e1000_82575.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright(c) 2007 - 2018 Intel Corporation. */
  3. /* e1000_82575
  4. * e1000_82576
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/types.h>
  8. #include <linux/if_ether.h>
  9. #include <linux/i2c.h>
  10. #include "e1000_mac.h"
  11. #include "e1000_82575.h"
  12. #include "e1000_i210.h"
  13. #include "igb.h"
  14. static s32 igb_get_invariants_82575(struct e1000_hw *);
  15. static s32 igb_acquire_phy_82575(struct e1000_hw *);
  16. static void igb_release_phy_82575(struct e1000_hw *);
  17. static s32 igb_acquire_nvm_82575(struct e1000_hw *);
  18. static void igb_release_nvm_82575(struct e1000_hw *);
  19. static s32 igb_check_for_link_82575(struct e1000_hw *);
  20. static s32 igb_get_cfg_done_82575(struct e1000_hw *);
  21. static s32 igb_init_hw_82575(struct e1000_hw *);
  22. static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  23. static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  24. static s32 igb_reset_hw_82575(struct e1000_hw *);
  25. static s32 igb_reset_hw_82580(struct e1000_hw *);
  26. static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  27. static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  28. static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  29. static s32 igb_setup_copper_link_82575(struct e1000_hw *);
  30. static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
  31. static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  32. static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  33. static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  34. static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  35. u16 *);
  36. static s32 igb_get_phy_id_82575(struct e1000_hw *);
  37. static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  38. static bool igb_sgmii_active_82575(struct e1000_hw *);
  39. static s32 igb_reset_init_script_82575(struct e1000_hw *);
  40. static s32 igb_read_mac_addr_82575(struct e1000_hw *);
  41. static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  42. static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  43. static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  44. static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  45. static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  46. static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  47. static const u16 e1000_82580_rxpbs_table[] = {
  48. 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  49. /* Due to a hw errata, if the host tries to configure the VFTA register
  50. * while performing queries from the BMC or DMA, then the VFTA in some
  51. * cases won't be written.
  52. */
  53. /**
  54. * igb_write_vfta_i350 - Write value to VLAN filter table
  55. * @hw: pointer to the HW structure
  56. * @offset: register offset in VLAN filter table
  57. * @value: register value written to VLAN filter table
  58. *
  59. * Writes value at the given offset in the register array which stores
  60. * the VLAN filter table.
  61. **/
  62. static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  63. {
  64. struct igb_adapter *adapter = hw->back;
  65. int i;
  66. for (i = 10; i--;)
  67. array_wr32(E1000_VFTA, offset, value);
  68. wrfl();
  69. adapter->shadow_vfta[offset] = value;
  70. }
  71. /**
  72. * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  73. * @hw: pointer to the HW structure
  74. *
  75. * Called to determine if the I2C pins are being used for I2C or as an
  76. * external MDIO interface since the two options are mutually exclusive.
  77. **/
  78. static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  79. {
  80. u32 reg = 0;
  81. bool ext_mdio = false;
  82. switch (hw->mac.type) {
  83. case e1000_82575:
  84. case e1000_82576:
  85. reg = rd32(E1000_MDIC);
  86. ext_mdio = !!(reg & E1000_MDIC_DEST);
  87. break;
  88. case e1000_82580:
  89. case e1000_i350:
  90. case e1000_i354:
  91. case e1000_i210:
  92. case e1000_i211:
  93. reg = rd32(E1000_MDICNFG);
  94. ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
  95. break;
  96. default:
  97. break;
  98. }
  99. return ext_mdio;
  100. }
  101. /**
  102. * igb_check_for_link_media_swap - Check which M88E1112 interface linked
  103. * @hw: pointer to the HW structure
  104. *
  105. * Poll the M88E1112 interfaces to see which interface achieved link.
  106. */
  107. static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
  108. {
  109. struct e1000_phy_info *phy = &hw->phy;
  110. s32 ret_val;
  111. u16 data;
  112. u8 port = 0;
  113. /* Check the copper medium. */
  114. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
  115. if (ret_val)
  116. return ret_val;
  117. ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
  118. if (ret_val)
  119. return ret_val;
  120. if (data & E1000_M88E1112_STATUS_LINK)
  121. port = E1000_MEDIA_PORT_COPPER;
  122. /* Check the other medium. */
  123. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
  124. if (ret_val)
  125. return ret_val;
  126. ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
  127. if (ret_val)
  128. return ret_val;
  129. if (data & E1000_M88E1112_STATUS_LINK)
  130. port = E1000_MEDIA_PORT_OTHER;
  131. /* Determine if a swap needs to happen. */
  132. if (port && (hw->dev_spec._82575.media_port != port)) {
  133. hw->dev_spec._82575.media_port = port;
  134. hw->dev_spec._82575.media_changed = true;
  135. }
  136. if (port == E1000_MEDIA_PORT_COPPER) {
  137. /* reset page to 0 */
  138. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
  139. if (ret_val)
  140. return ret_val;
  141. igb_check_for_link_82575(hw);
  142. } else {
  143. igb_check_for_link_82575(hw);
  144. /* reset page to 0 */
  145. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
  146. if (ret_val)
  147. return ret_val;
  148. }
  149. return 0;
  150. }
  151. /**
  152. * igb_init_phy_params_82575 - Init PHY func ptrs.
  153. * @hw: pointer to the HW structure
  154. **/
  155. static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
  156. {
  157. struct e1000_phy_info *phy = &hw->phy;
  158. s32 ret_val = 0;
  159. u32 ctrl_ext;
  160. if (hw->phy.media_type != e1000_media_type_copper) {
  161. phy->type = e1000_phy_none;
  162. goto out;
  163. }
  164. phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  165. phy->reset_delay_us = 100;
  166. ctrl_ext = rd32(E1000_CTRL_EXT);
  167. if (igb_sgmii_active_82575(hw)) {
  168. phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
  169. ctrl_ext |= E1000_CTRL_I2C_ENA;
  170. } else {
  171. phy->ops.reset = igb_phy_hw_reset;
  172. ctrl_ext &= ~E1000_CTRL_I2C_ENA;
  173. }
  174. wr32(E1000_CTRL_EXT, ctrl_ext);
  175. igb_reset_mdicnfg_82580(hw);
  176. if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
  177. phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
  178. phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
  179. } else {
  180. switch (hw->mac.type) {
  181. case e1000_82580:
  182. case e1000_i350:
  183. case e1000_i354:
  184. case e1000_i210:
  185. case e1000_i211:
  186. phy->ops.read_reg = igb_read_phy_reg_82580;
  187. phy->ops.write_reg = igb_write_phy_reg_82580;
  188. break;
  189. default:
  190. phy->ops.read_reg = igb_read_phy_reg_igp;
  191. phy->ops.write_reg = igb_write_phy_reg_igp;
  192. }
  193. }
  194. /* set lan id */
  195. hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
  196. E1000_STATUS_FUNC_SHIFT;
  197. /* Set phy->phy_addr and phy->id. */
  198. ret_val = igb_get_phy_id_82575(hw);
  199. if (ret_val)
  200. return ret_val;
  201. /* Verify phy id and set remaining function pointers */
  202. switch (phy->id) {
  203. case M88E1543_E_PHY_ID:
  204. case M88E1512_E_PHY_ID:
  205. case I347AT4_E_PHY_ID:
  206. case M88E1112_E_PHY_ID:
  207. case M88E1111_I_PHY_ID:
  208. phy->type = e1000_phy_m88;
  209. phy->ops.check_polarity = igb_check_polarity_m88;
  210. phy->ops.get_phy_info = igb_get_phy_info_m88;
  211. if (phy->id != M88E1111_I_PHY_ID)
  212. phy->ops.get_cable_length =
  213. igb_get_cable_length_m88_gen2;
  214. else
  215. phy->ops.get_cable_length = igb_get_cable_length_m88;
  216. phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
  217. /* Check if this PHY is configured for media swap. */
  218. if (phy->id == M88E1112_E_PHY_ID) {
  219. u16 data;
  220. ret_val = phy->ops.write_reg(hw,
  221. E1000_M88E1112_PAGE_ADDR,
  222. 2);
  223. if (ret_val)
  224. goto out;
  225. ret_val = phy->ops.read_reg(hw,
  226. E1000_M88E1112_MAC_CTRL_1,
  227. &data);
  228. if (ret_val)
  229. goto out;
  230. data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
  231. E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
  232. if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
  233. data == E1000_M88E1112_AUTO_COPPER_BASEX)
  234. hw->mac.ops.check_for_link =
  235. igb_check_for_link_media_swap;
  236. }
  237. if (phy->id == M88E1512_E_PHY_ID) {
  238. ret_val = igb_initialize_M88E1512_phy(hw);
  239. if (ret_val)
  240. goto out;
  241. }
  242. if (phy->id == M88E1543_E_PHY_ID) {
  243. ret_val = igb_initialize_M88E1543_phy(hw);
  244. if (ret_val)
  245. goto out;
  246. }
  247. break;
  248. case IGP03E1000_E_PHY_ID:
  249. phy->type = e1000_phy_igp_3;
  250. phy->ops.get_phy_info = igb_get_phy_info_igp;
  251. phy->ops.get_cable_length = igb_get_cable_length_igp_2;
  252. phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
  253. phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
  254. phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
  255. break;
  256. case I82580_I_PHY_ID:
  257. case I350_I_PHY_ID:
  258. phy->type = e1000_phy_82580;
  259. phy->ops.force_speed_duplex =
  260. igb_phy_force_speed_duplex_82580;
  261. phy->ops.get_cable_length = igb_get_cable_length_82580;
  262. phy->ops.get_phy_info = igb_get_phy_info_82580;
  263. phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
  264. phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
  265. break;
  266. case I210_I_PHY_ID:
  267. phy->type = e1000_phy_i210;
  268. phy->ops.check_polarity = igb_check_polarity_m88;
  269. phy->ops.get_cfg_done = igb_get_cfg_done_i210;
  270. phy->ops.get_phy_info = igb_get_phy_info_m88;
  271. phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
  272. phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
  273. phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
  274. phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
  275. break;
  276. case BCM54616_E_PHY_ID:
  277. phy->type = e1000_phy_bcm54616;
  278. break;
  279. default:
  280. ret_val = -E1000_ERR_PHY;
  281. goto out;
  282. }
  283. out:
  284. return ret_val;
  285. }
  286. /**
  287. * igb_init_nvm_params_82575 - Init NVM func ptrs.
  288. * @hw: pointer to the HW structure
  289. **/
  290. static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
  291. {
  292. struct e1000_nvm_info *nvm = &hw->nvm;
  293. u32 eecd = rd32(E1000_EECD);
  294. u16 size;
  295. size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
  296. E1000_EECD_SIZE_EX_SHIFT);
  297. /* Added to a constant, "size" becomes the left-shift value
  298. * for setting word_size.
  299. */
  300. size += NVM_WORD_SIZE_BASE_SHIFT;
  301. /* Just in case size is out of range, cap it to the largest
  302. * EEPROM size supported
  303. */
  304. if (size > 15)
  305. size = 15;
  306. nvm->word_size = BIT(size);
  307. nvm->opcode_bits = 8;
  308. nvm->delay_usec = 1;
  309. switch (nvm->override) {
  310. case e1000_nvm_override_spi_large:
  311. nvm->page_size = 32;
  312. nvm->address_bits = 16;
  313. break;
  314. case e1000_nvm_override_spi_small:
  315. nvm->page_size = 8;
  316. nvm->address_bits = 8;
  317. break;
  318. default:
  319. nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  320. nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
  321. 16 : 8;
  322. break;
  323. }
  324. if (nvm->word_size == BIT(15))
  325. nvm->page_size = 128;
  326. nvm->type = e1000_nvm_eeprom_spi;
  327. /* NVM Function Pointers */
  328. nvm->ops.acquire = igb_acquire_nvm_82575;
  329. nvm->ops.release = igb_release_nvm_82575;
  330. nvm->ops.write = igb_write_nvm_spi;
  331. nvm->ops.validate = igb_validate_nvm_checksum;
  332. nvm->ops.update = igb_update_nvm_checksum;
  333. if (nvm->word_size < BIT(15))
  334. nvm->ops.read = igb_read_nvm_eerd;
  335. else
  336. nvm->ops.read = igb_read_nvm_spi;
  337. /* override generic family function pointers for specific descendants */
  338. switch (hw->mac.type) {
  339. case e1000_82580:
  340. nvm->ops.validate = igb_validate_nvm_checksum_82580;
  341. nvm->ops.update = igb_update_nvm_checksum_82580;
  342. break;
  343. case e1000_i354:
  344. case e1000_i350:
  345. nvm->ops.validate = igb_validate_nvm_checksum_i350;
  346. nvm->ops.update = igb_update_nvm_checksum_i350;
  347. break;
  348. default:
  349. break;
  350. }
  351. return 0;
  352. }
  353. /**
  354. * igb_init_mac_params_82575 - Init MAC func ptrs.
