igb_ethtool.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright(c) 2007 - 2018 Intel Corporation. */
  3. /* ethtool support for igb */
  4. #include <linux/vmalloc.h>
  5. #include <linux/netdevice.h>
  6. #include <linux/pci.h>
  7. #include <linux/delay.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/if_ether.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/sched.h>
  12. #include <linux/slab.h>
  13. #include <linux/pm_runtime.h>
  14. #include <linux/highmem.h>
  15. #include <linux/mdio.h>
  16. #include "igb.h"
  17. struct igb_stats {
  18. char stat_string[ETH_GSTRING_LEN];
  19. int sizeof_stat;
  20. int stat_offset;
  21. };
  22. #define IGB_STAT(_name, _stat) { \
  23. .stat_string = _name, \
  24. .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  25. .stat_offset = offsetof(struct igb_adapter, _stat) \
  26. }
  27. static const struct igb_stats igb_gstrings_stats[] = {
  28. IGB_STAT("rx_packets", stats.gprc),
  29. IGB_STAT("tx_packets", stats.gptc),
  30. IGB_STAT("rx_bytes", stats.gorc),
  31. IGB_STAT("tx_bytes", stats.gotc),
  32. IGB_STAT("rx_broadcast", stats.bprc),
  33. IGB_STAT("tx_broadcast", stats.bptc),
  34. IGB_STAT("rx_multicast", stats.mprc),
  35. IGB_STAT("tx_multicast", stats.mptc),
  36. IGB_STAT("multicast", stats.mprc),
  37. IGB_STAT("collisions", stats.colc),
  38. IGB_STAT("rx_crc_errors", stats.crcerrs),
  39. IGB_STAT("rx_no_buffer_count", stats.rnbc),
  40. IGB_STAT("rx_missed_errors", stats.mpc),
  41. IGB_STAT("tx_aborted_errors", stats.ecol),
  42. IGB_STAT("tx_carrier_errors", stats.tncrs),
  43. IGB_STAT("tx_window_errors", stats.latecol),
  44. IGB_STAT("tx_abort_late_coll", stats.latecol),
  45. IGB_STAT("tx_deferred_ok", stats.dc),
  46. IGB_STAT("tx_single_coll_ok", stats.scc),
  47. IGB_STAT("tx_multi_coll_ok", stats.mcc),
  48. IGB_STAT("tx_timeout_count", tx_timeout_count),
  49. IGB_STAT("rx_long_length_errors", stats.roc),
  50. IGB_STAT("rx_short_length_errors", stats.ruc),
  51. IGB_STAT("rx_align_errors", stats.algnerrc),
  52. IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  53. IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  54. IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  55. IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  56. IGB_STAT("tx_flow_control_xon", stats.xontxc),
  57. IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  58. IGB_STAT("rx_long_byte_count", stats.gorc),
  59. IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  60. IGB_STAT("tx_smbus", stats.mgptc),
  61. IGB_STAT("rx_smbus", stats.mgprc),
  62. IGB_STAT("dropped_smbus", stats.mgpdc),
  63. IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  64. IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  65. IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  66. IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  67. IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  68. IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  69. IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  70. };
  71. #define IGB_NETDEV_STAT(_net_stat) { \
  72. .stat_string = __stringify(_net_stat), \
  73. .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  74. .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  75. }
  76. static const struct igb_stats igb_gstrings_net_stats[] = {
  77. IGB_NETDEV_STAT(rx_errors),
  78. IGB_NETDEV_STAT(tx_errors),
  79. IGB_NETDEV_STAT(tx_dropped),
  80. IGB_NETDEV_STAT(rx_length_errors),
  81. IGB_NETDEV_STAT(rx_over_errors),
  82. IGB_NETDEV_STAT(rx_frame_errors),
  83. IGB_NETDEV_STAT(rx_fifo_errors),
  84. IGB_NETDEV_STAT(tx_fifo_errors),
  85. IGB_NETDEV_STAT(tx_heartbeat_errors)
  86. };
  87. #define IGB_GLOBAL_STATS_LEN \
  88. (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  89. #define IGB_NETDEV_STATS_LEN \
  90. (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  91. #define IGB_RX_QUEUE_STATS_LEN \
  92. (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
  93. #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
  94. #define IGB_QUEUE_STATS_LEN \
  95. ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
  96. IGB_RX_QUEUE_STATS_LEN) + \
  97. (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
  98. IGB_TX_QUEUE_STATS_LEN))
  99. #define IGB_STATS_LEN \
  100. (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
  101. enum igb_diagnostics_results {
  102. TEST_REG = 0,
  103. TEST_EEP,
  104. TEST_IRQ,
  105. TEST_LOOP,
  106. TEST_LINK
  107. };
  108. static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
  109. [TEST_REG] = "Register test (offline)",
  110. [TEST_EEP] = "Eeprom test (offline)",
  111. [TEST_IRQ] = "Interrupt test (offline)",
  112. [TEST_LOOP] = "Loopback test (offline)",
  113. [TEST_LINK] = "Link test (on/offline)"
  114. };
  115. #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
  116. static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
  117. #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
  118. "legacy-rx",
  119. };
  120. #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
  121. static int igb_get_link_ksettings(struct net_device *netdev,
  122. struct ethtool_link_ksettings *cmd)
  123. {
  124. struct igb_adapter *adapter = netdev_priv(netdev);
  125. struct e1000_hw *hw = &adapter->hw;
  126. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  127. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  128. u32 status;
  129. u32 speed;
  130. u32 supported, advertising;
  131. status = pm_runtime_suspended(&adapter->pdev->dev) ?
  132. 0 : rd32(E1000_STATUS);
  133. if (hw->phy.media_type == e1000_media_type_copper) {
  134. supported = (SUPPORTED_10baseT_Half |
  135. SUPPORTED_10baseT_Full |
  136. SUPPORTED_100baseT_Half |
  137. SUPPORTED_100baseT_Full |
  138. SUPPORTED_1000baseT_Full|
  139. SUPPORTED_Autoneg |
  140. SUPPORTED_TP |
  141. SUPPORTED_Pause);
  142. advertising = ADVERTISED_TP;
  143. if (hw->mac.autoneg == 1) {
  144. advertising |= ADVERTISED_Autoneg;
  145. /* the e1000 autoneg seems to match ethtool nicely */
  146. advertising |= hw->phy.autoneg_advertised;
  147. }
  148. cmd->base.port = PORT_TP;
  149. cmd->base.phy_address = hw->phy.addr;
  150. } else {
  151. supported = (SUPPORTED_FIBRE |
  152. SUPPORTED_1000baseKX_Full |
  153. SUPPORTED_Autoneg |
  154. SUPPORTED_Pause);
  155. advertising = (ADVERTISED_FIBRE |
  156. ADVERTISED_1000baseKX_Full);
  157. if (hw->mac.type == e1000_i354) {
  158. if ((hw->device_id ==
  159. E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
  160. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  161. supported |= SUPPORTED_2500baseX_Full;
  162. supported &= ~SUPPORTED_1000baseKX_Full;
  163. advertising |= ADVERTISED_2500baseX_Full;
  164. advertising &= ~ADVERTISED_1000baseKX_Full;
  165. }
  166. }
  167. if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
  168. supported |= SUPPORTED_100baseT_Full;
  169. advertising |= ADVERTISED_100baseT_Full;
  170. }
  171. if (hw->mac.autoneg == 1)
  172. advertising |= ADVERTISED_Autoneg;
  173. cmd->base.port = PORT_FIBRE;
  174. }
  175. if (hw->mac.autoneg != 1)
  176. advertising &= ~(ADVERTISED_Pause |
  177. ADVERTISED_Asym_Pause);
  178. switch (hw->fc.requested_mode) {
  179. case e1000_fc_full:
  180. advertising |= ADVERTISED_Pause;
  181. break;
  182. case e1000_fc_rx_pause:
  183. advertising |= (ADVERTISED_Pause |
  184. ADVERTISED_Asym_Pause);
  185. break;
  186. case e1000_fc_tx_pause:
  187. advertising |= ADVERTISED_Asym_Pause;
  188. break;
  189. default:
  190. advertising &= ~(ADVERTISED_Pause |
  191. ADVERTISED_Asym_Pause);
  192. }
  193. if (status & E1000_STATUS_LU) {
  194. if ((status & E1000_STATUS_2P5_SKU) &&
  195. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  196. speed = SPEED_2500;
  197. } else if (status & E1000_STATUS_SPEED_1000) {
  198. speed = SPEED_1000;
  199. } else if (status & E1000_STATUS_SPEED_100) {
  200. speed = SPEED_100;
  201. } else {
  202. speed = SPEED_10;
  203. }
  204. if ((status & E1000_STATUS_FD) ||
  205. hw->phy.media_type != e1000_media_type_copper)
  206. cmd->base.duplex = DUPLEX_FULL;
  207. else
  208. cmd->base.duplex = DUPLEX_HALF;
  209. } else {
  210. speed = SPEED_UNKNOWN;
  211. cmd->base.duplex = DUPLEX_UNKNOWN;
  212. }
  213. cmd->base.speed = speed;
  214. if ((hw->phy.media_type == e1000_media_type_fiber) ||
  215. hw->mac.autoneg)
  216. cmd->base.autoneg = AUTONEG_ENABLE;
  217. else
  218. cmd->base.autoneg = AUTONEG_DISABLE;
  219. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  220. if (hw->phy.media_type == e1000_media_type_copper)
  221. cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
  222. ETH_TP_MDI;
  223. else
  224. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  225. if (hw->phy.mdix == AUTO_ALL_MODES)
  226. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  227. else
  228. cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
  229. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  230. supported);
  231. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  232. advertising);
  233. return 0;
  234. }
  235. static int igb_set_link_ksettings(struct net_device *netdev,
  236. const struct ethtool_link_ksettings *cmd)
  237. {
  238. struct igb_adapter *adapter = netdev_priv(netdev);
  239. struct e1000_hw *hw = &adapter->hw;
  240. u32 advertising;
  241. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  242. * cannot be changed
  243. */
  244. if (igb_check_reset_block(hw)) {
  245. dev_err(&adapter->pdev->dev,
  246. "Cannot change link characteristics when SoL/IDER is active.\n");
  247. return -EINVAL;
  248. }
  249. /* MDI setting is only allowed when autoneg enabled because
  250. * some hardware doesn't allow MDI setting when speed or
  251. * duplex is forced.
  252. */
  253. if (cmd->base.eth_tp_mdix_ctrl) {
  254. if (hw->phy.media_type != e1000_media_type_copper)
  255. return -EOPNOTSUPP;
  256. if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  257. (cmd->base.autoneg != AUTONEG_ENABLE)) {
  258. dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  259. return -EINVAL;
  260. }
  261. }
  262. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  263. usleep_range(1000, 2000);
  264. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  265. cmd->link_modes.advertising);
  266. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  267. hw->mac.autoneg = 1;
  268. if (hw->phy.media_type == e1000_media_type_fiber) {
  269. hw->phy.autoneg_advertised = advertising |
  270. ADVERTISED_FIBRE |
  271. ADVERTISED_Autoneg;
  272. switch (adapter->link_speed) {
  273. case SPEED_2500:
  274. hw->phy.autoneg_advertised =
  275. ADVERTISED_2500baseX_Full;
  276. break;
  277. case SPEED_1000:
  278. hw->phy.autoneg_advertised =
  279. ADVERTISED_1000baseT_Full;
  280. break;
  281. case SPEED_100:
  282. hw->phy.autoneg_advertised =
  283. ADVERTISED_100baseT_Full;
  284. break;
  285. default:
  286. break;
  287. }
  288. } else {
  289. hw->phy.autoneg_advertised = advertising |
  290. ADVERTISED_TP |
  291. ADVERTISED_Autoneg;
  292. }
  293. advertising = hw->phy.autoneg_advertised;
  294. if (adapter->fc_autoneg)
  295. hw->fc.requested_mode = e1000_fc_default;
  296. } else {
  297. u32 speed = cmd->base.speed;
  298. /* calling this overrides forced MDI setting */
  299. if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
  300. clear_bit(__IGB_RESETTING, &adapter->state);
  301. return -EINVAL;
  302. }
  303. }
  304. /* MDI-X => 2; MDI => 1; Auto => 3 */
  305. if (cmd->base.eth_tp_mdix_ctrl) {
  306. /* fix up the value for auto (3 => 0) as zero is mapped
  307. * internally to auto
  308. */
  309. if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  310. hw->phy.mdix = AUTO_ALL_MODES;
  311. else
  312. hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
  313. }
  314. /* reset the link */
  315. if (netif_running(adapter->netdev)) {
  316. igb_down(adapter);
  317. igb_up(adapter);
  318. } else
  319. igb_reset(adapter);
  320. clear_bit(__IGB_RESETTING, &adapter->state);
  321. return 0;
  322. }
  323. static u32 igb_get_link(struct net_device *netdev)
  324. {
  325. struct igb_adapter *adapter = netdev_priv(netdev);
  326. struct e1000_mac_info *mac = &adapter->hw.mac;
  327. /* If the link is not reported up to netdev, interrupts are disabled,
  328. * and so the physical link state may have changed since we last
  329. * looked. Set get_link_status to make sure that the true link
  330. * state is interrogated, rather than pulling a cached and possibly
  331. * stale link state from the driver.
  332. */
  333. if (!netif_carrier_ok(netdev))
  334. mac->get_link_status = 1;
  335. return igb_has_link(adapter);
  336. }
  337. static void igb_get_pauseparam(struct net_device *netdev,
  338. struct ethtool_pauseparam *pause)
  339. {
  340. struct igb_adapter *adapter = netdev_priv(netdev);
  341. struct e1000_hw *hw = &adapter->hw;
  342. pause->autoneg =
  343. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  344. if (hw->fc.current_mode == e1000_fc_rx_pause)
  345. pause->rx_pause = 1;
  346. else if (hw->fc.current_mode == e1000_fc_tx_pause)
  347. pause->tx_pause = 1;
  348. else if (hw->fc.current_mode == e1000_fc_full) {
  349. pause->rx_pause = 1;
  350. pause->tx_pause = 1;
  351. }
  352. }
  353. static int igb_set_pauseparam(struct net_device *netdev,
  354. struct ethtool_pauseparam *pause)
  355. {
  356. struct igb_adapter *adapter = netdev_priv(netdev);
  357. struct e1000_hw *hw = &adapter->hw;
  358. int retval = 0;
  359. /* 100basefx does not support setting link flow control */
  360. if (hw->dev_spec._82575.eth_flags.e100_base_fx)
  361. return -EINVAL;
  362. adapter->fc_autoneg = pause->autoneg;
  363. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  364. usleep_range(1000, 2000);
  365. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  366. hw->fc.requested_mode = e1000_fc_default;
  367. if (netif_running(adapter->netdev)) {
  368. igb_down(adapter);
  369. igb_up(adapter);
  370. } else {
  371. igb_reset(adapter);
  372. }
  373. } else {
  374. if (pause->rx_pause && pause->tx_pause)
  375. hw->fc.requested_mode = e1000_fc_full;
  376. else if (pause->rx_pause && !pause->tx_pause)
  377. hw->fc.requested_mode = e1000_fc_rx_pause;
  378. else if (!pause->rx_pause && pause->tx_pause)
  379. hw->fc.requested_mode = e1000_fc_tx_pause;
  380. else if (!pause->rx_pause && !pause->tx_pause)
  381. hw->fc.requested_mode = e1000_fc_none;
  382. hw->fc.current_mode = hw->fc.requested_mode;
  383. retval = ((hw->phy.media_type == e1000_media_type_copper) ?
