mtk-platform.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. /*
  2. * Driver for EIP97 cryptographic accelerator.
  3. *
  4. * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/mod_devicetable.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/pm_runtime.h>
  18. #include "mtk-platform.h"
  19. #define MTK_BURST_SIZE_MSK GENMASK(7, 4)
  20. #define MTK_BURST_SIZE(x) ((x) << 4)
  21. #define MTK_DESC_SIZE(x) ((x) << 0)
  22. #define MTK_DESC_OFFSET(x) ((x) << 16)
  23. #define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
  24. #define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
  25. #define MTK_DESC_OVL_IRQ_EN BIT(25)
  26. #define MTK_DESC_ATP_PRESENT BIT(30)
  27. #define MTK_DFSE_IDLE GENMASK(3, 0)
  28. #define MTK_DFSE_THR_CTRL_EN BIT(30)
  29. #define MTK_DFSE_THR_CTRL_RESET BIT(31)
  30. #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
  31. #define MTK_DFSE_MIN_DATA(x) ((x) << 0)
  32. #define MTK_DFSE_MAX_DATA(x) ((x) << 8)
  33. #define MTK_DFE_MIN_CTRL(x) ((x) << 16)
  34. #define MTK_DFE_MAX_CTRL(x) ((x) << 24)
  35. #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
  36. #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
  37. #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
  38. #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
  39. #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
  40. #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
  41. #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
  42. #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
  43. #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
  44. #define MTK_PE_TK_LOC_AVL BIT(2)
  45. #define MTK_PE_PROC_HELD BIT(14)
  46. #define MTK_PE_TK_TIMEOUT_EN BIT(22)
  47. #define MTK_PE_INPUT_DMA_ERR BIT(0)
  48. #define MTK_PE_OUTPUT_DMA_ERR BIT(1)
  49. #define MTK_PE_PKT_PORC_ERR BIT(2)
  50. #define MTK_PE_PKT_TIMEOUT BIT(3)
  51. #define MTK_PE_FATAL_ERR BIT(14)
  52. #define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
  53. #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
  54. #define MTK_PE_PKT_PORC_ERR_EN BIT(18)
  55. #define MTK_PE_PKT_TIMEOUT_EN BIT(19)
  56. #define MTK_PE_FATAL_ERR_EN BIT(30)
  57. #define MTK_PE_INT_OUT_EN BIT(31)
  58. #define MTK_HIA_SIGNATURE ((u16)0x35ca)
  59. #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
  60. #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
  61. #define MTK_CDR_STAT_CLR GENMASK(4, 0)
  62. #define MTK_RDR_STAT_CLR GENMASK(7, 0)
  63. #define MTK_AIC_INT_MSK GENMASK(5, 0)
  64. #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
  65. #define MTK_AIC_VER11 0x011036c9
  66. #define MTK_AIC_VER12 0x012036c9
  67. #define MTK_AIC_G_CLR GENMASK(30, 20)
  68. /**
  69. * EIP97 is an integrated security subsystem to accelerate cryptographic
  70. * functions and protocols to offload the host processor.
  71. * Some important hardware modules are briefly introduced below:
  72. *
  73. * Host Interface Adapter(HIA) - the main interface between the host
  74. * system and the hardware subsystem. It is responsible for attaching
  75. * processing engine to the specific host bus interface and provides a
  76. * standardized software view for off loading tasks to the engine.
  77. *
  78. * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
  79. * CD the host has prepared in the CDR. It monitors the fill level of its
  80. * CD-FIFO and if there's sufficient space for the next block of descriptors,
  81. * then it fires off a DMA request to fetch a block of CDs.
  82. *
  83. * Data fetch engine(DFE) - It is responsible for parsing the CD and
  84. * setting up the required control and packet data DMA transfers from
  85. * system memory to the processing engine.
  86. *
  87. * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
  88. * but target is result descriptors, Moreover, it also handles the RD
  89. * updates under control of the DSE. For each packet data segment
  90. * processed, the DSE triggers the RDR Manager to write the updated RD.