  355. * @hw: pointer to the HW structure
  356. **/
  357. static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
  358. {
  359. struct e1000_mac_info *mac = &hw->mac;
  360. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  361. /* Set mta register count */
  362. mac->mta_reg_count = 128;
  363. /* Set uta register count */
  364. mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
  365. /* Set rar entry count */
  366. switch (mac->type) {
  367. case e1000_82576:
  368. mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
  369. break;
  370. case e1000_82580:
  371. mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
  372. break;
  373. case e1000_i350:
  374. case e1000_i354:
  375. mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
  376. break;
  377. default:
  378. mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
  379. break;
  380. }
  381. /* reset */
  382. if (mac->type >= e1000_82580)
  383. mac->ops.reset_hw = igb_reset_hw_82580;
  384. else
  385. mac->ops.reset_hw = igb_reset_hw_82575;
  386. if (mac->type >= e1000_i210) {
  387. mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
  388. mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
  389. } else {
  390. mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
  391. mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
  392. }
  393. if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
  394. mac->ops.write_vfta = igb_write_vfta_i350;
  395. else
  396. mac->ops.write_vfta = igb_write_vfta;
  397. /* Set if part includes ASF firmware */
  398. mac->asf_firmware_present = true;
  399. /* Set if manageability features are enabled. */
  400. mac->arc_subsystem_valid =
  401. (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
  402. ? true : false;
  403. /* enable EEE on i350 parts and later parts */
  404. if (mac->type >= e1000_i350)
  405. dev_spec->eee_disable = false;
  406. else
  407. dev_spec->eee_disable = true;
  408. /* Allow a single clear of the SW semaphore on I210 and newer */
  409. if (mac->type >= e1000_i210)
  410. dev_spec->clear_semaphore_once = true;
  411. /* physical interface link setup */
  412. mac->ops.setup_physical_interface =
  413. (hw->phy.media_type == e1000_media_type_copper)
  414. ? igb_setup_copper_link_82575
  415. : igb_setup_serdes_link_82575;
  416. if (mac->type == e1000_82580) {
  417. switch (hw->device_id) {
  418. /* feature not supported on these id's */
  419. case E1000_DEV_ID_DH89XXCC_SGMII:
  420. case E1000_DEV_ID_DH89XXCC_SERDES:
  421. case E1000_DEV_ID_DH89XXCC_BACKPLANE:
  422. case E1000_DEV_ID_DH89XXCC_SFP:
  423. break;
  424. default:
  425. hw->dev_spec._82575.mas_capable = true;
  426. break;
  427. }
  428. }
  429. return 0;
  430. }
  431. /**
  432. * igb_set_sfp_media_type_82575 - derives SFP module media type.
  433. * @hw: pointer to the HW structure
  434. *
  435. * The media type is chosen based on SFP module.
  436. * compatibility flags retrieved from SFP ID EEPROM.
  437. **/
  438. static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
  439. {
  440. s32 ret_val = E1000_ERR_CONFIG;
  441. u32 ctrl_ext = 0;
  442. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  443. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  444. u8 tranceiver_type = 0;
  445. s32 timeout = 3;
  446. /* Turn I2C interface ON and power on sfp cage */
  447. ctrl_ext = rd32(E1000_CTRL_EXT);
  448. ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
  449. wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
  450. wrfl();
  451. /* Read SFP module data */
  452. while (timeout) {
  453. ret_val = igb_read_sfp_data_byte(hw,
  454. E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
  455. &tranceiver_type);
  456. if (ret_val == 0)
  457. break;
  458. msleep(100);
  459. timeout--;
  460. }
  461. if (ret_val != 0)
  462. goto out;
  463. ret_val = igb_read_sfp_data_byte(hw,
  464. E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
  465. (u8 *)eth_flags);
  466. if (ret_val != 0)
  467. goto out;
  468. /* Check if there is some SFP module plugged and powered */
  469. if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
  470. (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
  471. dev_spec->module_plugged = true;
  472. if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
  473. hw->phy.media_type = e1000_media_type_internal_serdes;
  474. } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
  475. dev_spec->sgmii_active = true;
  476. hw->phy.media_type = e1000_media_type_internal_serdes;
  477. } else if (eth_flags->e1000_base_t) {
  478. dev_spec->sgmii_active = true;
  479. hw->phy.media_type = e1000_media_type_copper;
  480. } else {
  481. hw->phy.media_type = e1000_media_type_unknown;
  482. hw_dbg("PHY module has not been recognized\n");
  483. goto out;
  484. }
  485. } else {
  486. hw->phy.media_type = e1000_media_type_unknown;
  487. }
  488. ret_val = 0;
  489. out:
  490. /* Restore I2C interface setting */
  491. wr32(E1000_CTRL_EXT, ctrl_ext);
  492. return ret_val;
  493. }
  494. static s32 igb_get_invariants_82575(struct e1000_hw *hw)
  495. {
  496. struct e1000_mac_info *mac = &hw->mac;
  497. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  498. s32 ret_val;
  499. u32 ctrl_ext = 0;
  500. u32 link_mode = 0;
  501. switch (hw->device_id) {
  502. case E1000_DEV_ID_82575EB_COPPER:
  503. case E1000_DEV_ID_82575EB_FIBER_SERDES:
  504. case E1000_DEV_ID_82575GB_QUAD_COPPER:
  505. mac->type = e1000_82575;
  506. break;
  507. case E1000_DEV_ID_82576:
  508. case E1000_DEV_ID_82576_NS:
  509. case E1000_DEV_ID_82576_NS_SERDES:
  510. case E1000_DEV_ID_82576_FIBER:
  511. case E1000_DEV_ID_82576_SERDES:
  512. case E1000_DEV_ID_82576_QUAD_COPPER:
  513. case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  514. case E1000_DEV_ID_82576_SERDES_QUAD:
  515. mac->type = e1000_82576;
  516. break;
  517. case E1000_DEV_ID_82580_COPPER:
  518. case E1000_DEV_ID_82580_FIBER:
  519. case E1000_DEV_ID_82580_QUAD_FIBER:
  520. case E1000_DEV_ID_82580_SERDES:
  521. case E1000_DEV_ID_82580_SGMII:
  522. case E1000_DEV_ID_82580_COPPER_DUAL:
  523. case E1000_DEV_ID_DH89XXCC_SGMII:
  524. case E1000_DEV_ID_DH89XXCC_SERDES:
  525. case E1000_DEV_ID_DH89XXCC_BACKPLANE:
  526. case E1000_DEV_ID_DH89XXCC_SFP:
  527. mac->type = e1000_82580;
  528. break;
  529. case E1000_DEV_ID_I350_COPPER:
  530. case E1000_DEV_ID_I350_FIBER:
  531. case E1000_DEV_ID_I350_SERDES:
  532. case E1000_DEV_ID_I350_SGMII:
  533. mac->type = e1000_i350;
  534. break;
  535. case E1000_DEV_ID_I210_COPPER:
  536. case E1000_DEV_ID_I210_FIBER:
  537. case E1000_DEV_ID_I210_SERDES:
  538. case E1000_DEV_ID_I210_SGMII:
  539. case E1000_DEV_ID_I210_COPPER_FLASHLESS:
  540. case E1000_DEV_ID_I210_SERDES_FLASHLESS:
  541. mac->type = e1000_i210;
  542. break;
  543. case E1000_DEV_ID_I211_COPPER:
  544. mac->type = e1000_i211;
  545. break;
  546. case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
  547. case E1000_DEV_ID_I354_SGMII:
  548. case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
  549. mac->type = e1000_i354;
  550. break;
  551. default:
  552. return -E1000_ERR_MAC_INIT;
  553. }
  554. /* Set media type */
  555. /* The 82575 uses bits 22:23 for link mode. The mode can be changed
  556. * based on the EEPROM. We cannot rely upon device ID. There
  557. * is no distinguishable difference between fiber and internal
  558. * SerDes mode on the 82575. There can be an external PHY attached
  559. * on the SGMII interface. For this, we'll set sgmii_active to true.
  560. */
  561. hw->phy.media_type = e1000_media_type_copper;
  562. dev_spec->sgmii_active = false;
  563. dev_spec->module_plugged = false;
  564. ctrl_ext = rd32(E1000_CTRL_EXT);
  565. link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
  566. switch (link_mode) {
  567. case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
  568. hw->phy.media_type = e1000_media_type_internal_serdes;
  569. break;
  570. case E1000_CTRL_EXT_LINK_MODE_SGMII:
  571. /* Get phy control interface type set (MDIO vs. I2C)*/
  572. if (igb_sgmii_uses_mdio_82575(hw)) {
  573. hw->phy.media_type = e1000_media_type_copper;
  574. dev_spec->sgmii_active = true;
  575. break;
  576. }
  577. /* fall through for I2C based SGMII */
  578. case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
  579. /* read media type from SFP EEPROM */
  580. ret_val = igb_set_sfp_media_type_82575(hw);
  581. if ((ret_val != 0) ||
  582. (hw->phy.media_type == e1000_media_type_unknown)) {
  583. /* If media type was not identified then return media
  584. * type defined by the CTRL_EXT settings.
  585. */
  586. hw->phy.media_type = e1000_media_type_internal_serdes;
  587. if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
  588. hw->phy.media_type = e1000_media_type_copper;
  589. dev_spec->sgmii_active = true;
  590. }
  591. break;
  592. }
  593. /* change current link mode setting */
  594. ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
  595. if (dev_spec->sgmii_active)
  596. ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
  597. else
  598. ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  599. wr32(E1000_CTRL_EXT, ctrl_ext);
  600. break;
  601. default:
  602. break;
  603. }
  604. /* mac initialization and operations */
  605. ret_val = igb_init_mac_params_82575(hw);
  606. if (ret_val)
  607. goto out;
  608. /* NVM initialization */
  609. ret_val = igb_init_nvm_params_82575(hw);
  610. switch (hw->mac.type) {
  611. case e1000_i210:
  612. case e1000_i211:
  613. ret_val = igb_init_nvm_params_i210(hw);
  614. break;
  615. default:
  616. break;
  617. }
  618. if (ret_val)
  619. goto out;
  620. /* if part supports SR-IOV then initialize mailbox parameters */
  621. switch (mac->type) {
  622. case e1000_82576:
  623. case e1000_i350:
  624. igb_init_mbx_params_pf(hw);
  625. break;
  626. default:
  627. break;
  628. }
  629. /* setup PHY parameters */
  630. ret_val = igb_init_phy_params_82575(hw);
  631. out:
  632. return ret_val;
  633. }
  634. /**
  635. * igb_acquire_phy_82575 - Acquire rights to access PHY
  636. * @hw: pointer to the HW structure
  637. *
  638. * Acquire access rights to the correct PHY. This is a
  639. * function pointer entry point called by the api module.
