pll_index = PLLS_I9xx;
  121. return 0;
  122. case PCI_DEVICE_ID_INTEL_915GM:
  123. dinfo->name = "Intel(R) 915GM";
  124. dinfo->chipset = INTEL_915GM;
  125. dinfo->mobile = 1;
  126. dinfo->pll_index = PLLS_I9xx;
  127. return 0;
  128. case PCI_DEVICE_ID_INTEL_945G:
  129. dinfo->name = "Intel(R) 945G";
  130. dinfo->chipset = INTEL_945G;
  131. dinfo->mobile = 0;
  132. dinfo->pll_index = PLLS_I9xx;
  133. return 0;
  134. case PCI_DEVICE_ID_INTEL_945GM:
  135. dinfo->name = "Intel(R) 945GM";
  136. dinfo->chipset = INTEL_945GM;
  137. dinfo->mobile = 1;
  138. dinfo->pll_index = PLLS_I9xx;
  139. return 0;
  140. case PCI_DEVICE_ID_INTEL_945GME:
  141. dinfo->name = "Intel(R) 945GME";
  142. dinfo->chipset = INTEL_945GME;
  143. dinfo->mobile = 1;
  144. dinfo->pll_index = PLLS_I9xx;
  145. return 0;
  146. case PCI_DEVICE_ID_INTEL_965G:
  147. dinfo->name = "Intel(R) 965G";
  148. dinfo->chipset = INTEL_965G;
  149. dinfo->mobile = 0;
  150. dinfo->pll_index = PLLS_I9xx;
  151. return 0;
  152. case PCI_DEVICE_ID_INTEL_965GM:
  153. dinfo->name = "Intel(R) 965GM";
  154. dinfo->chipset = INTEL_965GM;
  155. dinfo->mobile = 1;
  156. dinfo->pll_index = PLLS_I9xx;
  157. return 0;
  158. default:
  159. return 1;
  160. }
  161. }
  162. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  163. int *stolen_size)
  164. {
  165. struct pci_dev *bridge_dev;
  166. u16 tmp;
  167. int stolen_overhead;
  168. if (!pdev || !aperture_size || !stolen_size)
  169. return 1;
  170. /* Find the bridge device. It is always 0:0.0 */
  171. bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
  172. PCI_DEVFN(0, 0));
  173. if (!bridge_dev) {
  174. ERR_MSG("cannot find bridge device\n");
  175. return 1;
  176. }
  177. /* Get the fb aperture size and "stolen" memory amount. */
  178. tmp = 0;
  179. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  180. pci_dev_put(bridge_dev);
  181. switch (pdev->device) {
  182. case PCI_DEVICE_ID_INTEL_915G:
  183. case PCI_DEVICE_ID_INTEL_915GM:
  184. case PCI_DEVICE_ID_INTEL_945G:
  185. case PCI_DEVICE_ID_INTEL_945GM:
  186. case PCI_DEVICE_ID_INTEL_945GME:
  187. case PCI_DEVICE_ID_INTEL_965G:
  188. case PCI_DEVICE_ID_INTEL_965GM:
  189. /* 915, 945 and 965 chipsets support a 256MB aperture.
  190. Aperture size is determined by inspected the
  191. base address of the aperture. */
  192. if (pci_resource_start(pdev, 2) & 0x08000000)
  193. *aperture_size = MB(128);
  194. else
  195. *aperture_size = MB(256);
  196. break;
  197. default:
  198. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  199. *aperture_size = MB(64);
  200. else
  201. *aperture_size = MB(128);
  202. break;
  203. }
  204. /* Stolen memory size is reduced by the GTT and the popup.
  205. GTT is 1K per MB of aperture size, and popup is 4K. */
  206. stolen_overhead = (*aperture_size / MB(1)) + 4;
  207. switch(pdev->device) {
  208. case PCI_DEVICE_ID_INTEL_830M:
  209. case PCI_DEVICE_ID_INTEL_845G:
  210. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  211. case INTEL_830_GMCH_GMS_STOLEN_512:
  212. *stolen_size = KB(512) - KB(stolen_overhead);
  213. return 0;
  214. case INTEL_830_GMCH_GMS_STOLEN_1024:
  215. *stolen_size = MB(1) - KB(stolen_overhead);
  216. return 0;
  217. case INTEL_830_GMCH_GMS_STOLEN_8192:
  218. *stolen_size = MB(8) - KB(stolen_overhead);
  219. return 0;
  220. case INTEL_830_GMCH_GMS_LOCAL:
  221. ERR_MSG("only local memory found\n");
  222. return 1;
  223. case INTEL_830_GMCH_GMS_DISABLED:
  224. ERR_MSG("video memory is disabled\n");
  225. return 1;
  226. default:
  227. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  228. tmp & INTEL_830_GMCH_GMS_MASK);
  229. return 1;
  230. }
  231. break;
  232. default:
  233. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  234. case INTEL_855_GMCH_GMS_STOLEN_1M:
  235. *stolen_size = MB(1) - KB(stolen_overhead);
  236. return 0;
  237. case INTEL_855_GMCH_GMS_STOLEN_4M:
  238. *stolen_size = MB(4) - KB(stolen_overhead);
  239. return 0;
  240. case INTEL_855_GMCH_GMS_STOLEN_8M:
  241. *stolen_size = MB(8) - KB(stolen_overhead);
  242. return 0;
  243. case INTEL_855_GMCH_GMS_STOLEN_16M:
  244. *stolen_size = MB(16) - KB(stolen_overhead);
  245. return 0;
  246. case INTEL_855_GMCH_GMS_STOLEN_32M:
  247. *stolen_size = MB(32) - KB(stolen_overhead);
  248. return 0;
  249. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  250. *stolen_size = MB(48) - KB(stolen_overhead);
  251. return 0;
  252. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  253. *stolen_size = MB(64) - KB(stolen_overhead);
  254. return 0;
  255. case INTEL_855_GMCH_GMS_DISABLED:
  256. ERR_MSG("video memory is disabled\n");
  257. return 0;
  258. default:
  259. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  260. tmp & INTEL_855_GMCH_GMS_MASK);
  261. return 1;
  262. }
  263. }
  264. }
  265. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  266. {
  267. int dvo = 0;
  268. if (INREG(LVDS) & PORT_ENABLE)
  269. dvo |= LVDS_PORT;
  270. if (INREG(DVOA) & PORT_ENABLE)
  271. dvo |= DVOA_PORT;
  272. if (INREG(DVOB) & PORT_ENABLE)
  273. dvo |= DVOB_PORT;
  274. if (INREG(DVOC) & PORT_ENABLE)
  275. dvo |= DVOC_PORT;
  276. return dvo;
  277. }
  278. const char * intelfbhw_dvo_to_string(int dvo)
  279. {
  280. if (dvo & DVOA_PORT)
  281. return "DVO port A";
  282. else if (dvo & DVOB_PORT)
  283. return "DVO port B";
  284. else if (dvo & DVOC_PORT)
  285. return "DVO port C";
  286. else if (dvo & LVDS_PORT)
  287. return "LVDS port";
  288. else
  289. return NULL;
  290. }
  291. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  292. struct fb_var_screeninfo *var)
  293. {
  294. int bytes_per_pixel;
  295. int tmp;
  296. #if VERBOSE > 0
  297. DBG_MSG("intelfbhw_validate_mode\n");
  298. #endif
  299. bytes_per_pixel = var->bits_per_pixel / 8;
  300. if (bytes_per_pixel == 3)
  301. bytes_per_pixel = 4;
  302. /* Check if enough video memory. */
  303. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  304. if (tmp > dinfo->fb.size) {
  305. WRN_MSG("Not enough video ram for mode "
  306. "(%d KByte vs %d KByte).\n",
  307. BtoKB(tmp), BtoKB(dinfo->fb.size));
  308. return 1;
  309. }
  310. /* Check if x/y limits are OK. */
  311. if (var->xres - 1 > HACTIVE_MASK) {
  312. WRN_MSG("X resolution too large (%d vs %d).\n",
  313. var->xres, HACTIVE_MASK + 1);
  314. return 1;
  315. }
  316. if (var->yres - 1 > VACTIVE_MASK) {
  317. WRN_MSG("Y resolution too large (%d vs %d).\n",
  318. var->yres, VACTIVE_MASK + 1);
  319. return 1;
  320. }
  321. if (var->xres < 4) {
  322. WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
  323. return 1;
  324. }
  325. if (var->yres < 4) {
  326. WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
  327. return 1;
  328. }
  329. /* Check for doublescan modes. */
  330. if (var->vmode & FB_VMODE_DOUBLE) {
  331. WRN_MSG("Mode is double-scan.\n");
  332. return 1;
  333. }
  334. if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
  335. WRN_MSG("Odd number of lines in interlaced mode\n");
  336. return 1;
  337. }
  338. /* Check if clock is OK. */
  339. tmp = 1000000000 / var->pixclock;
  340. if (tmp < MIN_CLOCK) {
  341. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  342. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  343. return 1;
  344. }
  345. if (tmp > MAX_CLOCK) {
  346. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  347. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  348. return 1;