  91. * If triggered to update, the RDR Manager sets up a DMA operation to
  92. * copy the RD from the DSE to the correct location in the RDR.
  93. *
  94. * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
  95. * and setting up the required control and packet data DMA transfers from
  96. * the processing engine to system memory.
  97. *
  98. * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
  99. * from various sources and combine them into one interrupt output.
  100. * The AICs are used by:
  101. * - One for the HIA global and processing engine interrupts.
  102. * - The others for the descriptor ring interrupts.
  103. */
  104. /* Cryptographic engine capabilities */
  105. struct mtk_sys_cap {
  106. /* host interface adapter */
  107. u32 hia_ver;
  108. u32 hia_opt;
  109. /* packet engine */
  110. u32 pkt_eng_opt;
  111. /* global hardware */
  112. u32 hw_opt;
  113. };
  114. static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
  115. {
  116. /* Assign rings to DFE/DSE thread and enable it */
  117. writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
  118. writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
  119. }
  120. static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
  121. struct mtk_sys_cap *cap)
  122. {
  123. u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
  124. u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
  125. u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
  126. u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
  127. u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
  128. writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
  129. MTK_DFSE_MAX_DATA(ipbuf) |
  130. MTK_DFE_MIN_CTRL(itbuf - 1) |
  131. MTK_DFE_MAX_CTRL(itbuf),
  132. cryp->base + DFE_CFG);
  133. writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
  134. MTK_DFSE_MAX_DATA(opbuf),
  135. cryp->base + DSE_CFG);
  136. writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
  137. MTK_IN_BUF_MAX_THRESH(ipbuf),
  138. cryp->base + PE_IN_DBUF_THRESH);
  139. writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
  140. MTK_IN_BUF_MAX_THRESH(itbuf),
  141. cryp->base + PE_IN_TBUF_THRESH);
  142. writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
  143. MTK_OUT_BUF_MAX_THRESH(opbuf),
  144. cryp->base + PE_OUT_DBUF_THRESH);
  145. writel(0, cryp->base + PE_OUT_TBUF_THRESH);
  146. writel(0, cryp->base + PE_OUT_BUF_CTRL);
  147. }
  148. static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
  149. {
  150. int ret = -EINVAL;
  151. u32 val;
  152. /* Check for completion of all DMA transfers */
  153. val = readl(cryp->base + DFE_THR_STAT);
  154. if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
  155. val = readl(cryp->base + DSE_THR_STAT);
  156. if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
  157. ret = 0;
  158. }
  159. if (!ret) {
  160. /* Take DFE/DSE thread out of reset */
  161. writel(0, cryp->base + DFE_THR_CTRL);
  162. writel(0, cryp->base + DSE_THR_CTRL);
  163. } else {
  164. return -EBUSY;
  165. }
  166. return 0;
  167. }
  168. static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
  169. {
  170. int err;
  171. /* Reset DSE/DFE and correct system priorities for all rings. */
  172. writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
  173. writel(0, cryp->base + DFE_PRIO_0);
  174. writel(0, cryp->base + DFE_PRIO_1);
  175. writel(0, cryp->base + DFE_PRIO_2);
  176. writel(0, cryp->base + DFE_PRIO_3);
  177. writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
  178. writel(0, cryp->base + DSE_PRIO_0);
  179. writel(0, cryp->base + DSE_PRIO_1);
  180. writel(0, cryp->base + DSE_PRIO_2);
  181. writel(0, cryp->base + DSE_PRIO_3);
  182. err = mtk_dfe_dse_state_check(cryp);
  183. if (err)
  184. return err;
  185. return 0;
  186. }
  187. static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
  188. int i, struct mtk_sys_cap *cap)
  189. {
  190. /* Full descriptor that fits FIFO minus one */
  191. u32 count =
  192. ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
  193. /* Temporarily disable external triggering */
  194. writel(0, cryp->base + CDR_CFG(i));
  195. /* Clear CDR count */
  196. writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
  197. writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
  198. writel(0, cryp->base + CDR_PREP_PNTR(i));
  199. writel(0, cryp->base + CDR_PROC_PNTR(i));
  200. writel(0, cryp->base + CDR_DMA_CFG(i));
  201. /* Configure CDR host address space */
  202. writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
  203. writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
  204. writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
  205. /* Clear and disable all CDR interrupts */
  206. writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
  207. /*
  208. * Set command descriptor offset and enable additional
  209. * token present in descriptor.
