dm-writecache.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2018 Red Hat. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include <linux/device-mapper.h>
  8. #include <linux/module.h>
  9. #include <linux/init.h>
  10. #include <linux/vmalloc.h>
  11. #include <linux/kthread.h>
  12. #include <linux/dm-io.h>
  13. #include <linux/dm-kcopyd.h>
  14. #include <linux/dax.h>
  15. #include <linux/pfn_t.h>
  16. #include <linux/libnvdimm.h>
  17. #define DM_MSG_PREFIX "writecache"
  18. #define HIGH_WATERMARK 50
  19. #define LOW_WATERMARK 45
  20. #define MAX_WRITEBACK_JOBS 0
  21. #define ENDIO_LATENCY 16
  22. #define WRITEBACK_LATENCY 64
  23. #define AUTOCOMMIT_BLOCKS_SSD 65536
  24. #define AUTOCOMMIT_BLOCKS_PMEM 64
  25. #define AUTOCOMMIT_MSEC 1000
  26. #define BITMAP_GRANULARITY 65536
  27. #if BITMAP_GRANULARITY < PAGE_SIZE
  28. #undef BITMAP_GRANULARITY
  29. #define BITMAP_GRANULARITY PAGE_SIZE
  30. #endif
  31. #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  32. #define DM_WRITECACHE_HAS_PMEM
  33. #endif
  34. #ifdef DM_WRITECACHE_HAS_PMEM
  35. #define pmem_assign(dest, src) \
  36. do { \
  37. typeof(dest) uniq = (src); \
  38. memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
  39. } while (0)
  40. #else
  41. #define pmem_assign(dest, src) ((dest) = (src))
  42. #endif
  43. #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
  44. #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  45. #endif
  46. #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
  47. #define MEMORY_SUPERBLOCK_VERSION 1
  48. struct wc_memory_entry {
  49. __le64 original_sector;
  50. __le64 seq_count;
  51. };
  52. struct wc_memory_superblock {
  53. union {
  54. struct {
  55. __le32 magic;
  56. __le32 version;
  57. __le32 block_size;
  58. __le32 pad;
  59. __le64 n_blocks;
  60. __le64 seq_count;
  61. };
  62. __le64 padding[8];
  63. };
  64. struct wc_memory_entry entries[0];
  65. };
  66. struct wc_entry {
  67. struct rb_node rb_node;
  68. struct list_head lru;
  69. unsigned short wc_list_contiguous;
  70. bool write_in_progress
  71. #if BITS_PER_LONG == 64
  72. :1
  73. #endif
  74. ;
  75. unsigned long index
  76. #if BITS_PER_LONG == 64
  77. :47
  78. #endif
  79. ;
  80. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  81. uint64_t original_sector;
  82. uint64_t seq_count;
  83. #endif
  84. };
  85. #ifdef DM_WRITECACHE_HAS_PMEM
  86. #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
  87. #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
  88. #else
  89. #define WC_MODE_PMEM(wc) false
  90. #define WC_MODE_FUA(wc) false
  91. #endif
  92. #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
  93. struct dm_writecache {
  94. struct mutex lock;
  95. struct list_head lru;
  96. union {
  97. struct list_head freelist;
  98. struct {
  99. struct rb_root freetree;
  100. struct wc_entry *current_free;
  101. };
  102. };
  103. struct rb_root tree;
  104. size_t freelist_size;
  105. size_t writeback_size;
  106. size_t freelist_high_watermark;
  107. size_t freelist_low_watermark;
  108. unsigned uncommitted_blocks;
  109. unsigned autocommit_blocks;
  110. unsigned max_writeback_jobs;
  111. int error;
  112. unsigned long autocommit_jiffies;
  113. struct timer_list autocommit_timer;
  114. struct wait_queue_head freelist_wait;
  115. atomic_t bio_in_progress[2];
  116. struct wait_queue_head bio_in_progress_wait[2];
  117. struct dm_target *ti;
  118. struct dm_dev *dev;
  119. struct dm_dev *ssd_dev;
  120. sector_t start_sector;
  121. void *memory_map;
  122. uint64_t memory_map_size;
  123. size_t metadata_sectors;
  124. size_t n_blocks;
  125. uint64_t seq_count;
  126. void *block_start;
  127. struct wc_entry *entries;
  128. unsigned block_size;
  129. unsigned char block_size_bits;
  130. bool pmem_mode:1;
  131. bool writeback_fua:1;
  132. bool overwrote_committed:1;
  133. bool memory_vmapped:1;
  134. bool high_wm_percent_set:1;
  135. bool low_wm_percent_set:1;
  136. bool max_writeback_jobs_set:1;
  137. bool autocommit_blocks_set:1;
  138. bool autocommit_time_set:1;
  139. bool writeback_fua_set:1;
  140. bool flush_on_suspend:1;
  141. unsigned writeback_all;
  142. struct workqueue_struct *writeback_wq;
  143. struct work_struct writeback_work;
  144. struct work_struct flush_work;
  145. struct dm_io_client *dm_io;
  146. raw_spinlock_t endio_list_lock;
  147. struct list_head endio_list;
  148. struct task_struct *endio_thread;
  149. struct task_struct *flush_thread;
  150. struct bio_list flush_list;
  151. struct dm_kcopyd_client *dm_kcopyd;
  152. unsigned long *dirty_bitmap;
  153. unsigned dirty_bitmap_size;
  154. struct bio_set bio_set;
  155. mempool_t copy_pool;
  156. };
