mdp4_crtc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * Copyright (C) 2013 Red Hat
  3. * Author: Rob Clark <robdclark@gmail.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License version 2 as published by
  7. * the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program. If not, see <http://www.gnu.org/licenses/>.
  16. */
  17. #include <drm/drm_crtc.h>
  18. #include <drm/drm_crtc_helper.h>
  19. #include <drm/drm_flip_work.h>
  20. #include <drm/drm_mode.h>
  21. #include "mdp4_kms.h"
  22. struct mdp4_crtc {
  23. struct drm_crtc base;
  24. char name[8];
  25. int id;
  26. int ovlp;
  27. enum mdp4_dma dma;
  28. bool enabled;
  29. /* which mixer/encoder we route output to: */
  30. int mixer;
  31. struct {
  32. spinlock_t lock;
  33. bool stale;
  34. uint32_t width, height;
  35. uint32_t x, y;
  36. /* next cursor to scan-out: */
  37. uint32_t next_iova;
  38. struct drm_gem_object *next_bo;
  39. /* current cursor being scanned out: */
  40. struct drm_gem_object *scanout_bo;
  41. } cursor;
  42. /* if there is a pending flip, these will be non-null: */
  43. struct drm_pending_vblank_event *event;
  44. /* Bits have been flushed at the last commit,
  45. * used to decide if a vsync has happened since last commit.
  46. */
  47. u32 flushed_mask;
  48. #define PENDING_CURSOR 0x1
  49. #define PENDING_FLIP 0x2
  50. atomic_t pending;
  51. /* for unref'ing cursor bo's after scanout completes: */
  52. struct drm_flip_work unref_cursor_work;
  53. struct mdp_irq vblank;
  54. struct mdp_irq err;
  55. };
  56. #define to_mdp4_crtc(x) container_of(x, struct mdp4_crtc, base)
  57. static struct mdp4_kms *get_kms(struct drm_crtc *crtc)
  58. {
  59. struct msm_drm_private *priv = crtc->dev->dev_private;
  60. return to_mdp4_kms(to_mdp_kms(priv->kms));
  61. }
  62. static void request_pending(struct drm_crtc *crtc, uint32_t pending)
  63. {
  64. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  65. atomic_or(pending, &mdp4_crtc->pending);
  66. mdp_irq_register(&get_kms(crtc)->base, &mdp4_crtc->vblank);
  67. }
  68. static void crtc_flush(struct drm_crtc *crtc)
  69. {
  70. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  71. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  72. struct drm_plane *plane;
  73. uint32_t flush = 0;
  74. drm_atomic_crtc_for_each_plane(plane, crtc) {
  75. enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane);
  76. flush |= pipe2flush(pipe_id);
  77. }
  78. flush |= ovlp2flush(mdp4_crtc->ovlp);
  79. DBG("%s: flush=%08x", mdp4_crtc->name, flush);
  80. mdp4_crtc->flushed_mask = flush;
  81. mdp4_write(mdp4_kms, REG_MDP4_OVERLAY_FLUSH, flush);
  82. }
  83. /* if file!=NULL, this is preclose potential cancel-flip path */
  84. static void complete_flip(struct drm_crtc *crtc, struct drm_file *file)
  85. {
  86. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  87. struct drm_device *dev = crtc->dev;
  88. struct drm_pending_vblank_event *event;
  89. unsigned long flags;
  90. spin_lock_irqsave(&dev->event_lock, flags);
  91. event = mdp4_crtc->event;
  92. if (event) {
  93. mdp4_crtc->event = NULL;
  94. DBG("%s: send event: %p", mdp4_crtc->name, event);
  95. drm_crtc_send_vblank_event(crtc, event);
  96. }
  97. spin_unlock_irqrestore(&dev->event_lock, flags);
  98. }
  99. static void unref_cursor_worker(struct drm_flip_work *work, void *val)
  100. {
  101. struct mdp4_crtc *mdp4_crtc =
  102. container_of(work, struct mdp4_crtc, unref_cursor_work);
  103. struct mdp4_kms *mdp4_kms = get_kms(&mdp4_crtc->base);
  104. struct msm_kms *kms = &mdp4_kms->base.base;
  105. msm_gem_put_iova(val, kms->aspace);
  106. drm_gem_object_put_unlocked(val);
  107. }
  108. static void mdp4_crtc_destroy(struct drm_crtc *crtc)
  109. {
  110. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  111. drm_crtc_cleanup(crtc);