  640. **/
  641. static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
  642. {
  643. u16 mask = E1000_SWFW_PHY0_SM;
  644. if (hw->bus.func == E1000_FUNC_1)
  645. mask = E1000_SWFW_PHY1_SM;
  646. else if (hw->bus.func == E1000_FUNC_2)
  647. mask = E1000_SWFW_PHY2_SM;
  648. else if (hw->bus.func == E1000_FUNC_3)
  649. mask = E1000_SWFW_PHY3_SM;
  650. return hw->mac.ops.acquire_swfw_sync(hw, mask);
  651. }
  652. /**
  653. * igb_release_phy_82575 - Release rights to access PHY
  654. * @hw: pointer to the HW structure
  655. *
  656. * A wrapper to release access rights to the correct PHY. This is a
  657. * function pointer entry point called by the api module.
  658. **/
  659. static void igb_release_phy_82575(struct e1000_hw *hw)
  660. {
  661. u16 mask = E1000_SWFW_PHY0_SM;
  662. if (hw->bus.func == E1000_FUNC_1)
  663. mask = E1000_SWFW_PHY1_SM;
  664. else if (hw->bus.func == E1000_FUNC_2)
  665. mask = E1000_SWFW_PHY2_SM;
  666. else if (hw->bus.func == E1000_FUNC_3)
  667. mask = E1000_SWFW_PHY3_SM;
  668. hw->mac.ops.release_swfw_sync(hw, mask);
  669. }
  670. /**
  671. * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
  672. * @hw: pointer to the HW structure
  673. * @offset: register offset to be read
  674. * @data: pointer to the read data
  675. *
  676. * Reads the PHY register at offset using the serial gigabit media independent
  677. * interface and stores the retrieved information in data.
  678. **/
  679. static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
  680. u16 *data)
  681. {
  682. s32 ret_val = -E1000_ERR_PARAM;
  683. if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
  684. hw_dbg("PHY Address %u is out of range\n", offset);
  685. goto out;
  686. }
  687. ret_val = hw->phy.ops.acquire(hw);
  688. if (ret_val)
  689. goto out;
  690. ret_val = igb_read_phy_reg_i2c(hw, offset, data);
  691. hw->phy.ops.release(hw);
  692. out:
  693. return ret_val;
  694. }
  695. /**
  696. * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
  697. * @hw: pointer to the HW structure
  698. * @offset: register offset to write to
  699. * @data: data to write at register offset
  700. *
  701. * Writes the data to PHY register at the offset using the serial gigabit
  702. * media independent interface.
  703. **/
  704. static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
  705. u16 data)
  706. {
  707. s32 ret_val = -E1000_ERR_PARAM;
  708. if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
  709. hw_dbg("PHY Address %d is out of range\n", offset);
  710. goto out;
  711. }
  712. ret_val = hw->phy.ops.acquire(hw);
  713. if (ret_val)
  714. goto out;
  715. ret_val = igb_write_phy_reg_i2c(hw, offset, data);
  716. hw->phy.ops.release(hw);
  717. out:
  718. return ret_val;
  719. }
  720. /**
  721. * igb_get_phy_id_82575 - Retrieve PHY addr and id
  722. * @hw: pointer to the HW structure
  723. *
  724. * Retrieves the PHY address and ID for both PHY's which do and do not use
  725. * sgmi interface.
  726. **/
  727. static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
  728. {
  729. struct e1000_phy_info *phy = &hw->phy;
  730. s32 ret_val = 0;
  731. u16 phy_id;
  732. u32 ctrl_ext;
  733. u32 mdic;
  734. /* Extra read required for some PHY's on i354 */
  735. if (hw->mac.type == e1000_i354)
  736. igb_get_phy_id(hw);
  737. /* For SGMII PHYs, we try the list of possible addresses until
  738. * we find one that works. For non-SGMII PHYs
  739. * (e.g. integrated copper PHYs), an address of 1 should
  740. * work. The result of this function should mean phy->phy_addr
  741. * and phy->id are set correctly.
  742. */
  743. if (!(igb_sgmii_active_82575(hw))) {
  744. phy->addr = 1;
  745. ret_val = igb_get_phy_id(hw);
  746. goto out;
  747. }
  748. if (igb_sgmii_uses_mdio_82575(hw)) {
  749. switch (hw->mac.type) {
  750. case e1000_82575:
  751. case e1000_82576:
  752. mdic = rd32(E1000_MDIC);
  753. mdic &= E1000_MDIC_PHY_MASK;
  754. phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
  755. break;
  756. case e1000_82580:
  757. case e1000_i350:
  758. case e1000_i354:
  759. case e1000_i210:
  760. case e1000_i211:
  761. mdic = rd32(E1000_MDICNFG);
  762. mdic &= E1000_MDICNFG_PHY_MASK;
  763. phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
  764. break;
  765. default:
  766. ret_val = -E1000_ERR_PHY;
  767. goto out;
  768. }
  769. ret_val = igb_get_phy_id(hw);
  770. goto out;
  771. }
  772. /* Power on sgmii phy if it is disabled */
  773. ctrl_ext = rd32(E1000_CTRL_EXT);
  774. wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
  775. wrfl();
  776. msleep(300);
  777. /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
  778. * Therefore, we need to test 1-7
  779. */
  780. for (phy->addr = 1; phy->addr < 8; phy->addr++) {
  781. ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
  782. if (ret_val == 0) {
  783. hw_dbg("Vendor ID 0x%08X read at address %u\n",
  784. phy_id, phy->addr);
  785. /* At the time of this writing, The M88 part is
  786. * the only supported SGMII PHY product.
  787. */
  788. if (phy_id == M88_VENDOR)
  789. break;
  790. } else {
  791. hw_dbg("PHY address %u was unreadable\n", phy->addr);
  792. }
  793. }
  794. /* A valid PHY type couldn't be found. */
  795. if (phy->addr == 8) {
  796. phy->addr = 0;
  797. ret_val = -E1000_ERR_PHY;
  798. goto out;
  799. } else {
  800. ret_val = igb_get_phy_id(hw);
  801. }
  802. /* restore previous sfp cage power state */
  803. wr32(E1000_CTRL_EXT, ctrl_ext);
  804. out:
  805. return ret_val;
  806. }
  807. /**
  808. * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
  809. * @hw: pointer to the HW structure
  810. *
  811. * Resets the PHY using the serial gigabit media independent interface.
  812. **/
  813. static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
  814. {
  815. struct e1000_phy_info *phy = &hw->phy;
  816. s32 ret_val;
  817. /* This isn't a true "hard" reset, but is the only reset
  818. * available to us at this time.
  819. */
  820. hw_dbg("Soft resetting SGMII attached PHY...\n");
  821. /* SFP documentation requires the following to configure the SPF module
  822. * to work on SGMII. No further documentation is given.
  823. */
  824. ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
  825. if (ret_val)
  826. goto out;
  827. ret_val = igb_phy_sw_reset(hw);
  828. if (ret_val)
  829. goto out;
  830. if (phy->id == M88E1512_E_PHY_ID)
  831. ret_val = igb_initialize_M88E1512_phy(hw);
  832. if (phy->id == M88E1543_E_PHY_ID)
  833. ret_val = igb_initialize_M88E1543_phy(hw);
  834. out:
  835. return ret_val;
  836. }
  837. /**
  838. * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
  839. * @hw: pointer to the HW structure
  840. * @active: true to enable LPLU, false to disable
  841. *
  842. * Sets the LPLU D0 state according to the active flag. When
  843. * activating LPLU this function also disables smart speed
  844. * and vice versa. LPLU will not be activated unless the
  845. * device autonegotiation advertisement meets standards of
  846. * either 10 or 10/100 or 10/100/1000 at all duplexes.
  847. * This is a function pointer entry point only called by
  848. * PHY setup routines.
  849. **/
  850. static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
  851. {
  852. struct e1000_phy_info *phy = &hw->phy;
  853. s32 ret_val;
  854. u16 data;
  855. ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
  856. if (ret_val)
  857. goto out;
  858. if (active) {
  859. data |= IGP02E1000_PM_D0_LPLU;
  860. ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
  861. data);
  862. if (ret_val)
  863. goto out;
  864. /* When LPLU is enabled, we should disable SmartSpeed */
  865. ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
  866. &data);
  867. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  868. ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
  869. data);
  870. if (ret_val)
  871. goto out;
  872. } else {
  873. data &= ~IGP02E1000_PM_D0_LPLU;
  874. ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
  875. data);
  876. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  877. * during Dx states where the power conservation is most
  878. * important. During driver activity we should enable
  879. * SmartSpeed, so performance is maintained.
  880. */
  881. if (phy->smart_speed == e1000_smart_speed_on) {
  882. ret_val = phy->ops.read_reg(hw,
  883. IGP01E1000_PHY_PORT_CONFIG, &data);
  884. if (ret_val)
  885. goto out;
  886. data |= IGP01E1000_PSCFR_SMART_SPEED;
  887. ret_val = phy->ops.write_reg(hw,
  888. IGP01E1000_PHY_PORT_CONFIG, data);
  889. if (ret_val)
  890. goto out;
  891. } else if (phy->smart_speed == e1000_smart_speed_off) {
  892. ret_val = phy->ops.read_reg(hw,
  893. IGP01E1000_PHY_PORT_CONFIG, &data);
  894. if (ret_val)
  895. goto out;
  896. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  897. ret_val = phy->ops.write_reg(hw,
  898. IGP01E1000_PHY_PORT_CONFIG, data);
  899. if (ret_val)
  900. goto out;
  901. }
  902. }
  903. out:
  904. return ret_val;
  905. }
  906. /**
  907. * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
  908. * @hw: pointer to the HW structure
  909. * @active: true to enable LPLU, false to disable
  910. *
  911. * Sets the LPLU D0 state according to the active flag. When
  912. * activating LPLU this function also disables smart speed
  913. * and vice versa. LPLU will not be activated unless the
  914. * device autonegotiation advertisement meets standards of
  915. * either 10 or 10/100 or 10/100/1000 at all duplexes.
  916. * This is a function pointer entry point only called by
  917. * PHY setup routines.
  918. **/
  919. static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
  920. {
  921. struct e1000_phy_info *phy = &hw->phy;
  922. u16 data;
  923. data = rd32(E1000_82580_PHY_POWER_MGMT);
  924. if (active) {
  925. data |= E1000_82580_PM_D0_LPLU;
  926. /* When LPLU is enabled, we should disable SmartSpeed */
  927. data &= ~E1000_82580_PM_SPD;
  928. } else {
  929. data &= ~E1000_82580_PM_D0_LPLU;
  930. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  931. * during Dx states where the power conservation is most
  932. * important. During driver activity we should enable
  933. * SmartSpeed, so performance is maintained.
  934. */
  935. if (phy->smart_speed == e1000_smart_speed_on)
  936. data |= E1000_82580_PM_SPD;
  937. else if (phy->smart_speed == e1000_smart_speed_off)
  938. data &= ~E1000_82580_PM_SPD; }
  939. wr32(E1000_82580_PHY_POWER_MGMT, data);
  940. return 0;
  941. }
  942. /**
  943. * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
  944. * @hw: pointer to the HW structure
  945. * @active: boolean used to enable/disable lplu
  946. *
  947. * Success returns 0, Failure returns 1
  948. *
  949. * The low power link up (lplu) state is set to the power management level D3
  950. * and SmartSpeed is disabled when active is true, else clear lplu for D3
  951. * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
  952. * is used during Dx states where the power conservation is most important.
  953. * During driver activity, SmartSpeed should be enabled so performance is
  954. * maintained.
  955. **/
  956. static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
  957. {
  958. struct e1000_phy_info *phy = &hw->phy;
  959. u16 data;
  960. data = rd32(E1000_82580_PHY_POWER_MGMT);
  961. if (!active) {
  962. data &= ~E1000_82580_PM_D3_LPLU;
  963. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  964. * during Dx states where the power conservation is most
  965. * important. During driver activity we should enable
  966. * SmartSpeed, so performance is maintained.