  349. }
  350. return 0;
  351. }
  352. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  353. {
  354. struct intelfb_info *dinfo = GET_DINFO(info);
  355. u32 offset, xoffset, yoffset;
  356. #if VERBOSE > 0
  357. DBG_MSG("intelfbhw_pan_display\n");
  358. #endif
  359. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  360. yoffset = var->yoffset;
  361. if ((xoffset + info->var.xres > info->var.xres_virtual) ||
  362. (yoffset + info->var.yres > info->var.yres_virtual))
  363. return -EINVAL;
  364. offset = (yoffset * dinfo->pitch) +
  365. (xoffset * info->var.bits_per_pixel) / 8;
  366. offset += dinfo->fb.offset << 12;
  367. dinfo->vsync.pan_offset = offset;
  368. if ((var->activate & FB_ACTIVATE_VBL) &&
  369. !intelfbhw_enable_irq(dinfo))
  370. dinfo->vsync.pan_display = 1;
  371. else {
  372. dinfo->vsync.pan_display = 0;
  373. OUTREG(DSPABASE, offset);
  374. }
  375. return 0;
  376. }
  377. /* Blank the screen. */
  378. void intelfbhw_do_blank(int blank, struct fb_info *info)
  379. {
  380. struct intelfb_info *dinfo = GET_DINFO(info);
  381. u32 tmp;
  382. #if VERBOSE > 0
  383. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  384. #endif
  385. /* Turn plane A on or off */
  386. tmp = INREG(DSPACNTR);
  387. if (blank)
  388. tmp &= ~DISPPLANE_PLANE_ENABLE;
  389. else
  390. tmp |= DISPPLANE_PLANE_ENABLE;
  391. OUTREG(DSPACNTR, tmp);
  392. /* Flush */
  393. tmp = INREG(DSPABASE);
  394. OUTREG(DSPABASE, tmp);
  395. /* Turn off/on the HW cursor */
  396. #if VERBOSE > 0
  397. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  398. #endif
  399. if (dinfo->cursor_on) {
  400. if (blank)
  401. intelfbhw_cursor_hide(dinfo);
  402. else
  403. intelfbhw_cursor_show(dinfo);
  404. dinfo->cursor_on = 1;
  405. }
  406. dinfo->cursor_blanked = blank;
  407. /* Set DPMS level */
  408. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  409. switch (blank) {
  410. case FB_BLANK_UNBLANK:
  411. case FB_BLANK_NORMAL:
  412. tmp |= ADPA_DPMS_D0;
  413. break;
  414. case FB_BLANK_VSYNC_SUSPEND:
  415. tmp |= ADPA_DPMS_D1;
  416. break;
  417. case FB_BLANK_HSYNC_SUSPEND:
  418. tmp |= ADPA_DPMS_D2;
  419. break;
  420. case FB_BLANK_POWERDOWN:
  421. tmp |= ADPA_DPMS_D3;
  422. break;
  423. }
  424. OUTREG(ADPA, tmp);
  425. return;
  426. }
  427. /* Check which pipe is connected to an active display plane. */
  428. int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
  429. {
  430. int pipe = -1;
  431. /* keep old default behaviour - prefer PIPE_A */
  432. if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
  433. pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
  434. pipe &= PIPE_MASK;
  435. if (unlikely(pipe == PIPE_A))
  436. return PIPE_A;
  437. }
  438. if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
  439. pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
  440. pipe &= PIPE_MASK;
  441. if (likely(pipe == PIPE_A))
  442. return PIPE_A;
  443. }
  444. /* Impossible that no pipe is selected - return PIPE_A */
  445. WARN_ON(pipe == -1);
  446. if (unlikely(pipe == -1))
  447. pipe = PIPE_A;
  448. return pipe;
  449. }
  450. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  451. unsigned red, unsigned green, unsigned blue,
  452. unsigned transp)
  453. {
  454. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  455. PALETTE_A : PALETTE_B;
  456. #if VERBOSE > 0
  457. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  458. regno, red, green, blue);
  459. #endif
  460. OUTREG(palette_reg + (regno << 2),
  461. (red << PALETTE_8_RED_SHIFT) |
  462. (green << PALETTE_8_GREEN_SHIFT) |
  463. (blue << PALETTE_8_BLUE_SHIFT));
  464. }
  465. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  466. struct intelfb_hwstate *hw, int flag)
  467. {
  468. int i;
  469. #if VERBOSE > 0
  470. DBG_MSG("intelfbhw_read_hw_state\n");
  471. #endif
  472. if (!hw || !dinfo)
  473. return -1;
  474. /* Read in as much of the HW state as possible. */
  475. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  476. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  477. hw->vga_pd = INREG(VGAPD);
  478. hw->dpll_a = INREG(DPLL_A);
  479. hw->dpll_b = INREG(DPLL_B);
  480. hw->fpa0 = INREG(FPA0);
  481. hw->fpa1 = INREG(FPA1);
  482. hw->fpb0 = INREG(FPB0);
  483. hw->fpb1 = INREG(FPB1);
  484. if (flag == 1)
  485. return flag;
  486. #if 0
  487. /* This seems to be a problem with the 852GM/855GM */
  488. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  489. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  490. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  491. }
  492. #endif
  493. if (flag == 2)
  494. return flag;
  495. hw->htotal_a = INREG(HTOTAL_A);
  496. hw->hblank_a = INREG(HBLANK_A);
  497. hw->hsync_a = INREG(HSYNC_A);
  498. hw->vtotal_a = INREG(VTOTAL_A);
  499. hw->vblank_a = INREG(VBLANK_A);
  500. hw->vsync_a = INREG(VSYNC_A);
  501. hw->src_size_a = INREG(SRC_SIZE_A);
  502. hw->bclrpat_a = INREG(BCLRPAT_A);
  503. hw->htotal_b = INREG(HTOTAL_B);
  504. hw->hblank_b = INREG(HBLANK_B);
  505. hw->hsync_b = INREG(HSYNC_B);
  506. hw->vtotal_b = INREG(VTOTAL_B);
  507. hw->vblank_b = INREG(VBLANK_B);
  508. hw->vsync_b = INREG(VSYNC_B);
  509. hw->src_size_b = INREG(SRC_SIZE_B);
  510. hw->bclrpat_b = INREG(BCLRPAT_B);
  511. if (flag == 3)
  512. return flag;
  513. hw->adpa = INREG(ADPA);
  514. hw->dvoa = INREG(DVOA);
  515. hw->dvob = INREG(DVOB);
  516. hw->dvoc = INREG(DVOC);
  517. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  518. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  519. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  520. hw->lvds = INREG(LVDS);
  521. if (flag == 4)
  522. return flag;
  523. hw->pipe_a_conf = INREG(PIPEACONF);
  524. hw->pipe_b_conf = INREG(PIPEBCONF);
  525. hw->disp_arb = INREG(DISPARB);
  526. if (flag == 5)
  527. return flag;
  528. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  529. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  530. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  531. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  532. if (flag == 6)
  533. return flag;
  534. for (i = 0; i < 4; i++) {
  535. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  536. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  537. }
  538. if (flag == 7)
  539. return flag;
  540. hw->cursor_size = INREG(CURSOR_SIZE);
  541. if (flag == 8)
  542. return flag;
  543. hw->disp_a_ctrl = INREG(DSPACNTR);
  544. hw->disp_b_ctrl = INREG(DSPBCNTR);
  545. hw->disp_a_base = INREG(DSPABASE);
  546. hw->disp_b_base = INREG(DSPBBASE);
  547. hw->disp_a_stride = INREG(DSPASTRIDE);
  548. hw->disp_b_stride = INREG(DSPBSTRIDE);
  549. if (flag == 9)
  550. return flag;
  551. hw->vgacntrl = INREG(VGACNTRL);
  552. if (flag == 10)
  553. return flag;
  554. hw->add_id = INREG(ADD_ID);
  555. if (flag == 11)
  556. return flag;
  557. for (i = 0; i < 7; i++) {
  558. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  559. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  560. if (i < 3)
  561. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  562. }
  563. for (i = 0; i < 8; i++)
  564. hw->fence[i] = INREG(FENCE + (i << 2));
  565. hw->instpm = INREG(INSTPM);
  566. hw->mem_mode = INREG(MEM_MODE);
  567. hw->fw_blc_0 = INREG(FW_BLC_0);
  568. hw->fw_blc_1 = INREG(FW_BLC_1);
  569. hw->hwstam = INREG16(HWSTAM);
