exynos_mixer.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. /*
  2. * Copyright (C) 2011 Samsung Electronics Co.Ltd
  3. * Authors:
  4. * Seung-Woo Kim <sw0312.kim@samsung.com>
  5. * Inki Dae <inki.dae@samsung.com>
  6. * Joonyoung Shim <jy0922.shim@samsung.com>
  7. *
  8. * Based on drivers/media/video/s5p-tv/mixer_reg.c
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published by the
  12. * Free Software Foundation; either version 2 of the License, or (at your
  13. * option) any later version.
  14. *
  15. */
  16. #include <drm/drmP.h>
  17. #include "regs-mixer.h"
  18. #include "regs-vp.h"
  19. #include <linux/kernel.h>
  20. #include <linux/ktime.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/wait.h>
  23. #include <linux/i2c.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/irq.h>
  27. #include <linux/delay.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/clk.h>
  30. #include <linux/regulator/consumer.h>
  31. #include <linux/of.h>
  32. #include <linux/of_device.h>
  33. #include <linux/component.h>
  34. #include <drm/exynos_drm.h>
  35. #include "exynos_drm_drv.h"
  36. #include "exynos_drm_crtc.h"
  37. #include "exynos_drm_fb.h"
  38. #include "exynos_drm_plane.h"
  39. #include "exynos_drm_iommu.h"
  40. #define MIXER_WIN_NR 3
  41. #define VP_DEFAULT_WIN 2
  42. /*
  43. * Mixer color space conversion coefficient triplet.
  44. * Used for CSC from RGB to YCbCr.
  45. * Each coefficient is a 10-bit fixed point number with
  46. * sign and no integer part, i.e.
  47. * [0:8] = fractional part (representing a value y = x / 2^9)
  48. * [9] = sign
  49. * Negative values are encoded with two's complement.
  50. */
  51. #define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff)
  52. #define MXR_CSC_CT(a0, a1, a2) \
  53. ((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0))
  54. /* YCbCr value, used for mixer background color configuration. */
  55. #define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0))
  56. /* The pixelformats that are natively supported by the mixer. */
  57. #define MXR_FORMAT_RGB565 4
  58. #define MXR_FORMAT_ARGB1555 5
  59. #define MXR_FORMAT_ARGB4444 6
  60. #define MXR_FORMAT_ARGB8888 7
  61. enum mixer_version_id {
  62. MXR_VER_0_0_0_16,
  63. MXR_VER_16_0_33_0,
  64. MXR_VER_128_0_0_184,
  65. };
  66. enum mixer_flag_bits {
  67. MXR_BIT_POWERED,
  68. MXR_BIT_VSYNC,
  69. MXR_BIT_INTERLACE,
  70. MXR_BIT_VP_ENABLED,
  71. MXR_BIT_HAS_SCLK,
  72. };
  73. static const uint32_t mixer_formats[] = {
  74. DRM_FORMAT_XRGB4444,
  75. DRM_FORMAT_ARGB4444,
  76. DRM_FORMAT_XRGB1555,
  77. DRM_FORMAT_ARGB1555,
  78. DRM_FORMAT_RGB565,
  79. DRM_FORMAT_XRGB8888,
  80. DRM_FORMAT_ARGB8888,
  81. };
  82. static const uint32_t vp_formats[] = {
  83. DRM_FORMAT_NV12,
  84. DRM_FORMAT_NV21,
  85. };
  86. struct mixer_context {
  87. struct platform_device *pdev;
  88. struct device *dev;
  89. struct drm_device *drm_dev;
  90. struct exynos_drm_crtc *crtc;
  91. struct exynos_drm_plane planes[MIXER_WIN_NR];
  92. unsigned long flags;
  93. int irq;
  94. void __iomem *mixer_regs;
  95. void __iomem *vp_regs;
  96. spinlock_t reg_slock;
  97. struct clk *mixer;
  98. struct clk *vp;
  99. struct clk *hdmi;
  100. struct clk *sclk_mixer;
  101. struct clk *sclk_hdmi;
  102. struct clk *mout_mixer;
  103. enum mixer_version_id mxr_ver;
  104. int scan_value;
  105. };
  106. struct mixer_drv_data {
  107. enum mixer_version_id version;
  108. bool is_vp_enabled;
  109. bool has_sclk;
  110. };
  111. static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = {
  112. {
  113. .zpos = 0,
  114. .type = DRM_PLANE_TYPE_PRIMARY,
  115. .pixel_formats = mixer_formats,
  116. .num_pixel_formats = ARRAY_SIZE(mixer_formats),
  117. .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
  118. EXYNOS_DRM_PLANE_CAP_ZPOS,
  119. }, {
  120. .zpos = 1,
  121. .type = DRM_PLANE_TYPE_CURSOR,
  122. .pixel_formats = mixer_formats,
  123. .num_pixel_formats = ARRAY_SIZE(mixer_formats),
  124. .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
  125. EXYNOS_DRM_PLANE_CAP_ZPOS,
  126. }, {
  127. .zpos = 2,
  128. .type = DRM_PLANE_TYPE_OVERLAY,
  129. .pixel_formats = vp_formats,
  130. .num_pixel_formats = ARRAY_SIZE(vp_formats),
  131. .capabilities = EXYNOS_DRM_PLANE_CAP_SCALE |
  132. EXYNOS_DRM_PLANE_CAP_ZPOS |
  133. EXYNOS_DRM_PLANE_CAP_TILE,
  134. },
  135. };
  136. static const u8 filter_y_horiz_tap8[] = {
  137. 0, -1, -1, -1, -1, -1, -1, -1,
  138. -1, -1, -1, -1, -1, 0, 0, 0,
  139. 0, 2, 4, 5, 6, 6, 6, 6,
  140. 6, 5, 5, 4, 3, 2, 1, 1,
  141. 0, -6, -12, -16, -18, -20, -21, -20,
  142. -20, -18, -16, -13, -10, -8, -5, -2,
  143. 127, 126, 125, 121, 114, 107, 99, 89,
  144. 79, 68, 57, 46, 35, 25, 16, 8,
  145. };
  146. static const u8 filter_y_vert_tap4[] = {
  147. 0, -3, -6, -8, -8, -8, -8, -7,
  148. -6, -5, -4, -3, -2, -1, -1, 0,
  149. 127, 126, 124, 118, 111, 102, 92, 81,
  150. 70, 59, 48, 37, 27, 19, 11, 5,