  967. */
  968. if (phy->smart_speed == e1000_smart_speed_on)
  969. data |= E1000_82580_PM_SPD;
  970. else if (phy->smart_speed == e1000_smart_speed_off)
  971. data &= ~E1000_82580_PM_SPD;
  972. } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
  973. (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
  974. (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
  975. data |= E1000_82580_PM_D3_LPLU;
  976. /* When LPLU is enabled, we should disable SmartSpeed */
  977. data &= ~E1000_82580_PM_SPD;
  978. }
  979. wr32(E1000_82580_PHY_POWER_MGMT, data);
  980. return 0;
  981. }
  982. /**
  983. * igb_acquire_nvm_82575 - Request for access to EEPROM
  984. * @hw: pointer to the HW structure
  985. *
  986. * Acquire the necessary semaphores for exclusive access to the EEPROM.
  987. * Set the EEPROM access request bit and wait for EEPROM access grant bit.
  988. * Return successful if access grant bit set, else clear the request for
  989. * EEPROM access and return -E1000_ERR_NVM (-1).
  990. **/
  991. static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
  992. {
  993. s32 ret_val;
  994. ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
  995. if (ret_val)
  996. goto out;
  997. ret_val = igb_acquire_nvm(hw);
  998. if (ret_val)
  999. hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
  1000. out:
  1001. return ret_val;
  1002. }
  1003. /**
  1004. * igb_release_nvm_82575 - Release exclusive access to EEPROM
  1005. * @hw: pointer to the HW structure
  1006. *
  1007. * Stop any current commands to the EEPROM and clear the EEPROM request bit,
  1008. * then release the semaphores acquired.
  1009. **/
  1010. static void igb_release_nvm_82575(struct e1000_hw *hw)
  1011. {
  1012. igb_release_nvm(hw);
  1013. hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
  1014. }
  1015. /**
  1016. * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
  1017. * @hw: pointer to the HW structure
  1018. * @mask: specifies which semaphore to acquire
  1019. *
  1020. * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
  1021. * will also specify which port we're acquiring the lock for.
  1022. **/
  1023. static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
  1024. {
  1025. u32 swfw_sync;
  1026. u32 swmask = mask;
  1027. u32 fwmask = mask << 16;
  1028. s32 ret_val = 0;
  1029. s32 i = 0, timeout = 200;
  1030. while (i < timeout) {
  1031. if (igb_get_hw_semaphore(hw)) {
  1032. ret_val = -E1000_ERR_SWFW_SYNC;
  1033. goto out;
  1034. }
  1035. swfw_sync = rd32(E1000_SW_FW_SYNC);
  1036. if (!(swfw_sync & (fwmask | swmask)))
  1037. break;
  1038. /* Firmware currently using resource (fwmask)
  1039. * or other software thread using resource (swmask)
  1040. */
  1041. igb_put_hw_semaphore(hw);
  1042. mdelay(5);
  1043. i++;
  1044. }
  1045. if (i == timeout) {
  1046. hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
  1047. ret_val = -E1000_ERR_SWFW_SYNC;
  1048. goto out;
  1049. }
  1050. swfw_sync |= swmask;
  1051. wr32(E1000_SW_FW_SYNC, swfw_sync);
  1052. igb_put_hw_semaphore(hw);
  1053. out:
  1054. return ret_val;
  1055. }
  1056. /**
  1057. * igb_release_swfw_sync_82575 - Release SW/FW semaphore
  1058. * @hw: pointer to the HW structure
  1059. * @mask: specifies which semaphore to acquire
  1060. *
  1061. * Release the SW/FW semaphore used to access the PHY or NVM. The mask
  1062. * will also specify which port we're releasing the lock for.
  1063. **/
  1064. static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
  1065. {
  1066. u32 swfw_sync;
  1067. while (igb_get_hw_semaphore(hw) != 0)
  1068. ; /* Empty */
  1069. swfw_sync = rd32(E1000_SW_FW_SYNC);
  1070. swfw_sync &= ~mask;
  1071. wr32(E1000_SW_FW_SYNC, swfw_sync);
  1072. igb_put_hw_semaphore(hw);
  1073. }
  1074. /**
  1075. * igb_get_cfg_done_82575 - Read config done bit
  1076. * @hw: pointer to the HW structure
  1077. *
  1078. * Read the management control register for the config done bit for
  1079. * completion status. NOTE: silicon which is EEPROM-less will fail trying
  1080. * to read the config done bit, so an error is *ONLY* logged and returns
  1081. * 0. If we were to return with error, EEPROM-less silicon
  1082. * would not be able to be reset or change link.
  1083. **/
  1084. static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
  1085. {
  1086. s32 timeout = PHY_CFG_TIMEOUT;
  1087. u32 mask = E1000_NVM_CFG_DONE_PORT_0;
  1088. if (hw->bus.func == 1)
  1089. mask = E1000_NVM_CFG_DONE_PORT_1;
  1090. else if (hw->bus.func == E1000_FUNC_2)
  1091. mask = E1000_NVM_CFG_DONE_PORT_2;
  1092. else if (hw->bus.func == E1000_FUNC_3)
  1093. mask = E1000_NVM_CFG_DONE_PORT_3;
  1094. while (timeout) {
  1095. if (rd32(E1000_EEMNGCTL) & mask)
  1096. break;
  1097. usleep_range(1000, 2000);
  1098. timeout--;
  1099. }
  1100. if (!timeout)
  1101. hw_dbg("MNG configuration cycle has not completed.\n");
  1102. /* If EEPROM is not marked present, init the PHY manually */
  1103. if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
  1104. (hw->phy.type == e1000_phy_igp_3))
  1105. igb_phy_init_script_igp3(hw);
  1106. return 0;
  1107. }
  1108. /**
  1109. * igb_get_link_up_info_82575 - Get link speed/duplex info
  1110. * @hw: pointer to the HW structure
  1111. * @speed: stores the current speed
  1112. * @duplex: stores the current duplex
  1113. *
  1114. * This is a wrapper function, if using the serial gigabit media independent
  1115. * interface, use PCS to retrieve the link speed and duplex information.
  1116. * Otherwise, use the generic function to get the link speed and duplex info.
  1117. **/
  1118. static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
  1119. u16 *duplex)
  1120. {
  1121. s32 ret_val;
  1122. if (hw->phy.media_type != e1000_media_type_copper)
  1123. ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
  1124. duplex);
  1125. else
  1126. ret_val = igb_get_speed_and_duplex_copper(hw, speed,
  1127. duplex);
  1128. return ret_val;
  1129. }
  1130. /**
  1131. * igb_check_for_link_82575 - Check for link
  1132. * @hw: pointer to the HW structure
  1133. *
  1134. * If sgmii is enabled, then use the pcs register to determine link, otherwise
  1135. * use the generic interface for determining link.
  1136. **/
  1137. static s32 igb_check_for_link_82575(struct e1000_hw *hw)
  1138. {
  1139. s32 ret_val;
  1140. u16 speed, duplex;
  1141. if (hw->phy.media_type != e1000_media_type_copper) {
  1142. ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
  1143. &duplex);
  1144. /* Use this flag to determine if link needs to be checked or
  1145. * not. If we have link clear the flag so that we do not
  1146. * continue to check for link.
  1147. */
  1148. hw->mac.get_link_status = !hw->mac.serdes_has_link;
  1149. /* Configure Flow Control now that Auto-Neg has completed.
  1150. * First, we need to restore the desired flow control
  1151. * settings because we may have had to re-autoneg with a
  1152. * different link partner.
  1153. */
  1154. ret_val = igb_config_fc_after_link_up(hw);
  1155. if (ret_val)
  1156. hw_dbg("Error configuring flow control\n");
  1157. } else {
  1158. ret_val = igb_check_for_copper_link(hw);
  1159. }
  1160. return ret_val;
  1161. }
  1162. /**
  1163. * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
  1164. * @hw: pointer to the HW structure
  1165. **/
  1166. void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
  1167. {
  1168. u32 reg;
  1169. if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
  1170. !igb_sgmii_active_82575(hw))
  1171. return;
  1172. /* Enable PCS to turn on link */
  1173. reg = rd32(E1000_PCS_CFG0);
  1174. reg |= E1000_PCS_CFG_PCS_EN;
  1175. wr32(E1000_PCS_CFG0, reg);
  1176. /* Power up the laser */
  1177. reg = rd32(E1000_CTRL_EXT);
  1178. reg &= ~E1000_CTRL_EXT_SDP3_DATA;
  1179. wr32(E1000_CTRL_EXT, reg);
  1180. /* flush the write to verify completion */
  1181. wrfl();
  1182. usleep_range(1000, 2000);
  1183. }
  1184. /**
  1185. * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
  1186. * @hw: pointer to the HW structure
  1187. * @speed: stores the current speed
  1188. * @duplex: stores the current duplex
  1189. *
  1190. * Using the physical coding sub-layer (PCS), retrieve the current speed and
  1191. * duplex, then store the values in the pointers provided.
  1192. **/
  1193. static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
  1194. u16 *duplex)
  1195. {
  1196. struct e1000_mac_info *mac = &hw->mac;
  1197. u32 pcs, status;
  1198. /* Set up defaults for the return values of this function */
  1199. mac->serdes_has_link = false;
  1200. *speed = 0;
  1201. *duplex = 0;
  1202. /* Read the PCS Status register for link state. For non-copper mode,
  1203. * the status register is not accurate. The PCS status register is
  1204. * used instead.
  1205. */
  1206. pcs = rd32(E1000_PCS_LSTAT);
  1207. /* The link up bit determines when link is up on autoneg. The sync ok
  1208. * gets set once both sides sync up and agree upon link. Stable link
  1209. * can be determined by checking for both link up and link sync ok
  1210. */
  1211. if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
  1212. mac->serdes_has_link = true;
  1213. /* Detect and store PCS speed */
  1214. if (pcs & E1000_PCS_LSTS_SPEED_1000)
  1215. *speed = SPEED_1000;
  1216. else if (pcs & E1000_PCS_LSTS_SPEED_100)
  1217. *speed = SPEED_100;
  1218. else
  1219. *speed = SPEED_10;
  1220. /* Detect and store PCS duplex */
  1221. if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
  1222. *duplex = FULL_DUPLEX;
  1223. else
  1224. *duplex = HALF_DUPLEX;
  1225. /* Check if it is an I354 2.5Gb backplane connection. */
  1226. if (mac->type == e1000_i354) {
  1227. status = rd32(E1000_STATUS);
  1228. if ((status & E1000_STATUS_2P5_SKU) &&
  1229. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  1230. *speed = SPEED_2500;
  1231. *duplex = FULL_DUPLEX;
  1232. hw_dbg("2500 Mbs, ");
  1233. hw_dbg("Full Duplex\n");
  1234. }
  1235. }
  1236. }
  1237. return 0;
  1238. }
  1239. /**
  1240. * igb_shutdown_serdes_link_82575 - Remove link during power down
  1241. * @hw: pointer to the HW structure
  1242. *
  1243. * In the case of fiber serdes, shut down optics and PCS on driver unload
  1244. * when management pass thru is not enabled.
  1245. **/
  1246. void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
  1247. {
  1248. u32 reg;
  1249. if (hw->phy.media_type != e1000_media_type_internal_serdes &&
  1250. igb_sgmii_active_82575(hw))
  1251. return;
  1252. if (!igb_enable_mng_pass_thru(hw)) {
  1253. /* Disable PCS to turn off link */
  1254. reg = rd32(E1000_PCS_CFG0);
  1255. reg &= ~E1000_PCS_CFG_PCS_EN;
  1256. wr32(E1000_PCS_CFG0, reg);
  1257. /* shutdown the laser */
  1258. reg = rd32(E1000_CTRL_EXT);
  1259. reg |= E1000_CTRL_EXT_SDP3_DATA;
  1260. wr32(E1000_CTRL_EXT, reg);
  1261. /* flush the write to verify completion */
  1262. wrfl();
  1263. usleep_range(1000, 2000);
  1264. }
  1265. }
  1266. /**
  1267. * igb_reset_hw_82575 - Reset hardware
  1268. * @hw: pointer to the HW structure
  1269. *
  1270. * This resets the hardware into a known state. This is a
  1271. * function pointer entry point called by the api module.