  570. hw->ier = INREG16(IER);
  571. hw->iir = INREG16(IIR);
  572. hw->imr = INREG16(IMR);
  573. return 0;
  574. }
  575. static int calc_vclock3(int index, int m, int n, int p)
  576. {
  577. if (p == 0 || n == 0)
  578. return 0;
  579. return plls[index].ref_clk * m / n / p;
  580. }
  581. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  582. int lvds)
  583. {
  584. struct pll_min_max *pll = &plls[index];
  585. u32 m, vco, p;
  586. m = (5 * (m1 + 2)) + (m2 + 2);
  587. n += 2;
  588. vco = pll->ref_clk * m / n;
  589. if (index == PLLS_I8xx)
  590. p = ((p1 + 2) * (1 << (p2 + 1)));
  591. else
  592. p = ((p1) * (p2 ? 5 : 10));
  593. return vco / p;
  594. }
  595. #if REGDUMP
  596. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  597. int *o_p1, int *o_p2)
  598. {
  599. int p1, p2;
  600. if (IS_I9XX(dinfo)) {
  601. if (dpll & DPLL_P1_FORCE_DIV2)
  602. p1 = 1;
  603. else
  604. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  605. p1 = ffs(p1);
  606. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  607. } else {
  608. if (dpll & DPLL_P1_FORCE_DIV2)
  609. p1 = 0;
  610. else
  611. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  612. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  613. }
  614. *o_p1 = p1;
  615. *o_p2 = p2;
  616. }
  617. #endif
  618. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  619. struct intelfb_hwstate *hw)
  620. {
  621. #if REGDUMP
  622. int i, m1, m2, n, p1, p2;
  623. int index = dinfo->pll_index;
  624. DBG_MSG("intelfbhw_print_hw_state\n");
  625. if (!hw)
  626. return;
  627. /* Read in as much of the HW state as possible. */
  628. printk("hw state dump start\n");
  629. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  630. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  631. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  632. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  633. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  634. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  635. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  636. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  637. m1, m2, n, p1, p2);
  638. printk(" VGA0: clock is %d\n",
  639. calc_vclock(index, m1, m2, n, p1, p2, 0));
  640. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  641. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  642. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  643. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  644. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  645. m1, m2, n, p1, p2);
  646. printk(" VGA1: clock is %d\n",
  647. calc_vclock(index, m1, m2, n, p1, p2, 0));
  648. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  649. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  650. printk(" FPA0: 0x%08x\n", hw->fpa0);
  651. printk(" FPA1: 0x%08x\n", hw->fpa1);
  652. printk(" FPB0: 0x%08x\n", hw->fpb0);
  653. printk(" FPB1: 0x%08x\n", hw->fpb1);
  654. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  655. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  656. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  657. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  658. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  659. m1, m2, n, p1, p2);
  660. printk(" PLLA0: clock is %d\n",
  661. calc_vclock(index, m1, m2, n, p1, p2, 0));
  662. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  663. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  664. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  665. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  666. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  667. m1, m2, n, p1, p2);
  668. printk(" PLLA1: clock is %d\n",
  669. calc_vclock(index, m1, m2, n, p1, p2, 0));
  670. #if 0
  671. printk(" PALETTE_A:\n");
  672. for (i = 0; i < PALETTE_8_ENTRIES)
  673. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  674. printk(" PALETTE_B:\n");
  675. for (i = 0; i < PALETTE_8_ENTRIES)
  676. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  677. #endif
  678. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  679. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  680. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  681. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  682. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  683. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  684. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  685. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  686. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  687. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  688. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  689. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  690. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  691. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  692. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  693. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  694. printk(" ADPA: 0x%08x\n", hw->adpa);
  695. printk(" DVOA: 0x%08x\n", hw->dvoa);
  696. printk(" DVOB: 0x%08x\n", hw->dvob);
  697. printk(" DVOC: 0x%08x\n", hw->dvoc);
  698. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  699. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  700. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  701. printk(" LVDS: 0x%08x\n", hw->lvds);
  702. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  703. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  704. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  705. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  706. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  707. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  708. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  709. printk(" CURSOR_A_PALETTE: ");
  710. for (i = 0; i < 4; i++) {
  711. printk("0x%08x", hw->cursor_a_palette[i]);
  712. if (i < 3)
  713. printk(", ");
  714. }
  715. printk("\n");
  716. printk(" CURSOR_B_PALETTE: ");
  717. for (i = 0; i < 4; i++) {
  718. printk("0x%08x", hw->cursor_b_palette[i]);
  719. if (i < 3)
  720. printk(", ");
  721. }
  722. printk("\n");
  723. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  724. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  725. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  726. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  727. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  728. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  729. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  730. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  731. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  732. for (i = 0; i < 7; i++) {
  733. printk(" SWF0%d 0x%08x\n", i,
  734. hw->swf0x[i]);
  735. }
  736. for (i = 0; i < 7; i++) {
  737. printk(" SWF1%d 0x%08x\n", i,
  738. hw->swf1x[i]);
  739. }
  740. for (i = 0; i < 3; i++) {
  741. printk(" SWF3%d 0x%08x\n", i,
  742. hw->swf3x[i]);
  743. }
  744. for (i = 0; i < 8; i++)
  745. printk(" FENCE%d 0x%08x\n", i,
  746. hw->fence[i]);
  747. printk(" INSTPM 0x%08x\n", hw->instpm);
  748. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  749. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  750. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  751. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  752. printk(" IER 0x%04x\n", hw->ier);
  753. printk(" IIR 0x%04x\n", hw->iir);