  384. igb_force_mac_fc(hw) : igb_setup_link(hw));
  385. }
  386. clear_bit(__IGB_RESETTING, &adapter->state);
  387. return retval;
  388. }
  389. static u32 igb_get_msglevel(struct net_device *netdev)
  390. {
  391. struct igb_adapter *adapter = netdev_priv(netdev);
  392. return adapter->msg_enable;
  393. }
  394. static void igb_set_msglevel(struct net_device *netdev, u32 data)
  395. {
  396. struct igb_adapter *adapter = netdev_priv(netdev);
  397. adapter->msg_enable = data;
  398. }
  399. static int igb_get_regs_len(struct net_device *netdev)
  400. {
  401. #define IGB_REGS_LEN 739
  402. return IGB_REGS_LEN * sizeof(u32);
  403. }
  404. static void igb_get_regs(struct net_device *netdev,
  405. struct ethtool_regs *regs, void *p)
  406. {
  407. struct igb_adapter *adapter = netdev_priv(netdev);
  408. struct e1000_hw *hw = &adapter->hw;
  409. u32 *regs_buff = p;
  410. u8 i;
  411. memset(p, 0, IGB_REGS_LEN * sizeof(u32));
  412. regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
  413. /* General Registers */
  414. regs_buff[0] = rd32(E1000_CTRL);
  415. regs_buff[1] = rd32(E1000_STATUS);
  416. regs_buff[2] = rd32(E1000_CTRL_EXT);
  417. regs_buff[3] = rd32(E1000_MDIC);
  418. regs_buff[4] = rd32(E1000_SCTL);
  419. regs_buff[5] = rd32(E1000_CONNSW);
  420. regs_buff[6] = rd32(E1000_VET);
  421. regs_buff[7] = rd32(E1000_LEDCTL);
  422. regs_buff[8] = rd32(E1000_PBA);
  423. regs_buff[9] = rd32(E1000_PBS);
  424. regs_buff[10] = rd32(E1000_FRTIMER);
  425. regs_buff[11] = rd32(E1000_TCPTIMER);
  426. /* NVM Register */
  427. regs_buff[12] = rd32(E1000_EECD);
  428. /* Interrupt */
  429. /* Reading EICS for EICR because they read the
  430. * same but EICS does not clear on read
  431. */
  432. regs_buff[13] = rd32(E1000_EICS);
  433. regs_buff[14] = rd32(E1000_EICS);
  434. regs_buff[15] = rd32(E1000_EIMS);
  435. regs_buff[16] = rd32(E1000_EIMC);
  436. regs_buff[17] = rd32(E1000_EIAC);
  437. regs_buff[18] = rd32(E1000_EIAM);
  438. /* Reading ICS for ICR because they read the
  439. * same but ICS does not clear on read
  440. */
  441. regs_buff[19] = rd32(E1000_ICS);
  442. regs_buff[20] = rd32(E1000_ICS);
  443. regs_buff[21] = rd32(E1000_IMS);
  444. regs_buff[22] = rd32(E1000_IMC);
  445. regs_buff[23] = rd32(E1000_IAC);
  446. regs_buff[24] = rd32(E1000_IAM);
  447. regs_buff[25] = rd32(E1000_IMIRVP);
  448. /* Flow Control */
  449. regs_buff[26] = rd32(E1000_FCAL);
  450. regs_buff[27] = rd32(E1000_FCAH);
  451. regs_buff[28] = rd32(E1000_FCTTV);
  452. regs_buff[29] = rd32(E1000_FCRTL);
  453. regs_buff[30] = rd32(E1000_FCRTH);
  454. regs_buff[31] = rd32(E1000_FCRTV);
  455. /* Receive */
  456. regs_buff[32] = rd32(E1000_RCTL);
  457. regs_buff[33] = rd32(E1000_RXCSUM);
  458. regs_buff[34] = rd32(E1000_RLPML);
  459. regs_buff[35] = rd32(E1000_RFCTL);
  460. regs_buff[36] = rd32(E1000_MRQC);
  461. regs_buff[37] = rd32(E1000_VT_CTL);
  462. /* Transmit */
  463. regs_buff[38] = rd32(E1000_TCTL);
  464. regs_buff[39] = rd32(E1000_TCTL_EXT);
  465. regs_buff[40] = rd32(E1000_TIPG);
  466. regs_buff[41] = rd32(E1000_DTXCTL);
  467. /* Wake Up */
  468. regs_buff[42] = rd32(E1000_WUC);
  469. regs_buff[43] = rd32(E1000_WUFC);
  470. regs_buff[44] = rd32(E1000_WUS);
  471. regs_buff[45] = rd32(E1000_IPAV);
  472. regs_buff[46] = rd32(E1000_WUPL);
  473. /* MAC */
  474. regs_buff[47] = rd32(E1000_PCS_CFG0);
  475. regs_buff[48] = rd32(E1000_PCS_LCTL);
  476. regs_buff[49] = rd32(E1000_PCS_LSTAT);
  477. regs_buff[50] = rd32(E1000_PCS_ANADV);
  478. regs_buff[51] = rd32(E1000_PCS_LPAB);
  479. regs_buff[52] = rd32(E1000_PCS_NPTX);
  480. regs_buff[53] = rd32(E1000_PCS_LPABNP);
  481. /* Statistics */
  482. regs_buff[54] = adapter->stats.crcerrs;
  483. regs_buff[55] = adapter->stats.algnerrc;
  484. regs_buff[56] = adapter->stats.symerrs;
  485. regs_buff[57] = adapter->stats.rxerrc;
  486. regs_buff[58] = adapter->stats.mpc;
  487. regs_buff[59] = adapter->stats.scc;
  488. regs_buff[60] = adapter->stats.ecol;
  489. regs_buff[61] = adapter->stats.mcc;
  490. regs_buff[62] = adapter->stats.latecol;
  491. regs_buff[63] = adapter->stats.colc;
  492. regs_buff[64] = adapter->stats.dc;
  493. regs_buff[65] = adapter->stats.tncrs;
  494. regs_buff[66] = adapter->stats.sec;
  495. regs_buff[67] = adapter->stats.htdpmc;
  496. regs_buff[68] = adapter->stats.rlec;
  497. regs_buff[69] = adapter->stats.xonrxc;
  498. regs_buff[70] = adapter->stats.xontxc;
  499. regs_buff[71] = adapter->stats.xoffrxc;
  500. regs_buff[72] = adapter->stats.xofftxc;
  501. regs_buff[73] = adapter->stats.fcruc;
  502. regs_buff[74] = adapter->stats.prc64;
  503. regs_buff[75] = adapter->stats.prc127;
  504. regs_buff[76] = adapter->stats.prc255;
  505. regs_buff[77] = adapter->stats.prc511;
  506. regs_buff[78] = adapter->stats.prc1023;
  507. regs_buff[79] = adapter->stats.prc1522;
  508. regs_buff[80] = adapter->stats.gprc;
  509. regs_buff[81] = adapter->stats.bprc;
  510. regs_buff[82] = adapter->stats.mprc;
  511. regs_buff[83] = adapter->stats.gptc;
  512. regs_buff[84] = adapter->stats.gorc;
  513. regs_buff[86] = adapter->stats.gotc;
  514. regs_buff[88] = adapter->stats.rnbc;
  515. regs_buff[89] = adapter->stats.ruc;
  516. regs_buff[90] = adapter->stats.rfc;
  517. regs_buff[91] = adapter->stats.roc;
  518. regs_buff[92] = adapter->stats.rjc;
  519. regs_buff[93] = adapter->stats.mgprc;
  520. regs_buff[94] = adapter->stats.mgpdc;
  521. regs_buff[95] = adapter->stats.mgptc;
  522. regs_buff[96] = adapter->stats.tor;
  523. regs_buff[98] = adapter->stats.tot;
  524. regs_buff[100] = adapter->stats.tpr;
  525. regs_buff[101] = adapter->stats.tpt;
  526. regs_buff[102] = adapter->stats.ptc64;
  527. regs_buff[103] = adapter->stats.ptc127;
  528. regs_buff[104] = adapter->stats.ptc255;
  529. regs_buff[105] = adapter->stats.ptc511;
  530. regs_buff[106] = adapter->stats.ptc1023;
  531. regs_buff[107] = adapter->stats.ptc1522;
  532. regs_buff[108] = adapter->stats.mptc;
  533. regs_buff[109] = adapter->stats.bptc;
  534. regs_buff[110] = adapter->stats.tsctc;
  535. regs_buff[111] = adapter->stats.iac;
  536. regs_buff[112] = adapter->stats.rpthc;
  537. regs_buff[113] = adapter->stats.hgptc;
  538. regs_buff[114] = adapter->stats.hgorc;
  539. regs_buff[116] = adapter->stats.hgotc;
  540. regs_buff[118] = adapter->stats.lenerrs;
  541. regs_buff[119] = adapter->stats.scvpc;
  542. regs_buff[120] = adapter->stats.hrmpc;
  543. for (i = 0; i < 4; i++)
  544. regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
  545. for (i = 0; i < 4; i++)
  546. regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
  547. for (i = 0; i < 4; i++)
  548. regs_buff[129 + i] = rd32(E1000_RDBAL(i));
  549. for (i = 0; i < 4; i++)
  550. regs_buff[133 + i] = rd32(E1000_RDBAH(i));
  551. for (i = 0; i < 4; i++)
  552. regs_buff[137 + i] = rd32(E1000_RDLEN(i));
  553. for (i = 0; i < 4; i++)
  554. regs_buff[141 + i] = rd32(E1000_RDH(i));
  555. for (i = 0; i < 4; i++)
  556. regs_buff[145 + i] = rd32(E1000_RDT(i));
  557. for (i = 0; i < 4; i++)
  558. regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
  559. for (i = 0; i < 10; i++)
  560. regs_buff[153 + i] = rd32(E1000_EITR(i));
  561. for (i = 0; i < 8; i++)
  562. regs_buff[163 + i] = rd32(E1000_IMIR(i));
  563. for (i = 0; i < 8; i++)
  564. regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
  565. for (i = 0; i < 16; i++)
  566. regs_buff[179 + i] = rd32(E1000_RAL(i));
  567. for (i = 0; i < 16; i++)
  568. regs_buff[195 + i] = rd32(E1000_RAH(i));
  569. for (i = 0; i < 4; i++)
  570. regs_buff[211 + i] = rd32(E1000_TDBAL(i));
  571. for (i = 0; i < 4; i++)
  572. regs_buff[215 + i] = rd32(E1000_TDBAH(i));
  573. for (i = 0; i < 4; i++)
  574. regs_buff[219 + i] = rd32(E1000_TDLEN(i));
  575. for (i = 0; i < 4; i++)
  576. regs_buff[223 + i] = rd32(E1000_TDH(i));
  577. for (i = 0; i < 4; i++)
  578. regs_buff[227 + i] = rd32(E1000_TDT(i));
  579. for (i = 0; i < 4; i++)
  580. regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
  581. for (i = 0; i < 4; i++)
  582. regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
  583. for (i = 0; i < 4; i++)
  584. regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
  585. for (i = 0; i < 4; i++)
  586. regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
  587. for (i = 0; i < 4; i++)
  588. regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
  589. for (i = 0; i < 4; i++)
  590. regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
  591. for (i = 0; i < 32; i++)
  592. regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
  593. for (i = 0; i < 128; i++)
  594. regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
  595. for (i = 0; i < 128; i++)
  596. regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
  597. for (i = 0; i < 4; i++)
  598. regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
  599. regs_buff[547] = rd32(E1000_TDFH);
  600. regs_buff[548] = rd32(E1000_TDFT);
  601. regs_buff[549] = rd32(E1000_TDFHS);
  602. regs_buff[550] = rd32(E1000_TDFPC);
  603. if (hw->mac.type > e1000_82580) {
  604. regs_buff[551] = adapter->stats.o2bgptc;
  605. regs_buff[552] = adapter->stats.b2ospc;
  606. regs_buff[553] = adapter->stats.o2bspc;
  607. regs_buff[554] = adapter->stats.b2ogprc;
  608. }
  609. if (hw->mac.type != e1000_82576)
  610. return;
  611. for (i = 0; i < 12; i++)
  612. regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
  613. for (i = 0; i < 4; i++)
  614. regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
  615. for (i = 0; i < 12; i++)
  616. regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
  617. for (i = 0; i < 12; i++)
  618. regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
  619. for (i = 0; i < 12; i++)
  620. regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
  621. for (i = 0; i < 12; i++)
  622. regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
  623. for (i = 0; i < 12; i++)
  624. regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
  625. for (i = 0; i < 12; i++)
  626. regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
  627. for (i = 0; i < 12; i++)
  628. regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
  629. for (i = 0; i < 12; i++)
  630. regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
  631. for (i = 0; i < 12; i++)
  632. regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
  633. for (i = 0; i < 12; i++)
  634. regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
  635. for (i = 0; i < 12; i++)
  636. regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
  637. for (i = 0; i < 12; i++)
  638. regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
  639. for (i = 0; i < 12; i++)
  640. regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
  641. for (i = 0; i < 12; i++)
  642. regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
  643. }
  644. static int igb_get_eeprom_len(struct net_device *netdev)
  645. {
  646. struct igb_adapter *adapter = netdev_priv(netdev);
  647. return adapter->hw.nvm.word_size * 2;
  648. }
  649. static int igb_get_eeprom(struct net_device *netdev,
  650. struct ethtool_eeprom *eeprom, u8 *bytes)
  651. {
  652. struct igb_adapter *adapter = netdev_priv(netdev);
  653. struct e1000_hw *hw = &adapter->hw;
  654. u16 *eeprom_buff;
  655. int first_word, last_word;
  656. int ret_val = 0;
  657. u16 i;
  658. if (eeprom->len == 0)
  659. return -EINVAL;
  660. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  661. first_word = eeprom->offset >> 1;
  662. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  663. eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
  664. GFP_KERNEL);
  665. if (!eeprom_buff)
  666. return -ENOMEM;
  667. if (hw->nvm.type == e1000_nvm_eeprom_spi)
  668. ret_val = hw->nvm.ops.read(hw, first_word,
  669. last_word - first_word + 1,
  670. eeprom_buff);
  671. else {
  672. for (i = 0; i < last_word - first_word + 1; i++) {
  673. ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
  674. &eeprom_buff[i]);
  675. if (ret_val)
  676. break;
  677. }
  678. }
  679. /* Device's eeprom is always little-endian, word addressable */
  680. for (i = 0; i < last_word - first_word + 1; i++)
  681. le16_to_cpus(&eeprom_buff[i]);
  682. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  683. eeprom->len);
  684. kfree(eeprom_buff);
  685. return ret_val;
  686. }
  687. static int igb_set_eeprom(struct net_device *netdev,
  688. struct ethtool_eeprom *eeprom, u8 *bytes)
  689. {
  690. struct igb_adapter *adapter = netdev_priv(netdev);
  691. struct e1000_hw *hw = &adapter->hw;
  692. u16 *eeprom_buff;
  693. void *ptr;
  694. int max_len, first_word, last_word, ret_val = 0;
  695. u16 i;
  696. if (eeprom->len == 0)
  697. return -EOPNOTSUPP;
  698. if ((hw->mac.type >= e1000_i210) &&
  699. !igb_get_flash_presence_i210(hw)) {
  700. return -EOPNOTSUPP;
  701. }
  702. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  703. return -EFAULT;
  704. max_len = hw->nvm.word_size * 2;
  705. first_word = eeprom->offset >> 1;
  706. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  707. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  708. if (!eeprom_buff)
  709. return -ENOMEM;
  710. ptr = (void *)eeprom_buff;
  711. if (eeprom->offset & 1) {
  712. /* need read/modify/write of first changed EEPROM word
  713. * only the second byte of the word is being modified
  714. */
  715. ret_val = hw->nvm.ops.read(hw, first_word, 1,
  716. &eeprom_buff[0]);
  717. ptr++;
  718. }
  719. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  720. /* need read/modify/write of last changed EEPROM word
  721. * only the first byte of the word is being modified
  722. */
  723. ret_val = hw->nvm.ops.read(hw, last_word, 1,
  724. &eeprom_buff[last_word - first_word]);
  725. }
  726. /* Device's eeprom is always little-endian, word addressable */
  727. for (i = 0; i < last_word - first_word + 1; i++)
  728. le16_to_cpus(&eeprom_buff[i]);
  729. memcpy(ptr, bytes, eeprom->len);
  730. for (i = 0; i < last_word - first_word + 1; i++)
  731. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  732. ret_val = hw->nvm.ops.write(hw, first_word,
  733. last_word - first_word + 1, eeprom_buff);
  734. /* Update the checksum if nvm write succeeded */
  735. if (ret_val == 0)
  736. hw->nvm.ops.update(hw);
  737. igb_set_fw_version(adapter);
  738. kfree(eeprom_buff);
  739. return ret_val;
  740. }
  741. static void igb_get_drvinfo(struct net_device *netdev,
  742. struct ethtool_drvinfo *drvinfo)
  743. {
  744. struct igb_adapter *adapter = netdev_priv(netdev);
  745. strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
  746. strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
  747. /* EEPROM image version # is reported as firmware version # for
  748. * 82575 controllers
  749. */
  750. strlcpy(drvinfo->fw_version, adapter->fw_version,
  751. sizeof(drvinfo->fw_version));
  752. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  753. sizeof(drvinfo->bus_info));
  754. drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
  755. }
  756. static void igb_get_ringparam(struct net_device *netdev,
  757. struct ethtool_ringparam *ring)
  758. {
  759. struct igb_adapter *adapter = netdev_priv(netdev);
  760. ring->rx_max_pending = IGB_MAX_RXD;
  761. ring->tx_max_pending = IGB_MAX_TXD;
  762. ring->rx_pending = adapter->rx_ring_count;
  763. ring->tx_pending = adapter->tx_ring_count;
  764. }
  765. static int igb_set_ringparam(struct net_device *netdev,
  766. struct ethtool_ringparam *ring)
  767. {
  768. struct igb_adapter *adapter = netdev_priv(netdev);
  769. struct igb_ring *temp_ring;
  770. int i, err = 0;
  771. u16 new_rx_count, new_tx_count;
  772. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  773. return -EINVAL;
  774. new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
  775. new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
  776. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  777. new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