  157. #define WB_LIST_INLINE 16
  158. struct writeback_struct {
  159. struct list_head endio_entry;
  160. struct dm_writecache *wc;
  161. struct wc_entry **wc_list;
  162. unsigned wc_list_n;
  163. unsigned page_offset;
  164. struct page *page;
  165. struct wc_entry *wc_list_inline[WB_LIST_INLINE];
  166. struct bio bio;
  167. };
  168. struct copy_struct {
  169. struct list_head endio_entry;
  170. struct dm_writecache *wc;
  171. struct wc_entry *e;
  172. unsigned n_entries;
  173. int error;
  174. };
  175. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
  176. "A percentage of time allocated for data copying");
  177. static void wc_lock(struct dm_writecache *wc)
  178. {
  179. mutex_lock(&wc->lock);
  180. }
  181. static void wc_unlock(struct dm_writecache *wc)
  182. {
  183. mutex_unlock(&wc->lock);
  184. }
  185. #ifdef DM_WRITECACHE_HAS_PMEM
  186. static int persistent_memory_claim(struct dm_writecache *wc)
  187. {
  188. int r;
  189. loff_t s;
  190. long p, da;
  191. pfn_t pfn;
  192. int id;
  193. struct page **pages;
  194. sector_t offset;
  195. wc->memory_vmapped = false;
  196. if (!wc->ssd_dev->dax_dev) {
  197. r = -EOPNOTSUPP;
  198. goto err1;
  199. }
  200. s = wc->memory_map_size;
  201. p = s >> PAGE_SHIFT;
  202. if (!p) {
  203. r = -EINVAL;
  204. goto err1;
  205. }
  206. if (p != s >> PAGE_SHIFT) {
  207. r = -EOVERFLOW;
  208. goto err1;
  209. }
  210. offset = get_start_sect(wc->ssd_dev->bdev);
  211. if (offset & (PAGE_SIZE / 512 - 1)) {
  212. r = -EINVAL;
  213. goto err1;
  214. }
  215. offset >>= PAGE_SHIFT - 9;
  216. id = dax_read_lock();
  217. da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
  218. if (da < 0) {
  219. wc->memory_map = NULL;
  220. r = da;
  221. goto err2;
  222. }
  223. if (!pfn_t_has_page(pfn)) {
  224. wc->memory_map = NULL;
  225. r = -EOPNOTSUPP;
  226. goto err2;
  227. }
  228. if (da != p) {
  229. long i;
  230. wc->memory_map = NULL;
  231. pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
  232. if (!pages) {
  233. r = -ENOMEM;
  234. goto err2;
  235. }
  236. i = 0;
  237. do {
  238. long daa;
  239. daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
  240. NULL, &pfn);
  241. if (daa <= 0) {
  242. r = daa ? daa : -EINVAL;
  243. goto err3;
  244. }
  245. if (!pfn_t_has_page(pfn)) {
  246. r = -EOPNOTSUPP;
  247. goto err3;
  248. }
  249. while (daa-- && i < p) {
  250. pages[i++] = pfn_t_to_page(pfn);
  251. pfn.val++;
  252. if (!(i & 15))
  253. cond_resched();
  254. }
  255. } while (i < p);
  256. wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
  257. if (!wc->memory_map) {
  258. r = -ENOMEM;
  259. goto err3;
  260. }
  261. kvfree(pages);
  262. wc->memory_vmapped = true;
  263. }
  264. dax_read_unlock(id);
  265. wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
  266. wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
  267. return 0;
  268. err3:
  269. kvfree(pages);
  270. err2:
  271. dax_read_unlock(id);
  272. err1:
  273. return r;
  274. }
  275. #else
  276. static int persistent_memory_claim(struct dm_writecache *wc)
  277. {
  278. return -EOPNOTSUPP;
  279. }
  280. #endif
  281. static void persistent_memory_release(struct dm_writecache *wc)
  282. {
  283. if (wc->memory_vmapped)
  284. vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
  285. }
  286. static struct page *persistent_memory_page(void *addr)
  287. {
  288. if (is_vmalloc_addr(addr))
  289. return vmalloc_to_page(addr);
  290. else
  291. return virt_to_page(addr);
  292. }
  293. static unsigned persistent_memory_page_offset(void *addr)
  294. {
  295. return (unsigned long)addr & (PAGE_SIZE - 1);
  296. }
  297. static void persistent_memory_flush_cache(void *ptr, size_t size)
  298. {
  299. if (is_vmalloc_addr(ptr))
  300. flush_kernel_vmap_range(ptr, size);
  301. }
  302. static void persistent_memory_invalidate_cache(void *ptr, size_t size)
  303. {
  304. if (is_vmalloc_addr(ptr))
  305. invalidate_kernel_vmap_range(ptr, size);
  306. }
  307. static struct wc_memory_superblock *sb(struct dm_writecache *wc)
  308. {
  309. return wc->memory_map;
  310. }
  311. static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
  312. {
  313. if (is_power_of_2(sizeof(struct wc_entry)) && 0)
  314. return &sb(wc)->entries[e - wc->entries];
  315. else
  316. return &sb(wc)->entries[e->index];
  317. }
  318. static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
  319. {
  320. return (char *)wc->block_start + (e->index << wc->block_size_bits);
  321. }
  322. static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
  323. {
  324. return wc->start_sector + wc->metadata_sectors +
  325. ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