  151. 0, 5, 11, 19, 27, 37, 48, 59,
  152. 70, 81, 92, 102, 111, 118, 124, 126,
  153. 0, 0, -1, -1, -2, -3, -4, -5,
  154. -6, -7, -8, -8, -8, -8, -6, -3,
  155. };
  156. static const u8 filter_cr_horiz_tap4[] = {
  157. 0, -3, -6, -8, -8, -8, -8, -7,
  158. -6, -5, -4, -3, -2, -1, -1, 0,
  159. 127, 126, 124, 118, 111, 102, 92, 81,
  160. 70, 59, 48, 37, 27, 19, 11, 5,
  161. };
  162. static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id)
  163. {
  164. return readl(ctx->vp_regs + reg_id);
  165. }
  166. static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id,
  167. u32 val)
  168. {
  169. writel(val, ctx->vp_regs + reg_id);
  170. }
  171. static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id,
  172. u32 val, u32 mask)
  173. {
  174. u32 old = vp_reg_read(ctx, reg_id);
  175. val = (val & mask) | (old & ~mask);
  176. writel(val, ctx->vp_regs + reg_id);
  177. }
  178. static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id)
  179. {
  180. return readl(ctx->mixer_regs + reg_id);
  181. }
  182. static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id,
  183. u32 val)
  184. {
  185. writel(val, ctx->mixer_regs + reg_id);
  186. }
  187. static inline void mixer_reg_writemask(struct mixer_context *ctx,
  188. u32 reg_id, u32 val, u32 mask)
  189. {
  190. u32 old = mixer_reg_read(ctx, reg_id);
  191. val = (val & mask) | (old & ~mask);
  192. writel(val, ctx->mixer_regs + reg_id);
  193. }
  194. static void mixer_regs_dump(struct mixer_context *ctx)
  195. {
  196. #define DUMPREG(reg_id) \
  197. do { \
  198. DRM_DEBUG_KMS(#reg_id " = %08x\n", \
  199. (u32)readl(ctx->mixer_regs + reg_id)); \
  200. } while (0)
  201. DUMPREG(MXR_STATUS);
  202. DUMPREG(MXR_CFG);
  203. DUMPREG(MXR_INT_EN);
  204. DUMPREG(MXR_INT_STATUS);
  205. DUMPREG(MXR_LAYER_CFG);
  206. DUMPREG(MXR_VIDEO_CFG);
  207. DUMPREG(MXR_GRAPHIC0_CFG);
  208. DUMPREG(MXR_GRAPHIC0_BASE);
  209. DUMPREG(MXR_GRAPHIC0_SPAN);
  210. DUMPREG(MXR_GRAPHIC0_WH);
  211. DUMPREG(MXR_GRAPHIC0_SXY);
  212. DUMPREG(MXR_GRAPHIC0_DXY);
  213. DUMPREG(MXR_GRAPHIC1_CFG);
  214. DUMPREG(MXR_GRAPHIC1_BASE);
  215. DUMPREG(MXR_GRAPHIC1_SPAN);
  216. DUMPREG(MXR_GRAPHIC1_WH);
  217. DUMPREG(MXR_GRAPHIC1_SXY);
  218. DUMPREG(MXR_GRAPHIC1_DXY);
  219. #undef DUMPREG
  220. }
  221. static void vp_regs_dump(struct mixer_context *ctx)
  222. {
  223. #define DUMPREG(reg_id) \
  224. do { \
  225. DRM_DEBUG_KMS(#reg_id " = %08x\n", \
  226. (u32) readl(ctx->vp_regs + reg_id)); \
  227. } while (0)
  228. DUMPREG(VP_ENABLE);
  229. DUMPREG(VP_SRESET);
  230. DUMPREG(VP_SHADOW_UPDATE);
  231. DUMPREG(VP_FIELD_ID);
  232. DUMPREG(VP_MODE);
  233. DUMPREG(VP_IMG_SIZE_Y);
  234. DUMPREG(VP_IMG_SIZE_C);
  235. DUMPREG(VP_PER_RATE_CTRL);
  236. DUMPREG(VP_TOP_Y_PTR);
  237. DUMPREG(VP_BOT_Y_PTR);
  238. DUMPREG(VP_TOP_C_PTR);
  239. DUMPREG(VP_BOT_C_PTR);
  240. DUMPREG(VP_ENDIAN_MODE);
  241. DUMPREG(VP_SRC_H_POSITION);
  242. DUMPREG(VP_SRC_V_POSITION);
  243. DUMPREG(VP_SRC_WIDTH);
  244. DUMPREG(VP_SRC_HEIGHT);
  245. DUMPREG(VP_DST_H_POSITION);
  246. DUMPREG(VP_DST_V_POSITION);
  247. DUMPREG(VP_DST_WIDTH);
  248. DUMPREG(VP_DST_HEIGHT);
  249. DUMPREG(VP_H_RATIO);
  250. DUMPREG(VP_V_RATIO);
  251. #undef DUMPREG
  252. }
  253. static inline void vp_filter_set(struct mixer_context *ctx,
  254. int reg_id, const u8 *data, unsigned int size)
  255. {
  256. /* assure 4-byte align */
  257. BUG_ON(size & 3);
  258. for (; size; size -= 4, reg_id += 4, data += 4) {
  259. u32 val = (data[0] << 24) | (data[1] << 16) |
  260. (data[2] << 8) | data[3];
  261. vp_reg_write(ctx, reg_id, val);
  262. }
  263. }
  264. static void vp_default_filter(struct mixer_context *ctx)
  265. {
  266. vp_filter_set(ctx, VP_POLY8_Y0_LL,
  267. filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8));
  268. vp_filter_set(ctx, VP_POLY4_Y0_LL,
  269. filter_y_vert_tap4, sizeof(filter_y_vert_tap4));
  270. vp_filter_set(ctx, VP_POLY4_C0_LL,
  271. filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4));
  272. }
  273. static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win,
  274. bool alpha)
  275. {
  276. u32 val;
  277. val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */
  278. if (alpha) {
  279. /* blending based on pixel alpha */
  280. val |= MXR_GRP_CFG_BLEND_PRE_MUL;
  281. val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
  282. }
  283. mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
  284. val, MXR_GRP_CFG_MISC_MASK);
  285. }
  286. static void mixer_cfg_vp_blend(struct mixer_context *ctx)
  287. {
  288. u32 val;
  289. /*
  290. * No blending at the moment since the NV12/NV21 pixelformats don't
  291. * have an alpha channel. However the mixer supports a global alpha
  292. * value for a layer. Once this functionality is exposed, we can
  293. * support blending of the video layer through this.
  294. */
  295. val = 0;
  296. mixer_reg_write(ctx, MXR_VIDEO_CFG, val);
  297. }