  778. new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
  779. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  780. if ((new_tx_count == adapter->tx_ring_count) &&
  781. (new_rx_count == adapter->rx_ring_count)) {
  782. /* nothing to do */
  783. return 0;
  784. }
  785. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  786. usleep_range(1000, 2000);
  787. if (!netif_running(adapter->netdev)) {
  788. for (i = 0; i < adapter->num_tx_queues; i++)
  789. adapter->tx_ring[i]->count = new_tx_count;
  790. for (i = 0; i < adapter->num_rx_queues; i++)
  791. adapter->rx_ring[i]->count = new_rx_count;
  792. adapter->tx_ring_count = new_tx_count;
  793. adapter->rx_ring_count = new_rx_count;
  794. goto clear_reset;
  795. }
  796. if (adapter->num_tx_queues > adapter->num_rx_queues)
  797. temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
  798. adapter->num_tx_queues));
  799. else
  800. temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
  801. adapter->num_rx_queues));
  802. if (!temp_ring) {
  803. err = -ENOMEM;
  804. goto clear_reset;
  805. }
  806. igb_down(adapter);
  807. /* We can't just free everything and then setup again,
  808. * because the ISRs in MSI-X mode get passed pointers
  809. * to the Tx and Rx ring structs.
  810. */
  811. if (new_tx_count != adapter->tx_ring_count) {
  812. for (i = 0; i < adapter->num_tx_queues; i++) {
  813. memcpy(&temp_ring[i], adapter->tx_ring[i],
  814. sizeof(struct igb_ring));
  815. temp_ring[i].count = new_tx_count;
  816. err = igb_setup_tx_resources(&temp_ring[i]);
  817. if (err) {
  818. while (i) {
  819. i--;
  820. igb_free_tx_resources(&temp_ring[i]);
  821. }
  822. goto err_setup;
  823. }
  824. }
  825. for (i = 0; i < adapter->num_tx_queues; i++) {
  826. igb_free_tx_resources(adapter->tx_ring[i]);
  827. memcpy(adapter->tx_ring[i], &temp_ring[i],
  828. sizeof(struct igb_ring));
  829. }
  830. adapter->tx_ring_count = new_tx_count;
  831. }
  832. if (new_rx_count != adapter->rx_ring_count) {
  833. for (i = 0; i < adapter->num_rx_queues; i++) {
  834. memcpy(&temp_ring[i], adapter->rx_ring[i],
  835. sizeof(struct igb_ring));
  836. temp_ring[i].count = new_rx_count;
  837. err = igb_setup_rx_resources(&temp_ring[i]);
  838. if (err) {
  839. while (i) {
  840. i--;
  841. igb_free_rx_resources(&temp_ring[i]);
  842. }
  843. goto err_setup;
  844. }
  845. }
  846. for (i = 0; i < adapter->num_rx_queues; i++) {
  847. igb_free_rx_resources(adapter->rx_ring[i]);
  848. memcpy(adapter->rx_ring[i], &temp_ring[i],
  849. sizeof(struct igb_ring));
  850. }
  851. adapter->rx_ring_count = new_rx_count;
  852. }
  853. err_setup:
  854. igb_up(adapter);
  855. vfree(temp_ring);
  856. clear_reset:
  857. clear_bit(__IGB_RESETTING, &adapter->state);
  858. return err;
  859. }
  860. /* ethtool register test data */
  861. struct igb_reg_test {
  862. u16 reg;
  863. u16 reg_offset;
  864. u16 array_len;
  865. u16 test_type;
  866. u32 mask;
  867. u32 write;
  868. };
  869. /* In the hardware, registers are laid out either singly, in arrays
  870. * spaced 0x100 bytes apart, or in contiguous tables. We assume
  871. * most tests take place on arrays or single registers (handled
  872. * as a single-element array) and special-case the tables.
  873. * Table tests are always pattern tests.
  874. *
  875. * We also make provision for some required setup steps by specifying
  876. * registers to be written without any read-back testing.
  877. */
  878. #define PATTERN_TEST 1
  879. #define SET_READ_TEST 2
  880. #define WRITE_NO_TEST 3
  881. #define TABLE32_TEST 4
  882. #define TABLE64_TEST_LO 5
  883. #define TABLE64_TEST_HI 6
  884. /* i210 reg test */
  885. static struct igb_reg_test reg_test_i210[] = {
  886. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  887. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  888. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  889. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  890. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  891. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  892. /* RDH is read-only for i210, only test RDT. */
  893. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  894. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  895. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  896. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  897. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  898. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  899. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  900. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  901. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  902. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  903. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  904. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  905. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  906. 0xFFFFFFFF, 0xFFFFFFFF },
  907. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  908. 0x900FFFFF, 0xFFFFFFFF },
  909. { E1000_MTA, 0, 128, TABLE32_TEST,
  910. 0xFFFFFFFF, 0xFFFFFFFF },
  911. { 0, 0, 0, 0, 0 }
  912. };
  913. /* i350 reg test */
  914. static struct igb_reg_test reg_test_i350[] = {
  915. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  916. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  917. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  918. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
  919. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  920. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  921. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  922. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  923. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  924. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  925. /* RDH is read-only for i350, only test RDT. */
  926. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  927. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  928. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  929. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  930. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  931. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  932. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  933. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  934. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  935. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  936. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  937. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  938. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  939. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  940. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  941. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  942. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  943. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  944. 0xFFFFFFFF, 0xFFFFFFFF },
  945. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  946. 0xC3FFFFFF, 0xFFFFFFFF },
  947. { E1000_RA2, 0, 16, TABLE64_TEST_LO,
  948. 0xFFFFFFFF, 0xFFFFFFFF },
  949. { E1000_RA2, 0, 16, TABLE64_TEST_HI,
  950. 0xC3FFFFFF, 0xFFFFFFFF },
  951. { E1000_MTA, 0, 128, TABLE32_TEST,
  952. 0xFFFFFFFF, 0xFFFFFFFF },
  953. { 0, 0, 0, 0 }
  954. };
  955. /* 82580 reg test */
  956. static struct igb_reg_test reg_test_82580[] = {
  957. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  958. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  959. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  960. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  961. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  962. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  963. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  964. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  965. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  966. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  967. /* RDH is read-only for 82580, only test RDT. */
  968. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  969. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  970. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  971. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  972. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  973. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  974. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  975. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  976. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  977. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  978. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  979. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  980. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  981. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  982. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  983. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  984. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  985. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  986. 0xFFFFFFFF, 0xFFFFFFFF },
  987. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  988. 0x83FFFFFF, 0xFFFFFFFF },
  989. { E1000_RA2, 0, 8, TABLE64_TEST_LO,
  990. 0xFFFFFFFF, 0xFFFFFFFF },
  991. { E1000_RA2, 0, 8, TABLE64_TEST_HI,
  992. 0x83FFFFFF, 0xFFFFFFFF },
  993. { E1000_MTA, 0, 128, TABLE32_TEST,
  994. 0xFFFFFFFF, 0xFFFFFFFF },
  995. { 0, 0, 0, 0 }
  996. };
  997. /* 82576 reg test */
  998. static struct igb_reg_test reg_test_82576[] = {
  999. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1000. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1001. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1002. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1003. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1004. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1005. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1006. { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1007. { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1008. { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1009. /* Enable all RX queues before testing. */
  1010. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1011. E1000_RXDCTL_QUEUE_ENABLE },
  1012. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
  1013. E1000_RXDCTL_QUEUE_ENABLE },
  1014. /* RDH is read-only for 82576, only test RDT. */
  1015. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1016. { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1017. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1018. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
  1019. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1020. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1021. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1022. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1023. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1024. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1025. { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1026. { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1027. { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1028. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1029. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1030. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1031. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1032. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1033. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1034. { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1035. { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1036. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1037. { 0, 0, 0, 0 }
  1038. };
  1039. /* 82575 register test */
  1040. static struct igb_reg_test reg_test_82575[] = {
  1041. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1042. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1043. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1044. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1045. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1046. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1047. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1048. /* Enable all four RX queues before testing. */
  1049. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1050. E1000_RXDCTL_QUEUE_ENABLE },
  1051. /* RDH is read-only for 82575, only test RDT. */
  1052. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1053. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1054. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1055. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1056. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1057. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1058. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1059. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1060. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1061. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
  1062. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
  1063. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1064. { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
  1065. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1066. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
  1067. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1068. { 0, 0, 0, 0 }
  1069. };
  1070. static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
  1071. int reg, u32 mask, u32 write)
  1072. {
  1073. struct e1000_hw *hw = &adapter->hw;
  1074. u32 pat, val;
  1075. static const u32 _test[] = {
  1076. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
  1077. for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
  1078. wr32(reg, (_test[pat] & write));
  1079. val = rd32(reg) & mask;
  1080. if (val != (_test[pat] & write & mask)) {
  1081. dev_err(&adapter->pdev->dev,
  1082. "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
  1083. reg, val, (_test[pat] & write & mask));
  1084. *data = reg;
  1085. return true;
  1086. }
  1087. }
  1088. return false;
  1089. }
  1090. static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
  1091. int reg, u32 mask, u32 write)
  1092. {
  1093. struct e1000_hw *hw = &adapter->hw;
  1094. u32 val;
  1095. wr32(reg, write & mask);
  1096. val = rd32(reg);
  1097. if ((write & mask) != (val & mask)) {
  1098. dev_err(&adapter->pdev->dev,
  1099. "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
  1100. reg, (val & mask), (write & mask));
  1101. *data = reg;
  1102. return true;
  1103. }
  1104. return false;
  1105. }
  1106. #define REG_PATTERN_TEST(reg, mask, write) \
  1107. do { \
  1108. if (reg_pattern_test(adapter, data, reg, mask, write)) \
  1109. return 1; \
  1110. } while (0)
  1111. #define REG_SET_AND_CHECK(reg, mask, write) \
  1112. do { \
  1113. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  1114. return 1; \
  1115. } while (0)
  1116. static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
  1117. {
  1118. struct e1000_hw *hw = &adapter->hw;
  1119. struct igb_reg_test *test;
  1120. u32 value, before, after;
  1121. u32 i, toggle;
  1122. switch (adapter->hw.mac.type) {
  1123. case e1000_i350:
  1124. case e1000_i354:
  1125. test = reg_test_i350;
  1126. toggle = 0x7FEFF3FF;
  1127. break;
  1128. case e1000_i210:
  1129. case e1000_i211:
  1130. test = reg_test_i210;
  1131. toggle = 0x7FEFF3FF;
  1132. break;
  1133. case e1000_82580:
  1134. test = reg_test_82580;
  1135. toggle = 0x7FEFF3FF;
  1136. break;
  1137. case e1000_82576:
  1138. test = reg_test_82576;
  1139. toggle = 0x7FFFF3FF;
  1140. break;
  1141. default:
  1142. test = reg_test_82575;
  1143. toggle = 0x7FFFF3FF;
  1144. break;
  1145. }
  1146. /* Because the status register is such a special case,
  1147. * we handle it separately from the rest of the register
  1148. * tests. Some bits are read-only, some toggle, and some
  1149. * are writable on newer MACs.