  1272. **/
  1273. static s32 igb_reset_hw_82575(struct e1000_hw *hw)
  1274. {
  1275. u32 ctrl;
  1276. s32 ret_val;
  1277. /* Prevent the PCI-E bus from sticking if there is no TLP connection
  1278. * on the last TLP read/write transaction when MAC is reset.
  1279. */
  1280. ret_val = igb_disable_pcie_master(hw);
  1281. if (ret_val)
  1282. hw_dbg("PCI-E Master disable polling has failed.\n");
  1283. /* set the completion timeout for interface */
  1284. ret_val = igb_set_pcie_completion_timeout(hw);
  1285. if (ret_val)
  1286. hw_dbg("PCI-E Set completion timeout has failed.\n");
  1287. hw_dbg("Masking off all interrupts\n");
  1288. wr32(E1000_IMC, 0xffffffff);
  1289. wr32(E1000_RCTL, 0);
  1290. wr32(E1000_TCTL, E1000_TCTL_PSP);
  1291. wrfl();
  1292. usleep_range(10000, 20000);
  1293. ctrl = rd32(E1000_CTRL);
  1294. hw_dbg("Issuing a global reset to MAC\n");
  1295. wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
  1296. ret_val = igb_get_auto_rd_done(hw);
  1297. if (ret_val) {
  1298. /* When auto config read does not complete, do not
  1299. * return with an error. This can happen in situations
  1300. * where there is no eeprom and prevents getting link.
  1301. */
  1302. hw_dbg("Auto Read Done did not complete\n");
  1303. }
  1304. /* If EEPROM is not present, run manual init scripts */
  1305. if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
  1306. igb_reset_init_script_82575(hw);
  1307. /* Clear any pending interrupt events. */
  1308. wr32(E1000_IMC, 0xffffffff);
  1309. rd32(E1000_ICR);
  1310. /* Install any alternate MAC address into RAR0 */
  1311. ret_val = igb_check_alt_mac_addr(hw);
  1312. return ret_val;
  1313. }
  1314. /**
  1315. * igb_init_hw_82575 - Initialize hardware
  1316. * @hw: pointer to the HW structure
  1317. *
  1318. * This inits the hardware readying it for operation.
  1319. **/
  1320. static s32 igb_init_hw_82575(struct e1000_hw *hw)
  1321. {
  1322. struct e1000_mac_info *mac = &hw->mac;
  1323. s32 ret_val;
  1324. u16 i, rar_count = mac->rar_entry_count;
  1325. if ((hw->mac.type >= e1000_i210) &&
  1326. !(igb_get_flash_presence_i210(hw))) {
  1327. ret_val = igb_pll_workaround_i210(hw);
  1328. if (ret_val)
  1329. return ret_val;
  1330. }
  1331. /* Initialize identification LED */
  1332. ret_val = igb_id_led_init(hw);
  1333. if (ret_val) {
  1334. hw_dbg("Error initializing identification LED\n");
  1335. /* This is not fatal and we should not stop init due to this */
  1336. }
  1337. /* Disabling VLAN filtering */
  1338. hw_dbg("Initializing the IEEE VLAN\n");
  1339. igb_clear_vfta(hw);
  1340. /* Setup the receive address */
  1341. igb_init_rx_addrs(hw, rar_count);
  1342. /* Zero out the Multicast HASH table */
  1343. hw_dbg("Zeroing the MTA\n");
  1344. for (i = 0; i < mac->mta_reg_count; i++)
  1345. array_wr32(E1000_MTA, i, 0);
  1346. /* Zero out the Unicast HASH table */
  1347. hw_dbg("Zeroing the UTA\n");
  1348. for (i = 0; i < mac->uta_reg_count; i++)
  1349. array_wr32(E1000_UTA, i, 0);
  1350. /* Setup link and flow control */
  1351. ret_val = igb_setup_link(hw);
  1352. /* Clear all of the statistics registers (clear on read). It is
  1353. * important that we do this after we have tried to establish link
  1354. * because the symbol error count will increment wildly if there
  1355. * is no link.
  1356. */
  1357. igb_clear_hw_cntrs_82575(hw);
  1358. return ret_val;
  1359. }
  1360. /**
  1361. * igb_setup_copper_link_82575 - Configure copper link settings
  1362. * @hw: pointer to the HW structure
  1363. *
  1364. * Configures the link for auto-neg or forced speed and duplex. Then we check
  1365. * for link, once link is established calls to configure collision distance
  1366. * and flow control are called.
  1367. **/
  1368. static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
  1369. {
  1370. u32 ctrl;
  1371. s32 ret_val;
  1372. u32 phpm_reg;
  1373. ctrl = rd32(E1000_CTRL);
  1374. ctrl |= E1000_CTRL_SLU;
  1375. ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
  1376. wr32(E1000_CTRL, ctrl);
  1377. /* Clear Go Link Disconnect bit on supported devices */
  1378. switch (hw->mac.type) {
  1379. case e1000_82580:
  1380. case e1000_i350:
  1381. case e1000_i210:
  1382. case e1000_i211:
  1383. phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
  1384. phpm_reg &= ~E1000_82580_PM_GO_LINKD;
  1385. wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
  1386. break;
  1387. default:
  1388. break;
  1389. }
  1390. ret_val = igb_setup_serdes_link_82575(hw);
  1391. if (ret_val)
  1392. goto out;
  1393. if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
  1394. /* allow time for SFP cage time to power up phy */
  1395. msleep(300);
  1396. ret_val = hw->phy.ops.reset(hw);
  1397. if (ret_val) {
  1398. hw_dbg("Error resetting the PHY.\n");
  1399. goto out;
  1400. }
  1401. }
  1402. switch (hw->phy.type) {
  1403. case e1000_phy_i210:
  1404. case e1000_phy_m88:
  1405. switch (hw->phy.id) {
  1406. case I347AT4_E_PHY_ID:
  1407. case M88E1112_E_PHY_ID:
  1408. case M88E1543_E_PHY_ID:
  1409. case M88E1512_E_PHY_ID:
  1410. case I210_I_PHY_ID:
  1411. ret_val = igb_copper_link_setup_m88_gen2(hw);
  1412. break;
  1413. default:
  1414. ret_val = igb_copper_link_setup_m88(hw);
  1415. break;
  1416. }
  1417. break;
  1418. case e1000_phy_igp_3:
  1419. ret_val = igb_copper_link_setup_igp(hw);
  1420. break;
  1421. case e1000_phy_82580:
  1422. ret_val = igb_copper_link_setup_82580(hw);
  1423. break;
  1424. case e1000_phy_bcm54616:
  1425. ret_val = 0;
  1426. break;
  1427. default:
  1428. ret_val = -E1000_ERR_PHY;
  1429. break;
  1430. }
  1431. if (ret_val)
  1432. goto out;
  1433. ret_val = igb_setup_copper_link(hw);
  1434. out:
  1435. return ret_val;
  1436. }
  1437. /**
  1438. * igb_setup_serdes_link_82575 - Setup link for serdes
  1439. * @hw: pointer to the HW structure
  1440. *
  1441. * Configure the physical coding sub-layer (PCS) link. The PCS link is
  1442. * used on copper connections where the serialized gigabit media independent
  1443. * interface (sgmii), or serdes fiber is being used. Configures the link
  1444. * for auto-negotiation or forces speed/duplex.
  1445. **/
  1446. static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
  1447. {
  1448. u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
  1449. bool pcs_autoneg;
  1450. s32 ret_val = 0;
  1451. u16 data;
  1452. if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
  1453. !igb_sgmii_active_82575(hw))
  1454. return ret_val;
  1455. /* On the 82575, SerDes loopback mode persists until it is
  1456. * explicitly turned off or a power cycle is performed. A read to
  1457. * the register does not indicate its status. Therefore, we ensure
  1458. * loopback mode is disabled during initialization.
  1459. */
  1460. wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
  1461. /* power on the sfp cage if present and turn on I2C */
  1462. ctrl_ext = rd32(E1000_CTRL_EXT);
  1463. ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
  1464. ctrl_ext |= E1000_CTRL_I2C_ENA;
  1465. wr32(E1000_CTRL_EXT, ctrl_ext);
  1466. ctrl_reg = rd32(E1000_CTRL);
  1467. ctrl_reg |= E1000_CTRL_SLU;
  1468. if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
  1469. /* set both sw defined pins */
  1470. ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
  1471. /* Set switch control to serdes energy detect */
  1472. reg = rd32(E1000_CONNSW);
  1473. reg |= E1000_CONNSW_ENRGSRC;
  1474. wr32(E1000_CONNSW, reg);
  1475. }
  1476. reg = rd32(E1000_PCS_LCTL);
  1477. /* default pcs_autoneg to the same setting as mac autoneg */
  1478. pcs_autoneg = hw->mac.autoneg;
  1479. switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1480. case E1000_CTRL_EXT_LINK_MODE_SGMII:
  1481. /* sgmii mode lets the phy handle forcing speed/duplex */
  1482. pcs_autoneg = true;
  1483. /* autoneg time out should be disabled for SGMII mode */
  1484. reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
  1485. break;
  1486. case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
  1487. /* disable PCS autoneg and support parallel detect only */
  1488. pcs_autoneg = false;
  1489. /* fall through */
  1490. default:
  1491. if (hw->mac.type == e1000_82575 ||
  1492. hw->mac.type == e1000_82576) {
  1493. ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
  1494. if (ret_val) {
  1495. hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
  1496. return ret_val;
  1497. }
  1498. if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
  1499. pcs_autoneg = false;
  1500. }
  1501. /* non-SGMII modes only supports a speed of 1000/Full for the
  1502. * link so it is best to just force the MAC and let the pcs
  1503. * link either autoneg or be forced to 1000/Full
  1504. */
  1505. ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
  1506. E1000_CTRL_FD | E1000_CTRL_FRCDPX;
  1507. /* set speed of 1000/Full if speed/duplex is forced */
  1508. reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
  1509. break;
  1510. }
  1511. wr32(E1000_CTRL, ctrl_reg);
  1512. /* New SerDes mode allows for forcing speed or autonegotiating speed
  1513. * at 1gb. Autoneg should be default set by most drivers. This is the
  1514. * mode that will be compatible with older link partners and switches.
  1515. * However, both are supported by the hardware and some drivers/tools.
  1516. */
  1517. reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
  1518. E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
  1519. if (pcs_autoneg) {
  1520. /* Set PCS register for autoneg */
  1521. reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
  1522. E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
  1523. /* Disable force flow control for autoneg */
  1524. reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
  1525. /* Configure flow control advertisement for autoneg */
  1526. anadv_reg = rd32(E1000_PCS_ANADV);
  1527. anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
  1528. switch (hw->fc.requested_mode) {
  1529. case e1000_fc_full:
  1530. case e1000_fc_rx_pause:
  1531. anadv_reg |= E1000_TXCW_ASM_DIR;
  1532. anadv_reg |= E1000_TXCW_PAUSE;
  1533. break;
  1534. case e1000_fc_tx_pause:
  1535. anadv_reg |= E1000_TXCW_ASM_DIR;
  1536. break;
  1537. default:
  1538. break;
  1539. }
  1540. wr32(E1000_PCS_ANADV, anadv_reg);
  1541. hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
  1542. } else {
  1543. /* Set PCS register for forced link */
  1544. reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
  1545. /* Force flow control for forced link */
  1546. reg |= E1000_PCS_LCTL_FORCE_FCTRL;
  1547. hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
  1548. }
  1549. wr32(E1000_PCS_LCTL, reg);
  1550. if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
  1551. igb_force_mac_fc(hw);
  1552. return ret_val;
  1553. }
  1554. /**
  1555. * igb_sgmii_active_82575 - Return sgmii state
  1556. * @hw: pointer to the HW structure
  1557. *
  1558. * 82575 silicon has a serialized gigabit media independent interface (sgmii)
  1559. * which can be enabled for use in the embedded applications. Simply
  1560. * return the current state of the sgmii interface.