  210. */
  211. writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
  212. MTK_DESC_OFFSET(MTK_DESC_OFF) |
  213. MTK_DESC_ATP_PRESENT,
  214. cryp->base + CDR_DESC_SIZE(i));
  215. writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
  216. MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
  217. cryp->base + CDR_CFG(i));
  218. }
  219. static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
  220. int i, struct mtk_sys_cap *cap)
  221. {
  222. u32 rndup = 2;
  223. u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
  224. /* Temporarily disable external triggering */
  225. writel(0, cryp->base + RDR_CFG(i));
  226. /* Clear RDR count */
  227. writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
  228. writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
  229. writel(0, cryp->base + RDR_PREP_PNTR(i));
  230. writel(0, cryp->base + RDR_PROC_PNTR(i));
  231. writel(0, cryp->base + RDR_DMA_CFG(i));
  232. /* Configure RDR host address space */
  233. writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
  234. writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
  235. writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
  236. writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
  237. /*
  238. * RDR manager generates update interrupts on a per-completed-packet,
  239. * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
  240. * for the RDR exceeds the number of packets.
  241. */
  242. writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
  243. cryp->base + RDR_THRESH(i));
  244. /*
  245. * Configure a threshold and time-out value for the processed
  246. * result descriptors (or complete packets) that are written to
  247. * the RDR.
  248. */
  249. writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
  250. cryp->base + RDR_DESC_SIZE(i));
  251. /*
  252. * Configure HIA fetch size and fetch threshold that are used to
  253. * fetch blocks of multiple descriptors.
  254. */
  255. writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
  256. MTK_DESC_FETCH_THRESH(count * rndup) |
  257. MTK_DESC_OVL_IRQ_EN,
  258. cryp->base + RDR_CFG(i));
  259. }
  260. static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
  261. {
  262. struct mtk_sys_cap cap;
  263. int i, err;
  264. u32 val;
  265. cap.hia_ver = readl(cryp->base + HIA_VERSION);
  266. cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
  267. cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
  268. if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
  269. return -EINVAL;
  270. /* Configure endianness conversion method for master (DMA) interface */
  271. writel(0, cryp->base + EIP97_MST_CTRL);
  272. /* Set HIA burst size */
  273. val = readl(cryp->base + HIA_MST_CTRL);
  274. val &= ~MTK_BURST_SIZE_MSK;
  275. val |= MTK_BURST_SIZE(5);
  276. writel(val, cryp->base + HIA_MST_CTRL);
  277. err = mtk_dfe_dse_reset(cryp);
  278. if (err) {
  279. dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
  280. return err;
  281. }
  282. mtk_dfe_dse_buf_setup(cryp, &cap);
  283. /* Enable the 4 rings for the packet engines. */
  284. mtk_desc_ring_link(cryp, 0xf);
  285. for (i = 0; i < MTK_RING_MAX; i++) {
  286. mtk_cmd_desc_ring_setup(cryp, i, &cap);
  287. mtk_res_desc_ring_setup(cryp, i, &cap);
  288. }
  289. writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
  290. cryp->base + PE_TOKEN_CTRL_STAT);
  291. /* Clear all pending interrupts */