  112. drm_flip_work_cleanup(&mdp4_crtc->unref_cursor_work);
  113. kfree(mdp4_crtc);
  114. }
  115. /* statically (for now) map planes to mixer stage (z-order): */
  116. static const int idxs[] = {
  117. [VG1] = 1,
  118. [VG2] = 2,
  119. [RGB1] = 0,
  120. [RGB2] = 0,
  121. [RGB3] = 0,
  122. [VG3] = 3,
  123. [VG4] = 4,
  124. };
  125. /* setup mixer config, for which we need to consider all crtc's and
  126. * the planes attached to them
  127. *
  128. * TODO may possibly need some extra locking here
  129. */
  130. static void setup_mixer(struct mdp4_kms *mdp4_kms)
  131. {
  132. struct drm_mode_config *config = &mdp4_kms->dev->mode_config;
  133. struct drm_crtc *crtc;
  134. uint32_t mixer_cfg = 0;
  135. static const enum mdp_mixer_stage_id stages[] = {
  136. STAGE_BASE, STAGE0, STAGE1, STAGE2, STAGE3,
  137. };
  138. list_for_each_entry(crtc, &config->crtc_list, head) {
  139. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  140. struct drm_plane *plane;
  141. drm_atomic_crtc_for_each_plane(plane, crtc) {
  142. enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane);
  143. int idx = idxs[pipe_id];
  144. mixer_cfg = mixercfg(mixer_cfg, mdp4_crtc->mixer,
  145. pipe_id, stages[idx]);
  146. }
  147. }
  148. mdp4_write(mdp4_kms, REG_MDP4_LAYERMIXER_IN_CFG, mixer_cfg);
  149. }
  150. static void blend_setup(struct drm_crtc *crtc)
  151. {
  152. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  153. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  154. struct drm_plane *plane;
  155. int i, ovlp = mdp4_crtc->ovlp;
  156. bool alpha[4]= { false, false, false, false };
  157. mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW0(ovlp), 0);
  158. mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW1(ovlp), 0);
  159. mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH0(ovlp), 0);
  160. mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH1(ovlp), 0);
  161. drm_atomic_crtc_for_each_plane(plane, crtc) {
  162. enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane);
  163. int idx = idxs[pipe_id];
  164. if (idx > 0) {
  165. const struct mdp_format *format =
  166. to_mdp_format(msm_framebuffer_format(plane->state->fb));
  167. alpha[idx-1] = format->alpha_enable;
  168. }
  169. }
  170. for (i = 0; i < 4; i++) {
  171. uint32_t op;
  172. if (alpha[i]) {
  173. op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_PIXEL) |
  174. MDP4_OVLP_STAGE_OP_BG_ALPHA(FG_PIXEL) |
  175. MDP4_OVLP_STAGE_OP_BG_INV_ALPHA;
  176. } else {
  177. op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_CONST) |
  178. MDP4_OVLP_STAGE_OP_BG_ALPHA(BG_CONST);
  179. }
  180. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_FG_ALPHA(ovlp, i), 0xff);
  181. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_BG_ALPHA(ovlp, i), 0x00);
  182. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_OP(ovlp, i), op);
  183. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_CO3(ovlp, i), 1);
  184. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW0(ovlp, i), 0);
  185. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW1(ovlp, i), 0);
  186. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH0(ovlp, i), 0);
  187. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH1(ovlp, i), 0);
  188. }
  189. setup_mixer(mdp4_kms);
  190. }
  191. static void mdp4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  192. {
  193. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  194. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  195. enum mdp4_dma dma = mdp4_crtc->dma;
  196. int ovlp = mdp4_crtc->ovlp;
  197. struct drm_display_mode *mode;
  198. if (WARN_ON(!crtc->state))
  199. return;
  200. mode = &crtc->state->adjusted_mode;
  201. DBG("%s: set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x",
  202. mdp4_crtc->name, mode->base.id, mode->name,
  203. mode->vrefresh, mode->clock,