  1561. **/
  1562. static bool igb_sgmii_active_82575(struct e1000_hw *hw)
  1563. {
  1564. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  1565. return dev_spec->sgmii_active;
  1566. }
  1567. /**
  1568. * igb_reset_init_script_82575 - Inits HW defaults after reset
  1569. * @hw: pointer to the HW structure
  1570. *
  1571. * Inits recommended HW defaults after a reset when there is no EEPROM
  1572. * detected. This is only for the 82575.
  1573. **/
  1574. static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
  1575. {
  1576. if (hw->mac.type == e1000_82575) {
  1577. hw_dbg("Running reset init script for 82575\n");
  1578. /* SerDes configuration via SERDESCTRL */
  1579. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
  1580. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
  1581. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
  1582. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
  1583. /* CCM configuration via CCMCTL register */
  1584. igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
  1585. igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
  1586. /* PCIe lanes configuration */
  1587. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
  1588. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
  1589. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
  1590. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
  1591. /* PCIe PLL Configuration */
  1592. igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
  1593. igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
  1594. igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
  1595. }
  1596. return 0;
  1597. }
  1598. /**
  1599. * igb_read_mac_addr_82575 - Read device MAC address
  1600. * @hw: pointer to the HW structure
  1601. **/
  1602. static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
  1603. {
  1604. s32 ret_val = 0;
  1605. /* If there's an alternate MAC address place it in RAR0
  1606. * so that it will override the Si installed default perm
  1607. * address.
  1608. */
  1609. ret_val = igb_check_alt_mac_addr(hw);
  1610. if (ret_val)
  1611. goto out;
  1612. ret_val = igb_read_mac_addr(hw);
  1613. out:
  1614. return ret_val;
  1615. }
  1616. /**
  1617. * igb_power_down_phy_copper_82575 - Remove link during PHY power down
  1618. * @hw: pointer to the HW structure
  1619. *
  1620. * In the case of a PHY power down to save power, or to turn off link during a
  1621. * driver unload, or wake on lan is not enabled, remove the link.
  1622. **/
  1623. void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
  1624. {
  1625. /* If the management interface is not enabled, then power down */
  1626. if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
  1627. igb_power_down_phy_copper(hw);
  1628. }
  1629. /**
  1630. * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
  1631. * @hw: pointer to the HW structure
  1632. *
  1633. * Clears the hardware counters by reading the counter registers.
  1634. **/
  1635. static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
  1636. {
  1637. igb_clear_hw_cntrs_base(hw);
  1638. rd32(E1000_PRC64);
  1639. rd32(E1000_PRC127);
  1640. rd32(E1000_PRC255);
  1641. rd32(E1000_PRC511);
  1642. rd32(E1000_PRC1023);
  1643. rd32(E1000_PRC1522);
  1644. rd32(E1000_PTC64);
  1645. rd32(E1000_PTC127);
  1646. rd32(E1000_PTC255);
  1647. rd32(E1000_PTC511);
  1648. rd32(E1000_PTC1023);
  1649. rd32(E1000_PTC1522);
  1650. rd32(E1000_ALGNERRC);
  1651. rd32(E1000_RXERRC);
  1652. rd32(E1000_TNCRS);
  1653. rd32(E1000_CEXTERR);
  1654. rd32(E1000_TSCTC);
  1655. rd32(E1000_TSCTFC);
  1656. rd32(E1000_MGTPRC);
  1657. rd32(E1000_MGTPDC);
  1658. rd32(E1000_MGTPTC);
  1659. rd32(E1000_IAC);
  1660. rd32(E1000_ICRXOC);
  1661. rd32(E1000_ICRXPTC);
  1662. rd32(E1000_ICRXATC);
  1663. rd32(E1000_ICTXPTC);
  1664. rd32(E1000_ICTXATC);
  1665. rd32(E1000_ICTXQEC);
  1666. rd32(E1000_ICTXQMTC);
  1667. rd32(E1000_ICRXDMTC);
  1668. rd32(E1000_CBTMPC);
  1669. rd32(E1000_HTDPMC);
  1670. rd32(E1000_CBRMPC);
  1671. rd32(E1000_RPTHC);
  1672. rd32(E1000_HGPTC);
  1673. rd32(E1000_HTCBDPC);
  1674. rd32(E1000_HGORCL);
  1675. rd32(E1000_HGORCH);
  1676. rd32(E1000_HGOTCL);
  1677. rd32(E1000_HGOTCH);
  1678. rd32(E1000_LENERRS);
  1679. /* This register should not be read in copper configurations */
  1680. if (hw->phy.media_type == e1000_media_type_internal_serdes ||
  1681. igb_sgmii_active_82575(hw))
  1682. rd32(E1000_SCVPC);
  1683. }
  1684. /**
  1685. * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
  1686. * @hw: pointer to the HW structure
  1687. *
  1688. * After rx enable if manageability is enabled then there is likely some
  1689. * bad data at the start of the fifo and possibly in the DMA fifo. This
  1690. * function clears the fifos and flushes any packets that came in as rx was
  1691. * being enabled.
  1692. **/
  1693. void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
  1694. {
  1695. u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
  1696. int i, ms_wait;
  1697. /* disable IPv6 options as per hardware errata */
  1698. rfctl = rd32(E1000_RFCTL);
  1699. rfctl |= E1000_RFCTL_IPV6_EX_DIS;
  1700. wr32(E1000_RFCTL, rfctl);
  1701. if (hw->mac.type != e1000_82575 ||
  1702. !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
  1703. return;
  1704. /* Disable all RX queues */
  1705. for (i = 0; i < 4; i++) {
  1706. rxdctl[i] = rd32(E1000_RXDCTL(i));
  1707. wr32(E1000_RXDCTL(i),
  1708. rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
  1709. }
  1710. /* Poll all queues to verify they have shut down */
  1711. for (ms_wait = 0; ms_wait < 10; ms_wait++) {
  1712. usleep_range(1000, 2000);
  1713. rx_enabled = 0;
  1714. for (i = 0; i < 4; i++)
  1715. rx_enabled |= rd32(E1000_RXDCTL(i));
  1716. if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
  1717. break;
  1718. }
  1719. if (ms_wait == 10)
  1720. hw_dbg("Queue disable timed out after 10ms\n");
  1721. /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
  1722. * incoming packets are rejected. Set enable and wait 2ms so that
  1723. * any packet that was coming in as RCTL.EN was set is flushed
  1724. */
  1725. wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
  1726. rlpml = rd32(E1000_RLPML);
  1727. wr32(E1000_RLPML, 0);
  1728. rctl = rd32(E1000_RCTL);
  1729. temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
  1730. temp_rctl |= E1000_RCTL_LPE;
  1731. wr32(E1000_RCTL, temp_rctl);
  1732. wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
  1733. wrfl();
  1734. usleep_range(2000, 3000);
  1735. /* Enable RX queues that were previously enabled and restore our
  1736. * previous state
  1737. */
  1738. for (i = 0; i < 4; i++)
  1739. wr32(E1000_RXDCTL(i), rxdctl[i]);
  1740. wr32(E1000_RCTL, rctl);
  1741. wrfl();
  1742. wr32(E1000_RLPML, rlpml);
  1743. wr32(E1000_RFCTL, rfctl);
  1744. /* Flush receive errors generated by workaround */
  1745. rd32(E1000_ROC);
  1746. rd32(E1000_RNBC);
  1747. rd32(E1000_MPC);
  1748. }
  1749. /**
  1750. * igb_set_pcie_completion_timeout - set pci-e completion timeout
  1751. * @hw: pointer to the HW structure
  1752. *
  1753. * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
  1754. * however the hardware default for these parts is 500us to 1ms which is less
  1755. * than the 10ms recommended by the pci-e spec. To address this we need to
  1756. * increase the value to either 10ms to 200ms for capability version 1 config,
  1757. * or 16ms to 55ms for version 2.
  1758. **/
  1759. static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
  1760. {
  1761. u32 gcr = rd32(E1000_GCR);
  1762. s32 ret_val = 0;
  1763. u16 pcie_devctl2;
  1764. /* only take action if timeout value is defaulted to 0 */
  1765. if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
  1766. goto out;
  1767. /* if capabilities version is type 1 we can write the
  1768. * timeout of 10ms to 200ms through the GCR register
  1769. */
  1770. if (!(gcr & E1000_GCR_CAP_VER2)) {
  1771. gcr |= E1000_GCR_CMPL_TMOUT_10ms;
  1772. goto out;
  1773. }
  1774. /* for version 2 capabilities we need to write the config space
  1775. * directly in order to set the completion timeout value for
  1776. * 16ms to 55ms
  1777. */
  1778. ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
  1779. &pcie_devctl2);
  1780. if (ret_val)
  1781. goto out;
  1782. pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
  1783. ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
  1784. &pcie_devctl2);
  1785. out:
  1786. /* disable completion timeout resend */
  1787. gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
  1788. wr32(E1000_GCR, gcr);
  1789. return ret_val;
  1790. }
  1791. /**
  1792. * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
  1793. * @hw: pointer to the hardware struct
  1794. * @enable: state to enter, either enabled or disabled
  1795. * @pf: Physical Function pool - do not set anti-spoofing for the PF
  1796. *
  1797. * enables/disables L2 switch anti-spoofing functionality.
  1798. **/
  1799. void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
  1800. {
  1801. u32 reg_val, reg_offset;
  1802. switch (hw->mac.type) {
  1803. case e1000_82576:
  1804. reg_offset = E1000_DTXSWC;
  1805. break;
  1806. case e1000_i350:
  1807. case e1000_i354:
  1808. reg_offset = E1000_TXSWC;
  1809. break;
  1810. default:
  1811. return;
  1812. }
  1813. reg_val = rd32(reg_offset);
  1814. if (enable) {
  1815. reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
  1816. E1000_DTXSWC_VLAN_SPOOF_MASK);
  1817. /* The PF can spoof - it has to in order to
  1818. * support emulation mode NICs
  1819. */
  1820. reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
  1821. } else {
  1822. reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
  1823. E1000_DTXSWC_VLAN_SPOOF_MASK);
  1824. }
  1825. wr32(reg_offset, reg_val);
  1826. }
  1827. /**
  1828. * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
  1829. * @hw: pointer to the hardware struct
  1830. * @enable: state to enter, either enabled or disabled
  1831. *
  1832. * enables/disables L2 switch loopback functionality.
  1833. **/
  1834. void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
  1835. {
  1836. u32 dtxswc;
  1837. switch (hw->mac.type) {
  1838. case e1000_82576:
  1839. dtxswc = rd32(E1000_DTXSWC);
  1840. if (enable)
  1841. dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1842. else
  1843. dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1844. wr32(E1000_DTXSWC, dtxswc);
  1845. break;
  1846. case e1000_i354:
  1847. case e1000_i350:
  1848. dtxswc = rd32(E1000_TXSWC);
  1849. if (enable)
  1850. dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1851. else
  1852. dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1853. wr32(E1000_TXSWC, dtxswc);
  1854. break;
  1855. default:
  1856. /* Currently no other hardware supports loopback */
  1857. break;
  1858. }
  1859. }
  1860. /**
  1861. * igb_vmdq_set_replication_pf - enable or disable vmdq replication
  1862. * @hw: pointer to the hardware struct
  1863. * @enable: state to enter, either enabled or disabled
  1864. *
  1865. * enables/disables replication of packets across multiple pools.
  1866. **/
  1867. void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
  1868. {
  1869. u32 vt_ctl = rd32(E1000_VT_CTL);
  1870. if (enable)
  1871. vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
  1872. else
  1873. vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
  1874. wr32(E1000_VT_CTL, vt_ctl);
  1875. }
  1876. /**
  1877. * igb_read_phy_reg_82580 - Read 82580 MDI control register
  1878. * @hw: pointer to the HW structure
  1879. * @offset: register offset to be read
  1880. * @data: pointer to the read data
  1881. *
  1882. * Reads the MDI control register in the PHY at offset and stores the
  1883. * information read to data.