  298. static bool mixer_is_synced(struct mixer_context *ctx)
  299. {
  300. u32 base, shadow;
  301. if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
  302. ctx->mxr_ver == MXR_VER_128_0_0_184)
  303. return !(mixer_reg_read(ctx, MXR_CFG) &
  304. MXR_CFG_LAYER_UPDATE_COUNT_MASK);
  305. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) &&
  306. vp_reg_read(ctx, VP_SHADOW_UPDATE))
  307. return false;
  308. base = mixer_reg_read(ctx, MXR_CFG);
  309. shadow = mixer_reg_read(ctx, MXR_CFG_S);
  310. if (base != shadow)
  311. return false;
  312. base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0));
  313. shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0));
  314. if (base != shadow)
  315. return false;
  316. base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1));
  317. shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1));
  318. if (base != shadow)
  319. return false;
  320. return true;
  321. }
  322. static int mixer_wait_for_sync(struct mixer_context *ctx)
  323. {
  324. ktime_t timeout = ktime_add_us(ktime_get(), 100000);
  325. while (!mixer_is_synced(ctx)) {
  326. usleep_range(1000, 2000);
  327. if (ktime_compare(ktime_get(), timeout) > 0)
  328. return -ETIMEDOUT;
  329. }
  330. return 0;
  331. }
  332. static void mixer_disable_sync(struct mixer_context *ctx)
  333. {
  334. mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_SYNC_ENABLE);
  335. }
  336. static void mixer_enable_sync(struct mixer_context *ctx)
  337. {
  338. if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
  339. ctx->mxr_ver == MXR_VER_128_0_0_184)
  340. mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE);
  341. mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SYNC_ENABLE);
  342. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
  343. vp_reg_write(ctx, VP_SHADOW_UPDATE, VP_SHADOW_UPDATE_ENABLE);
  344. }
  345. static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height)
  346. {
  347. u32 val;
  348. /* choosing between interlace and progressive mode */
  349. val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ?
  350. MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE;
  351. if (ctx->mxr_ver == MXR_VER_128_0_0_184)
  352. mixer_reg_write(ctx, MXR_RESOLUTION,
  353. MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width));
  354. else
  355. val |= ctx->scan_value;
  356. mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK);
  357. }
  358. static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, unsigned int height)
  359. {
  360. u32 val;
  361. switch (height) {
  362. case 480:
  363. case 576:
  364. val = MXR_CFG_RGB601_0_255;
  365. break;
  366. case 720:
  367. case 1080:
  368. default:
  369. val = MXR_CFG_RGB709_16_235;
  370. /* Configure the BT.709 CSC matrix for full range RGB. */
  371. mixer_reg_write(ctx, MXR_CM_COEFF_Y,
  372. MXR_CSC_CT( 0.184, 0.614, 0.063) |
  373. MXR_CM_COEFF_RGB_FULL);
  374. mixer_reg_write(ctx, MXR_CM_COEFF_CB,
  375. MXR_CSC_CT(-0.102, -0.338, 0.440));
  376. mixer_reg_write(ctx, MXR_CM_COEFF_CR,
  377. MXR_CSC_CT( 0.440, -0.399, -0.040));
  378. break;
  379. }
  380. mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK);
  381. }
  382. static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win,
  383. unsigned int priority, bool enable)
  384. {
  385. u32 val = enable ? ~0 : 0;
  386. switch (win) {
  387. case 0:
  388. mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE);
  389. mixer_reg_writemask(ctx, MXR_LAYER_CFG,
  390. MXR_LAYER_CFG_GRP0_VAL(priority),
  391. MXR_LAYER_CFG_GRP0_MASK);
  392. break;
  393. case 1:
  394. mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE);
  395. mixer_reg_writemask(ctx, MXR_LAYER_CFG,
  396. MXR_LAYER_CFG_GRP1_VAL(priority),
  397. MXR_LAYER_CFG_GRP1_MASK);
  398. break;
  399. case VP_DEFAULT_WIN:
  400. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
  401. vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON);
  402. mixer_reg_writemask(ctx, MXR_CFG, val,
  403. MXR_CFG_VP_ENABLE);
  404. mixer_reg_writemask(ctx, MXR_LAYER_CFG,
  405. MXR_LAYER_CFG_VP_VAL(priority),
  406. MXR_LAYER_CFG_VP_MASK);
  407. }
  408. break;
  409. }
  410. }
  411. static void mixer_run(struct mixer_context *ctx)
  412. {
  413. mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN);
  414. }
  415. static void mixer_stop(struct mixer_context *ctx)
  416. {
  417. int timeout = 20;
  418. mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN);
  419. while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) &&
  420. --timeout)
  421. usleep_range(10000, 12000);
  422. }
  423. static void mixer_commit(struct mixer_context *ctx)
  424. {
  425. struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode;
  426. mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay);
  427. mixer_cfg_rgb_fmt(ctx, mode->vdisplay);
  428. mixer_run(ctx);
  429. }
  430. static void vp_video_buffer(struct mixer_context *ctx,
  431. struct exynos_drm_plane *plane)