  204. mode->hdisplay, mode->hsync_start,
  205. mode->hsync_end, mode->htotal,
  206. mode->vdisplay, mode->vsync_start,
  207. mode->vsync_end, mode->vtotal,
  208. mode->type, mode->flags);
  209. mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_SIZE(dma),
  210. MDP4_DMA_SRC_SIZE_WIDTH(mode->hdisplay) |
  211. MDP4_DMA_SRC_SIZE_HEIGHT(mode->vdisplay));
  212. /* take data from pipe: */
  213. mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_BASE(dma), 0);
  214. mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_STRIDE(dma), 0);
  215. mdp4_write(mdp4_kms, REG_MDP4_DMA_DST_SIZE(dma),
  216. MDP4_DMA_DST_SIZE_WIDTH(0) |
  217. MDP4_DMA_DST_SIZE_HEIGHT(0));
  218. mdp4_write(mdp4_kms, REG_MDP4_OVLP_BASE(ovlp), 0);
  219. mdp4_write(mdp4_kms, REG_MDP4_OVLP_SIZE(ovlp),
  220. MDP4_OVLP_SIZE_WIDTH(mode->hdisplay) |
  221. MDP4_OVLP_SIZE_HEIGHT(mode->vdisplay));
  222. mdp4_write(mdp4_kms, REG_MDP4_OVLP_STRIDE(ovlp), 0);
  223. mdp4_write(mdp4_kms, REG_MDP4_OVLP_CFG(ovlp), 1);
  224. if (dma == DMA_E) {
  225. mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(0), 0x00ff0000);
  226. mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(1), 0x00ff0000);
  227. mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(2), 0x00ff0000);
  228. }
  229. }
  230. static void mdp4_crtc_atomic_disable(struct drm_crtc *crtc,
  231. struct drm_crtc_state *old_state)
  232. {
  233. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  234. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  235. DBG("%s", mdp4_crtc->name);
  236. if (WARN_ON(!mdp4_crtc->enabled))
  237. return;
  238. /* Disable/save vblank irq handling before power is disabled */
  239. drm_crtc_vblank_off(crtc);
  240. mdp_irq_unregister(&mdp4_kms->base, &mdp4_crtc->err);
  241. mdp4_disable(mdp4_kms);
  242. mdp4_crtc->enabled = false;
  243. }
  244. static void mdp4_crtc_atomic_enable(struct drm_crtc *crtc,
  245. struct drm_crtc_state *old_state)
  246. {
  247. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  248. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  249. DBG("%s", mdp4_crtc->name);
  250. if (WARN_ON(mdp4_crtc->enabled))
  251. return;
  252. mdp4_enable(mdp4_kms);
  253. /* Restore vblank irq handling after power is enabled */
  254. drm_crtc_vblank_on(crtc);
  255. mdp_irq_register(&mdp4_kms->base, &mdp4_crtc->err);
  256. crtc_flush(crtc);
  257. mdp4_crtc->enabled = true;
  258. }
  259. static int mdp4_crtc_atomic_check(struct drm_crtc *crtc,
  260. struct drm_crtc_state *state)
  261. {
  262. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  263. DBG("%s: check", mdp4_crtc->name);
  264. // TODO anything else to check?
  265. return 0;
  266. }
  267. static void mdp4_crtc_atomic_begin(struct drm_crtc *crtc,
  268. struct drm_crtc_state *old_crtc_state)
  269. {
  270. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  271. DBG("%s: begin", mdp4_crtc->name);
  272. }
  273. static void mdp4_crtc_atomic_flush(struct drm_crtc *crtc,
  274. struct drm_crtc_state *old_crtc_state)
  275. {
  276. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  277. struct drm_device *dev = crtc->dev;
  278. unsigned long flags;
  279. DBG("%s: event: %p", mdp4_crtc->name, crtc->state->event);
  280. WARN_ON(mdp4_crtc->event);
  281. spin_lock_irqsave(&dev->event_lock, flags);
  282. mdp4_crtc->event = crtc->state->event;
  283. crtc->state->event = NULL;
  284. spin_unlock_irqrestore(&dev->event_lock, flags);
  285. blend_setup(crtc);
  286. crtc_flush(crtc);
  287. request_pending(crtc, PENDING_FLIP);
  288. }
  289. #define CURSOR_WIDTH 64
  290. #define CURSOR_HEIGHT 64
  291. /* called from IRQ to update cursor related registers (if needed). The
  292. * cursor registers, other than x/y position, appear not to be double
  293. * buffered, and changing them other than from vblank seems to trigger
  294. * underflow.