  1884. **/
  1885. s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
  1886. {
  1887. s32 ret_val;
  1888. ret_val = hw->phy.ops.acquire(hw);
  1889. if (ret_val)
  1890. goto out;
  1891. ret_val = igb_read_phy_reg_mdic(hw, offset, data);
  1892. hw->phy.ops.release(hw);
  1893. out:
  1894. return ret_val;
  1895. }
  1896. /**
  1897. * igb_write_phy_reg_82580 - Write 82580 MDI control register
  1898. * @hw: pointer to the HW structure
  1899. * @offset: register offset to write to
  1900. * @data: data to write to register at offset
  1901. *
  1902. * Writes data to MDI control register in the PHY at offset.
  1903. **/
  1904. s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
  1905. {
  1906. s32 ret_val;
  1907. ret_val = hw->phy.ops.acquire(hw);
  1908. if (ret_val)
  1909. goto out;
  1910. ret_val = igb_write_phy_reg_mdic(hw, offset, data);
  1911. hw->phy.ops.release(hw);
  1912. out:
  1913. return ret_val;
  1914. }
  1915. /**
  1916. * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
  1917. * @hw: pointer to the HW structure
  1918. *
  1919. * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
  1920. * the values found in the EEPROM. This addresses an issue in which these
  1921. * bits are not restored from EEPROM after reset.
  1922. **/
  1923. static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
  1924. {
  1925. s32 ret_val = 0;
  1926. u32 mdicnfg;
  1927. u16 nvm_data = 0;
  1928. if (hw->mac.type != e1000_82580)
  1929. goto out;
  1930. if (!igb_sgmii_active_82575(hw))
  1931. goto out;
  1932. ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
  1933. NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
  1934. &nvm_data);
  1935. if (ret_val) {
  1936. hw_dbg("NVM Read Error\n");
  1937. goto out;
  1938. }
  1939. mdicnfg = rd32(E1000_MDICNFG);
  1940. if (nvm_data & NVM_WORD24_EXT_MDIO)
  1941. mdicnfg |= E1000_MDICNFG_EXT_MDIO;
  1942. if (nvm_data & NVM_WORD24_COM_MDIO)
  1943. mdicnfg |= E1000_MDICNFG_COM_MDIO;
  1944. wr32(E1000_MDICNFG, mdicnfg);
  1945. out:
  1946. return ret_val;
  1947. }
  1948. /**
  1949. * igb_reset_hw_82580 - Reset hardware
  1950. * @hw: pointer to the HW structure
  1951. *
  1952. * This resets function or entire device (all ports, etc.)
  1953. * to a known state.
  1954. **/
  1955. static s32 igb_reset_hw_82580(struct e1000_hw *hw)
  1956. {
  1957. s32 ret_val = 0;
  1958. /* BH SW mailbox bit in SW_FW_SYNC */
  1959. u16 swmbsw_mask = E1000_SW_SYNCH_MB;
  1960. u32 ctrl;
  1961. bool global_device_reset = hw->dev_spec._82575.global_device_reset;
  1962. hw->dev_spec._82575.global_device_reset = false;
  1963. /* due to hw errata, global device reset doesn't always
  1964. * work on 82580
  1965. */
  1966. if (hw->mac.type == e1000_82580)
  1967. global_device_reset = false;
  1968. /* Get current control state. */
  1969. ctrl = rd32(E1000_CTRL);
  1970. /* Prevent the PCI-E bus from sticking if there is no TLP connection
  1971. * on the last TLP read/write transaction when MAC is reset.
  1972. */
  1973. ret_val = igb_disable_pcie_master(hw);
  1974. if (ret_val)
  1975. hw_dbg("PCI-E Master disable polling has failed.\n");
  1976. hw_dbg("Masking off all interrupts\n");
  1977. wr32(E1000_IMC, 0xffffffff);
  1978. wr32(E1000_RCTL, 0);
  1979. wr32(E1000_TCTL, E1000_TCTL_PSP);
  1980. wrfl();
  1981. usleep_range(10000, 11000);
  1982. /* Determine whether or not a global dev reset is requested */
  1983. if (global_device_reset &&
  1984. hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
  1985. global_device_reset = false;
  1986. if (global_device_reset &&
  1987. !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
  1988. ctrl |= E1000_CTRL_DEV_RST;
  1989. else
  1990. ctrl |= E1000_CTRL_RST;
  1991. wr32(E1000_CTRL, ctrl);
  1992. wrfl();
  1993. /* Add delay to insure DEV_RST has time to complete */
  1994. if (global_device_reset)
  1995. usleep_range(5000, 6000);
  1996. ret_val = igb_get_auto_rd_done(hw);
  1997. if (ret_val) {
  1998. /* When auto config read does not complete, do not
  1999. * return with an error. This can happen in situations
  2000. * where there is no eeprom and prevents getting link.
  2001. */
  2002. hw_dbg("Auto Read Done did not complete\n");
  2003. }
  2004. /* clear global device reset status bit */
  2005. wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
  2006. /* Clear any pending interrupt events. */
  2007. wr32(E1000_IMC, 0xffffffff);
  2008. rd32(E1000_ICR);
  2009. ret_val = igb_reset_mdicnfg_82580(hw);
  2010. if (ret_val)
  2011. hw_dbg("Could not reset MDICNFG based on EEPROM\n");
  2012. /* Install any alternate MAC address into RAR0 */
  2013. ret_val = igb_check_alt_mac_addr(hw);
  2014. /* Release semaphore */
  2015. if (global_device_reset)
  2016. hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
  2017. return ret_val;
  2018. }
  2019. /**
  2020. * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
  2021. * @data: data received by reading RXPBS register
  2022. *
  2023. * The 82580 uses a table based approach for packet buffer allocation sizes.
  2024. * This function converts the retrieved value into the correct table value
  2025. * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
  2026. * 0x0 36 72 144 1 2 4 8 16
  2027. * 0x8 35 70 140 rsv rsv rsv rsv rsv
  2028. */
  2029. u16 igb_rxpbs_adjust_82580(u32 data)
  2030. {
  2031. u16 ret_val = 0;
  2032. if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
  2033. ret_val = e1000_82580_rxpbs_table[data];
  2034. return ret_val;
  2035. }
  2036. /**
  2037. * igb_validate_nvm_checksum_with_offset - Validate EEPROM
  2038. * checksum
  2039. * @hw: pointer to the HW structure
  2040. * @offset: offset in words of the checksum protected region
  2041. *
  2042. * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
  2043. * and then verifies that the sum of the EEPROM is equal to 0xBABA.
  2044. **/
  2045. static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
  2046. u16 offset)
  2047. {
  2048. s32 ret_val = 0;
  2049. u16 checksum = 0;
  2050. u16 i, nvm_data;
  2051. for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
  2052. ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
  2053. if (ret_val) {
  2054. hw_dbg("NVM Read Error\n");
  2055. goto out;
  2056. }
  2057. checksum += nvm_data;
  2058. }
  2059. if (checksum != (u16) NVM_SUM) {
  2060. hw_dbg("NVM Checksum Invalid\n");
  2061. ret_val = -E1000_ERR_NVM;
  2062. goto out;
  2063. }
  2064. out:
  2065. return ret_val;
  2066. }
  2067. /**
  2068. * igb_update_nvm_checksum_with_offset - Update EEPROM
  2069. * checksum
  2070. * @hw: pointer to the HW structure
  2071. * @offset: offset in words of the checksum protected region
  2072. *
  2073. * Updates the EEPROM checksum by reading/adding each word of the EEPROM
  2074. * up to the checksum. Then calculates the EEPROM checksum and writes the
  2075. * value to the EEPROM.
  2076. **/
  2077. static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
  2078. {
  2079. s32 ret_val;
  2080. u16 checksum = 0;
  2081. u16 i, nvm_data;
  2082. for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
  2083. ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
  2084. if (ret_val) {
  2085. hw_dbg("NVM Read Error while updating checksum.\n");
  2086. goto out;
  2087. }
  2088. checksum += nvm_data;
  2089. }
  2090. checksum = (u16) NVM_SUM - checksum;
  2091. ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
  2092. &checksum);
  2093. if (ret_val)
  2094. hw_dbg("NVM Write Error while updating checksum.\n");
  2095. out:
  2096. return ret_val;
  2097. }
  2098. /**
  2099. * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
  2100. * @hw: pointer to the HW structure
  2101. *
  2102. * Calculates the EEPROM section checksum by reading/adding each word of
  2103. * the EEPROM and then verifies that the sum of the EEPROM is
  2104. * equal to 0xBABA.
  2105. **/
  2106. static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
  2107. {
  2108. s32 ret_val = 0;
  2109. u16 eeprom_regions_count = 1;
  2110. u16 j, nvm_data;
  2111. u16 nvm_offset;
  2112. ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
  2113. if (ret_val) {
  2114. hw_dbg("NVM Read Error\n");
  2115. goto out;
  2116. }
  2117. if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
  2118. /* if checksums compatibility bit is set validate checksums
  2119. * for all 4 ports.
  2120. */
  2121. eeprom_regions_count = 4;
  2122. }
  2123. for (j = 0; j < eeprom_regions_count; j++) {
  2124. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2125. ret_val = igb_validate_nvm_checksum_with_offset(hw,
  2126. nvm_offset);
  2127. if (ret_val != 0)
  2128. goto out;
  2129. }
  2130. out:
  2131. return ret_val;
  2132. }
  2133. /**
  2134. * igb_update_nvm_checksum_82580 - Update EEPROM checksum
  2135. * @hw: pointer to the HW structure
  2136. *
  2137. * Updates the EEPROM section checksums for all 4 ports by reading/adding
  2138. * each word of the EEPROM up to the checksum. Then calculates the EEPROM
  2139. * checksum and writes the value to the EEPROM.
  2140. **/
  2141. static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
  2142. {
  2143. s32 ret_val;
  2144. u16 j, nvm_data;
  2145. u16 nvm_offset;
  2146. ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
  2147. if (ret_val) {
  2148. hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
  2149. goto out;
  2150. }
  2151. if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
  2152. /* set compatibility bit to validate checksums appropriately */
  2153. nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
  2154. ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
  2155. &nvm_data);
  2156. if (ret_val) {
  2157. hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
  2158. goto out;
  2159. }
  2160. }
  2161. for (j = 0; j < 4; j++) {
  2162. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2163. ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
  2164. if (ret_val)
  2165. goto out;
  2166. }
  2167. out:
  2168. return ret_val;
  2169. }
  2170. /**
  2171. * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
  2172. * @hw: pointer to the HW structure
  2173. *
  2174. * Calculates the EEPROM section checksum by reading/adding each word of
  2175. * the EEPROM and then verifies that the sum of the EEPROM is
  2176. * equal to 0xBABA.
  2177. **/
  2178. static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
  2179. {
  2180. s32 ret_val = 0;
  2181. u16 j;
  2182. u16 nvm_offset;
  2183. for (j = 0; j < 4; j++) {
  2184. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2185. ret_val = igb_validate_nvm_checksum_with_offset(hw,
  2186. nvm_offset);
  2187. if (ret_val != 0)
  2188. goto out;
  2189. }
  2190. out:
  2191. return ret_val;
  2192. }
  2193. /**
  2194. * igb_update_nvm_checksum_i350 - Update EEPROM checksum
  2195. * @hw: pointer to the HW structure
  2196. *
  2197. * Updates the EEPROM section checksums for all 4 ports by reading/adding
  2198. * each word of the EEPROM up to the checksum. Then calculates the EEPROM
  2199. * checksum and writes the value to the EEPROM.