  326. }
  327. static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
  328. {
  329. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  330. return e->original_sector;
  331. #else
  332. return le64_to_cpu(memory_entry(wc, e)->original_sector);
  333. #endif
  334. }
  335. static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  336. {
  337. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  338. return e->seq_count;
  339. #else
  340. return le64_to_cpu(memory_entry(wc, e)->seq_count);
  341. #endif
  342. }
  343. static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  344. {
  345. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  346. e->seq_count = -1;
  347. #endif
  348. pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
  349. }
  350. static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
  351. uint64_t original_sector, uint64_t seq_count)
  352. {
  353. struct wc_memory_entry me;
  354. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  355. e->original_sector = original_sector;
  356. e->seq_count = seq_count;
  357. #endif
  358. me.original_sector = cpu_to_le64(original_sector);
  359. me.seq_count = cpu_to_le64(seq_count);
  360. pmem_assign(*memory_entry(wc, e), me);
  361. }
  362. #define writecache_error(wc, err, msg, arg...) \
  363. do { \
  364. if (!cmpxchg(&(wc)->error, 0, err)) \
  365. DMERR(msg, ##arg); \
  366. wake_up(&(wc)->freelist_wait); \
  367. } while (0)
  368. #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
  369. static void writecache_flush_all_metadata(struct dm_writecache *wc)
  370. {
  371. if (!WC_MODE_PMEM(wc))
  372. memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
  373. }
  374. static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
  375. {
  376. if (!WC_MODE_PMEM(wc))
  377. __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
  378. wc->dirty_bitmap);
  379. }
  380. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
  381. struct io_notify {
  382. struct dm_writecache *wc;
  383. struct completion c;
  384. atomic_t count;
  385. };
  386. static void writecache_notify_io(unsigned long error, void *context)
  387. {
  388. struct io_notify *endio = context;
  389. if (unlikely(error != 0))
  390. writecache_error(endio->wc, -EIO, "error writing metadata");
  391. BUG_ON(atomic_read(&endio->count) <= 0);
  392. if (atomic_dec_and_test(&endio->count))
  393. complete(&endio->c);
  394. }
  395. static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
  396. {
  397. wait_event(wc->bio_in_progress_wait[direction],
  398. !atomic_read(&wc->bio_in_progress[direction]));
  399. }
  400. static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
  401. {
  402. struct dm_io_region region;
  403. struct dm_io_request req;
  404. struct io_notify endio = {
  405. wc,
  406. COMPLETION_INITIALIZER_ONSTACK(endio.c),
  407. ATOMIC_INIT(1),
  408. };
  409. unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
  410. unsigned i = 0;
  411. while (1) {
  412. unsigned j;
  413. i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
  414. if (unlikely(i == bitmap_bits))
  415. break;
  416. j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
  417. region.bdev = wc->ssd_dev->bdev;
  418. region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  419. region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  420. if (unlikely(region.sector >= wc->metadata_sectors))
  421. break;
  422. if (unlikely(region.sector + region.count > wc->metadata_sectors))
  423. region.count = wc->metadata_sectors - region.sector;
  424. region.sector += wc->start_sector;
  425. atomic_inc(&endio.count);
  426. req.bi_op = REQ_OP_WRITE;
  427. req.bi_op_flags = REQ_SYNC;
  428. req.mem.type = DM_IO_VMA;
  429. req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
  430. req.client = wc->dm_io;
  431. req.notify.fn = writecache_notify_io;
  432. req.notify.context = &endio;
  433. /* writing via async dm-io (implied by notify.fn above) won't return an error */
  434. (void) dm_io(&req, 1, &region, NULL);
  435. i = j;
  436. }
  437. writecache_notify_io(0, &endio);
  438. wait_for_completion_io(&endio.c);
  439. if (wait_for_ios)
  440. writecache_wait_for_ios(wc, WRITE);
  441. writecache_disk_flush(wc, wc->ssd_dev);
  442. memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
  443. }
  444. static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
  445. {
  446. if (WC_MODE_PMEM(wc))
  447. wmb();
  448. else
  449. ssd_commit_flushed(wc, wait_for_ios);
  450. }
  451. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
  452. {
  453. int r;
  454. struct dm_io_region region;
  455. struct dm_io_request req;
  456. region.bdev = dev->bdev;
  457. region.sector = 0;