  432. {
  433. struct exynos_drm_plane_state *state =
  434. to_exynos_plane_state(plane->base.state);
  435. struct drm_framebuffer *fb = state->base.fb;
  436. unsigned int priority = state->base.normalized_zpos + 1;
  437. unsigned long flags;
  438. dma_addr_t luma_addr[2], chroma_addr[2];
  439. bool is_tiled, is_nv21;
  440. u32 val;
  441. is_nv21 = (fb->format->format == DRM_FORMAT_NV21);
  442. is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE);
  443. luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0);
  444. chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1);
  445. if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
  446. if (is_tiled) {
  447. luma_addr[1] = luma_addr[0] + 0x40;
  448. chroma_addr[1] = chroma_addr[0] + 0x40;
  449. } else {
  450. luma_addr[1] = luma_addr[0] + fb->pitches[0];
  451. chroma_addr[1] = chroma_addr[0] + fb->pitches[1];
  452. }
  453. } else {
  454. luma_addr[1] = 0;
  455. chroma_addr[1] = 0;
  456. }
  457. spin_lock_irqsave(&ctx->reg_slock, flags);
  458. /* interlace or progressive scan mode */
  459. val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0);
  460. vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP);
  461. /* setup format */
  462. val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12);
  463. val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR);
  464. vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK);
  465. /* setting size of input image */
  466. vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) |
  467. VP_IMG_VSIZE(fb->height));
  468. /* chroma plane for NV12/NV21 is half the height of the luma plane */
  469. vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) |
  470. VP_IMG_VSIZE(fb->height / 2));
  471. vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w);
  472. vp_reg_write(ctx, VP_SRC_H_POSITION,
  473. VP_SRC_H_POSITION_VAL(state->src.x));
  474. vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w);
  475. vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x);
  476. if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
  477. vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2);
  478. vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2);
  479. vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2);
  480. vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2);
  481. } else {
  482. vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h);
  483. vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y);
  484. vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h);
  485. vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y);
  486. }
  487. vp_reg_write(ctx, VP_H_RATIO, state->h_ratio);
  488. vp_reg_write(ctx, VP_V_RATIO, state->v_ratio);
  489. vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE);
  490. /* set buffer address to vp */
  491. vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]);
  492. vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]);
  493. vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]);
  494. vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]);
  495. mixer_cfg_layer(ctx, plane->index, priority, true);
  496. mixer_cfg_vp_blend(ctx);
  497. spin_unlock_irqrestore(&ctx->reg_slock, flags);
  498. mixer_regs_dump(ctx);
  499. vp_regs_dump(ctx);
  500. }
  501. static void mixer_graph_buffer(struct mixer_context *ctx,
  502. struct exynos_drm_plane *plane)
  503. {
  504. struct exynos_drm_plane_state *state =
  505. to_exynos_plane_state(plane->base.state);
  506. struct drm_framebuffer *fb = state->base.fb;
  507. unsigned int priority = state->base.normalized_zpos + 1;
  508. unsigned long flags;
  509. unsigned int win = plane->index;
  510. unsigned int x_ratio = 0, y_ratio = 0;
  511. unsigned int dst_x_offset, dst_y_offset;
  512. dma_addr_t dma_addr;
  513. unsigned int fmt;
  514. u32 val;
  515. switch (fb->format->format) {
  516. case DRM_FORMAT_XRGB4444:
  517. case DRM_FORMAT_ARGB4444:
  518. fmt = MXR_FORMAT_ARGB4444;
  519. break;
  520. case DRM_FORMAT_XRGB1555:
  521. case DRM_FORMAT_ARGB1555:
  522. fmt = MXR_FORMAT_ARGB1555;
  523. break;
  524. case DRM_FORMAT_RGB565:
  525. fmt = MXR_FORMAT_RGB565;
  526. break;
  527. case DRM_FORMAT_XRGB8888:
  528. case DRM_FORMAT_ARGB8888:
  529. default:
  530. fmt = MXR_FORMAT_ARGB8888;
  531. break;
  532. }
  533. /* ratio is already checked by common plane code */
  534. x_ratio = state->h_ratio == (1 << 15);
  535. y_ratio = state->v_ratio == (1 << 15);
  536. dst_x_offset = state->crtc.x;
  537. dst_y_offset = state->crtc.y;
  538. /* translate dma address base s.t. the source image offset is zero */
  539. dma_addr = exynos_drm_fb_dma_addr(fb, 0)
  540. + (state->src.x * fb->format->cpp[0])
  541. + (state->src.y * fb->pitches[0]);
  542. spin_lock_irqsave(&ctx->reg_slock, flags);
  543. /* setup format */
  544. mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
  545. MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK);