  295. */
  296. static void update_cursor(struct drm_crtc *crtc)
  297. {
  298. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  299. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  300. struct msm_kms *kms = &mdp4_kms->base.base;
  301. enum mdp4_dma dma = mdp4_crtc->dma;
  302. unsigned long flags;
  303. spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags);
  304. if (mdp4_crtc->cursor.stale) {
  305. struct drm_gem_object *next_bo = mdp4_crtc->cursor.next_bo;
  306. struct drm_gem_object *prev_bo = mdp4_crtc->cursor.scanout_bo;
  307. uint64_t iova = mdp4_crtc->cursor.next_iova;
  308. if (next_bo) {
  309. /* take a obj ref + iova ref when we start scanning out: */
  310. drm_gem_object_get(next_bo);
  311. msm_gem_get_iova(next_bo, kms->aspace, &iova);
  312. /* enable cursor: */
  313. mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_SIZE(dma),
  314. MDP4_DMA_CURSOR_SIZE_WIDTH(mdp4_crtc->cursor.width) |
  315. MDP4_DMA_CURSOR_SIZE_HEIGHT(mdp4_crtc->cursor.height));
  316. mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma), iova);
  317. mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BLEND_CONFIG(dma),
  318. MDP4_DMA_CURSOR_BLEND_CONFIG_FORMAT(CURSOR_ARGB) |
  319. MDP4_DMA_CURSOR_BLEND_CONFIG_CURSOR_EN);
  320. } else {
  321. /* disable cursor: */
  322. mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma),
  323. mdp4_kms->blank_cursor_iova);
  324. }
  325. /* and drop the iova ref + obj rev when done scanning out: */
  326. if (prev_bo)
  327. drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, prev_bo);
  328. mdp4_crtc->cursor.scanout_bo = next_bo;
  329. mdp4_crtc->cursor.stale = false;
  330. }
  331. mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_POS(dma),
  332. MDP4_DMA_CURSOR_POS_X(mdp4_crtc->cursor.x) |
  333. MDP4_DMA_CURSOR_POS_Y(mdp4_crtc->cursor.y));
  334. spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags);
  335. }
  336. static int mdp4_crtc_cursor_set(struct drm_crtc *crtc,
  337. struct drm_file *file_priv, uint32_t handle,
  338. uint32_t width, uint32_t height)
  339. {
  340. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  341. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  342. struct msm_kms *kms = &mdp4_kms->base.base;
  343. struct drm_device *dev = crtc->dev;
  344. struct drm_gem_object *cursor_bo, *old_bo;
  345. unsigned long flags;
  346. uint64_t iova;
  347. int ret;
  348. if ((width > CURSOR_WIDTH) || (height > CURSOR_HEIGHT)) {
  349. dev_err(dev->dev, "bad cursor size: %dx%d\n", width, height);
  350. return -EINVAL;
  351. }
  352. if (handle) {
  353. cursor_bo = drm_gem_object_lookup(file_priv, handle);
  354. if (!cursor_bo)
  355. return -ENOENT;
  356. } else {
  357. cursor_bo = NULL;
  358. }
  359. if (cursor_bo) {
  360. ret = msm_gem_get_iova(cursor_bo, kms->aspace, &iova);
  361. if (ret)
  362. goto fail;
  363. } else {
  364. iova = 0;
  365. }
  366. spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags);
  367. old_bo = mdp4_crtc->cursor.next_bo;
  368. mdp4_crtc->cursor.next_bo = cursor_bo;
  369. mdp4_crtc->cursor.next_iova = iova;
  370. mdp4_crtc->cursor.width = width;
  371. mdp4_crtc->cursor.height = height;
  372. mdp4_crtc->cursor.stale = true;
  373. spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags);