  1150. */
  1151. before = rd32(E1000_STATUS);
  1152. value = (rd32(E1000_STATUS) & toggle);
  1153. wr32(E1000_STATUS, toggle);
  1154. after = rd32(E1000_STATUS) & toggle;
  1155. if (value != after) {
  1156. dev_err(&adapter->pdev->dev,
  1157. "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  1158. after, value);
  1159. *data = 1;
  1160. return 1;
  1161. }
  1162. /* restore previous status */
  1163. wr32(E1000_STATUS, before);
  1164. /* Perform the remainder of the register test, looping through
  1165. * the test table until we either fail or reach the null entry.
  1166. */
  1167. while (test->reg) {
  1168. for (i = 0; i < test->array_len; i++) {
  1169. switch (test->test_type) {
  1170. case PATTERN_TEST:
  1171. REG_PATTERN_TEST(test->reg +
  1172. (i * test->reg_offset),
  1173. test->mask,
  1174. test->write);
  1175. break;
  1176. case SET_READ_TEST:
  1177. REG_SET_AND_CHECK(test->reg +
  1178. (i * test->reg_offset),
  1179. test->mask,
  1180. test->write);
  1181. break;
  1182. case WRITE_NO_TEST:
  1183. writel(test->write,
  1184. (adapter->hw.hw_addr + test->reg)
  1185. + (i * test->reg_offset));
  1186. break;
  1187. case TABLE32_TEST:
  1188. REG_PATTERN_TEST(test->reg + (i * 4),
  1189. test->mask,
  1190. test->write);
  1191. break;
  1192. case TABLE64_TEST_LO:
  1193. REG_PATTERN_TEST(test->reg + (i * 8),
  1194. test->mask,
  1195. test->write);
  1196. break;
  1197. case TABLE64_TEST_HI:
  1198. REG_PATTERN_TEST((test->reg + 4) + (i * 8),
  1199. test->mask,
  1200. test->write);
  1201. break;
  1202. }
  1203. }
  1204. test++;
  1205. }
  1206. *data = 0;
  1207. return 0;
  1208. }
  1209. static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
  1210. {
  1211. struct e1000_hw *hw = &adapter->hw;
  1212. *data = 0;
  1213. /* Validate eeprom on all parts but flashless */
  1214. switch (hw->mac.type) {
  1215. case e1000_i210:
  1216. case e1000_i211:
  1217. if (igb_get_flash_presence_i210(hw)) {
  1218. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1219. *data = 2;
  1220. }
  1221. break;
  1222. default:
  1223. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1224. *data = 2;
  1225. break;
  1226. }
  1227. return *data;
  1228. }
  1229. static irqreturn_t igb_test_intr(int irq, void *data)
  1230. {
  1231. struct igb_adapter *adapter = (struct igb_adapter *) data;
  1232. struct e1000_hw *hw = &adapter->hw;
  1233. adapter->test_icr |= rd32(E1000_ICR);
  1234. return IRQ_HANDLED;
  1235. }
  1236. static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
  1237. {
  1238. struct e1000_hw *hw = &adapter->hw;
  1239. struct net_device *netdev = adapter->netdev;
  1240. u32 mask, ics_mask, i = 0, shared_int = true;
  1241. u32 irq = adapter->pdev->irq;
  1242. *data = 0;
  1243. /* Hook up test interrupt handler just for this test */
  1244. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1245. if (request_irq(adapter->msix_entries[0].vector,
  1246. igb_test_intr, 0, netdev->name, adapter)) {
  1247. *data = 1;
  1248. return -1;
  1249. }
  1250. } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1251. shared_int = false;
  1252. if (request_irq(irq,
  1253. igb_test_intr, 0, netdev->name, adapter)) {
  1254. *data = 1;
  1255. return -1;
  1256. }
  1257. } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
  1258. netdev->name, adapter)) {
  1259. shared_int = false;
  1260. } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
  1261. netdev->name, adapter)) {
  1262. *data = 1;
  1263. return -1;
  1264. }
  1265. dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
  1266. (shared_int ? "shared" : "unshared"));
  1267. /* Disable all the interrupts */
  1268. wr32(E1000_IMC, ~0);
  1269. wrfl();
  1270. usleep_range(10000, 11000);
  1271. /* Define all writable bits for ICS */
  1272. switch (hw->mac.type) {
  1273. case e1000_82575:
  1274. ics_mask = 0x37F47EDD;
  1275. break;
  1276. case e1000_82576:
  1277. ics_mask = 0x77D4FBFD;
  1278. break;
  1279. case e1000_82580:
  1280. ics_mask = 0x77DCFED5;
  1281. break;
  1282. case e1000_i350:
  1283. case e1000_i354:
  1284. case e1000_i210:
  1285. case e1000_i211:
  1286. ics_mask = 0x77DCFED5;
  1287. break;
  1288. default:
  1289. ics_mask = 0x7FFFFFFF;
  1290. break;
  1291. }
  1292. /* Test each interrupt */
  1293. for (; i < 31; i++) {
  1294. /* Interrupt to test */
  1295. mask = BIT(i);
  1296. if (!(mask & ics_mask))
  1297. continue;
  1298. if (!shared_int) {
  1299. /* Disable the interrupt to be reported in
  1300. * the cause register and then force the same
  1301. * interrupt and see if one gets posted. If
  1302. * an interrupt was posted to the bus, the
  1303. * test failed.
  1304. */
  1305. adapter->test_icr = 0;
  1306. /* Flush any pending interrupts */
  1307. wr32(E1000_ICR, ~0);
  1308. wr32(E1000_IMC, mask);
  1309. wr32(E1000_ICS, mask);
  1310. wrfl();
  1311. usleep_range(10000, 11000);
  1312. if (adapter->test_icr & mask) {
  1313. *data = 3;
  1314. break;
  1315. }
  1316. }
  1317. /* Enable the interrupt to be reported in
  1318. * the cause register and then force the same
  1319. * interrupt and see if one gets posted. If
  1320. * an interrupt was not posted to the bus, the
  1321. * test failed.
  1322. */
  1323. adapter->test_icr = 0;
  1324. /* Flush any pending interrupts */
  1325. wr32(E1000_ICR, ~0);
  1326. wr32(E1000_IMS, mask);
  1327. wr32(E1000_ICS, mask);
  1328. wrfl();
  1329. usleep_range(10000, 11000);
  1330. if (!(adapter->test_icr & mask)) {
  1331. *data = 4;
  1332. break;
  1333. }
  1334. if (!shared_int) {
  1335. /* Disable the other interrupts to be reported in
  1336. * the cause register and then force the other
  1337. * interrupts and see if any get posted. If
  1338. * an interrupt was posted to the bus, the
  1339. * test failed.
  1340. */
  1341. adapter->test_icr = 0;
  1342. /* Flush any pending interrupts */
  1343. wr32(E1000_ICR, ~0);
  1344. wr32(E1000_IMC, ~mask);
  1345. wr32(E1000_ICS, ~mask);
  1346. wrfl();
  1347. usleep_range(10000, 11000);
  1348. if (adapter->test_icr & mask) {
  1349. *data = 5;
  1350. break;
  1351. }
  1352. }
  1353. }
  1354. /* Disable all the interrupts */
  1355. wr32(E1000_IMC, ~0);
  1356. wrfl();
  1357. usleep_range(10000, 11000);
  1358. /* Unhook test interrupt handler */
  1359. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1360. free_irq(adapter->msix_entries[0].vector, adapter);
  1361. else
  1362. free_irq(irq, adapter);
  1363. return *data;
  1364. }
  1365. static void igb_free_desc_rings(struct igb_adapter *adapter)
  1366. {
  1367. igb_free_tx_resources(&adapter->test_tx_ring);
  1368. igb_free_rx_resources(&adapter->test_rx_ring);
  1369. }
  1370. static int igb_setup_desc_rings(struct igb_adapter *adapter)
  1371. {
  1372. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1373. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1374. struct e1000_hw *hw = &adapter->hw;
  1375. int ret_val;
  1376. /* Setup Tx descriptor ring and Tx buffers */
  1377. tx_ring->count = IGB_DEFAULT_TXD;
  1378. tx_ring->dev = &adapter->pdev->dev;
  1379. tx_ring->netdev = adapter->netdev;
  1380. tx_ring->reg_idx = adapter->vfs_allocated_count;
  1381. if (igb_setup_tx_resources(tx_ring)) {
  1382. ret_val = 1;
  1383. goto err_nomem;
  1384. }
  1385. igb_setup_tctl(adapter);
  1386. igb_configure_tx_ring(adapter, tx_ring);
  1387. /* Setup Rx descriptor ring and Rx buffers */
  1388. rx_ring->count = IGB_DEFAULT_RXD;
  1389. rx_ring->dev = &adapter->pdev->dev;
  1390. rx_ring->netdev = adapter->netdev;
  1391. rx_ring->reg_idx = adapter->vfs_allocated_count;
  1392. if (igb_setup_rx_resources(rx_ring)) {
  1393. ret_val = 3;
  1394. goto err_nomem;
  1395. }
  1396. /* set the default queue to queue 0 of PF */
  1397. wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
  1398. /* enable receive ring */
  1399. igb_setup_rctl(adapter);
  1400. igb_configure_rx_ring(adapter, rx_ring);
  1401. igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
  1402. return 0;
  1403. err_nomem:
  1404. igb_free_desc_rings(adapter);
  1405. return ret_val;
  1406. }
  1407. static void igb_phy_disable_receiver(struct igb_adapter *adapter)
  1408. {
  1409. struct e1000_hw *hw = &adapter->hw;
  1410. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1411. igb_write_phy_reg(hw, 29, 0x001F);
  1412. igb_write_phy_reg(hw, 30, 0x8FFC);
  1413. igb_write_phy_reg(hw, 29, 0x001A);
  1414. igb_write_phy_reg(hw, 30, 0x8FF0);
  1415. }
  1416. static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
  1417. {
  1418. struct e1000_hw *hw = &adapter->hw;
  1419. u32 ctrl_reg = 0;
  1420. hw->mac.autoneg = false;
  1421. if (hw->phy.type == e1000_phy_m88) {
  1422. if (hw->phy.id != I210_I_PHY_ID) {
  1423. /* Auto-MDI/MDIX Off */
  1424. igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1425. /* reset to update Auto-MDI/MDIX */
  1426. igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
  1427. /* autoneg off */
  1428. igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
  1429. } else {
  1430. /* force 1000, set loopback */
  1431. igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
  1432. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1433. }
  1434. } else if (hw->phy.type == e1000_phy_82580) {
  1435. /* enable MII loopback */
  1436. igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
  1437. }
  1438. /* add small delay to avoid loopback test failure */
  1439. msleep(50);
  1440. /* force 1000, set loopback */
  1441. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1442. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1443. ctrl_reg = rd32(E1000_CTRL);
  1444. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1445. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1446. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1447. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1448. E1000_CTRL_FD | /* Force Duplex to FULL */
  1449. E1000_CTRL_SLU); /* Set link up enable bit */
  1450. if (hw->phy.type == e1000_phy_m88)
  1451. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1452. wr32(E1000_CTRL, ctrl_reg);
  1453. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1454. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1455. */
  1456. if (hw->phy.type == e1000_phy_m88)
  1457. igb_phy_disable_receiver(adapter);
  1458. msleep(500);
  1459. return 0;
  1460. }
  1461. static int igb_set_phy_loopback(struct igb_adapter *adapter)
  1462. {
  1463. return igb_integrated_phy_loopback(adapter);
  1464. }
  1465. static int igb_setup_loopback_test(struct igb_adapter *adapter)
  1466. {
  1467. struct e1000_hw *hw = &adapter->hw;
  1468. u32 reg;
  1469. reg = rd32(E1000_CTRL_EXT);
  1470. /* use CTRL_EXT to identify link type as SGMII can appear as copper */
  1471. if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1472. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1473. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1474. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1475. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1476. (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
  1477. (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
  1478. /* Enable DH89xxCC MPHY for near end loopback */
  1479. reg = rd32(E1000_MPHY_ADDR_CTL);
  1480. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1481. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1482. wr32(E1000_MPHY_ADDR_CTL, reg);
  1483. reg = rd32(E1000_MPHY_DATA);
  1484. reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1485. wr32(E1000_MPHY_DATA, reg);
  1486. }
  1487. reg = rd32(E1000_RCTL);
  1488. reg |= E1000_RCTL_LBM_TCVR;
  1489. wr32(E1000_RCTL, reg);
  1490. wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
  1491. reg = rd32(E1000_CTRL);
  1492. reg &= ~(E1000_CTRL_RFCE |
  1493. E1000_CTRL_TFCE |
  1494. E1000_CTRL_LRST);
  1495. reg |= E1000_CTRL_SLU |
  1496. E1000_CTRL_FD;
  1497. wr32(E1000_CTRL, reg);
  1498. /* Unset switch control to serdes energy detect */
  1499. reg = rd32(E1000_CONNSW);
  1500. reg &= ~E1000_CONNSW_ENRGSRC;
  1501. wr32(E1000_CONNSW, reg);
  1502. /* Unset sigdetect for SERDES loopback on
  1503. * 82580 and newer devices.