  546. /* setup geometry */
  547. mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win),
  548. fb->pitches[0] / fb->format->cpp[0]);
  549. val = MXR_GRP_WH_WIDTH(state->src.w);
  550. val |= MXR_GRP_WH_HEIGHT(state->src.h);
  551. val |= MXR_GRP_WH_H_SCALE(x_ratio);
  552. val |= MXR_GRP_WH_V_SCALE(y_ratio);
  553. mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val);
  554. /* setup offsets in display image */
  555. val = MXR_GRP_DXY_DX(dst_x_offset);
  556. val |= MXR_GRP_DXY_DY(dst_y_offset);
  557. mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val);
  558. /* set buffer address to mixer */
  559. mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr);
  560. mixer_cfg_layer(ctx, win, priority, true);
  561. mixer_cfg_gfx_blend(ctx, win, fb->format->has_alpha);
  562. spin_unlock_irqrestore(&ctx->reg_slock, flags);
  563. mixer_regs_dump(ctx);
  564. }
  565. static void vp_win_reset(struct mixer_context *ctx)
  566. {
  567. unsigned int tries = 100;
  568. vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING);
  569. while (--tries) {
  570. /* waiting until VP_SRESET_PROCESSING is 0 */
  571. if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING)
  572. break;
  573. mdelay(10);
  574. }
  575. WARN(tries == 0, "failed to reset Video Processor\n");
  576. }
  577. static void mixer_win_reset(struct mixer_context *ctx)
  578. {
  579. unsigned long flags;
  580. spin_lock_irqsave(&ctx->reg_slock, flags);
  581. mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK);
  582. /* set output in RGB888 mode */
  583. mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK);
  584. /* 16 beat burst in DMA */
  585. mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST,
  586. MXR_STATUS_BURST_MASK);
  587. /* reset default layer priority */
  588. mixer_reg_write(ctx, MXR_LAYER_CFG, 0);
  589. /* set all background colors to RGB (0,0,0) */
  590. mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128));
  591. mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128));
  592. mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128));
  593. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
  594. /* configuration of Video Processor Registers */
  595. vp_win_reset(ctx);
  596. vp_default_filter(ctx);
  597. }
  598. /* disable all layers */
  599. mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE);
  600. mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE);
  601. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
  602. mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE);
  603. /* set all source image offsets to zero */
  604. mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0);
  605. mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0);
  606. spin_unlock_irqrestore(&ctx->reg_slock, flags);
  607. }
  608. static irqreturn_t mixer_irq_handler(int irq, void *arg)
  609. {
  610. struct mixer_context *ctx = arg;
  611. u32 val;
  612. spin_lock(&ctx->reg_slock);
  613. /* read interrupt status for handling and clearing flags for VSYNC */
  614. val = mixer_reg_read(ctx, MXR_INT_STATUS);
  615. /* handling VSYNC */
  616. if (val & MXR_INT_STATUS_VSYNC) {
  617. /* vsync interrupt use different bit for read and clear */
  618. val |= MXR_INT_CLEAR_VSYNC;
  619. val &= ~MXR_INT_STATUS_VSYNC;
  620. /* interlace scan need to check shadow register */
  621. if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)
  622. && !mixer_is_synced(ctx))
  623. goto out;
  624. drm_crtc_handle_vblank(&ctx->crtc->base);
  625. }
  626. out:
  627. /* clear interrupts */
  628. mixer_reg_write(ctx, MXR_INT_STATUS, val);
  629. spin_unlock(&ctx->reg_slock);
  630. return IRQ_HANDLED;
  631. }
  632. static int mixer_resources_init(struct mixer_context *mixer_ctx)
  633. {
  634. struct device *dev = &mixer_ctx->pdev->dev;
  635. struct resource *res;
  636. int ret;
  637. spin_lock_init(&mixer_ctx->reg_slock);
  638. mixer_ctx->mixer = devm_clk_get(dev, "mixer");
  639. if (IS_ERR(mixer_ctx->mixer)) {
  640. dev_err(dev, "failed to get clock 'mixer'\n");
  641. return -ENODEV;
  642. }
  643. mixer_ctx->hdmi = devm_clk_get(dev, "hdmi");
  644. if (IS_ERR(mixer_ctx->hdmi)) {
  645. dev_err(dev, "failed to get clock 'hdmi'\n");
  646. return PTR_ERR(mixer_ctx->hdmi);
  647. }
  648. mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
  649. if (IS_ERR(mixer_ctx->sclk_hdmi)) {
  650. dev_err(dev, "failed to get clock 'sclk_hdmi'\n");
  651. return -ENODEV;
  652. }
  653. res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0);
  654. if (res == NULL) {
  655. dev_err(dev, "get memory resource failed.\n");
  656. return -ENXIO;
  657. }
  658. mixer_ctx->mixer_regs = devm_ioremap(dev, res->start,
  659. resource_size(res));
  660. if (mixer_ctx->mixer_regs == NULL) {
  661. dev_err(dev, "register mapping failed.\n");
  662. return -ENXIO;
  663. }
  664. res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_IRQ, 0);