  458. region.count = 0;
  459. req.bi_op = REQ_OP_WRITE;
  460. req.bi_op_flags = REQ_PREFLUSH;
  461. req.mem.type = DM_IO_KMEM;
  462. req.mem.ptr.addr = NULL;
  463. req.client = wc->dm_io;
  464. req.notify.fn = NULL;
  465. r = dm_io(&req, 1, &region, NULL);
  466. if (unlikely(r))
  467. writecache_error(wc, r, "error flushing metadata: %d", r);
  468. }
  469. #define WFE_RETURN_FOLLOWING 1
  470. #define WFE_LOWEST_SEQ 2
  471. static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
  472. uint64_t block, int flags)
  473. {
  474. struct wc_entry *e;
  475. struct rb_node *node = wc->tree.rb_node;
  476. if (unlikely(!node))
  477. return NULL;
  478. while (1) {
  479. e = container_of(node, struct wc_entry, rb_node);
  480. if (read_original_sector(wc, e) == block)
  481. break;
  482. node = (read_original_sector(wc, e) >= block ?
  483. e->rb_node.rb_left : e->rb_node.rb_right);
  484. if (unlikely(!node)) {
  485. if (!(flags & WFE_RETURN_FOLLOWING)) {
  486. return NULL;
  487. }
  488. if (read_original_sector(wc, e) >= block) {
  489. break;
  490. } else {
  491. node = rb_next(&e->rb_node);
  492. if (unlikely(!node)) {
  493. return NULL;
  494. }
  495. e = container_of(node, struct wc_entry, rb_node);
  496. break;
  497. }
  498. }
  499. }
  500. while (1) {
  501. struct wc_entry *e2;
  502. if (flags & WFE_LOWEST_SEQ)
  503. node = rb_prev(&e->rb_node);
  504. else
  505. node = rb_next(&e->rb_node);
  506. if (!node)
  507. return e;
  508. e2 = container_of(node, struct wc_entry, rb_node);
  509. if (read_original_sector(wc, e2) != block)
  510. return e;
  511. e = e2;
  512. }
  513. }
  514. static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
  515. {
  516. struct wc_entry *e;
  517. struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
  518. while (*node) {
  519. e = container_of(*node, struct wc_entry, rb_node);
  520. parent = &e->rb_node;
  521. if (read_original_sector(wc, e) > read_original_sector(wc, ins))
  522. node = &parent->rb_left;
  523. else
  524. node = &parent->rb_right;
  525. }
  526. rb_link_node(&ins->rb_node, parent, node);
  527. rb_insert_color(&ins->rb_node, &wc->tree);
  528. list_add(&ins->lru, &wc->lru);
  529. }
  530. static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
  531. {
  532. list_del(&e->lru);
  533. rb_erase(&e->rb_node, &wc->tree);
  534. }
  535. static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
  536. {
  537. if (WC_MODE_SORT_FREELIST(wc)) {
  538. struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
  539. if (unlikely(!*node))
  540. wc->current_free = e;
  541. while (*node) {
  542. parent = *node;
  543. if (&e->rb_node < *node)
  544. node = &parent->rb_left;
  545. else
  546. node = &parent->rb_right;
  547. }
  548. rb_link_node(&e->rb_node, parent, node);
  549. rb_insert_color(&e->rb_node, &wc->freetree);
  550. } else {
  551. list_add_tail(&e->lru, &wc->freelist);
  552. }
  553. wc->freelist_size++;
  554. }
  555. static inline void writecache_verify_watermark(struct dm_writecache *wc)
  556. {
  557. if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
  558. queue_work(wc->writeback_wq, &wc->writeback_work);
  559. }
  560. static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
  561. {
  562. struct wc_entry *e;
  563. if (WC_MODE_SORT_FREELIST(wc)) {
  564. struct rb_node *next;
  565. if (unlikely(!wc->current_free))
  566. return NULL;
  567. e = wc->current_free;
  568. next = rb_next(&e->rb_node);
  569. rb_erase(&e->rb_node, &wc->freetree);
  570. if (unlikely(!next))
  571. next = rb_first(&wc->freetree);
  572. wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
  573. } else {
  574. if (unlikely(list_empty(&wc->freelist)))
  575. return NULL;
  576. e = container_of(wc->freelist.next, struct wc_entry, lru);
  577. list_del(&e->lru);
  578. }
  579. wc->freelist_size--;
  580. writecache_verify_watermark(wc);
  581. return e;
  582. }
  583. static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
  584. {
  585. writecache_unlink(wc, e);
  586. writecache_add_to_freelist(wc, e);
  587. clear_seq_count(wc, e);
  588. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  589. if (unlikely(waitqueue_active(&wc->freelist_wait)))
  590. wake_up(&wc->freelist_wait);
  591. }
  592. static void writecache_wait_on_freelist(struct dm_writecache *wc)
  593. {
  594. DEFINE_WAIT(wait);
  595. prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
  596. wc_unlock(wc);
  597. io_schedule();
  598. finish_wait(&wc->freelist_wait, &wait);
  599. wc_lock(wc);
  600. }
  601. static void writecache_poison_lists(struct dm_writecache *wc)
  602. {
  603. /*
  604. * Catch incorrect access to these values while the device is suspended.