  1504. */
  1505. if (hw->mac.type >= e1000_82580) {
  1506. reg = rd32(E1000_PCS_CFG0);
  1507. reg |= E1000_PCS_CFG_IGN_SD;
  1508. wr32(E1000_PCS_CFG0, reg);
  1509. }
  1510. /* Set PCS register for forced speed */
  1511. reg = rd32(E1000_PCS_LCTL);
  1512. reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
  1513. reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
  1514. E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
  1515. E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
  1516. E1000_PCS_LCTL_FSD | /* Force Speed */
  1517. E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
  1518. wr32(E1000_PCS_LCTL, reg);
  1519. return 0;
  1520. }
  1521. return igb_set_phy_loopback(adapter);
  1522. }
  1523. static void igb_loopback_cleanup(struct igb_adapter *adapter)
  1524. {
  1525. struct e1000_hw *hw = &adapter->hw;
  1526. u32 rctl;
  1527. u16 phy_reg;
  1528. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1529. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1530. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1531. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1532. (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
  1533. u32 reg;
  1534. /* Disable near end loopback on DH89xxCC */
  1535. reg = rd32(E1000_MPHY_ADDR_CTL);
  1536. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1537. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1538. wr32(E1000_MPHY_ADDR_CTL, reg);
  1539. reg = rd32(E1000_MPHY_DATA);
  1540. reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1541. wr32(E1000_MPHY_DATA, reg);
  1542. }
  1543. rctl = rd32(E1000_RCTL);
  1544. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1545. wr32(E1000_RCTL, rctl);
  1546. hw->mac.autoneg = true;
  1547. igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
  1548. if (phy_reg & MII_CR_LOOPBACK) {
  1549. phy_reg &= ~MII_CR_LOOPBACK;
  1550. igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
  1551. igb_phy_sw_reset(hw);
  1552. }
  1553. }
  1554. static void igb_create_lbtest_frame(struct sk_buff *skb,
  1555. unsigned int frame_size)
  1556. {
  1557. memset(skb->data, 0xFF, frame_size);
  1558. frame_size /= 2;
  1559. memset(&skb->data[frame_size], 0xAA, frame_size - 1);
  1560. memset(&skb->data[frame_size + 10], 0xBE, 1);
  1561. memset(&skb->data[frame_size + 12], 0xAF, 1);
  1562. }
  1563. static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
  1564. unsigned int frame_size)
  1565. {
  1566. unsigned char *data;
  1567. bool match = true;
  1568. frame_size >>= 1;
  1569. data = kmap(rx_buffer->page);
  1570. if (data[3] != 0xFF ||
  1571. data[frame_size + 10] != 0xBE ||
  1572. data[frame_size + 12] != 0xAF)
  1573. match = false;
  1574. kunmap(rx_buffer->page);
  1575. return match;
  1576. }
  1577. static int igb_clean_test_rings(struct igb_ring *rx_ring,
  1578. struct igb_ring *tx_ring,
  1579. unsigned int size)
  1580. {
  1581. union e1000_adv_rx_desc *rx_desc;
  1582. struct igb_rx_buffer *rx_buffer_info;
  1583. struct igb_tx_buffer *tx_buffer_info;
  1584. u16 rx_ntc, tx_ntc, count = 0;
  1585. /* initialize next to clean and descriptor values */
  1586. rx_ntc = rx_ring->next_to_clean;
  1587. tx_ntc = tx_ring->next_to_clean;
  1588. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1589. while (rx_desc->wb.upper.length) {
  1590. /* check Rx buffer */
  1591. rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
  1592. /* sync Rx buffer for CPU read */
  1593. dma_sync_single_for_cpu(rx_ring->dev,
  1594. rx_buffer_info->dma,
  1595. size,
  1596. DMA_FROM_DEVICE);
  1597. /* verify contents of skb */
  1598. if (igb_check_lbtest_frame(rx_buffer_info, size))
  1599. count++;
  1600. /* sync Rx buffer for device write */
  1601. dma_sync_single_for_device(rx_ring->dev,
  1602. rx_buffer_info->dma,
  1603. size,
  1604. DMA_FROM_DEVICE);
  1605. /* unmap buffer on Tx side */
  1606. tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
  1607. /* Free all the Tx ring sk_buffs */
  1608. dev_kfree_skb_any(tx_buffer_info->skb);
  1609. /* unmap skb header data */
  1610. dma_unmap_single(tx_ring->dev,
  1611. dma_unmap_addr(tx_buffer_info, dma),
  1612. dma_unmap_len(tx_buffer_info, len),
  1613. DMA_TO_DEVICE);
  1614. dma_unmap_len_set(tx_buffer_info, len, 0);
  1615. /* increment Rx/Tx next to clean counters */
  1616. rx_ntc++;
  1617. if (rx_ntc == rx_ring->count)
  1618. rx_ntc = 0;
  1619. tx_ntc++;
  1620. if (tx_ntc == tx_ring->count)
  1621. tx_ntc = 0;
  1622. /* fetch next descriptor */
  1623. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1624. }
  1625. netdev_tx_reset_queue(txring_txq(tx_ring));
  1626. /* re-map buffers to ring, store next to clean values */
  1627. igb_alloc_rx_buffers(rx_ring, count);
  1628. rx_ring->next_to_clean = rx_ntc;
  1629. tx_ring->next_to_clean = tx_ntc;
  1630. return count;
  1631. }
  1632. static int igb_run_loopback_test(struct igb_adapter *adapter)
  1633. {
  1634. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1635. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1636. u16 i, j, lc, good_cnt;
  1637. int ret_val = 0;
  1638. unsigned int size = IGB_RX_HDR_LEN;
  1639. netdev_tx_t tx_ret_val;
  1640. struct sk_buff *skb;
  1641. /* allocate test skb */
  1642. skb = alloc_skb(size, GFP_KERNEL);
  1643. if (!skb)
  1644. return 11;
  1645. /* place data into test skb */
  1646. igb_create_lbtest_frame(skb, size);
  1647. skb_put(skb, size);
  1648. /* Calculate the loop count based on the largest descriptor ring
  1649. * The idea is to wrap the largest ring a number of times using 64
  1650. * send/receive pairs during each loop
  1651. */
  1652. if (rx_ring->count <= tx_ring->count)
  1653. lc = ((tx_ring->count / 64) * 2) + 1;
  1654. else
  1655. lc = ((rx_ring->count / 64) * 2) + 1;
  1656. for (j = 0; j <= lc; j++) { /* loop count loop */
  1657. /* reset count of good packets */
  1658. good_cnt = 0;
  1659. /* place 64 packets on the transmit queue*/
  1660. for (i = 0; i < 64; i++) {
  1661. skb_get(skb);
  1662. tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
  1663. if (tx_ret_val == NETDEV_TX_OK)
  1664. good_cnt++;
  1665. }
  1666. if (good_cnt != 64) {
  1667. ret_val = 12;
  1668. break;
  1669. }
  1670. /* allow 200 milliseconds for packets to go from Tx to Rx */
  1671. msleep(200);
  1672. good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
  1673. if (good_cnt != 64) {
  1674. ret_val = 13;
  1675. break;
  1676. }
  1677. } /* end loop count loop */
  1678. /* free the original skb */
  1679. kfree_skb(skb);
  1680. return ret_val;
  1681. }
  1682. static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
  1683. {
  1684. /* PHY loopback cannot be performed if SoL/IDER
  1685. * sessions are active
  1686. */
  1687. if (igb_check_reset_block(&adapter->hw)) {
  1688. dev_err(&adapter->pdev->dev,
  1689. "Cannot do PHY loopback test when SoL/IDER is active.\n");
  1690. *data = 0;
  1691. goto out;
  1692. }
  1693. if (adapter->hw.mac.type == e1000_i354) {
  1694. dev_info(&adapter->pdev->dev,
  1695. "Loopback test not supported on i354.\n");
  1696. *data = 0;
  1697. goto out;
  1698. }
  1699. *data = igb_setup_desc_rings(adapter);
  1700. if (*data)
  1701. goto out;
  1702. *data = igb_setup_loopback_test(adapter);
  1703. if (*data)
  1704. goto err_loopback;
  1705. *data = igb_run_loopback_test(adapter);
  1706. igb_loopback_cleanup(adapter);
  1707. err_loopback:
  1708. igb_free_desc_rings(adapter);
  1709. out:
  1710. return *data;
  1711. }
  1712. static int igb_link_test(struct igb_adapter *adapter, u64 *data)
  1713. {
  1714. struct e1000_hw *hw = &adapter->hw;
  1715. *data = 0;
  1716. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1717. int i = 0;
  1718. hw->mac.serdes_has_link = false;
  1719. /* On some blade server designs, link establishment
  1720. * could take as long as 2-3 minutes
  1721. */
  1722. do {
  1723. hw->mac.ops.check_for_link(&adapter->hw);
  1724. if (hw->mac.serdes_has_link)
  1725. return *data;
  1726. msleep(20);
  1727. } while (i++ < 3750);
  1728. *data = 1;
  1729. } else {
  1730. hw->mac.ops.check_for_link(&adapter->hw);
  1731. if (hw->mac.autoneg)
  1732. msleep(5000);
  1733. if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
  1734. *data = 1;
  1735. }
  1736. return *data;
  1737. }
  1738. static void igb_diag_test(struct net_device *netdev,
  1739. struct ethtool_test *eth_test, u64 *data)
  1740. {
  1741. struct igb_adapter *adapter = netdev_priv(netdev);
  1742. u16 autoneg_advertised;
  1743. u8 forced_speed_duplex, autoneg;
  1744. bool if_running = netif_running(netdev);
  1745. set_bit(__IGB_TESTING, &adapter->state);
  1746. /* can't do offline tests on media switching devices */
  1747. if (adapter->hw.dev_spec._82575.mas_capable)
  1748. eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
  1749. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1750. /* Offline tests */
  1751. /* save speed, duplex, autoneg settings */
  1752. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1753. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1754. autoneg = adapter->hw.mac.autoneg;
  1755. dev_info(&adapter->pdev->dev, "offline testing starting\n");
  1756. /* power up link for link test */
  1757. igb_power_up_link(adapter);
  1758. /* Link test performed before hardware reset so autoneg doesn't
  1759. * interfere with test result
  1760. */
  1761. if (igb_link_test(adapter, &data[TEST_LINK]))
  1762. eth_test->flags |= ETH_TEST_FL_FAILED;
  1763. if (if_running)
  1764. /* indicate we're in test mode */
  1765. igb_close(netdev);
  1766. else
  1767. igb_reset(adapter);
  1768. if (igb_reg_test(adapter, &data[TEST_REG]))
  1769. eth_test->flags |= ETH_TEST_FL_FAILED;
  1770. igb_reset(adapter);
  1771. if (igb_eeprom_test(adapter, &data[TEST_EEP]))
  1772. eth_test->flags |= ETH_TEST_FL_FAILED;
  1773. igb_reset(adapter);
  1774. if (igb_intr_test(adapter, &data[TEST_IRQ]))
  1775. eth_test->flags |= ETH_TEST_FL_FAILED;
  1776. igb_reset(adapter);
  1777. /* power up link for loopback test */
  1778. igb_power_up_link(adapter);
  1779. if (igb_loopback_test(adapter, &data[TEST_LOOP]))
  1780. eth_test->flags |= ETH_TEST_FL_FAILED;
  1781. /* restore speed, duplex, autoneg settings */
  1782. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1783. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1784. adapter->hw.mac.autoneg = autoneg;
  1785. /* force this routine to wait until autoneg complete/timeout */
  1786. adapter->hw.phy.autoneg_wait_to_complete = true;
  1787. igb_reset(adapter);
  1788. adapter->hw.phy.autoneg_wait_to_complete = false;
  1789. clear_bit(__IGB_TESTING, &adapter->state);
  1790. if (if_running)
  1791. igb_open(netdev);
  1792. } else {
  1793. dev_info(&adapter->pdev->dev, "online testing starting\n");
  1794. /* PHY is powered down when interface is down */
  1795. if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
  1796. eth_test->flags |= ETH_TEST_FL_FAILED;
  1797. else
  1798. data[TEST_LINK] = 0;
  1799. /* Online tests aren't run; pass by default */
  1800. data[TEST_REG] = 0;
  1801. data[TEST_EEP] = 0;
  1802. data[TEST_IRQ] = 0;
  1803. data[TEST_LOOP] = 0;
  1804. clear_bit(__IGB_TESTING, &adapter->state);
  1805. }
  1806. msleep_interruptible(4 * 1000);
  1807. }
  1808. static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1809. {
  1810. struct igb_adapter *adapter = netdev_priv(netdev);
  1811. wol->wolopts = 0;
  1812. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1813. return;
  1814. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1815. WAKE_BCAST | WAKE_MAGIC |
  1816. WAKE_PHY;
  1817. /* apply any specific unsupported masks here */
  1818. switch (adapter->hw.device_id) {
  1819. default:
  1820. break;
  1821. }
  1822. if (adapter->wol & E1000_WUFC_EX)
  1823. wol->wolopts |= WAKE_UCAST;
  1824. if (adapter->wol & E1000_WUFC_MC)
  1825. wol->wolopts |= WAKE_MCAST;
  1826. if (adapter->wol & E1000_WUFC_BC)
  1827. wol->wolopts |= WAKE_BCAST;
  1828. if (adapter->wol & E1000_WUFC_MAG)
  1829. wol->wolopts |= WAKE_MAGIC;
  1830. if (adapter->wol & E1000_WUFC_LNKC)
  1831. wol->wolopts |= WAKE_PHY;
  1832. }
  1833. static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1834. {
  1835. struct igb_adapter *adapter = netdev_priv(netdev);
  1836. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1837. return -EOPNOTSUPP;
  1838. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1839. return wol->wolopts ? -EOPNOTSUPP : 0;