  754. printk(" IMR 0x%04x\n", hw->imr);
  755. printk("hw state dump end\n");
  756. #endif
  757. }
  758. /* Split the M parameter into M1 and M2. */
  759. static int splitm(int index, unsigned int m, unsigned int *retm1,
  760. unsigned int *retm2)
  761. {
  762. int m1, m2;
  763. int testm;
  764. struct pll_min_max *pll = &plls[index];
  765. /* no point optimising too much - brute force m */
  766. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  767. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  768. testm = (5 * (m1 + 2)) + (m2 + 2);
  769. if (testm == m) {
  770. *retm1 = (unsigned int)m1;
  771. *retm2 = (unsigned int)m2;
  772. return 0;
  773. }
  774. }
  775. }
  776. return 1;
  777. }
  778. /* Split the P parameter into P1 and P2. */
  779. static int splitp(int index, unsigned int p, unsigned int *retp1,
  780. unsigned int *retp2)
  781. {
  782. int p1, p2;
  783. struct pll_min_max *pll = &plls[index];
  784. if (index == PLLS_I9xx) {
  785. p2 = (p % 10) ? 1 : 0;
  786. p1 = p / (p2 ? 5 : 10);
  787. *retp1 = (unsigned int)p1;
  788. *retp2 = (unsigned int)p2;
  789. return 0;
  790. }
  791. if (p % 4 == 0)
  792. p2 = 1;
  793. else
  794. p2 = 0;
  795. p1 = (p / (1 << (p2 + 1))) - 2;
  796. if (p % 4 == 0 && p1 < pll->min_p1) {
  797. p2 = 0;
  798. p1 = (p / (1 << (p2 + 1))) - 2;
  799. }
  800. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  801. (p1 + 2) * (1 << (p2 + 1)) != p) {
  802. return 1;
  803. } else {
  804. *retp1 = (unsigned int)p1;
  805. *retp2 = (unsigned int)p2;
  806. return 0;
  807. }
  808. }
  809. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  810. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  811. {
  812. u32 m1, m2, n, p1, p2, n1, testm;
  813. u32 f_vco, p, p_best = 0, m, f_out = 0;
  814. u32 err_best = 10000000;
  815. u32 n_best = 0, m_best = 0, f_err;
  816. u32 p_min, p_max, p_inc, div_max;
  817. struct pll_min_max *pll = &plls[index];
  818. DBG_MSG("Clock is %d\n", clock);
  819. div_max = pll->max_vco / clock;
  820. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  821. p_min = p_inc;
  822. p_max = ROUND_DOWN_TO(div_max, p_inc);
  823. if (p_min < pll->min_p)
  824. p_min = pll->min_p;
  825. if (p_max > pll->max_p)
  826. p_max = pll->max_p;
  827. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  828. p = p_min;
  829. do {
  830. if (splitp(index, p, &p1, &p2)) {
  831. WRN_MSG("cannot split p = %d\n", p);
  832. p += p_inc;
  833. continue;
  834. }
  835. n = pll->min_n;
  836. f_vco = clock * p;
  837. do {
  838. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  839. if (m < pll->min_m)
  840. m = pll->min_m + 1;
  841. if (m > pll->max_m)
  842. m = pll->max_m - 1;
  843. for (testm = m - 1; testm <= m; testm++) {
  844. f_out = calc_vclock3(index, testm, n, p);
  845. if (splitm(index, testm, &m1, &m2)) {
  846. WRN_MSG("cannot split m = %d\n",
  847. testm);
  848. continue;
  849. }
  850. if (clock > f_out)
  851. f_err = clock - f_out;
  852. else/* slightly bias the error for bigger clocks */
  853. f_err = f_out - clock + 1;
  854. if (f_err < err_best) {
  855. m_best = testm;
  856. n_best = n;
  857. p_best = p;
  858. err_best = f_err;
  859. }
  860. }
  861. n++;
  862. } while ((n <= pll->max_n) && (f_out >= clock));
  863. p += p_inc;
  864. } while ((p <= p_max));
  865. if (!m_best) {
  866. WRN_MSG("cannot find parameters for clock %d\n", clock);
  867. return 1;
  868. }
  869. m = m_best;
  870. n = n_best;
  871. p = p_best;
  872. splitm(index, m, &m1, &m2);
  873. splitp(index, p, &p1, &p2);
  874. n1 = n - 2;
  875. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  876. "f: %d (%d), VCO: %d\n",
  877. m, m1, m2, n, n1, p, p1, p2,
  878. calc_vclock3(index, m, n, p),
  879. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  880. calc_vclock3(index, m, n, p) * p);
  881. *retm1 = m1;
  882. *retm2 = m2;
  883. *retn = n1;
  884. *retp1 = p1;
  885. *retp2 = p2;
  886. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  887. return 0;
  888. }
  889. static __inline__ int check_overflow(u32 value, u32 limit,
  890. const char *description)
  891. {
  892. if (value > limit) {
  893. WRN_MSG("%s value %d exceeds limit %d\n",
  894. description, value, limit);
  895. return 1;
  896. }
  897. return 0;
  898. }
  899. /* It is assumed that hw is filled in with the initial state information. */
  900. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  901. struct intelfb_hwstate *hw,
  902. struct fb_var_screeninfo *var)
  903. {
  904. int pipe = intelfbhw_active_pipe(hw);
  905. u32 *dpll, *fp0, *fp1;
  906. u32 m1, m2, n, p1, p2, clock_target, clock;
  907. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  908. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  909. u32 vsync_pol, hsync_pol;
  910. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  911. u32 stride_alignment;
  912. DBG_MSG("intelfbhw_mode_to_hw\n");
  913. /* Disable VGA */
  914. hw->vgacntrl |= VGA_DISABLE;
  915. /* Set which pipe's registers will be set. */
  916. if (pipe == PIPE_B) {
  917. dpll = &hw->dpll_b;
  918. fp0 = &hw->fpb0;
  919. fp1 = &hw->fpb1;
  920. hs = &hw->hsync_b;
  921. hb = &hw->hblank_b;
  922. ht = &hw->htotal_b;
  923. vs = &hw->vsync_b;
  924. vb = &hw->vblank_b;
  925. vt = &hw->vtotal_b;
  926. ss = &hw->src_size_b;
  927. pipe_conf = &hw->pipe_b_conf;
  928. } else {
  929. dpll = &hw->dpll_a;
  930. fp0 = &hw->fpa0;
  931. fp1 = &hw->fpa1;
  932. hs = &hw->hsync_a;
  933. hb = &hw->hblank_a;
  934. ht = &hw->htotal_a;
  935. vs = &hw->vsync_a;
  936. vb = &hw->vblank_a;
  937. vt = &hw->vtotal_a;
  938. ss = &hw->src_size_a;
  939. pipe_conf = &hw->pipe_a_conf;
  940. }
  941. /* Use ADPA register for sync control. */
  942. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  943. /* sync polarity */
  944. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  945. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  946. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  947. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  948. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  949. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  950. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  951. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  952. /* Connect correct pipe to the analog port DAC */
  953. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  954. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  955. /* Set DPMS state to D0 (on) */
  956. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  957. hw->adpa |= ADPA_DPMS_D0;
  958. hw->adpa |= ADPA_DAC_ENABLE;
  959. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  960. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  961. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  962. /* Desired clock in kHz */
  963. clock_target = 1000000000 / var->pixclock;
  964. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  965. &n, &p1, &p2, &clock)) {
  966. WRN_MSG("calc_pll_params failed\n");
  967. return 1;
  968. }
  969. /* Check for overflow. */
  970. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  971. return 1;
  972. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  973. return 1;
  974. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  975. return 1;
  976. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  977. return 1;