  605. */
  606. memset(&wc->tree, -1, sizeof wc->tree);
  607. wc->lru.next = LIST_POISON1;
  608. wc->lru.prev = LIST_POISON2;
  609. wc->freelist.next = LIST_POISON1;
  610. wc->freelist.prev = LIST_POISON2;
  611. }
  612. static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
  613. {
  614. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  615. if (WC_MODE_PMEM(wc))
  616. writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
  617. }
  618. static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
  619. {
  620. return read_seq_count(wc, e) < wc->seq_count;
  621. }
  622. static void writecache_flush(struct dm_writecache *wc)
  623. {
  624. struct wc_entry *e, *e2;
  625. bool need_flush_after_free;
  626. wc->uncommitted_blocks = 0;
  627. del_timer(&wc->autocommit_timer);
  628. if (list_empty(&wc->lru))
  629. return;
  630. e = container_of(wc->lru.next, struct wc_entry, lru);
  631. if (writecache_entry_is_committed(wc, e)) {
  632. if (wc->overwrote_committed) {
  633. writecache_wait_for_ios(wc, WRITE);
  634. writecache_disk_flush(wc, wc->ssd_dev);
  635. wc->overwrote_committed = false;
  636. }
  637. return;
  638. }
  639. while (1) {
  640. writecache_flush_entry(wc, e);
  641. if (unlikely(e->lru.next == &wc->lru))
  642. break;
  643. e2 = container_of(e->lru.next, struct wc_entry, lru);
  644. if (writecache_entry_is_committed(wc, e2))
  645. break;
  646. e = e2;
  647. cond_resched();
  648. }
  649. writecache_commit_flushed(wc, true);
  650. wc->seq_count++;
  651. pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
  652. writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
  653. writecache_commit_flushed(wc, false);
  654. wc->overwrote_committed = false;
  655. need_flush_after_free = false;
  656. while (1) {
  657. /* Free another committed entry with lower seq-count */
  658. struct rb_node *rb_node = rb_prev(&e->rb_node);
  659. if (rb_node) {
  660. e2 = container_of(rb_node, struct wc_entry, rb_node);
  661. if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
  662. likely(!e2->write_in_progress)) {
  663. writecache_free_entry(wc, e2);
  664. need_flush_after_free = true;
  665. }
  666. }
  667. if (unlikely(e->lru.prev == &wc->lru))
  668. break;
  669. e = container_of(e->lru.prev, struct wc_entry, lru);
  670. cond_resched();
  671. }
  672. if (need_flush_after_free)
  673. writecache_commit_flushed(wc, false);
  674. }
  675. static void writecache_flush_work(struct work_struct *work)
  676. {
  677. struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
  678. wc_lock(wc);
  679. writecache_flush(wc);
  680. wc_unlock(wc);
  681. }
  682. static void writecache_autocommit_timer(struct timer_list *t)
  683. {
  684. struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
  685. if (!writecache_has_error(wc))
  686. queue_work(wc->writeback_wq, &wc->flush_work);
  687. }
  688. static void writecache_schedule_autocommit(struct dm_writecache *wc)
  689. {
  690. if (!timer_pending(&wc->autocommit_timer))
  691. mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
  692. }
  693. static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
  694. {
  695. struct wc_entry *e;
  696. bool discarded_something = false;
  697. e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
  698. if (unlikely(!e))
  699. return;
  700. while (read_original_sector(wc, e) < end) {
  701. struct rb_node *node = rb_next(&e->rb_node);
  702. if (likely(!e->write_in_progress)) {
  703. if (!discarded_something) {
  704. writecache_wait_for_ios(wc, READ);
  705. writecache_wait_for_ios(wc, WRITE);
  706. discarded_something = true;
  707. }
  708. if (!writecache_entry_is_committed(wc, e))
  709. wc->uncommitted_blocks--;
  710. writecache_free_entry(wc, e);
  711. }
  712. if (!node)
  713. break;
  714. e = container_of(node, struct wc_entry, rb_node);
  715. }
  716. if (discarded_something)
  717. writecache_commit_flushed(wc, false);
  718. }
  719. static bool writecache_wait_for_writeback(struct dm_writecache *wc)
  720. {
  721. if (wc->writeback_size) {
  722. writecache_wait_on_freelist(wc);
  723. return true;
  724. }
  725. return false;
  726. }
  727. static void writecache_suspend(struct dm_target *ti)