  292. writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
  293. writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
  294. MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
  295. MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
  296. MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
  297. MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
  298. MTK_PE_INT_OUT_EN,
  299. cryp->base + PE_INTERRUPT_CTRL_STAT);
  300. return 0;
  301. }
  302. static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
  303. {
  304. u32 val;
  305. if (hw == MTK_RING_MAX)
  306. val = readl(cryp->base + AIC_G_VERSION);
  307. else
  308. val = readl(cryp->base + AIC_VERSION(hw));
  309. val &= MTK_AIC_VER_MSK;
  310. if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
  311. return -ENXIO;
  312. if (hw == MTK_RING_MAX)
  313. val = readl(cryp->base + AIC_G_OPTIONS);
  314. else
  315. val = readl(cryp->base + AIC_OPTIONS(hw));
  316. val &= MTK_AIC_INT_MSK;
  317. if (!val || val > 32)
  318. return -ENXIO;
  319. return 0;
  320. }
  321. static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
  322. {
  323. int err;
  324. err = mtk_aic_cap_check(cryp, hw);
  325. if (err)
  326. return err;
  327. /* Disable all interrupts and set initial configuration */
  328. if (hw == MTK_RING_MAX) {
  329. writel(0, cryp->base + AIC_G_ENABLE_CTRL);
  330. writel(0, cryp->base + AIC_G_POL_CTRL);
  331. writel(0, cryp->base + AIC_G_TYPE_CTRL);
  332. writel(0, cryp->base + AIC_G_ENABLE_SET);
  333. } else {
  334. writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
  335. writel(0, cryp->base + AIC_POL_CTRL(hw));
  336. writel(0, cryp->base + AIC_TYPE_CTRL(hw));
  337. writel(0, cryp->base + AIC_ENABLE_SET(hw));
  338. }
  339. return 0;
  340. }
  341. static int mtk_accelerator_init(struct mtk_cryp *cryp)
  342. {
  343. int i, err;
  344. /* Initialize advanced interrupt controller(AIC) */
  345. for (i = 0; i < MTK_IRQ_NUM; i++) {
  346. err = mtk_aic_init(cryp, i);
  347. if (err) {
  348. dev_err(cryp->dev, "Failed to initialize AIC.\n");
  349. return err;
  350. }
  351. }
  352. /* Initialize packet engine */
  353. err = mtk_packet_engine_setup(cryp);
  354. if (err) {
  355. dev_err(cryp->dev, "Failed to configure packet engine.\n");
  356. return err;
  357. }
  358. return 0;
  359. }
  360. static void mtk_desc_dma_free(struct mtk_cryp *cryp)
  361. {
  362. int i;
  363. for (i = 0; i < MTK_RING_MAX; i++) {
  364. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  365. cryp->ring[i]->res_base,
  366. cryp->ring[i]->res_dma);
  367. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  368. cryp->ring[i]->cmd_base,
  369. cryp->ring[i]->cmd_dma);
  370. kfree(cryp->ring[i]);
  371. }
  372. }
  373. static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
  374. {
  375. struct mtk_ring **ring = cryp->ring;
  376. int i;
  377. for (i = 0; i < MTK_RING_MAX; i++) {
  378. ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
  379. if (!ring[i])
  380. goto err_cleanup;
  381. ring[i]->cmd_base = dma_zalloc_coherent(cryp->dev,
  382. MTK_DESC_RING_SZ,
  383. &ring[i]->cmd_dma,
  384. GFP_KERNEL);
  385. if (!ring[i]->cmd_base)
  386. goto err_cleanup;
  387. ring[i]->res_base = dma_zalloc_coherent(cryp->dev,
  388. MTK_DESC_RING_SZ,
  389. &ring[i]->res_dma,
  390. GFP_KERNEL);
  391. if (!ring[i]->res_base)
  392. goto err_cleanup;
  393. ring[i]->cmd_next = ring[i]->cmd_base;
  394. ring[i]->res_next = ring[i]->res_base;