  1840. /* these settings will always override what we currently have */
  1841. adapter->wol = 0;
  1842. if (wol->wolopts & WAKE_UCAST)
  1843. adapter->wol |= E1000_WUFC_EX;
  1844. if (wol->wolopts & WAKE_MCAST)
  1845. adapter->wol |= E1000_WUFC_MC;
  1846. if (wol->wolopts & WAKE_BCAST)
  1847. adapter->wol |= E1000_WUFC_BC;
  1848. if (wol->wolopts & WAKE_MAGIC)
  1849. adapter->wol |= E1000_WUFC_MAG;
  1850. if (wol->wolopts & WAKE_PHY)
  1851. adapter->wol |= E1000_WUFC_LNKC;
  1852. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1853. return 0;
  1854. }
  1855. /* bit defines for adapter->led_status */
  1856. #define IGB_LED_ON 0
  1857. static int igb_set_phys_id(struct net_device *netdev,
  1858. enum ethtool_phys_id_state state)
  1859. {
  1860. struct igb_adapter *adapter = netdev_priv(netdev);
  1861. struct e1000_hw *hw = &adapter->hw;
  1862. switch (state) {
  1863. case ETHTOOL_ID_ACTIVE:
  1864. igb_blink_led(hw);
  1865. return 2;
  1866. case ETHTOOL_ID_ON:
  1867. igb_blink_led(hw);
  1868. break;
  1869. case ETHTOOL_ID_OFF:
  1870. igb_led_off(hw);
  1871. break;
  1872. case ETHTOOL_ID_INACTIVE:
  1873. igb_led_off(hw);
  1874. clear_bit(IGB_LED_ON, &adapter->led_status);
  1875. igb_cleanup_led(hw);
  1876. break;
  1877. }
  1878. return 0;
  1879. }
  1880. static int igb_set_coalesce(struct net_device *netdev,
  1881. struct ethtool_coalesce *ec)
  1882. {
  1883. struct igb_adapter *adapter = netdev_priv(netdev);
  1884. int i;
  1885. if (ec->rx_max_coalesced_frames ||
  1886. ec->rx_coalesce_usecs_irq ||
  1887. ec->rx_max_coalesced_frames_irq ||
  1888. ec->tx_max_coalesced_frames ||
  1889. ec->tx_coalesce_usecs_irq ||
  1890. ec->stats_block_coalesce_usecs ||
  1891. ec->use_adaptive_rx_coalesce ||
  1892. ec->use_adaptive_tx_coalesce ||
  1893. ec->pkt_rate_low ||
  1894. ec->rx_coalesce_usecs_low ||
  1895. ec->rx_max_coalesced_frames_low ||
  1896. ec->tx_coalesce_usecs_low ||
  1897. ec->tx_max_coalesced_frames_low ||
  1898. ec->pkt_rate_high ||
  1899. ec->rx_coalesce_usecs_high ||
  1900. ec->rx_max_coalesced_frames_high ||
  1901. ec->tx_coalesce_usecs_high ||
  1902. ec->tx_max_coalesced_frames_high ||
  1903. ec->rate_sample_interval)
  1904. return -ENOTSUPP;
  1905. if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1906. ((ec->rx_coalesce_usecs > 3) &&
  1907. (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1908. (ec->rx_coalesce_usecs == 2))
  1909. return -EINVAL;
  1910. if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1911. ((ec->tx_coalesce_usecs > 3) &&
  1912. (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1913. (ec->tx_coalesce_usecs == 2))
  1914. return -EINVAL;
  1915. if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
  1916. return -EINVAL;
  1917. /* If ITR is disabled, disable DMAC */
  1918. if (ec->rx_coalesce_usecs == 0) {
  1919. if (adapter->flags & IGB_FLAG_DMAC)
  1920. adapter->flags &= ~IGB_FLAG_DMAC;
  1921. }
  1922. /* convert to rate of irq's per second */
  1923. if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
  1924. adapter->rx_itr_setting = ec->rx_coalesce_usecs;
  1925. else
  1926. adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
  1927. /* convert to rate of irq's per second */
  1928. if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
  1929. adapter->tx_itr_setting = adapter->rx_itr_setting;
  1930. else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
  1931. adapter->tx_itr_setting = ec->tx_coalesce_usecs;
  1932. else
  1933. adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
  1934. for (i = 0; i < adapter->num_q_vectors; i++) {
  1935. struct igb_q_vector *q_vector = adapter->q_vector[i];
  1936. q_vector->tx.work_limit = adapter->tx_work_limit;
  1937. if (q_vector->rx.ring)
  1938. q_vector->itr_val = adapter->rx_itr_setting;
  1939. else
  1940. q_vector->itr_val = adapter->tx_itr_setting;
  1941. if (q_vector->itr_val && q_vector->itr_val <= 3)
  1942. q_vector->itr_val = IGB_START_ITR;
  1943. q_vector->set_itr = 1;
  1944. }
  1945. return 0;
  1946. }
  1947. static int igb_get_coalesce(struct net_device *netdev,
  1948. struct ethtool_coalesce *ec)
  1949. {
  1950. struct igb_adapter *adapter = netdev_priv(netdev);
  1951. if (adapter->rx_itr_setting <= 3)
  1952. ec->rx_coalesce_usecs = adapter->rx_itr_setting;
  1953. else
  1954. ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
  1955. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
  1956. if (adapter->tx_itr_setting <= 3)
  1957. ec->tx_coalesce_usecs = adapter->tx_itr_setting;
  1958. else
  1959. ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
  1960. }
  1961. return 0;
  1962. }
  1963. static int igb_nway_reset(struct net_device *netdev)
  1964. {
  1965. struct igb_adapter *adapter = netdev_priv(netdev);
  1966. if (netif_running(netdev))
  1967. igb_reinit_locked(adapter);
  1968. return 0;
  1969. }
  1970. static int igb_get_sset_count(struct net_device *netdev, int sset)
  1971. {
  1972. switch (sset) {
  1973. case ETH_SS_STATS:
  1974. return IGB_STATS_LEN;
  1975. case ETH_SS_TEST:
  1976. return IGB_TEST_LEN;
  1977. case ETH_SS_PRIV_FLAGS:
  1978. return IGB_PRIV_FLAGS_STR_LEN;
  1979. default:
  1980. return -ENOTSUPP;
  1981. }
  1982. }
  1983. static void igb_get_ethtool_stats(struct net_device *netdev,
  1984. struct ethtool_stats *stats, u64 *data)
  1985. {
  1986. struct igb_adapter *adapter = netdev_priv(netdev);
  1987. struct rtnl_link_stats64 *net_stats = &adapter->stats64;
  1988. unsigned int start;
  1989. struct igb_ring *ring;
  1990. int i, j;
  1991. char *p;
  1992. spin_lock(&adapter->stats64_lock);
  1993. igb_update_stats(adapter);
  1994. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  1995. p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
  1996. data[i] = (igb_gstrings_stats[i].sizeof_stat ==
  1997. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  1998. }
  1999. for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
  2000. p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
  2001. data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
  2002. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2003. }
  2004. for (j = 0; j < adapter->num_tx_queues; j++) {
  2005. u64 restart2;
  2006. ring = adapter->tx_ring[j];
  2007. do {
  2008. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  2009. data[i] = ring->tx_stats.packets;
  2010. data[i+1] = ring->tx_stats.bytes;
  2011. data[i+2] = ring->tx_stats.restart_queue;
  2012. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  2013. do {
  2014. start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
  2015. restart2 = ring->tx_stats.restart_queue2;
  2016. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
  2017. data[i+2] += restart2;
  2018. i += IGB_TX_QUEUE_STATS_LEN;
  2019. }
  2020. for (j = 0; j < adapter->num_rx_queues; j++) {
  2021. ring = adapter->rx_ring[j];
  2022. do {
  2023. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  2024. data[i] = ring->rx_stats.packets;
  2025. data[i+1] = ring->rx_stats.bytes;
  2026. data[i+2] = ring->rx_stats.drops;
  2027. data[i+3] = ring->rx_stats.csum_err;
  2028. data[i+4] = ring->rx_stats.alloc_failed;
  2029. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  2030. i += IGB_RX_QUEUE_STATS_LEN;
  2031. }
  2032. spin_unlock(&adapter->stats64_lock);
  2033. }
  2034. static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2035. {
  2036. struct igb_adapter *adapter = netdev_priv(netdev);
  2037. u8 *p = data;
  2038. int i;
  2039. switch (stringset) {
  2040. case ETH_SS_TEST:
  2041. memcpy(data, *igb_gstrings_test,
  2042. IGB_TEST_LEN*ETH_GSTRING_LEN);
  2043. break;
  2044. case ETH_SS_STATS:
  2045. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2046. memcpy(p, igb_gstrings_stats[i].stat_string,
  2047. ETH_GSTRING_LEN);
  2048. p += ETH_GSTRING_LEN;
  2049. }
  2050. for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
  2051. memcpy(p, igb_gstrings_net_stats[i].stat_string,
  2052. ETH_GSTRING_LEN);
  2053. p += ETH_GSTRING_LEN;
  2054. }
  2055. for (i = 0; i < adapter->num_tx_queues; i++) {
  2056. sprintf(p, "tx_queue_%u_packets", i);
  2057. p += ETH_GSTRING_LEN;
  2058. sprintf(p, "tx_queue_%u_bytes", i);
  2059. p += ETH_GSTRING_LEN;
  2060. sprintf(p, "tx_queue_%u_restart", i);
  2061. p += ETH_GSTRING_LEN;
  2062. }
  2063. for (i = 0; i < adapter->num_rx_queues; i++) {
  2064. sprintf(p, "rx_queue_%u_packets", i);
  2065. p += ETH_GSTRING_LEN;
  2066. sprintf(p, "rx_queue_%u_bytes", i);
  2067. p += ETH_GSTRING_LEN;
  2068. sprintf(p, "rx_queue_%u_drops", i);
  2069. p += ETH_GSTRING_LEN;
  2070. sprintf(p, "rx_queue_%u_csum_err", i);
  2071. p += ETH_GSTRING_LEN;
  2072. sprintf(p, "rx_queue_%u_alloc_failed", i);
  2073. p += ETH_GSTRING_LEN;
  2074. }
  2075. /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
  2076. break;
  2077. case ETH_SS_PRIV_FLAGS:
  2078. memcpy(data, igb_priv_flags_strings,
  2079. IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
  2080. break;
  2081. }
  2082. }
  2083. static int igb_get_ts_info(struct net_device *dev,
  2084. struct ethtool_ts_info *info)
  2085. {
  2086. struct igb_adapter *adapter = netdev_priv(dev);
  2087. if (adapter->ptp_clock)
  2088. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  2089. else
  2090. info->phc_index = -1;
  2091. switch (adapter->hw.mac.type) {
  2092. case e1000_82575:
  2093. info->so_timestamping =
  2094. SOF_TIMESTAMPING_TX_SOFTWARE |
  2095. SOF_TIMESTAMPING_RX_SOFTWARE |
  2096. SOF_TIMESTAMPING_SOFTWARE;
  2097. return 0;
  2098. case e1000_82576:
  2099. case e1000_82580:
  2100. case e1000_i350:
  2101. case e1000_i354:
  2102. case e1000_i210:
  2103. case e1000_i211:
  2104. info->so_timestamping =
  2105. SOF_TIMESTAMPING_TX_SOFTWARE |
  2106. SOF_TIMESTAMPING_RX_SOFTWARE |
  2107. SOF_TIMESTAMPING_SOFTWARE |
  2108. SOF_TIMESTAMPING_TX_HARDWARE |
  2109. SOF_TIMESTAMPING_RX_HARDWARE |
  2110. SOF_TIMESTAMPING_RAW_HARDWARE;
  2111. info->tx_types =
  2112. BIT(HWTSTAMP_TX_OFF) |
  2113. BIT(HWTSTAMP_TX_ON);
  2114. info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
  2115. /* 82576 does not support timestamping all packets. */
  2116. if (adapter->hw.mac.type >= e1000_82580)
  2117. info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
  2118. else
  2119. info->rx_filters |=
  2120. BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  2121. BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  2122. BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
  2123. return 0;
  2124. default:
  2125. return -EOPNOTSUPP;
  2126. }
  2127. }
  2128. #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
  2129. static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
  2130. struct ethtool_rxnfc *cmd)
  2131. {
  2132. struct ethtool_rx_flow_spec *fsp = &cmd->fs;
  2133. struct igb_nfc_filter *rule = NULL;
  2134. /* report total rule count */
  2135. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2136. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2137. if (fsp->location <= rule->sw_idx)
  2138. break;
  2139. }
  2140. if (!rule || fsp->location != rule->sw_idx)
  2141. return -EINVAL;
  2142. if (rule->filter.match_flags) {
  2143. fsp->flow_type = ETHER_FLOW;
  2144. fsp->ring_cookie = rule->action;
  2145. if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2146. fsp->h_u.ether_spec.h_proto = rule->filter.etype;
  2147. fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
  2148. }
  2149. if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
  2150. fsp->flow_type |= FLOW_EXT;
  2151. fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
  2152. fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
  2153. }
  2154. if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
  2155. ether_addr_copy(fsp->h_u.ether_spec.h_dest,
  2156. rule->filter.dst_addr);
  2157. /* As we only support matching by the full
  2158. * mask, return the mask to userspace
  2159. */
  2160. eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
  2161. }
  2162. if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
  2163. ether_addr_copy(fsp->h_u.ether_spec.h_source,
  2164. rule->filter.src_addr);
  2165. /* As we only support matching by the full
  2166. * mask, return the mask to userspace
  2167. */
  2168. eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
  2169. }
  2170. return 0;
  2171. }
  2172. return -EINVAL;
  2173. }