  728. {
  729. struct dm_writecache *wc = ti->private;
  730. bool flush_on_suspend;
  731. del_timer_sync(&wc->autocommit_timer);
  732. wc_lock(wc);
  733. writecache_flush(wc);
  734. flush_on_suspend = wc->flush_on_suspend;
  735. if (flush_on_suspend) {
  736. wc->flush_on_suspend = false;
  737. wc->writeback_all++;
  738. queue_work(wc->writeback_wq, &wc->writeback_work);
  739. }
  740. wc_unlock(wc);
  741. drain_workqueue(wc->writeback_wq);
  742. wc_lock(wc);
  743. if (flush_on_suspend)
  744. wc->writeback_all--;
  745. while (writecache_wait_for_writeback(wc));
  746. if (WC_MODE_PMEM(wc))
  747. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  748. writecache_poison_lists(wc);
  749. wc_unlock(wc);
  750. }
  751. static int writecache_alloc_entries(struct dm_writecache *wc)
  752. {
  753. size_t b;
  754. if (wc->entries)
  755. return 0;
  756. wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
  757. if (!wc->entries)
  758. return -ENOMEM;
  759. for (b = 0; b < wc->n_blocks; b++) {
  760. struct wc_entry *e = &wc->entries[b];
  761. e->index = b;
  762. e->write_in_progress = false;
  763. cond_resched();
  764. }
  765. return 0;
  766. }
  767. static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
  768. {
  769. struct dm_io_region region;
  770. struct dm_io_request req;
  771. region.bdev = wc->ssd_dev->bdev;
  772. region.sector = wc->start_sector;
  773. region.count = n_sectors;
  774. req.bi_op = REQ_OP_READ;
  775. req.bi_op_flags = REQ_SYNC;
  776. req.mem.type = DM_IO_VMA;
  777. req.mem.ptr.vma = (char *)wc->memory_map;
  778. req.client = wc->dm_io;
  779. req.notify.fn = NULL;
  780. return dm_io(&req, 1, &region, NULL);
  781. }
  782. static void writecache_resume(struct dm_target *ti)
  783. {
  784. struct dm_writecache *wc = ti->private;
  785. size_t b;
  786. bool need_flush = false;
  787. __le64 sb_seq_count;
  788. int r;
  789. wc_lock(wc);
  790. if (WC_MODE_PMEM(wc)) {
  791. persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
  792. } else {
  793. r = writecache_read_metadata(wc, wc->metadata_sectors);
  794. if (r) {
  795. size_t sb_entries_offset;
  796. writecache_error(wc, r, "unable to read metadata: %d", r);
  797. sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
  798. memset((char *)wc->memory_map + sb_entries_offset, -1,
  799. (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
  800. }
  801. }
  802. wc->tree = RB_ROOT;
  803. INIT_LIST_HEAD(&wc->lru);
  804. if (WC_MODE_SORT_FREELIST(wc)) {
  805. wc->freetree = RB_ROOT;
  806. wc->current_free = NULL;
  807. } else {
  808. INIT_LIST_HEAD(&wc->freelist);
  809. }
  810. wc->freelist_size = 0;
  811. r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
  812. if (r) {
  813. writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
  814. sb_seq_count = cpu_to_le64(0);
  815. }
  816. wc->seq_count = le64_to_cpu(sb_seq_count);
  817. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  818. for (b = 0; b < wc->n_blocks; b++) {
  819. struct wc_entry *e = &wc->entries[b];
  820. struct wc_memory_entry wme;
  821. if (writecache_has_error(wc)) {
  822. e->original_sector = -1;
  823. e->seq_count = -1;
  824. continue;
  825. }
  826. r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  827. if (r) {
  828. writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
  829. (unsigned long)b, r);
  830. e->original_sector = -1;
  831. e->seq_count = -1;
  832. } else {
  833. e->original_sector = le64_to_cpu(wme.original_sector);
  834. e->seq_count = le64_to_cpu(wme.seq_count);
  835. }
  836. cond_resched();
  837. }
  838. #endif
  839. for (b = 0; b < wc->n_blocks; b++) {
  840. struct wc_entry *e = &wc->entries[b];
  841. if (!writecache_entry_is_committed(wc, e)) {
  842. if (read_seq_count(wc, e) != -1) {
  843. erase_this:
  844. clear_seq_count(wc, e);
  845. need_flush = true;
  846. }
  847. writecache_add_to_freelist(wc, e);
  848. } else {
  849. struct wc_entry *old;
  850. old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
  851. if (!old) {
  852. writecache_insert_entry(wc, e);
  853. } else {
  854. if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
  855. writecache_error(wc, -EINVAL,