  374. if (old_bo) {
  375. /* drop our previous reference: */
  376. drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, old_bo);
  377. }
  378. request_pending(crtc, PENDING_CURSOR);
  379. return 0;
  380. fail:
  381. drm_gem_object_put_unlocked(cursor_bo);
  382. return ret;
  383. }
  384. static int mdp4_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  385. {
  386. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  387. unsigned long flags;
  388. spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags);
  389. mdp4_crtc->cursor.x = x;
  390. mdp4_crtc->cursor.y = y;
  391. spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags);
  392. crtc_flush(crtc);
  393. request_pending(crtc, PENDING_CURSOR);
  394. return 0;
  395. }
  396. static const struct drm_crtc_funcs mdp4_crtc_funcs = {
  397. .set_config = drm_atomic_helper_set_config,
  398. .destroy = mdp4_crtc_destroy,
  399. .page_flip = drm_atomic_helper_page_flip,
  400. .cursor_set = mdp4_crtc_cursor_set,
  401. .cursor_move = mdp4_crtc_cursor_move,
  402. .reset = drm_atomic_helper_crtc_reset,
  403. .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
  404. .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
  405. };
  406. static const struct drm_crtc_helper_funcs mdp4_crtc_helper_funcs = {
  407. .mode_set_nofb = mdp4_crtc_mode_set_nofb,
  408. .atomic_check = mdp4_crtc_atomic_check,
  409. .atomic_begin = mdp4_crtc_atomic_begin,
  410. .atomic_flush = mdp4_crtc_atomic_flush,
  411. .atomic_enable = mdp4_crtc_atomic_enable,
  412. .atomic_disable = mdp4_crtc_atomic_disable,
  413. };
  414. static void mdp4_crtc_vblank_irq(struct mdp_irq *irq, uint32_t irqstatus)
  415. {
  416. struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, vblank);
  417. struct drm_crtc *crtc = &mdp4_crtc->base;
  418. struct msm_drm_private *priv = crtc->dev->dev_private;
  419. unsigned pending;
  420. mdp_irq_unregister(&get_kms(crtc)->base, &mdp4_crtc->vblank);
  421. pending = atomic_xchg(&mdp4_crtc->pending, 0);
  422. if (pending & PENDING_FLIP) {
  423. complete_flip(crtc, NULL);
  424. }
  425. if (pending & PENDING_CURSOR) {
  426. update_cursor(crtc);
  427. drm_flip_work_commit(&mdp4_crtc->unref_cursor_work, priv->wq);
  428. }
  429. }
  430. static void mdp4_crtc_err_irq(struct mdp_irq *irq, uint32_t irqstatus)
  431. {
  432. struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, err);
  433. struct drm_crtc *crtc = &mdp4_crtc->base;
  434. DBG("%s: error: %08x", mdp4_crtc->name, irqstatus);
  435. crtc_flush(crtc);
  436. }
  437. static void mdp4_crtc_wait_for_flush_done(struct drm_crtc *crtc)
  438. {
  439. struct drm_device *dev = crtc->dev;
  440. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  441. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  442. int ret;
  443. ret = drm_crtc_vblank_get(crtc);
  444. if (ret)
  445. return;
  446. ret = wait_event_timeout(dev->vblank[drm_crtc_index(crtc)].queue,
  447. !(mdp4_read(mdp4_kms, REG_MDP4_OVERLAY_FLUSH) &
  448. mdp4_crtc->flushed_mask),
  449. msecs_to_jiffies(50));
  450. if (ret <= 0)
  451. dev_warn(dev->dev, "vblank time out, crtc=%d\n", mdp4_crtc->id);
  452. mdp4_crtc->flushed_mask = 0;
  453. drm_crtc_vblank_put(crtc);
  454. }