  2174. static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
  2175. struct ethtool_rxnfc *cmd,
  2176. u32 *rule_locs)
  2177. {
  2178. struct igb_nfc_filter *rule;
  2179. int cnt = 0;
  2180. /* report total rule count */
  2181. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2182. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2183. if (cnt == cmd->rule_cnt)
  2184. return -EMSGSIZE;
  2185. rule_locs[cnt] = rule->sw_idx;
  2186. cnt++;
  2187. }
  2188. cmd->rule_cnt = cnt;
  2189. return 0;
  2190. }
  2191. static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
  2192. struct ethtool_rxnfc *cmd)
  2193. {
  2194. cmd->data = 0;
  2195. /* Report default options for RSS on igb */
  2196. switch (cmd->flow_type) {
  2197. case TCP_V4_FLOW:
  2198. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2199. /* Fall through */
  2200. case UDP_V4_FLOW:
  2201. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2202. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2203. /* Fall through */
  2204. case SCTP_V4_FLOW:
  2205. case AH_ESP_V4_FLOW:
  2206. case AH_V4_FLOW:
  2207. case ESP_V4_FLOW:
  2208. case IPV4_FLOW:
  2209. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2210. break;
  2211. case TCP_V6_FLOW:
  2212. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2213. /* Fall through */
  2214. case UDP_V6_FLOW:
  2215. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2216. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2217. /* Fall through */
  2218. case SCTP_V6_FLOW:
  2219. case AH_ESP_V6_FLOW:
  2220. case AH_V6_FLOW:
  2221. case ESP_V6_FLOW:
  2222. case IPV6_FLOW:
  2223. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2224. break;
  2225. default:
  2226. return -EINVAL;
  2227. }
  2228. return 0;
  2229. }
  2230. static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  2231. u32 *rule_locs)
  2232. {
  2233. struct igb_adapter *adapter = netdev_priv(dev);
  2234. int ret = -EOPNOTSUPP;
  2235. switch (cmd->cmd) {
  2236. case ETHTOOL_GRXRINGS:
  2237. cmd->data = adapter->num_rx_queues;
  2238. ret = 0;
  2239. break;
  2240. case ETHTOOL_GRXCLSRLCNT:
  2241. cmd->rule_cnt = adapter->nfc_filter_count;
  2242. ret = 0;
  2243. break;
  2244. case ETHTOOL_GRXCLSRULE:
  2245. ret = igb_get_ethtool_nfc_entry(adapter, cmd);
  2246. break;
  2247. case ETHTOOL_GRXCLSRLALL:
  2248. ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
  2249. break;
  2250. case ETHTOOL_GRXFH:
  2251. ret = igb_get_rss_hash_opts(adapter, cmd);
  2252. break;
  2253. default:
  2254. break;
  2255. }
  2256. return ret;
  2257. }
  2258. #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
  2259. IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2260. static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
  2261. struct ethtool_rxnfc *nfc)
  2262. {
  2263. u32 flags = adapter->flags;
  2264. /* RSS does not support anything other than hashing
  2265. * to queues on src and dst IPs and ports
  2266. */
  2267. if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
  2268. RXH_L4_B_0_1 | RXH_L4_B_2_3))
  2269. return -EINVAL;
  2270. switch (nfc->flow_type) {
  2271. case TCP_V4_FLOW:
  2272. case TCP_V6_FLOW:
  2273. if (!(nfc->data & RXH_IP_SRC) ||
  2274. !(nfc->data & RXH_IP_DST) ||
  2275. !(nfc->data & RXH_L4_B_0_1) ||
  2276. !(nfc->data & RXH_L4_B_2_3))
  2277. return -EINVAL;
  2278. break;
  2279. case UDP_V4_FLOW:
  2280. if (!(nfc->data & RXH_IP_SRC) ||
  2281. !(nfc->data & RXH_IP_DST))
  2282. return -EINVAL;
  2283. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2284. case 0:
  2285. flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2286. break;
  2287. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2288. flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2289. break;
  2290. default:
  2291. return -EINVAL;
  2292. }
  2293. break;
  2294. case UDP_V6_FLOW:
  2295. if (!(nfc->data & RXH_IP_SRC) ||
  2296. !(nfc->data & RXH_IP_DST))
  2297. return -EINVAL;
  2298. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2299. case 0:
  2300. flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2301. break;
  2302. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2303. flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2304. break;
  2305. default:
  2306. return -EINVAL;
  2307. }
  2308. break;
  2309. case AH_ESP_V4_FLOW:
  2310. case AH_V4_FLOW:
  2311. case ESP_V4_FLOW:
  2312. case SCTP_V4_FLOW:
  2313. case AH_ESP_V6_FLOW:
  2314. case AH_V6_FLOW:
  2315. case ESP_V6_FLOW:
  2316. case SCTP_V6_FLOW:
  2317. if (!(nfc->data & RXH_IP_SRC) ||
  2318. !(nfc->data & RXH_IP_DST) ||
  2319. (nfc->data & RXH_L4_B_0_1) ||
  2320. (nfc->data & RXH_L4_B_2_3))
  2321. return -EINVAL;
  2322. break;
  2323. default:
  2324. return -EINVAL;
  2325. }
  2326. /* if we changed something we need to update flags */
  2327. if (flags != adapter->flags) {
  2328. struct e1000_hw *hw = &adapter->hw;
  2329. u32 mrqc = rd32(E1000_MRQC);
  2330. if ((flags & UDP_RSS_FLAGS) &&
  2331. !(adapter->flags & UDP_RSS_FLAGS))
  2332. dev_err(&adapter->pdev->dev,
  2333. "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
  2334. adapter->flags = flags;
  2335. /* Perform hash on these packet types */
  2336. mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
  2337. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2338. E1000_MRQC_RSS_FIELD_IPV6 |
  2339. E1000_MRQC_RSS_FIELD_IPV6_TCP;
  2340. mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
  2341. E1000_MRQC_RSS_FIELD_IPV6_UDP);
  2342. if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2343. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2344. if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2345. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2346. wr32(E1000_MRQC, mrqc);
  2347. }
  2348. return 0;
  2349. }
  2350. static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
  2351. struct igb_nfc_filter *input)
  2352. {
  2353. struct e1000_hw *hw = &adapter->hw;
  2354. u8 i;
  2355. u32 etqf;
  2356. u16 etype;
  2357. /* find an empty etype filter register */
  2358. for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
  2359. if (!adapter->etype_bitmap[i])
  2360. break;
  2361. }
  2362. if (i == MAX_ETYPE_FILTER) {
  2363. dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
  2364. return -EINVAL;
  2365. }
  2366. adapter->etype_bitmap[i] = true;
  2367. etqf = rd32(E1000_ETQF(i));
  2368. etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
  2369. etqf |= E1000_ETQF_FILTER_ENABLE;
  2370. etqf &= ~E1000_ETQF_ETYPE_MASK;
  2371. etqf |= (etype & E1000_ETQF_ETYPE_MASK);
  2372. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2373. etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
  2374. & E1000_ETQF_QUEUE_MASK);
  2375. etqf |= E1000_ETQF_QUEUE_ENABLE;
  2376. wr32(E1000_ETQF(i), etqf);
  2377. input->etype_reg_index = i;
  2378. return 0;
  2379. }
  2380. static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
  2381. struct igb_nfc_filter *input)
  2382. {
  2383. struct e1000_hw *hw = &adapter->hw;
  2384. u8 vlan_priority;
  2385. u16 queue_index;
  2386. u32 vlapqf;
  2387. vlapqf = rd32(E1000_VLAPQF);
  2388. vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
  2389. >> VLAN_PRIO_SHIFT;
  2390. queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
  2391. /* check whether this vlan prio is already set */
  2392. if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
  2393. (queue_index != input->action)) {
  2394. dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
  2395. return -EEXIST;
  2396. }
  2397. vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
  2398. vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
  2399. wr32(E1000_VLAPQF, vlapqf);
  2400. return 0;
  2401. }
  2402. int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2403. {
  2404. struct e1000_hw *hw = &adapter->hw;
  2405. int err = -EINVAL;
  2406. if (hw->mac.type == e1000_i210 &&
  2407. !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
  2408. dev_err(&adapter->pdev->dev,
  2409. "i210 doesn't support flow classification rules specifying only source addresses.\n");
  2410. return -EOPNOTSUPP;
  2411. }
  2412. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2413. err = igb_rxnfc_write_etype_filter(adapter, input);
  2414. if (err)
  2415. return err;
  2416. }
  2417. if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
  2418. err = igb_add_mac_steering_filter(adapter,
  2419. input->filter.dst_addr,
  2420. input->action, 0);
  2421. err = min_t(int, err, 0);
  2422. if (err)
  2423. return err;
  2424. }
  2425. if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
  2426. err = igb_add_mac_steering_filter(adapter,
  2427. input->filter.src_addr,
  2428. input->action,
  2429. IGB_MAC_STATE_SRC_ADDR);
  2430. err = min_t(int, err, 0);
  2431. if (err)
  2432. return err;
  2433. }
  2434. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2435. err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
  2436. return err;
  2437. }
  2438. static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
  2439. u16 reg_index)
  2440. {
  2441. struct e1000_hw *hw = &adapter->hw;
  2442. u32 etqf = rd32(E1000_ETQF(reg_index));
  2443. etqf &= ~E1000_ETQF_QUEUE_ENABLE;
  2444. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2445. etqf &= ~E1000_ETQF_FILTER_ENABLE;
  2446. wr32(E1000_ETQF(reg_index), etqf);
  2447. adapter->etype_bitmap[reg_index] = false;
  2448. }
  2449. static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
  2450. u16 vlan_tci)
  2451. {
  2452. struct e1000_hw *hw = &adapter->hw;
  2453. u8 vlan_priority;
  2454. u32 vlapqf;
  2455. vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  2456. vlapqf = rd32(E1000_VLAPQF);
  2457. vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
  2458. vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
  2459. E1000_VLAPQF_QUEUE_MASK);
  2460. wr32(E1000_VLAPQF, vlapqf);
  2461. }
  2462. int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2463. {
  2464. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
  2465. igb_clear_etype_filter_regs(adapter,
  2466. input->etype_reg_index);
  2467. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2468. igb_clear_vlan_prio_filter(adapter,
  2469. ntohs(input->filter.vlan_tci));
  2470. if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
  2471. igb_del_mac_steering_filter(adapter, input->filter.src_addr,
  2472. input->action,
  2473. IGB_MAC_STATE_SRC_ADDR);
  2474. if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
  2475. igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
  2476. input->action, 0);
  2477. return 0;
  2478. }
  2479. static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
  2480. struct igb_nfc_filter *input,
  2481. u16 sw_idx)
  2482. {
  2483. struct igb_nfc_filter *rule, *parent;
  2484. int err = -EINVAL;
  2485. parent = NULL;
  2486. rule = NULL;
  2487. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2488. /* hash found, or no matching entry */
  2489. if (rule->sw_idx >= sw_idx)
  2490. break;
  2491. parent = rule;
  2492. }
  2493. /* if there is an old rule occupying our place remove it */
  2494. if (rule && (rule->sw_idx == sw_idx)) {
  2495. if (!input)
  2496. err = igb_erase_filter(adapter, rule);
  2497. hlist_del(&rule->nfc_node);
  2498. kfree(rule);
  2499. adapter->nfc_filter_count--;
  2500. }
  2501. /* If no input this was a delete, err should be 0 if a rule was
  2502. * successfully found and removed from the list else -EINVAL
  2503. */
  2504. if (!input)
  2505. return err;
  2506. /* initialize node */
  2507. INIT_HLIST_NODE(&input->nfc_node);
  2508. /* add filter to the list */
  2509. if (parent)
  2510. hlist_add_behind(&input->nfc_node, &parent->nfc_node);
  2511. else
  2512. hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
  2513. /* update counts */
  2514. adapter->nfc_filter_count++;
  2515. return 0;
  2516. }
  2517. static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
  2518. struct ethtool_rxnfc *cmd)
  2519. {
  2520. struct net_device *netdev = adapter->netdev;
  2521. struct ethtool_rx_flow_spec *fsp =
  2522. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2523. struct igb_nfc_filter *input, *rule;
  2524. int err = 0;
  2525. if (!(netdev->hw_features & NETIF_F_NTUPLE))
  2526. return -EOPNOTSUPP;
  2527. /* Don't allow programming if the action is a queue greater than
  2528. * the number of online Rx queues.