  665. if (res == NULL) {
  666. dev_err(dev, "get interrupt resource failed.\n");
  667. return -ENXIO;
  668. }
  669. ret = devm_request_irq(dev, res->start, mixer_irq_handler,
  670. 0, "drm_mixer", mixer_ctx);
  671. if (ret) {
  672. dev_err(dev, "request interrupt failed.\n");
  673. return ret;
  674. }
  675. mixer_ctx->irq = res->start;
  676. return 0;
  677. }
  678. static int vp_resources_init(struct mixer_context *mixer_ctx)
  679. {
  680. struct device *dev = &mixer_ctx->pdev->dev;
  681. struct resource *res;
  682. mixer_ctx->vp = devm_clk_get(dev, "vp");
  683. if (IS_ERR(mixer_ctx->vp)) {
  684. dev_err(dev, "failed to get clock 'vp'\n");
  685. return -ENODEV;
  686. }
  687. if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) {
  688. mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer");
  689. if (IS_ERR(mixer_ctx->sclk_mixer)) {
  690. dev_err(dev, "failed to get clock 'sclk_mixer'\n");
  691. return -ENODEV;
  692. }
  693. mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer");
  694. if (IS_ERR(mixer_ctx->mout_mixer)) {
  695. dev_err(dev, "failed to get clock 'mout_mixer'\n");
  696. return -ENODEV;
  697. }
  698. if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer)
  699. clk_set_parent(mixer_ctx->mout_mixer,
  700. mixer_ctx->sclk_hdmi);
  701. }
  702. res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1);
  703. if (res == NULL) {
  704. dev_err(dev, "get memory resource failed.\n");
  705. return -ENXIO;
  706. }
  707. mixer_ctx->vp_regs = devm_ioremap(dev, res->start,
  708. resource_size(res));
  709. if (mixer_ctx->vp_regs == NULL) {
  710. dev_err(dev, "register mapping failed.\n");
  711. return -ENXIO;
  712. }
  713. return 0;
  714. }
  715. static int mixer_initialize(struct mixer_context *mixer_ctx,
  716. struct drm_device *drm_dev)
  717. {
  718. int ret;
  719. mixer_ctx->drm_dev = drm_dev;
  720. /* acquire resources: regs, irqs, clocks */
  721. ret = mixer_resources_init(mixer_ctx);
  722. if (ret) {
  723. DRM_ERROR("mixer_resources_init failed ret=%d\n", ret);
  724. return ret;
  725. }
  726. if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) {
  727. /* acquire vp resources: regs, irqs, clocks */
  728. ret = vp_resources_init(mixer_ctx);
  729. if (ret) {
  730. DRM_ERROR("vp_resources_init failed ret=%d\n", ret);
  731. return ret;
  732. }
  733. }
  734. return drm_iommu_attach_device(drm_dev, mixer_ctx->dev);
  735. }
  736. static void mixer_ctx_remove(struct mixer_context *mixer_ctx)
  737. {
  738. drm_iommu_detach_device(mixer_ctx->drm_dev, mixer_ctx->dev);
  739. }
  740. static int mixer_enable_vblank(struct exynos_drm_crtc *crtc)
  741. {
  742. struct mixer_context *mixer_ctx = crtc->ctx;
  743. __set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
  744. if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
  745. return 0;
  746. /* enable vsync interrupt */
  747. mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
  748. mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
  749. return 0;
  750. }
  751. static void mixer_disable_vblank(struct exynos_drm_crtc *crtc)
  752. {
  753. struct mixer_context *mixer_ctx = crtc->ctx;
  754. __clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
  755. if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
  756. return;
  757. /* disable vsync interrupt */
  758. mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
  759. mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC);
  760. }
  761. static void mixer_atomic_begin(struct exynos_drm_crtc *crtc)
  762. {
  763. struct mixer_context *ctx = crtc->ctx;
  764. if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
  765. return;
  766. if (mixer_wait_for_sync(ctx))
  767. dev_err(ctx->dev, "timeout waiting for VSYNC\n");
  768. mixer_disable_sync(ctx);
  769. }
  770. static void mixer_update_plane(struct exynos_drm_crtc *crtc,
  771. struct exynos_drm_plane *plane)
  772. {
  773. struct mixer_context *mixer_ctx = crtc->ctx;
  774. DRM_DEBUG_KMS("win: %d\n", plane->index);
  775. if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
  776. return;
  777. if (plane->index == VP_DEFAULT_WIN)
  778. vp_video_buffer(mixer_ctx, plane);
  779. else
  780. mixer_graph_buffer(mixer_ctx, plane);
  781. }
  782. static void mixer_disable_plane(struct exynos_drm_crtc *crtc,
  783. struct exynos_drm_plane *plane)
  784. {
  785. struct mixer_context *mixer_ctx = crtc->ctx;
  786. unsigned long flags;
  787. DRM_DEBUG_KMS("win: %d\n", plane->index);
  788. if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
  789. return;
  790. spin_lock_irqsave(&mixer_ctx->reg_slock, flags);
  791. mixer_cfg_layer(mixer_ctx, plane->index, 0, false);
  792. spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags);
  793. }
  794. static void mixer_atomic_flush(struct exynos_drm_crtc *crtc)
  795. {
  796. struct mixer_context *mixer_ctx = crtc->ctx;
  797. if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