  978. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  979. return 1;
  980. *dpll &= ~DPLL_P1_FORCE_DIV2;
  981. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  982. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  983. if (IS_I9XX(dinfo)) {
  984. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  985. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  986. } else
  987. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  988. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  989. (m1 << FP_M1_DIVISOR_SHIFT) |
  990. (m2 << FP_M2_DIVISOR_SHIFT);
  991. *fp1 = *fp0;
  992. hw->dvob &= ~PORT_ENABLE;
  993. hw->dvoc &= ~PORT_ENABLE;
  994. /* Use display plane A. */
  995. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  996. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  997. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  998. switch (intelfb_var_to_depth(var)) {
  999. case 8:
  1000. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  1001. break;
  1002. case 15:
  1003. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  1004. break;
  1005. case 16:
  1006. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  1007. break;
  1008. case 24:
  1009. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  1010. break;
  1011. }
  1012. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  1013. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  1014. /* Set CRTC registers. */
  1015. hactive = var->xres;
  1016. hsync_start = hactive + var->right_margin;
  1017. hsync_end = hsync_start + var->hsync_len;
  1018. htotal = hsync_end + var->left_margin;
  1019. hblank_start = hactive;
  1020. hblank_end = htotal;
  1021. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1022. hactive, hsync_start, hsync_end, htotal, hblank_start,
  1023. hblank_end);
  1024. vactive = var->yres;
  1025. if (var->vmode & FB_VMODE_INTERLACED)
  1026. vactive--; /* the chip adds 2 halflines automatically */
  1027. vsync_start = vactive + var->lower_margin;
  1028. vsync_end = vsync_start + var->vsync_len;
  1029. vtotal = vsync_end + var->upper_margin;
  1030. vblank_start = vactive;
  1031. vblank_end = vsync_end + 1;
  1032. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1033. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1034. vblank_end);
  1035. /* Adjust for register values, and check for overflow. */
  1036. hactive--;
  1037. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1038. return 1;
  1039. hsync_start--;
  1040. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1041. return 1;
  1042. hsync_end--;
  1043. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1044. return 1;
  1045. htotal--;
  1046. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1047. return 1;
  1048. hblank_start--;
  1049. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1050. return 1;
  1051. hblank_end--;
  1052. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1053. return 1;
  1054. vactive--;
  1055. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1056. return 1;
  1057. vsync_start--;
  1058. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1059. return 1;
  1060. vsync_end--;
  1061. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1062. return 1;
  1063. vtotal--;
  1064. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1065. return 1;
  1066. vblank_start--;
  1067. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1068. return 1;
  1069. vblank_end--;
  1070. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1071. return 1;
  1072. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1073. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1074. (hblank_end << HSYNCEND_SHIFT);
  1075. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1076. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1077. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1078. (vblank_end << VSYNCEND_SHIFT);
  1079. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1080. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1081. (vactive << SRC_SIZE_VERT_SHIFT);
  1082. hw->disp_a_stride = dinfo->pitch;
  1083. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1084. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1085. var->xoffset * var->bits_per_pixel / 8;
  1086. hw->disp_a_base += dinfo->fb.offset << 12;
  1087. /* Check stride alignment. */
  1088. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1089. STRIDE_ALIGNMENT;
  1090. if (hw->disp_a_stride % stride_alignment != 0) {
  1091. WRN_MSG("display stride %d has bad alignment %d\n",
  1092. hw->disp_a_stride, stride_alignment);
  1093. return 1;
  1094. }
  1095. /* Set the palette to 8-bit mode. */
  1096. *pipe_conf &= ~PIPECONF_GAMMA;
  1097. if (var->vmode & FB_VMODE_INTERLACED)
  1098. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1099. else
  1100. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1101. return 0;
  1102. }
  1103. /* Program a (non-VGA) video mode. */
  1104. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1105. const struct intelfb_hwstate *hw, int blank)
  1106. {
  1107. u32 tmp;
  1108. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1109. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1110. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
  1111. u32 hsync_reg, htotal_reg, hblank_reg;
  1112. u32 vsync_reg, vtotal_reg, vblank_reg;
  1113. u32 src_size_reg;
  1114. u32 count, tmp_val[3];
  1115. /* Assume single pipe */
  1116. #if VERBOSE > 0
  1117. DBG_MSG("intelfbhw_program_mode\n");
  1118. #endif
  1119. /* Disable VGA */
  1120. tmp = INREG(VGACNTRL);
  1121. tmp |= VGA_DISABLE;
  1122. OUTREG(VGACNTRL, tmp);
  1123. dinfo->pipe = intelfbhw_active_pipe(hw);
  1124. if (dinfo->pipe == PIPE_B) {
  1125. dpll = &hw->dpll_b;
  1126. fp0 = &hw->fpb0;
  1127. fp1 = &hw->fpb1;
  1128. pipe_conf = &hw->pipe_b_conf;
  1129. hs = &hw->hsync_b;
  1130. hb = &hw->hblank_b;
  1131. ht = &hw->htotal_b;
  1132. vs = &hw->vsync_b;
  1133. vb = &hw->vblank_b;
  1134. vt = &hw->vtotal_b;
  1135. ss = &hw->src_size_b;
  1136. dpll_reg = DPLL_B;
  1137. fp0_reg = FPB0;
  1138. fp1_reg = FPB1;
  1139. pipe_conf_reg = PIPEBCONF;
  1140. pipe_stat_reg = PIPEBSTAT;
  1141. hsync_reg = HSYNC_B;
  1142. htotal_reg = HTOTAL_B;
  1143. hblank_reg = HBLANK_B;
  1144. vsync_reg = VSYNC_B;
  1145. vtotal_reg = VTOTAL_B;
  1146. vblank_reg = VBLANK_B;
  1147. src_size_reg = SRC_SIZE_B;
  1148. } else {
  1149. dpll = &hw->dpll_a;
  1150. fp0 = &hw->fpa0;
  1151. fp1 = &hw->fpa1;
  1152. pipe_conf = &hw->pipe_a_conf;
  1153. hs = &hw->hsync_a;
  1154. hb = &hw->hblank_a;
  1155. ht = &hw->htotal_a;
  1156. vs = &hw->vsync_a;
  1157. vb = &hw->vblank_a;
  1158. vt = &hw->vtotal_a;
  1159. ss = &hw->src_size_a;
  1160. dpll_reg = DPLL_A;
  1161. fp0_reg = FPA0;
  1162. fp1_reg = FPA1;
  1163. pipe_conf_reg = PIPEACONF;
  1164. pipe_stat_reg = PIPEASTAT;
  1165. hsync_reg = HSYNC_A;
  1166. htotal_reg = HTOTAL_A;
  1167. hblank_reg = HBLANK_A;
  1168. vsync_reg = VSYNC_A;
  1169. vtotal_reg = VTOTAL_A;
  1170. vblank_reg = VBLANK_A;
  1171. src_size_reg = SRC_SIZE_A;
  1172. }
  1173. /* turn off pipe */
  1174. tmp = INREG(pipe_conf_reg);
  1175. tmp &= ~PIPECONF_ENABLE;
  1176. OUTREG(pipe_conf_reg, tmp);
  1177. count = 0;
  1178. do {
  1179. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1180. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1181. break;
  1182. count++;
  1183. udelay(1);
  1184. if (count % 200 == 0) {