  856. "two identical entries, position %llu, sector %llu, sequence %llu",
  857. (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
  858. (unsigned long long)read_seq_count(wc, e));
  859. }
  860. if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
  861. goto erase_this;
  862. } else {
  863. writecache_free_entry(wc, old);
  864. writecache_insert_entry(wc, e);
  865. need_flush = true;
  866. }
  867. }
  868. }
  869. cond_resched();
  870. }
  871. if (need_flush) {
  872. writecache_flush_all_metadata(wc);
  873. writecache_commit_flushed(wc, false);
  874. }
  875. writecache_verify_watermark(wc);
  876. wc_unlock(wc);
  877. }
  878. static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  879. {
  880. if (argc != 1)
  881. return -EINVAL;
  882. wc_lock(wc);
  883. if (dm_suspended(wc->ti)) {
  884. wc_unlock(wc);
  885. return -EBUSY;
  886. }
  887. if (writecache_has_error(wc)) {
  888. wc_unlock(wc);
  889. return -EIO;
  890. }
  891. writecache_flush(wc);
  892. wc->writeback_all++;
  893. queue_work(wc->writeback_wq, &wc->writeback_work);
  894. wc_unlock(wc);
  895. flush_workqueue(wc->writeback_wq);
  896. wc_lock(wc);
  897. wc->writeback_all--;
  898. if (writecache_has_error(wc)) {
  899. wc_unlock(wc);
  900. return -EIO;
  901. }
  902. wc_unlock(wc);
  903. return 0;
  904. }
  905. static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  906. {
  907. if (argc != 1)
  908. return -EINVAL;
  909. wc_lock(wc);
  910. wc->flush_on_suspend = true;
  911. wc_unlock(wc);
  912. return 0;
  913. }
  914. static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
  915. char *result, unsigned maxlen)
  916. {
  917. int r = -EINVAL;
  918. struct dm_writecache *wc = ti->private;
  919. if (!strcasecmp(argv[0], "flush"))
  920. r = process_flush_mesg(argc, argv, wc);
  921. else if (!strcasecmp(argv[0], "flush_on_suspend"))
  922. r = process_flush_on_suspend_mesg(argc, argv, wc);
  923. else
  924. DMERR("unrecognised message received: %s", argv[0]);
  925. return r;
  926. }
  927. static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
  928. {
  929. void *buf;
  930. unsigned long flags;
  931. unsigned size;
  932. int rw = bio_data_dir(bio);
  933. unsigned remaining_size = wc->block_size;
  934. do {
  935. struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
  936. buf = bvec_kmap_irq(&bv, &flags);
  937. size = bv.bv_len;
  938. if (unlikely(size > remaining_size))
  939. size = remaining_size;
  940. if (rw == READ) {
  941. int r;
  942. r = memcpy_mcsafe(buf, data, size);
  943. flush_dcache_page(bio_page(bio));
  944. if (unlikely(r)) {
  945. writecache_error(wc, r, "hardware memory error when reading data: %d", r);
  946. bio->bi_status = BLK_STS_IOERR;
  947. }
  948. } else {
  949. flush_dcache_page(bio_page(bio));
  950. memcpy_flushcache(data, buf, size);
  951. }
  952. bvec_kunmap_irq(buf, &flags);
  953. data = (char *)data + size;
  954. remaining_size -= size;
  955. bio_advance(bio, size);
  956. } while (unlikely(remaining_size));
  957. }
  958. static int writecache_flush_thread(void *data)
  959. {
  960. struct dm_writecache *wc = data;
  961. while (1) {
  962. struct bio *bio;
  963. wc_lock(wc);
  964. bio = bio_list_pop(&wc->flush_list);
  965. if (!bio) {
  966. set_current_state(TASK_INTERRUPTIBLE);
  967. wc_unlock(wc);
  968. if (unlikely(kthread_should_stop())) {
  969. set_current_state(TASK_RUNNING);
  970. break;
  971. }
  972. schedule();
  973. continue;
  974. }
  975. if (bio_op(bio) == REQ_OP_DISCARD) {
  976. writecache_discard(wc, bio->bi_iter.bi_sector,
  977. bio_end_sector(bio));
  978. wc_unlock(wc);
  979. bio_set_dev(bio, wc->dev->bdev);
  980. generic_make_request(bio);
  981. } else {
  982. writecache_flush(wc);
  983. wc_unlock(wc);
  984. if (writecache_has_error(wc))
  985. bio->bi_status = BLK_STS_IOERR;
  986. bio_endio(bio);
  987. }
  988. }
  989. return 0;
  990. }
  991. static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
  992. {
  993. if (bio_list_empty(&wc->flush_list))
  994. wake_up_process(wc->flush_thread);
  995. bio_list_add(&wc->flush_list, bio);
  996. }
  997. static int writecache_map(struct dm_target *ti, struct bio *bio)
  998. {