  798. return;
  799. mixer_enable_sync(mixer_ctx);
  800. exynos_crtc_handle_event(crtc);
  801. }
  802. static void mixer_enable(struct exynos_drm_crtc *crtc)
  803. {
  804. struct mixer_context *ctx = crtc->ctx;
  805. if (test_bit(MXR_BIT_POWERED, &ctx->flags))
  806. return;
  807. pm_runtime_get_sync(ctx->dev);
  808. exynos_drm_pipe_clk_enable(crtc, true);
  809. mixer_disable_sync(ctx);
  810. mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET);
  811. if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) {
  812. mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0,
  813. MXR_INT_CLEAR_VSYNC);
  814. mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
  815. }
  816. mixer_win_reset(ctx);
  817. mixer_commit(ctx);
  818. mixer_enable_sync(ctx);
  819. set_bit(MXR_BIT_POWERED, &ctx->flags);
  820. }
  821. static void mixer_disable(struct exynos_drm_crtc *crtc)
  822. {
  823. struct mixer_context *ctx = crtc->ctx;
  824. int i;
  825. if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
  826. return;
  827. mixer_stop(ctx);
  828. mixer_regs_dump(ctx);
  829. for (i = 0; i < MIXER_WIN_NR; i++)
  830. mixer_disable_plane(crtc, &ctx->planes[i]);
  831. exynos_drm_pipe_clk_enable(crtc, false);
  832. pm_runtime_put(ctx->dev);
  833. clear_bit(MXR_BIT_POWERED, &ctx->flags);
  834. }
  835. static int mixer_mode_valid(struct exynos_drm_crtc *crtc,
  836. const struct drm_display_mode *mode)
  837. {
  838. struct mixer_context *ctx = crtc->ctx;
  839. u32 w = mode->hdisplay, h = mode->vdisplay;
  840. DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%d\n", w, h,
  841. mode->vrefresh, !!(mode->flags & DRM_MODE_FLAG_INTERLACE));
  842. if (ctx->mxr_ver == MXR_VER_128_0_0_184)
  843. return MODE_OK;
  844. if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) ||
  845. (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) ||
  846. (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080))
  847. return MODE_OK;
  848. if ((w == 1024 && h == 768) ||
  849. (w == 1366 && h == 768) ||
  850. (w == 1280 && h == 1024))
  851. return MODE_OK;
  852. return MODE_BAD;
  853. }
  854. static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc,
  855. const struct drm_display_mode *mode,
  856. struct drm_display_mode *adjusted_mode)
  857. {
  858. struct mixer_context *ctx = crtc->ctx;
  859. int width = mode->hdisplay, height = mode->vdisplay, i;
  860. struct {
  861. int hdisplay, vdisplay, htotal, vtotal, scan_val;
  862. } static const modes[] = {
  863. { 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD },
  864. { 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD },
  865. { 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD },
  866. { 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 |
  867. MXR_CFG_SCAN_HD }
  868. };
  869. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  870. __set_bit(MXR_BIT_INTERLACE, &ctx->flags);
  871. else
  872. __clear_bit(MXR_BIT_INTERLACE, &ctx->flags);
  873. if (ctx->mxr_ver == MXR_VER_128_0_0_184)
  874. return true;
  875. for (i = 0; i < ARRAY_SIZE(modes); ++i)
  876. if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) {
  877. ctx->scan_value = modes[i].scan_val;
  878. if (width < modes[i].hdisplay ||
  879. height < modes[i].vdisplay) {
  880. adjusted_mode->hdisplay = modes[i].hdisplay;
  881. adjusted_mode->hsync_start = modes[i].hdisplay;
  882. adjusted_mode->hsync_end = modes[i].htotal;
  883. adjusted_mode->htotal = modes[i].htotal;
  884. adjusted_mode->vdisplay = modes[i].vdisplay;
  885. adjusted_mode->vsync_start = modes[i].vdisplay;
  886. adjusted_mode->vsync_end = modes[i].vtotal;
  887. adjusted_mode->vtotal = modes[i].vtotal;
  888. }
  889. return true;
  890. }
  891. return false;
  892. }
  893. static const struct exynos_drm_crtc_ops mixer_crtc_ops = {
  894. .enable = mixer_enable,
  895. .disable = mixer_disable,
  896. .enable_vblank = mixer_enable_vblank,
  897. .disable_vblank = mixer_disable_vblank,
  898. .atomic_begin = mixer_atomic_begin,
  899. .update_plane = mixer_update_plane,
  900. .disable_plane = mixer_disable_plane,
  901. .atomic_flush = mixer_atomic_flush,
  902. .mode_valid = mixer_mode_valid,
  903. .mode_fixup = mixer_mode_fixup,
  904. };
  905. static const struct mixer_drv_data exynos5420_mxr_drv_data = {
  906. .version = MXR_VER_128_0_0_184,
  907. .is_vp_enabled = 0,
  908. };
  909. static const struct mixer_drv_data exynos5250_mxr_drv_data = {
  910. .version = MXR_VER_16_0_33_0,
  911. .is_vp_enabled = 0,
  912. };
  913. static const struct mixer_drv_data exynos4212_mxr_drv_data = {
  914. .version = MXR_VER_0_0_0_16,
  915. .is_vp_enabled = 1,
  916. };
  917. static const struct mixer_drv_data exynos4210_mxr_drv_data = {
  918. .version = MXR_VER_0_0_0_16,
  919. .is_vp_enabled = 1,
  920. .has_sclk = 1,
  921. };
  922. static const struct of_device_id mixer_match_types[] = {
  923. {
  924. .compatible = "samsung,exynos4210-mixer",