  1185. tmp = INREG(pipe_conf_reg);
  1186. tmp &= ~PIPECONF_ENABLE;
  1187. OUTREG(pipe_conf_reg, tmp);
  1188. }
  1189. } while (count < 2000);
  1190. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1191. /* Disable planes A and B. */
  1192. tmp = INREG(DSPACNTR);
  1193. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1194. OUTREG(DSPACNTR, tmp);
  1195. tmp = INREG(DSPBCNTR);
  1196. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1197. OUTREG(DSPBCNTR, tmp);
  1198. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1199. mdelay(20);
  1200. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1201. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1202. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1203. /* Disable Sync */
  1204. tmp = INREG(ADPA);
  1205. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1206. tmp |= ADPA_DPMS_D3;
  1207. OUTREG(ADPA, tmp);
  1208. /* do some funky magic - xyzzy */
  1209. OUTREG(0x61204, 0xabcd0000);
  1210. /* turn off PLL */
  1211. tmp = INREG(dpll_reg);
  1212. tmp &= ~DPLL_VCO_ENABLE;
  1213. OUTREG(dpll_reg, tmp);
  1214. /* Set PLL parameters */
  1215. OUTREG(fp0_reg, *fp0);
  1216. OUTREG(fp1_reg, *fp1);
  1217. /* Enable PLL */
  1218. OUTREG(dpll_reg, *dpll);
  1219. /* Set DVOs B/C */
  1220. OUTREG(DVOB, hw->dvob);
  1221. OUTREG(DVOC, hw->dvoc);
  1222. /* undo funky magic */
  1223. OUTREG(0x61204, 0x00000000);
  1224. /* Set ADPA */
  1225. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1226. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1227. /* Set pipe parameters */
  1228. OUTREG(hsync_reg, *hs);
  1229. OUTREG(hblank_reg, *hb);
  1230. OUTREG(htotal_reg, *ht);
  1231. OUTREG(vsync_reg, *vs);
  1232. OUTREG(vblank_reg, *vb);
  1233. OUTREG(vtotal_reg, *vt);
  1234. OUTREG(src_size_reg, *ss);
  1235. switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
  1236. FB_VMODE_ODD_FLD_FIRST)) {
  1237. case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
  1238. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
  1239. break;
  1240. case FB_VMODE_INTERLACED: /* even lines first */
  1241. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
  1242. break;
  1243. default: /* non-interlaced */
  1244. OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
  1245. }
  1246. /* Enable pipe */
  1247. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1248. /* Enable sync */
  1249. tmp = INREG(ADPA);
  1250. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1251. tmp |= ADPA_DPMS_D0;
  1252. OUTREG(ADPA, tmp);
  1253. /* setup display plane */
  1254. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1255. /*
  1256. * i830M errata: the display plane must be enabled
  1257. * to allow writes to the other bits in the plane
  1258. * control register.
  1259. */
  1260. tmp = INREG(DSPACNTR);
  1261. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1262. tmp |= DISPPLANE_PLANE_ENABLE;
  1263. OUTREG(DSPACNTR, tmp);
  1264. OUTREG(DSPACNTR,
  1265. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1266. mdelay(1);
  1267. }
  1268. }
  1269. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1270. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1271. OUTREG(DSPABASE, hw->disp_a_base);
  1272. /* Enable plane */
  1273. if (!blank) {
  1274. tmp = INREG(DSPACNTR);
  1275. tmp |= DISPPLANE_PLANE_ENABLE;
  1276. OUTREG(DSPACNTR, tmp);
  1277. OUTREG(DSPABASE, hw->disp_a_base);
  1278. }
  1279. return 0;
  1280. }
  1281. /* forward declarations */
  1282. static void refresh_ring(struct intelfb_info *dinfo);
  1283. static void reset_state(struct intelfb_info *dinfo);
  1284. static void do_flush(struct intelfb_info *dinfo);
  1285. static u32 get_ring_space(struct intelfb_info *dinfo)
  1286. {
  1287. u32 ring_space;
  1288. if (dinfo->ring_tail >= dinfo->ring_head)
  1289. ring_space = dinfo->ring.size -
  1290. (dinfo->ring_tail - dinfo->ring_head);
  1291. else
  1292. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1293. if (ring_space > RING_MIN_FREE)
  1294. ring_space -= RING_MIN_FREE;
  1295. else
  1296. ring_space = 0;
  1297. return ring_space;
  1298. }
  1299. static int wait_ring(struct intelfb_info *dinfo, int n)
  1300. {
  1301. int i = 0;
  1302. unsigned long end;
  1303. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1304. #if VERBOSE > 0
  1305. DBG_MSG("wait_ring: %d\n", n);
  1306. #endif
  1307. end = jiffies + (HZ * 3);
  1308. while (dinfo->ring_space < n) {
  1309. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1310. dinfo->ring_space = get_ring_space(dinfo);
  1311. if (dinfo->ring_head != last_head) {
  1312. end = jiffies + (HZ * 3);
  1313. last_head = dinfo->ring_head;
  1314. }
  1315. i++;
  1316. if (time_before(end, jiffies)) {
  1317. if (!i) {
  1318. /* Try again */
  1319. reset_state(dinfo);
  1320. refresh_ring(dinfo);
  1321. do_flush(dinfo);
  1322. end = jiffies + (HZ * 3);
  1323. i = 1;
  1324. } else {
  1325. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1326. dinfo->ring_space, n);
  1327. WRN_MSG("lockup - turning off hardware "
  1328. "acceleration\n");
  1329. dinfo->ring_lockup = 1;
  1330. break;
  1331. }
  1332. }
  1333. udelay(1);
  1334. }
  1335. return i;
  1336. }
  1337. static void do_flush(struct intelfb_info *dinfo)
  1338. {
  1339. START_RING(2);
  1340. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1341. OUT_RING(MI_NOOP);
  1342. ADVANCE_RING();
  1343. }
  1344. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1345. {
  1346. #if VERBOSE > 0
  1347. DBG_MSG("intelfbhw_do_sync\n");
  1348. #endif
  1349. if (!dinfo->accel)
  1350. return;
  1351. /*
  1352. * Send a flush, then wait until the ring is empty. This is what
  1353. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1354. * than the recommended method (both have problems).
  1355. */
  1356. do_flush(dinfo);
  1357. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1358. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1359. }
  1360. static void refresh_ring(struct intelfb_info *dinfo)
  1361. {
  1362. #if VERBOSE > 0
  1363. DBG_MSG("refresh_ring\n");
  1364. #endif
  1365. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1366. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1367. dinfo->ring_space = get_ring_space(dinfo);
  1368. }
  1369. static void reset_state(struct intelfb_info *dinfo)
  1370. {
  1371. int i;
  1372. u32 tmp;
  1373. #if VERBOSE > 0
  1374. DBG_MSG("reset_state\n");
  1375. #endif
  1376. for (i = 0; i < FENCE_NUM; i++)
  1377. OUTREG(FENCE + (i << 2), 0);
  1378. /* Flush the ring buffer if it's enabled. */
  1379. tmp = INREG(PRI_RING_LENGTH);
  1380. if (tmp & RING_ENABLE) {
  1381. #if VERBOSE > 0
  1382. DBG_MSG("reset_state: ring was enabled\n");
  1383. #endif
  1384. refresh_ring(dinfo);
  1385. intelfbhw_do_sync(dinfo);
  1386. DO_RING_IDLE();
  1387. }
  1388. OUTREG(PRI_RING_LENGTH, 0);
  1389. OUTREG(PRI_RING_HEAD, 0);
  1390. OUTREG(PRI_RING_TAIL, 0);
  1391. OUTREG(PRI_RING_START, 0);
  1392. }
  1393. /* Stop the 2D engine, and turn off the ring buffer. */
  1394. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1395. {
  1396. #if VERBOSE > 0
  1397. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1398. dinfo->accel, dinfo->ring_active);
  1399. #endif
  1400. if (!dinfo->accel)
  1401. return;
  1402. dinfo->ring_active = 0;
  1403. reset_state(dinfo);
  1404. }
  1405. /*
  1406. * Enable the ring buffer, and initialise the 2D engine.