  395. }
  396. return 0;
  397. err_cleanup:
  398. do {
  399. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  400. ring[i]->res_base, ring[i]->res_dma);
  401. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  402. ring[i]->cmd_base, ring[i]->cmd_dma);
  403. kfree(ring[i]);
  404. } while (i--);
  405. return -ENOMEM;
  406. }
  407. static int mtk_crypto_probe(struct platform_device *pdev)
  408. {
  409. struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  410. struct mtk_cryp *cryp;
  411. int i, err;
  412. cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
  413. if (!cryp)
  414. return -ENOMEM;
  415. cryp->base = devm_ioremap_resource(&pdev->dev, res);
  416. if (IS_ERR(cryp->base))
  417. return PTR_ERR(cryp->base);
  418. for (i = 0; i < MTK_IRQ_NUM; i++) {
  419. cryp->irq[i] = platform_get_irq(pdev, i);
  420. if (cryp->irq[i] < 0) {
  421. dev_err(cryp->dev, "no IRQ:%d resource info\n", i);
  422. return cryp->irq[i];
  423. }
  424. }
  425. cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
  426. if (IS_ERR(cryp->clk_cryp))
  427. return -EPROBE_DEFER;
  428. cryp->dev = &pdev->dev;
  429. pm_runtime_enable(cryp->dev);
  430. pm_runtime_get_sync(cryp->dev);
  431. err = clk_prepare_enable(cryp->clk_cryp);
  432. if (err)
  433. goto err_clk_cryp;
  434. /* Allocate four command/result descriptor rings */
  435. err = mtk_desc_ring_alloc(cryp);
  436. if (err) {
  437. dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
  438. goto err_resource;
  439. }
  440. /* Initialize hardware modules */
  441. err = mtk_accelerator_init(cryp);
  442. if (err) {
  443. dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
  444. goto err_engine;
  445. }
  446. err = mtk_cipher_alg_register(cryp);
  447. if (err) {
  448. dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
  449. goto err_cipher;
  450. }
  451. err = mtk_hash_alg_register(cryp);
  452. if (err) {
  453. dev_err(cryp->dev, "Unable to register hash algorithm.\n");
  454. goto err_hash;
  455. }
  456. platform_set_drvdata(pdev, cryp);
  457. return 0;
  458. err_hash:
  459. mtk_cipher_alg_release(cryp);
  460. err_cipher:
  461. mtk_dfe_dse_reset(cryp);
  462. err_engine:
  463. mtk_desc_dma_free(cryp);
  464. err_resource:
  465. clk_disable_unprepare(cryp->clk_cryp);
  466. err_clk_cryp:
  467. pm_runtime_put_sync(cryp->dev);
  468. pm_runtime_disable(cryp->dev);
  469. return err;
  470. }
  471. static int mtk_crypto_remove(struct platform_device *pdev)
  472. {
  473. struct mtk_cryp *cryp = platform_get_drvdata(pdev);
  474. mtk_hash_alg_release(cryp);
  475. mtk_cipher_alg_release(cryp);
  476. mtk_desc_dma_free(cryp);
  477. clk_disable_unprepare(cryp->clk_cryp);
  478. pm_runtime_put_sync(cryp->dev);
  479. pm_runtime_disable(cryp->dev);
  480. platform_set_drvdata(pdev, NULL);
  481. return 0;
  482. }
  483. static const struct of_device_id of_crypto_id[] = {
  484. { .compatible = "mediatek,eip97-crypto" },
  485. {},
  486. };
  487. MODULE_DEVICE_TABLE(of, of_crypto_id);
  488. static struct platform_driver mtk_crypto_driver = {
  489. .probe = mtk_crypto_probe,
  490. .remove = mtk_crypto_remove,
  491. .driver = {
  492. .name = "mtk-crypto",
  493. .of_match_table = of_crypto_id,
  494. },
  495. };
  496. module_platform_driver(mtk_crypto_driver);
  497. MODULE_LICENSE("GPL");
  498. MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
  499. MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");