  925. .data = &exynos4210_mxr_drv_data,
  926. }, {
  927. .compatible = "samsung,exynos4212-mixer",
  928. .data = &exynos4212_mxr_drv_data,
  929. }, {
  930. .compatible = "samsung,exynos5-mixer",
  931. .data = &exynos5250_mxr_drv_data,
  932. }, {
  933. .compatible = "samsung,exynos5250-mixer",
  934. .data = &exynos5250_mxr_drv_data,
  935. }, {
  936. .compatible = "samsung,exynos5420-mixer",
  937. .data = &exynos5420_mxr_drv_data,
  938. }, {
  939. /* end node */
  940. }
  941. };
  942. MODULE_DEVICE_TABLE(of, mixer_match_types);
  943. static int mixer_bind(struct device *dev, struct device *manager, void *data)
  944. {
  945. struct mixer_context *ctx = dev_get_drvdata(dev);
  946. struct drm_device *drm_dev = data;
  947. struct exynos_drm_plane *exynos_plane;
  948. unsigned int i;
  949. int ret;
  950. ret = mixer_initialize(ctx, drm_dev);
  951. if (ret)
  952. return ret;
  953. for (i = 0; i < MIXER_WIN_NR; i++) {
  954. if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED,
  955. &ctx->flags))
  956. continue;
  957. ret = exynos_plane_init(drm_dev, &ctx->planes[i], i,
  958. &plane_configs[i]);
  959. if (ret)
  960. return ret;
  961. }
  962. exynos_plane = &ctx->planes[DEFAULT_WIN];
  963. ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base,
  964. EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx);
  965. if (IS_ERR(ctx->crtc)) {
  966. mixer_ctx_remove(ctx);
  967. ret = PTR_ERR(ctx->crtc);
  968. goto free_ctx;
  969. }
  970. return 0;
  971. free_ctx:
  972. devm_kfree(dev, ctx);
  973. return ret;
  974. }
  975. static void mixer_unbind(struct device *dev, struct device *master, void *data)
  976. {
  977. struct mixer_context *ctx = dev_get_drvdata(dev);
  978. mixer_ctx_remove(ctx);
  979. }
  980. static const struct component_ops mixer_component_ops = {
  981. .bind = mixer_bind,
  982. .unbind = mixer_unbind,
  983. };
  984. static int mixer_probe(struct platform_device *pdev)
  985. {
  986. struct device *dev = &pdev->dev;
  987. const struct mixer_drv_data *drv;
  988. struct mixer_context *ctx;
  989. int ret;
  990. ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
  991. if (!ctx) {
  992. DRM_ERROR("failed to alloc mixer context.\n");
  993. return -ENOMEM;
  994. }
  995. drv = of_device_get_match_data(dev);
  996. ctx->pdev = pdev;
  997. ctx->dev = dev;
  998. ctx->mxr_ver = drv->version;
  999. if (drv->is_vp_enabled)
  1000. __set_bit(MXR_BIT_VP_ENABLED, &ctx->flags);
  1001. if (drv->has_sclk)
  1002. __set_bit(MXR_BIT_HAS_SCLK, &ctx->flags);
  1003. platform_set_drvdata(pdev, ctx);
  1004. ret = component_add(&pdev->dev, &mixer_component_ops);
  1005. if (!ret)
  1006. pm_runtime_enable(dev);
  1007. return ret;
  1008. }
  1009. static int mixer_remove(struct platform_device *pdev)
  1010. {
  1011. pm_runtime_disable(&pdev->dev);
  1012. component_del(&pdev->dev, &mixer_component_ops);
  1013. return 0;
  1014. }
  1015. static int __maybe_unused exynos_mixer_suspend(struct device *dev)
  1016. {
  1017. struct mixer_context *ctx = dev_get_drvdata(dev);
  1018. clk_disable_unprepare(ctx->hdmi);
  1019. clk_disable_unprepare(ctx->mixer);
  1020. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
  1021. clk_disable_unprepare(ctx->vp);
  1022. if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags))
  1023. clk_disable_unprepare(ctx->sclk_mixer);
  1024. }
  1025. return 0;
  1026. }
  1027. static int __maybe_unused exynos_mixer_resume(struct device *dev)
  1028. {
  1029. struct mixer_context *ctx = dev_get_drvdata(dev);
  1030. int ret;
  1031. ret = clk_prepare_enable(ctx->mixer);
  1032. if (ret < 0) {
  1033. DRM_ERROR("Failed to prepare_enable the mixer clk [%d]\n", ret);
  1034. return ret;
  1035. }
  1036. ret = clk_prepare_enable(ctx->hdmi);
  1037. if (ret < 0) {
  1038. DRM_ERROR("Failed to prepare_enable the hdmi clk [%d]\n", ret);
  1039. return ret;
  1040. }
  1041. if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
  1042. ret = clk_prepare_enable(ctx->vp);
  1043. if (ret < 0) {
  1044. DRM_ERROR("Failed to prepare_enable the vp clk [%d]\n",
  1045. ret);
  1046. return ret;
  1047. }
  1048. if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) {
  1049. ret = clk_prepare_enable(ctx->sclk_mixer);
  1050. if (ret < 0) {
  1051. DRM_ERROR("Failed to prepare_enable the " \
  1052. "sclk_mixer clk [%d]\n",
  1053. ret);
  1054. return ret;
  1055. }
  1056. }
  1057. }
  1058. return 0;
  1059. }
  1060. static const struct dev_pm_ops exynos_mixer_pm_ops = {
  1061. SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL)
  1062. SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  1063. pm_runtime_force_resume)
  1064. };
  1065. struct platform_driver mixer_driver = {
  1066. .driver = {
  1067. .name = "exynos-mixer",
  1068. .owner = THIS_MODULE,
  1069. .pm = &exynos_mixer_pm_ops,
  1070. .of_match_table = mixer_match_types,
  1071. },
  1072. .probe = mixer_probe,
  1073. .remove = mixer_remove,
  1074. };