  455. uint32_t mdp4_crtc_vblank(struct drm_crtc *crtc)
  456. {
  457. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  458. return mdp4_crtc->vblank.irqmask;
  459. }
  460. /* set dma config, ie. the format the encoder wants. */
  461. void mdp4_crtc_set_config(struct drm_crtc *crtc, uint32_t config)
  462. {
  463. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  464. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  465. mdp4_write(mdp4_kms, REG_MDP4_DMA_CONFIG(mdp4_crtc->dma), config);
  466. }
  467. /* set interface for routing crtc->encoder: */
  468. void mdp4_crtc_set_intf(struct drm_crtc *crtc, enum mdp4_intf intf, int mixer)
  469. {
  470. struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
  471. struct mdp4_kms *mdp4_kms = get_kms(crtc);
  472. uint32_t intf_sel;
  473. intf_sel = mdp4_read(mdp4_kms, REG_MDP4_DISP_INTF_SEL);
  474. switch (mdp4_crtc->dma) {
  475. case DMA_P:
  476. intf_sel &= ~MDP4_DISP_INTF_SEL_PRIM__MASK;
  477. intf_sel |= MDP4_DISP_INTF_SEL_PRIM(intf);
  478. break;
  479. case DMA_S:
  480. intf_sel &= ~MDP4_DISP_INTF_SEL_SEC__MASK;
  481. intf_sel |= MDP4_DISP_INTF_SEL_SEC(intf);
  482. break;
  483. case DMA_E:
  484. intf_sel &= ~MDP4_DISP_INTF_SEL_EXT__MASK;
  485. intf_sel |= MDP4_DISP_INTF_SEL_EXT(intf);
  486. break;
  487. }
  488. if (intf == INTF_DSI_VIDEO) {
  489. intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_CMD;
  490. intf_sel |= MDP4_DISP_INTF_SEL_DSI_VIDEO;
  491. } else if (intf == INTF_DSI_CMD) {
  492. intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_VIDEO;
  493. intf_sel |= MDP4_DISP_INTF_SEL_DSI_CMD;
  494. }
  495. mdp4_crtc->mixer = mixer;
  496. blend_setup(crtc);
  497. DBG("%s: intf_sel=%08x", mdp4_crtc->name, intf_sel);
  498. mdp4_write(mdp4_kms, REG_MDP4_DISP_INTF_SEL, intf_sel);
  499. }
  500. void mdp4_crtc_wait_for_commit_done(struct drm_crtc *crtc)
  501. {
  502. /* wait_for_flush_done is the only case for now.
  503. * Later we will have command mode CRTC to wait for
  504. * other event.
  505. */
  506. mdp4_crtc_wait_for_flush_done(crtc);
  507. }
  508. static const char *dma_names[] = {
  509. "DMA_P", "DMA_S", "DMA_E",
  510. };
  511. /* initialize crtc */
  512. struct drm_crtc *mdp4_crtc_init(struct drm_device *dev,
  513. struct drm_plane *plane, int id, int ovlp_id,
  514. enum mdp4_dma dma_id)
  515. {
  516. struct drm_crtc *crtc = NULL;
  517. struct mdp4_crtc *mdp4_crtc;
  518. mdp4_crtc = kzalloc(sizeof(*mdp4_crtc), GFP_KERNEL);
  519. if (!mdp4_crtc)
  520. return ERR_PTR(-ENOMEM);
  521. crtc = &mdp4_crtc->base;
  522. mdp4_crtc->id = id;
  523. mdp4_crtc->ovlp = ovlp_id;
  524. mdp4_crtc->dma = dma_id;
  525. mdp4_crtc->vblank.irqmask = dma2irq(mdp4_crtc->dma);
  526. mdp4_crtc->vblank.irq = mdp4_crtc_vblank_irq;
  527. mdp4_crtc->err.irqmask = dma2err(mdp4_crtc->dma);
  528. mdp4_crtc->err.irq = mdp4_crtc_err_irq;
  529. snprintf(mdp4_crtc->name, sizeof(mdp4_crtc->name), "%s:%d",
  530. dma_names[dma_id], ovlp_id);
  531. spin_lock_init(&mdp4_crtc->cursor.lock);
  532. drm_flip_work_init(&mdp4_crtc->unref_cursor_work,
  533. "unref cursor", unref_cursor_worker);
  534. drm_crtc_init_with_planes(dev, crtc, plane, NULL, &mdp4_crtc_funcs,
  535. NULL);
  536. drm_crtc_helper_add(crtc, &mdp4_crtc_helper_funcs);
  537. return crtc;
  538. }