  1407. * It is assumed that the graphics engine has been stopped by previously
  1408. * calling intelfb_2d_stop().
  1409. */
  1410. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1411. {
  1412. #if VERBOSE > 0
  1413. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1414. dinfo->accel, dinfo->ring_active);
  1415. #endif
  1416. if (!dinfo->accel)
  1417. return;
  1418. /* Initialise the primary ring buffer. */
  1419. OUTREG(PRI_RING_LENGTH, 0);
  1420. OUTREG(PRI_RING_TAIL, 0);
  1421. OUTREG(PRI_RING_HEAD, 0);
  1422. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1423. OUTREG(PRI_RING_LENGTH,
  1424. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1425. RING_NO_REPORT | RING_ENABLE);
  1426. refresh_ring(dinfo);
  1427. dinfo->ring_active = 1;
  1428. }
  1429. /* 2D fillrect (solid fill or invert) */
  1430. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1431. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1432. {
  1433. u32 br00, br09, br13, br14, br16;
  1434. #if VERBOSE > 0
  1435. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1436. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1437. #endif
  1438. br00 = COLOR_BLT_CMD;
  1439. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1440. br13 = (rop << ROP_SHIFT) | pitch;
  1441. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1442. br16 = color;
  1443. switch (bpp) {
  1444. case 8:
  1445. br13 |= COLOR_DEPTH_8;
  1446. break;
  1447. case 16:
  1448. br13 |= COLOR_DEPTH_16;
  1449. break;
  1450. case 32:
  1451. br13 |= COLOR_DEPTH_32;
  1452. br00 |= WRITE_ALPHA | WRITE_RGB;
  1453. break;
  1454. }
  1455. START_RING(6);
  1456. OUT_RING(br00);
  1457. OUT_RING(br13);
  1458. OUT_RING(br14);
  1459. OUT_RING(br09);
  1460. OUT_RING(br16);
  1461. OUT_RING(MI_NOOP);
  1462. ADVANCE_RING();
  1463. #if VERBOSE > 0
  1464. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1465. dinfo->ring_tail, dinfo->ring_space);
  1466. #endif
  1467. }
  1468. void
  1469. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1470. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1471. {
  1472. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1473. #if VERBOSE > 0
  1474. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1475. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1476. #endif
  1477. br00 = XY_SRC_COPY_BLT_CMD;
  1478. br09 = dinfo->fb_start;
  1479. br11 = (pitch << PITCH_SHIFT);
  1480. br12 = dinfo->fb_start;
  1481. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1482. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1483. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1484. ((dsty + h) << HEIGHT_SHIFT);
  1485. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1486. switch (bpp) {
  1487. case 8:
  1488. br13 |= COLOR_DEPTH_8;
  1489. break;
  1490. case 16:
  1491. br13 |= COLOR_DEPTH_16;
  1492. break;
  1493. case 32:
  1494. br13 |= COLOR_DEPTH_32;
  1495. br00 |= WRITE_ALPHA | WRITE_RGB;
  1496. break;
  1497. }
  1498. START_RING(8);
  1499. OUT_RING(br00);
  1500. OUT_RING(br13);
  1501. OUT_RING(br22);
  1502. OUT_RING(br23);
  1503. OUT_RING(br09);
  1504. OUT_RING(br26);
  1505. OUT_RING(br11);
  1506. OUT_RING(br12);
  1507. ADVANCE_RING();
  1508. }
  1509. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1510. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1511. u32 bpp)
  1512. {
  1513. int nbytes, ndwords, pad, tmp;
  1514. u32 br00, br09, br13, br18, br19, br22, br23;
  1515. int dat, ix, iy, iw;
  1516. int i, j;
  1517. #if VERBOSE > 0
  1518. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1519. #endif
  1520. /* size in bytes of a padded scanline */
  1521. nbytes = ROUND_UP_TO(w, 16) / 8;
  1522. /* Total bytes of padded scanline data to write out. */
  1523. nbytes = nbytes * h;
  1524. /*
  1525. * Check if the glyph data exceeds the immediate mode limit.
  1526. * It would take a large font (1K pixels) to hit this limit.
  1527. */
  1528. if (nbytes > MAX_MONO_IMM_SIZE)
  1529. return 0;
  1530. /* Src data is packaged a dword (32-bit) at a time. */
  1531. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1532. /*
  1533. * Ring has to be padded to a quad word. But because the command starts
  1534. with 7 bytes, pad only if there is an even number of ndwords
  1535. */
  1536. pad = !(ndwords % 2);
  1537. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1538. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1539. br09 = dinfo->fb_start;
  1540. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1541. br18 = bg;
  1542. br19 = fg;
  1543. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1544. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1545. switch (bpp) {
  1546. case 8:
  1547. br13 |= COLOR_DEPTH_8;
  1548. break;
  1549. case 16:
  1550. br13 |= COLOR_DEPTH_16;
  1551. break;
  1552. case 32:
  1553. br13 |= COLOR_DEPTH_32;
  1554. br00 |= WRITE_ALPHA | WRITE_RGB;
  1555. break;
  1556. }
  1557. START_RING(8 + ndwords);
  1558. OUT_RING(br00);
  1559. OUT_RING(br13);
  1560. OUT_RING(br22);
  1561. OUT_RING(br23);
  1562. OUT_RING(br09);
  1563. OUT_RING(br18);
  1564. OUT_RING(br19);
  1565. ix = iy = 0;
  1566. iw = ROUND_UP_TO(w, 8) / 8;
  1567. while (ndwords--) {
  1568. dat = 0;
  1569. for (j = 0; j < 2; ++j) {
  1570. for (i = 0; i < 2; ++i) {
  1571. if (ix != iw || i == 0)
  1572. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1573. }
  1574. if (ix == iw && iy != (h-1)) {
  1575. ix = 0;
  1576. ++iy;
  1577. }
  1578. }
  1579. OUT_RING(dat);
  1580. }
  1581. if (pad)
  1582. OUT_RING(MI_NOOP);
  1583. ADVANCE_RING();
  1584. return 1;
  1585. }
  1586. /* HW cursor functions. */
  1587. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1588. {
  1589. u32 tmp;
  1590. #if VERBOSE > 0
  1591. DBG_MSG("intelfbhw_cursor_init\n");
  1592. #endif
  1593. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1594. if (!dinfo->cursor.physical)
  1595. return;
  1596. tmp = INREG(CURSOR_A_CONTROL);
  1597. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1598. CURSOR_MEM_TYPE_LOCAL |
  1599. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1600. tmp |= CURSOR_MODE_DISABLE;
  1601. OUTREG(CURSOR_A_CONTROL, tmp);
  1602. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1603. } else {
  1604. tmp = INREG(CURSOR_CONTROL);
  1605. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1606. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1607. tmp |= CURSOR_FORMAT_3C;
  1608. OUTREG(CURSOR_CONTROL, tmp);
  1609. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1610. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1611. (64 << CURSOR_SIZE_V_SHIFT);
  1612. OUTREG(CURSOR_SIZE, tmp);