  2200. **/
  2201. static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
  2202. {
  2203. s32 ret_val = 0;
  2204. u16 j;
  2205. u16 nvm_offset;
  2206. for (j = 0; j < 4; j++) {
  2207. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2208. ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
  2209. if (ret_val != 0)
  2210. goto out;
  2211. }
  2212. out:
  2213. return ret_val;
  2214. }
  2215. /**
  2216. * __igb_access_emi_reg - Read/write EMI register
  2217. * @hw: pointer to the HW structure
  2218. * @addr: EMI address to program
  2219. * @data: pointer to value to read/write from/to the EMI address
  2220. * @read: boolean flag to indicate read or write
  2221. **/
  2222. static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
  2223. u16 *data, bool read)
  2224. {
  2225. s32 ret_val = 0;
  2226. ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
  2227. if (ret_val)
  2228. return ret_val;
  2229. if (read)
  2230. ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
  2231. else
  2232. ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
  2233. return ret_val;
  2234. }
  2235. /**
  2236. * igb_read_emi_reg - Read Extended Management Interface register
  2237. * @hw: pointer to the HW structure
  2238. * @addr: EMI address to program
  2239. * @data: value to be read from the EMI address
  2240. **/
  2241. s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
  2242. {
  2243. return __igb_access_emi_reg(hw, addr, data, true);
  2244. }
  2245. /**
  2246. * igb_set_eee_i350 - Enable/disable EEE support
  2247. * @hw: pointer to the HW structure
  2248. * @adv1G: boolean flag enabling 1G EEE advertisement
  2249. * @adv100m: boolean flag enabling 100M EEE advertisement
  2250. *
  2251. * Enable/disable EEE based on setting in dev_spec structure.
  2252. *
  2253. **/
  2254. s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
  2255. {
  2256. u32 ipcnfg, eeer;
  2257. if ((hw->mac.type < e1000_i350) ||
  2258. (hw->phy.media_type != e1000_media_type_copper))
  2259. goto out;
  2260. ipcnfg = rd32(E1000_IPCNFG);
  2261. eeer = rd32(E1000_EEER);
  2262. /* enable or disable per user setting */
  2263. if (!(hw->dev_spec._82575.eee_disable)) {
  2264. u32 eee_su = rd32(E1000_EEE_SU);
  2265. if (adv100M)
  2266. ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
  2267. else
  2268. ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
  2269. if (adv1G)
  2270. ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
  2271. else
  2272. ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
  2273. eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
  2274. E1000_EEER_LPI_FC);
  2275. /* This bit should not be set in normal operation. */
  2276. if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
  2277. hw_dbg("LPI Clock Stop Bit should not be set!\n");
  2278. } else {
  2279. ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
  2280. E1000_IPCNFG_EEE_100M_AN);
  2281. eeer &= ~(E1000_EEER_TX_LPI_EN |
  2282. E1000_EEER_RX_LPI_EN |
  2283. E1000_EEER_LPI_FC);
  2284. }
  2285. wr32(E1000_IPCNFG, ipcnfg);
  2286. wr32(E1000_EEER, eeer);
  2287. rd32(E1000_IPCNFG);
  2288. rd32(E1000_EEER);
  2289. out:
  2290. return 0;
  2291. }
  2292. /**
  2293. * igb_set_eee_i354 - Enable/disable EEE support
  2294. * @hw: pointer to the HW structure
  2295. * @adv1G: boolean flag enabling 1G EEE advertisement
  2296. * @adv100m: boolean flag enabling 100M EEE advertisement
  2297. *
  2298. * Enable/disable EEE legacy mode based on setting in dev_spec structure.
  2299. *
  2300. **/
  2301. s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
  2302. {
  2303. struct e1000_phy_info *phy = &hw->phy;
  2304. s32 ret_val = 0;
  2305. u16 phy_data;
  2306. if ((hw->phy.media_type != e1000_media_type_copper) ||
  2307. ((phy->id != M88E1543_E_PHY_ID) &&
  2308. (phy->id != M88E1512_E_PHY_ID)))
  2309. goto out;
  2310. if (!hw->dev_spec._82575.eee_disable) {
  2311. /* Switch to PHY page 18. */
  2312. ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
  2313. if (ret_val)
  2314. goto out;
  2315. ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
  2316. &phy_data);
  2317. if (ret_val)
  2318. goto out;
  2319. phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
  2320. ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
  2321. phy_data);
  2322. if (ret_val)
  2323. goto out;
  2324. /* Return the PHY to page 0. */
  2325. ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
  2326. if (ret_val)
  2327. goto out;
  2328. /* Turn on EEE advertisement. */
  2329. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2330. E1000_EEE_ADV_DEV_I354,
  2331. &phy_data);
  2332. if (ret_val)
  2333. goto out;
  2334. if (adv100M)
  2335. phy_data |= E1000_EEE_ADV_100_SUPPORTED;
  2336. else
  2337. phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
  2338. if (adv1G)
  2339. phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
  2340. else
  2341. phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
  2342. ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2343. E1000_EEE_ADV_DEV_I354,
  2344. phy_data);
  2345. } else {
  2346. /* Turn off EEE advertisement. */
  2347. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2348. E1000_EEE_ADV_DEV_I354,
  2349. &phy_data);
  2350. if (ret_val)
  2351. goto out;
  2352. phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
  2353. E1000_EEE_ADV_1000_SUPPORTED);
  2354. ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2355. E1000_EEE_ADV_DEV_I354,
  2356. phy_data);
  2357. }
  2358. out:
  2359. return ret_val;
  2360. }
  2361. /**
  2362. * igb_get_eee_status_i354 - Get EEE status
  2363. * @hw: pointer to the HW structure
  2364. * @status: EEE status
  2365. *
  2366. * Get EEE status by guessing based on whether Tx or Rx LPI indications have
  2367. * been received.
  2368. **/
  2369. s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
  2370. {
  2371. struct e1000_phy_info *phy = &hw->phy;
  2372. s32 ret_val = 0;
  2373. u16 phy_data;
  2374. /* Check if EEE is supported on this device. */
  2375. if ((hw->phy.media_type != e1000_media_type_copper) ||
  2376. ((phy->id != M88E1543_E_PHY_ID) &&
  2377. (phy->id != M88E1512_E_PHY_ID)))
  2378. goto out;
  2379. ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
  2380. E1000_PCS_STATUS_DEV_I354,
  2381. &phy_data);
  2382. if (ret_val)
  2383. goto out;
  2384. *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
  2385. E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
  2386. out:
  2387. return ret_val;
  2388. }
  2389. static const u8 e1000_emc_temp_data[4] = {
  2390. E1000_EMC_INTERNAL_DATA,
  2391. E1000_EMC_DIODE1_DATA,
  2392. E1000_EMC_DIODE2_DATA,
  2393. E1000_EMC_DIODE3_DATA
  2394. };
  2395. static const u8 e1000_emc_therm_limit[4] = {
  2396. E1000_EMC_INTERNAL_THERM_LIMIT,
  2397. E1000_EMC_DIODE1_THERM_LIMIT,
  2398. E1000_EMC_DIODE2_THERM_LIMIT,
  2399. E1000_EMC_DIODE3_THERM_LIMIT
  2400. };
  2401. #ifdef CONFIG_IGB_HWMON
  2402. /**
  2403. * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
  2404. * @hw: pointer to hardware structure
  2405. *
  2406. * Updates the temperatures in mac.thermal_sensor_data
  2407. **/
  2408. static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
  2409. {
  2410. u16 ets_offset;
  2411. u16 ets_cfg;
  2412. u16 ets_sensor;
  2413. u8 num_sensors;
  2414. u8 sensor_index;
  2415. u8 sensor_location;
  2416. u8 i;
  2417. struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
  2418. if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
  2419. return E1000_NOT_IMPLEMENTED;
  2420. data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
  2421. /* Return the internal sensor only if ETS is unsupported */
  2422. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
  2423. if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
  2424. return 0;
  2425. hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
  2426. if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
  2427. != NVM_ETS_TYPE_EMC)
  2428. return E1000_NOT_IMPLEMENTED;
  2429. num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
  2430. if (num_sensors > E1000_MAX_SENSORS)
  2431. num_sensors = E1000_MAX_SENSORS;
  2432. for (i = 1; i < num_sensors; i++) {
  2433. hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
  2434. sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
  2435. NVM_ETS_DATA_INDEX_SHIFT);
  2436. sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
  2437. NVM_ETS_DATA_LOC_SHIFT);
  2438. if (sensor_location != 0)
  2439. hw->phy.ops.read_i2c_byte(hw,
  2440. e1000_emc_temp_data[sensor_index],
  2441. E1000_I2C_THERMAL_SENSOR_ADDR,
  2442. &data->sensor[i].temp);
  2443. }
  2444. return 0;
  2445. }
  2446. /**
  2447. * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
  2448. * @hw: pointer to hardware structure
  2449. *
  2450. * Sets the thermal sensor thresholds according to the NVM map
  2451. * and save off the threshold and location values into mac.thermal_sensor_data
  2452. **/
  2453. static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
  2454. {
  2455. u16 ets_offset;
  2456. u16 ets_cfg;
  2457. u16 ets_sensor;
  2458. u8 low_thresh_delta;
  2459. u8 num_sensors;
  2460. u8 sensor_index;
  2461. u8 sensor_location;
  2462. u8 therm_limit;
  2463. u8 i;
  2464. struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
  2465. if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
  2466. return E1000_NOT_IMPLEMENTED;
  2467. memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
  2468. data->sensor[0].location = 0x1;
  2469. data->sensor[0].caution_thresh =
  2470. (rd32(E1000_THHIGHTC) & 0xFF);
  2471. data->sensor[0].max_op_thresh =
  2472. (rd32(E1000_THLOWTC) & 0xFF);
  2473. /* Return the internal sensor only if ETS is unsupported */
  2474. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
  2475. if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
  2476. return 0;
  2477. hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
  2478. if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
  2479. != NVM_ETS_TYPE_EMC)
  2480. return E1000_NOT_IMPLEMENTED;
  2481. low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
  2482. NVM_ETS_LTHRES_DELTA_SHIFT);
  2483. num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
  2484. for (i = 1; i <= num_sensors; i++) {
  2485. hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
  2486. sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
  2487. NVM_ETS_DATA_INDEX_SHIFT);
  2488. sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
  2489. NVM_ETS_DATA_LOC_SHIFT);
  2490. therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
  2491. hw->phy.ops.write_i2c_byte(hw,
  2492. e1000_emc_therm_limit[sensor_index],
  2493. E1000_I2C_THERMAL_SENSOR_ADDR,
  2494. therm_limit);
  2495. if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
  2496. data->sensor[i].location = sensor_location;
  2497. data->sensor[i].caution_thresh = therm_limit;
  2498. data->sensor[i].max_op_thresh = therm_limit -
  2499. low_thresh_delta;
  2500. }
  2501. }
  2502. return 0;
  2503. }
  2504. #endif
  2505. static struct e1000_mac_operations e1000_mac_ops_82575 = {
  2506. .init_hw = igb_init_hw_82575,
  2507. .check_for_link = igb_check_for_link_82575,
  2508. .rar_set = igb_rar_set,
  2509. .read_mac_addr = igb_read_mac_addr_82575,
  2510. .get_speed_and_duplex = igb_get_link_up_info_82575,
  2511. #ifdef CONFIG_IGB_HWMON
  2512. .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
  2513. .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
  2514. #endif
  2515. };
  2516. static const struct e1000_phy_operations e1000_phy_ops_82575 = {
  2517. .acquire = igb_acquire_phy_82575,
  2518. .get_cfg_done = igb_get_cfg_done_82575,
  2519. .release = igb_release_phy_82575,
  2520. .write_i2c_byte = igb_write_i2c_byte,
  2521. .read_i2c_byte = igb_read_i2c_byte,
  2522. };
  2523. static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
  2524. .acquire = igb_acquire_nvm_82575,
  2525. .read = igb_read_nvm_eerd,
  2526. .release = igb_release_nvm_82575,
  2527. .write = igb_write_nvm_spi,
  2528. };
  2529. const struct e1000_info e1000_82575_info = {
  2530. .get_invariants = igb_get_invariants_82575,
  2531. .mac_ops = &e1000_mac_ops_82575,
  2532. .phy_ops = &e1000_phy_ops_82575,
  2533. .nvm_ops = &e1000_nvm_ops_82575,
  2534. };