  2529. */
  2530. if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
  2531. (fsp->ring_cookie >= adapter->num_rx_queues)) {
  2532. dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
  2533. return -EINVAL;
  2534. }
  2535. /* Don't allow indexes to exist outside of available space */
  2536. if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
  2537. dev_err(&adapter->pdev->dev, "Location out of range\n");
  2538. return -EINVAL;
  2539. }
  2540. if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
  2541. return -EINVAL;
  2542. input = kzalloc(sizeof(*input), GFP_KERNEL);
  2543. if (!input)
  2544. return -ENOMEM;
  2545. if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
  2546. input->filter.etype = fsp->h_u.ether_spec.h_proto;
  2547. input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
  2548. }
  2549. /* Only support matching addresses by the full mask */
  2550. if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
  2551. input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
  2552. ether_addr_copy(input->filter.src_addr,
  2553. fsp->h_u.ether_spec.h_source);
  2554. }
  2555. /* Only support matching addresses by the full mask */
  2556. if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
  2557. input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
  2558. ether_addr_copy(input->filter.dst_addr,
  2559. fsp->h_u.ether_spec.h_dest);
  2560. }
  2561. if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
  2562. if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
  2563. err = -EINVAL;
  2564. goto err_out;
  2565. }
  2566. input->filter.vlan_tci = fsp->h_ext.vlan_tci;
  2567. input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
  2568. }
  2569. input->action = fsp->ring_cookie;
  2570. input->sw_idx = fsp->location;
  2571. spin_lock(&adapter->nfc_lock);
  2572. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2573. if (!memcmp(&input->filter, &rule->filter,
  2574. sizeof(input->filter))) {
  2575. err = -EEXIST;
  2576. dev_err(&adapter->pdev->dev,
  2577. "ethtool: this filter is already set\n");
  2578. goto err_out_w_lock;
  2579. }
  2580. }
  2581. err = igb_add_filter(adapter, input);
  2582. if (err)
  2583. goto err_out_w_lock;
  2584. igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
  2585. spin_unlock(&adapter->nfc_lock);
  2586. return 0;
  2587. err_out_w_lock:
  2588. spin_unlock(&adapter->nfc_lock);
  2589. err_out:
  2590. kfree(input);
  2591. return err;
  2592. }
  2593. static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
  2594. struct ethtool_rxnfc *cmd)
  2595. {
  2596. struct ethtool_rx_flow_spec *fsp =
  2597. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2598. int err;
  2599. spin_lock(&adapter->nfc_lock);
  2600. err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
  2601. spin_unlock(&adapter->nfc_lock);
  2602. return err;
  2603. }
  2604. static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  2605. {
  2606. struct igb_adapter *adapter = netdev_priv(dev);
  2607. int ret = -EOPNOTSUPP;
  2608. switch (cmd->cmd) {
  2609. case ETHTOOL_SRXFH:
  2610. ret = igb_set_rss_hash_opt(adapter, cmd);
  2611. break;
  2612. case ETHTOOL_SRXCLSRLINS:
  2613. ret = igb_add_ethtool_nfc_entry(adapter, cmd);
  2614. break;
  2615. case ETHTOOL_SRXCLSRLDEL:
  2616. ret = igb_del_ethtool_nfc_entry(adapter, cmd);
  2617. default:
  2618. break;
  2619. }
  2620. return ret;
  2621. }
  2622. static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  2623. {
  2624. struct igb_adapter *adapter = netdev_priv(netdev);
  2625. struct e1000_hw *hw = &adapter->hw;
  2626. u32 ret_val;
  2627. u16 phy_data;
  2628. if ((hw->mac.type < e1000_i350) ||
  2629. (hw->phy.media_type != e1000_media_type_copper))
  2630. return -EOPNOTSUPP;
  2631. edata->supported = (SUPPORTED_1000baseT_Full |
  2632. SUPPORTED_100baseT_Full);
  2633. if (!hw->dev_spec._82575.eee_disable)
  2634. edata->advertised =
  2635. mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  2636. /* The IPCNFG and EEER registers are not supported on I354. */
  2637. if (hw->mac.type == e1000_i354) {
  2638. igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
  2639. } else {
  2640. u32 eeer;
  2641. eeer = rd32(E1000_EEER);
  2642. /* EEE status on negotiated link */
  2643. if (eeer & E1000_EEER_EEE_NEG)
  2644. edata->eee_active = true;
  2645. if (eeer & E1000_EEER_TX_LPI_EN)
  2646. edata->tx_lpi_enabled = true;
  2647. }
  2648. /* EEE Link Partner Advertised */
  2649. switch (hw->mac.type) {
  2650. case e1000_i350:
  2651. ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
  2652. &phy_data);
  2653. if (ret_val)
  2654. return -ENODATA;
  2655. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2656. break;
  2657. case e1000_i354:
  2658. case e1000_i210:
  2659. case e1000_i211:
  2660. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
  2661. E1000_EEE_LP_ADV_DEV_I210,
  2662. &phy_data);
  2663. if (ret_val)
  2664. return -ENODATA;
  2665. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2666. break;
  2667. default:
  2668. break;
  2669. }
  2670. edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
  2671. if ((hw->mac.type == e1000_i354) &&
  2672. (edata->eee_enabled))
  2673. edata->tx_lpi_enabled = true;
  2674. /* Report correct negotiated EEE status for devices that
  2675. * wrongly report EEE at half-duplex
  2676. */
  2677. if (adapter->link_duplex == HALF_DUPLEX) {
  2678. edata->eee_enabled = false;
  2679. edata->eee_active = false;
  2680. edata->tx_lpi_enabled = false;
  2681. edata->advertised &= ~edata->advertised;
  2682. }
  2683. return 0;
  2684. }
  2685. static int igb_set_eee(struct net_device *netdev,
  2686. struct ethtool_eee *edata)
  2687. {
  2688. struct igb_adapter *adapter = netdev_priv(netdev);
  2689. struct e1000_hw *hw = &adapter->hw;
  2690. struct ethtool_eee eee_curr;
  2691. bool adv1g_eee = true, adv100m_eee = true;
  2692. s32 ret_val;
  2693. if ((hw->mac.type < e1000_i350) ||
  2694. (hw->phy.media_type != e1000_media_type_copper))
  2695. return -EOPNOTSUPP;
  2696. memset(&eee_curr, 0, sizeof(struct ethtool_eee));
  2697. ret_val = igb_get_eee(netdev, &eee_curr);
  2698. if (ret_val)
  2699. return ret_val;
  2700. if (eee_curr.eee_enabled) {
  2701. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  2702. dev_err(&adapter->pdev->dev,
  2703. "Setting EEE tx-lpi is not supported\n");
  2704. return -EINVAL;
  2705. }
  2706. /* Tx LPI timer is not implemented currently */
  2707. if (edata->tx_lpi_timer) {
  2708. dev_err(&adapter->pdev->dev,
  2709. "Setting EEE Tx LPI timer is not supported\n");
  2710. return -EINVAL;
  2711. }
  2712. if (!edata->advertised || (edata->advertised &
  2713. ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
  2714. dev_err(&adapter->pdev->dev,
  2715. "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
  2716. return -EINVAL;
  2717. }
  2718. adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
  2719. adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
  2720. } else if (!edata->eee_enabled) {
  2721. dev_err(&adapter->pdev->dev,
  2722. "Setting EEE options are not supported with EEE disabled\n");
  2723. return -EINVAL;
  2724. }
  2725. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  2726. if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
  2727. hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
  2728. adapter->flags |= IGB_FLAG_EEE;
  2729. /* reset link */
  2730. if (netif_running(netdev))
  2731. igb_reinit_locked(adapter);
  2732. else
  2733. igb_reset(adapter);
  2734. }
  2735. if (hw->mac.type == e1000_i354)
  2736. ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
  2737. else
  2738. ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
  2739. if (ret_val) {
  2740. dev_err(&adapter->pdev->dev,
  2741. "Problem setting EEE advertisement options\n");
  2742. return -EINVAL;
  2743. }
  2744. return 0;
  2745. }
  2746. static int igb_get_module_info(struct net_device *netdev,
  2747. struct ethtool_modinfo *modinfo)
  2748. {
  2749. struct igb_adapter *adapter = netdev_priv(netdev);
  2750. struct e1000_hw *hw = &adapter->hw;
  2751. u32 status = 0;
  2752. u16 sff8472_rev, addr_mode;
  2753. bool page_swap = false;
  2754. if ((hw->phy.media_type == e1000_media_type_copper) ||
  2755. (hw->phy.media_type == e1000_media_type_unknown))
  2756. return -EOPNOTSUPP;
  2757. /* Check whether we support SFF-8472 or not */
  2758. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
  2759. if (status)
  2760. return -EIO;
  2761. /* addressing mode is not supported */
  2762. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
  2763. if (status)
  2764. return -EIO;
  2765. /* addressing mode is not supported */
  2766. if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
  2767. hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
  2768. page_swap = true;
  2769. }
  2770. if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
  2771. /* We have an SFP, but it does not support SFF-8472 */
  2772. modinfo->type = ETH_MODULE_SFF_8079;
  2773. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2774. } else {
  2775. /* We have an SFP which supports a revision of SFF-8472 */
  2776. modinfo->type = ETH_MODULE_SFF_8472;
  2777. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2778. }
  2779. return 0;
  2780. }
  2781. static int igb_get_module_eeprom(struct net_device *netdev,
  2782. struct ethtool_eeprom *ee, u8 *data)
  2783. {
  2784. struct igb_adapter *adapter = netdev_priv(netdev);
  2785. struct e1000_hw *hw = &adapter->hw;
  2786. u32 status = 0;
  2787. u16 *dataword;
  2788. u16 first_word, last_word;
  2789. int i = 0;
  2790. if (ee->len == 0)
  2791. return -EINVAL;
  2792. first_word = ee->offset >> 1;
  2793. last_word = (ee->offset + ee->len - 1) >> 1;
  2794. dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
  2795. GFP_KERNEL);
  2796. if (!dataword)
  2797. return -ENOMEM;
  2798. /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
  2799. for (i = 0; i < last_word - first_word + 1; i++) {
  2800. status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
  2801. &dataword[i]);
  2802. if (status) {
  2803. /* Error occurred while reading module */
  2804. kfree(dataword);
  2805. return -EIO;
  2806. }
  2807. be16_to_cpus(&dataword[i]);
  2808. }
  2809. memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
  2810. kfree(dataword);
  2811. return 0;
  2812. }
  2813. static int igb_ethtool_begin(struct net_device *netdev)
  2814. {
  2815. struct igb_adapter *adapter = netdev_priv(netdev);
  2816. pm_runtime_get_sync(&adapter->pdev->dev);
  2817. return 0;
  2818. }
  2819. static void igb_ethtool_complete(struct net_device *netdev)
  2820. {
  2821. struct igb_adapter *adapter = netdev_priv(netdev);
  2822. pm_runtime_put(&adapter->pdev->dev);
  2823. }
  2824. static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
  2825. {
  2826. return IGB_RETA_SIZE;
  2827. }
  2828. static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
  2829. u8 *hfunc)
  2830. {
  2831. struct igb_adapter *adapter = netdev_priv(netdev);
  2832. int i;
  2833. if (hfunc)
  2834. *hfunc = ETH_RSS_HASH_TOP;
  2835. if (!indir)
  2836. return 0;
  2837. for (i = 0; i < IGB_RETA_SIZE; i++)
  2838. indir[i] = adapter->rss_indir_tbl[i];
  2839. return 0;
  2840. }
  2841. void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
  2842. {
  2843. struct e1000_hw *hw = &adapter->hw;
  2844. u32 reg = E1000_RETA(0);
  2845. u32 shift = 0;
  2846. int i = 0;
  2847. switch (hw->mac.type) {
  2848. case e1000_82575:
  2849. shift = 6;
  2850. break;
  2851. case e1000_82576:
  2852. /* 82576 supports 2 RSS queues for SR-IOV */
  2853. if (adapter->vfs_allocated_count)
  2854. shift = 3;
  2855. break;
  2856. default:
  2857. break;
  2858. }
  2859. while (i < IGB_RETA_SIZE) {
  2860. u32 val = 0;
  2861. int j;
  2862. for (j = 3; j >= 0; j--) {
  2863. val <<= 8;
  2864. val |= adapter->rss_indir_tbl[i + j];
  2865. }
  2866. wr32(reg, val << shift);
  2867. reg += 4;
  2868. i += 4;
  2869. }
  2870. }
  2871. static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
  2872. const u8 *key, const u8 hfunc)
  2873. {
  2874. struct igb_adapter *adapter = netdev_priv(netdev);
  2875. struct e1000_hw *hw = &adapter->hw;
  2876. int i;
  2877. u32 num_queues;
  2878. /* We do not allow change in unsupported parameters */
  2879. if (key ||
  2880. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  2881. return -EOPNOTSUPP;
  2882. if (!indir)
  2883. return 0;
  2884. num_queues = adapter->rss_queues;
  2885. switch (hw->mac.type) {
  2886. case e1000_82576:
  2887. /* 82576 supports 2 RSS queues for SR-IOV */
  2888. if (adapter->vfs_allocated_count)
  2889. num_queues = 2;
  2890. break;
  2891. default:
  2892. break;
  2893. }
  2894. /* Verify user input. */
  2895. for (i = 0; i < IGB_RETA_SIZE; i++)
  2896. if (indir[i] >= num_queues)
  2897. return -EINVAL;
  2898. for (i = 0; i < IGB_RETA_SIZE; i++)
  2899. adapter->rss_indir_tbl[i] = indir[i];
  2900. igb_write_rss_indir_tbl(adapter);
  2901. return 0;
  2902. }
  2903. static unsigned int igb_max_channels(struct igb_adapter *adapter)
  2904. {
  2905. return igb_get_max_rss_queues(adapter);
  2906. }
  2907. static void igb_get_channels(struct net_device *netdev,
  2908. struct ethtool_channels *ch)
  2909. {
  2910. struct igb_adapter *adapter = netdev_priv(netdev);
  2911. /* Report maximum channels */
  2912. ch->max_combined = igb_max_channels(adapter);
  2913. /* Report info for other vector */
  2914. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  2915. ch->max_other = NON_Q_VECTORS;
  2916. ch->other_count = NON_Q_VECTORS;
  2917. }
  2918. ch->combined_count = adapter->rss_queues;
  2919. }
  2920. static int igb_set_channels(struct net_device *netdev,
  2921. struct ethtool_channels *ch)
  2922. {
  2923. struct igb_adapter *adapter = netdev_priv(netdev);
  2924. unsigned int count = ch->combined_count;
  2925. unsigned int max_combined = 0;
  2926. /* Verify they are not requesting separate vectors */
  2927. if (!count || ch->rx_count || ch->tx_count)
  2928. return -EINVAL;
  2929. /* Verify other_count is valid and has not been changed */
  2930. if (ch->other_count != NON_Q_VECTORS)
  2931. return -EINVAL;
  2932. /* Verify the number of channels doesn't exceed hw limits */
  2933. max_combined = igb_max_channels(adapter);
  2934. if (count > max_combined)
  2935. return -EINVAL;
  2936. if (count != adapter->rss_queues) {
  2937. adapter->rss_queues = count;
  2938. igb_set_flag_queue_pairs(adapter, max_combined);
  2939. /* Hardware has to reinitialize queues and interrupts to
  2940. * match the new configuration.
  2941. */
  2942. return igb_reinit_queues(adapter);
  2943. }
  2944. return 0;
  2945. }
  2946. static u32 igb_get_priv_flags(struct net_device *netdev)
  2947. {
  2948. struct igb_adapter *adapter = netdev_priv(netdev);
  2949. u32 priv_flags = 0;
  2950. if (adapter->flags & IGB_FLAG_RX_LEGACY)
  2951. priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
  2952. return priv_flags;
  2953. }
  2954. static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
  2955. {
  2956. struct igb_adapter *adapter = netdev_priv(netdev);
  2957. unsigned int flags = adapter->flags;
  2958. flags &= ~IGB_FLAG_RX_LEGACY;
  2959. if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
  2960. flags |= IGB_FLAG_RX_LEGACY;
  2961. if (flags != adapter->flags) {
  2962. adapter->flags = flags;
  2963. /* reset interface to repopulate queues */
  2964. if (netif_running(netdev))
  2965. igb_reinit_locked(adapter);
  2966. }
  2967. return 0;
  2968. }
  2969. static const struct ethtool_ops igb_ethtool_ops = {
  2970. .get_drvinfo = igb_get_drvinfo,
  2971. .get_regs_len = igb_get_regs_len,
  2972. .get_regs = igb_get_regs,
  2973. .get_wol = igb_get_wol,
  2974. .set_wol = igb_set_wol,
  2975. .get_msglevel = igb_get_msglevel,
  2976. .set_msglevel = igb_set_msglevel,
  2977. .nway_reset = igb_nway_reset,
  2978. .get_link = igb_get_link,
  2979. .get_eeprom_len = igb_get_eeprom_len,
  2980. .get_eeprom = igb_get_eeprom,
  2981. .set_eeprom = igb_set_eeprom,
  2982. .get_ringparam = igb_get_ringparam,
  2983. .set_ringparam = igb_set_ringparam,
  2984. .get_pauseparam = igb_get_pauseparam,
  2985. .set_pauseparam = igb_set_pauseparam,
  2986. .self_test = igb_diag_test,
  2987. .get_strings = igb_get_strings,
  2988. .set_phys_id = igb_set_phys_id,
  2989. .get_sset_count = igb_get_sset_count,
  2990. .get_ethtool_stats = igb_get_ethtool_stats,
  2991. .get_coalesce = igb_get_coalesce,
  2992. .set_coalesce = igb_set_coalesce,
  2993. .get_ts_info = igb_get_ts_info,
  2994. .get_rxnfc = igb_get_rxnfc,
  2995. .set_rxnfc = igb_set_rxnfc,
  2996. .get_eee = igb_get_eee,
  2997. .set_eee = igb_set_eee,
  2998. .get_module_info = igb_get_module_info,
  2999. .get_module_eeprom = igb_get_module_eeprom,
  3000. .get_rxfh_indir_size = igb_get_rxfh_indir_size,
  3001. .get_rxfh = igb_get_rxfh,
  3002. .set_rxfh = igb_set_rxfh,
  3003. .get_channels = igb_get_channels,
  3004. .set_channels = igb_set_channels,
  3005. .get_priv_flags = igb_get_priv_flags,
  3006. .set_priv_flags = igb_set_priv_flags,
  3007. .begin = igb_ethtool_begin,
  3008. .complete = igb_ethtool_complete,
  3009. .get_link_ksettings = igb_get_link_ksettings,
  3010. .set_link_ksettings = igb_set_link_ksettings,
  3011. };
  3012. void igb_set_ethtool_ops(struct net_device *netdev)
  3013. {
  3014. netdev->ethtool_ops = &igb_ethtool_ops;
  3015. }