  1613. }
  1614. }
  1615. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1616. {
  1617. u32 tmp;
  1618. #if VERBOSE > 0
  1619. DBG_MSG("intelfbhw_cursor_hide\n");
  1620. #endif
  1621. dinfo->cursor_on = 0;
  1622. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1623. if (!dinfo->cursor.physical)
  1624. return;
  1625. tmp = INREG(CURSOR_A_CONTROL);
  1626. tmp &= ~CURSOR_MODE_MASK;
  1627. tmp |= CURSOR_MODE_DISABLE;
  1628. OUTREG(CURSOR_A_CONTROL, tmp);
  1629. /* Flush changes */
  1630. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1631. } else {
  1632. tmp = INREG(CURSOR_CONTROL);
  1633. tmp &= ~CURSOR_ENABLE;
  1634. OUTREG(CURSOR_CONTROL, tmp);
  1635. }
  1636. }
  1637. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1638. {
  1639. u32 tmp;
  1640. #if VERBOSE > 0
  1641. DBG_MSG("intelfbhw_cursor_show\n");
  1642. #endif
  1643. dinfo->cursor_on = 1;
  1644. if (dinfo->cursor_blanked)
  1645. return;
  1646. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1647. if (!dinfo->cursor.physical)
  1648. return;
  1649. tmp = INREG(CURSOR_A_CONTROL);
  1650. tmp &= ~CURSOR_MODE_MASK;
  1651. tmp |= CURSOR_MODE_64_4C_AX;
  1652. OUTREG(CURSOR_A_CONTROL, tmp);
  1653. /* Flush changes */
  1654. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1655. } else {
  1656. tmp = INREG(CURSOR_CONTROL);
  1657. tmp |= CURSOR_ENABLE;
  1658. OUTREG(CURSOR_CONTROL, tmp);
  1659. }
  1660. }
  1661. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1662. {
  1663. u32 tmp;
  1664. #if VERBOSE > 0
  1665. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1666. #endif
  1667. /*
  1668. * Sets the position. The coordinates are assumed to already
  1669. * have any offset adjusted. Assume that the cursor is never
  1670. * completely off-screen, and that x, y are always >= 0.
  1671. */
  1672. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1673. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1674. OUTREG(CURSOR_A_POSITION, tmp);
  1675. if (IS_I9XX(dinfo))
  1676. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1677. }
  1678. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1679. {
  1680. #if VERBOSE > 0
  1681. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1682. #endif
  1683. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1684. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1685. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1686. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1687. }
  1688. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1689. u8 *data)
  1690. {
  1691. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1692. int i, j, w = width / 8;
  1693. int mod = width % 8, t_mask, d_mask;
  1694. #if VERBOSE > 0
  1695. DBG_MSG("intelfbhw_cursor_load\n");
  1696. #endif
  1697. if (!dinfo->cursor.virtual)
  1698. return;
  1699. t_mask = 0xff >> mod;
  1700. d_mask = ~(0xff >> mod);
  1701. for (i = height; i--; ) {
  1702. for (j = 0; j < w; j++) {
  1703. writeb(0x00, addr + j);
  1704. writeb(*(data++), addr + j+8);
  1705. }
  1706. if (mod) {
  1707. writeb(t_mask, addr + j);
  1708. writeb(*(data++) & d_mask, addr + j+8);
  1709. }
  1710. addr += 16;
  1711. }
  1712. }
  1713. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1714. {
  1715. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1716. int i, j;
  1717. #if VERBOSE > 0
  1718. DBG_MSG("intelfbhw_cursor_reset\n");
  1719. #endif
  1720. if (!dinfo->cursor.virtual)
  1721. return;
  1722. for (i = 64; i--; ) {
  1723. for (j = 0; j < 8; j++) {
  1724. writeb(0xff, addr + j+0);
  1725. writeb(0x00, addr + j+8);
  1726. }
  1727. addr += 16;
  1728. }
  1729. }
  1730. static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
  1731. {
  1732. u16 tmp;
  1733. struct intelfb_info *dinfo = dev_id;
  1734. spin_lock(&dinfo->int_lock);
  1735. tmp = INREG16(IIR);
  1736. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1737. tmp &= PIPE_A_EVENT_INTERRUPT;
  1738. else
  1739. tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1740. if (tmp == 0) {
  1741. spin_unlock(&dinfo->int_lock);
  1742. return IRQ_RETVAL(0); /* not us */
  1743. }
  1744. /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
  1745. OUTREG(PIPEASTAT, INREG(PIPEASTAT));
  1746. OUTREG16(IIR, tmp);
  1747. if (dinfo->vsync.pan_display) {
  1748. dinfo->vsync.pan_display = 0;
  1749. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1750. }
  1751. dinfo->vsync.count++;
  1752. wake_up_interruptible(&dinfo->vsync.wait);
  1753. spin_unlock(&dinfo->int_lock);
  1754. return IRQ_RETVAL(1);
  1755. }
  1756. int intelfbhw_enable_irq(struct intelfb_info *dinfo)
  1757. {
  1758. u16 tmp;
  1759. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1760. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1761. "intelfb", dinfo)) {
  1762. clear_bit(0, &dinfo->irq_flags);
  1763. return -EINVAL;
  1764. }
  1765. spin_lock_irq(&dinfo->int_lock);
  1766. OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
  1767. OUTREG16(IMR, 0);
  1768. } else
  1769. spin_lock_irq(&dinfo->int_lock);
  1770. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1771. tmp = PIPE_A_EVENT_INTERRUPT;
  1772. else
  1773. tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1774. if (tmp != INREG16(IER)) {
  1775. DBG_MSG("changing IER to 0x%X\n", tmp);
  1776. OUTREG16(IER, tmp);
  1777. }
  1778. spin_unlock_irq(&dinfo->int_lock);
  1779. return 0;
  1780. }
  1781. void intelfbhw_disable_irq(struct intelfb_info *dinfo)
  1782. {
  1783. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1784. if (dinfo->vsync.pan_display) {
  1785. dinfo->vsync.pan_display = 0;
  1786. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1787. }
  1788. spin_lock_irq(&dinfo->int_lock);
  1789. OUTREG16(HWSTAM, 0xffff);
  1790. OUTREG16(IMR, 0xffff);
  1791. OUTREG16(IER, 0x0);
  1792. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1793. spin_unlock_irq(&dinfo->int_lock);
  1794. free_irq(dinfo->pdev->irq, dinfo);
  1795. }
  1796. }
  1797. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1798. {
  1799. struct intelfb_vsync *vsync;
  1800. unsigned int count;
  1801. int ret;
  1802. switch (pipe) {
  1803. case 0:
  1804. vsync = &dinfo->vsync;
  1805. break;
  1806. default:
  1807. return -ENODEV;
  1808. }
  1809. ret = intelfbhw_enable_irq(dinfo);
  1810. if (ret)
  1811. return ret;
  1812. count = vsync->count;
  1813. ret = wait_event_interruptible_timeout(vsync->wait,
  1814. count != vsync->count, HZ / 10);
  1815. if (ret < 0)
  1816. return ret;
  1817. if (ret == 0) {
  1818. DBG_MSG("wait_for_vsync timed out!\n");
  1819. return -ETIMEDOUT;
  1820. }
  1821. return 0;
  1822. }