  999. struct wc_entry *e;
  1000. struct dm_writecache *wc = ti->private;
  1001. bio->bi_private = NULL;
  1002. wc_lock(wc);
  1003. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  1004. if (writecache_has_error(wc))
  1005. goto unlock_error;
  1006. if (WC_MODE_PMEM(wc)) {
  1007. writecache_flush(wc);
  1008. if (writecache_has_error(wc))
  1009. goto unlock_error;
  1010. goto unlock_submit;
  1011. } else {
  1012. writecache_offload_bio(wc, bio);
  1013. goto unlock_return;
  1014. }
  1015. }
  1016. bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  1017. if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
  1018. (wc->block_size / 512 - 1)) != 0)) {
  1019. DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
  1020. (unsigned long long)bio->bi_iter.bi_sector,
  1021. bio->bi_iter.bi_size, wc->block_size);
  1022. goto unlock_error;
  1023. }
  1024. if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
  1025. if (writecache_has_error(wc))
  1026. goto unlock_error;
  1027. if (WC_MODE_PMEM(wc)) {
  1028. writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
  1029. goto unlock_remap_origin;
  1030. } else {
  1031. writecache_offload_bio(wc, bio);
  1032. goto unlock_return;
  1033. }
  1034. }
  1035. if (bio_data_dir(bio) == READ) {
  1036. read_next_block:
  1037. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
  1038. if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
  1039. if (WC_MODE_PMEM(wc)) {
  1040. bio_copy_block(wc, bio, memory_data(wc, e));
  1041. if (bio->bi_iter.bi_size)
  1042. goto read_next_block;
  1043. goto unlock_submit;
  1044. } else {
  1045. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1046. bio_set_dev(bio, wc->ssd_dev->bdev);
  1047. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1048. if (!writecache_entry_is_committed(wc, e))
  1049. writecache_wait_for_ios(wc, WRITE);
  1050. goto unlock_remap;
  1051. }
  1052. } else {
  1053. if (e) {
  1054. sector_t next_boundary =
  1055. read_original_sector(wc, e) - bio->bi_iter.bi_sector;
  1056. if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
  1057. dm_accept_partial_bio(bio, next_boundary);
  1058. }
  1059. }
  1060. goto unlock_remap_origin;
  1061. }
  1062. } else {
  1063. do {
  1064. if (writecache_has_error(wc))
  1065. goto unlock_error;
  1066. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
  1067. if (e) {
  1068. if (!writecache_entry_is_committed(wc, e))
  1069. goto bio_copy;
  1070. if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
  1071. wc->overwrote_committed = true;
  1072. goto bio_copy;
  1073. }
  1074. }
  1075. e = writecache_pop_from_freelist(wc);
  1076. if (unlikely(!e)) {
  1077. writecache_wait_on_freelist(wc);
  1078. continue;
  1079. }
  1080. write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
  1081. writecache_insert_entry(wc, e);
  1082. wc->uncommitted_blocks++;
  1083. bio_copy:
  1084. if (WC_MODE_PMEM(wc)) {
  1085. bio_copy_block(wc, bio, memory_data(wc, e));
  1086. } else {
  1087. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1088. bio_set_dev(bio, wc->ssd_dev->bdev);
  1089. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1090. if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
  1091. wc->uncommitted_blocks = 0;
  1092. queue_work(wc->writeback_wq, &wc->flush_work);
  1093. } else {
  1094. writecache_schedule_autocommit(wc);
  1095. }
  1096. goto unlock_remap;
  1097. }
  1098. } while (bio->bi_iter.bi_size);
  1099. if (unlikely(bio->bi_opf & REQ_FUA ||
  1100. wc->uncommitted_blocks >= wc->autocommit_blocks))
  1101. writecache_flush(wc);
  1102. else
  1103. writecache_schedule_autocommit(wc);
  1104. goto unlock_submit;
  1105. }
  1106. unlock_remap_origin:
  1107. bio_set_dev(bio, wc->dev->bdev);
  1108. wc_unlock(wc);
  1109. return DM_MAPIO_REMAPPED;
  1110. unlock_remap:
  1111. /* make sure that writecache_end_io decrements bio_in_progress: */
  1112. bio->bi_private = (void *)1;
  1113. atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
  1114. wc_unlock(wc);
  1115. return DM_MAPIO_REMAPPED;
  1116. unlock_submit:
  1117. wc_unlock(wc);
  1118. bio_endio(bio);
  1119. return DM_MAPIO_SUBMITTED;
  1120. unlock_return:
  1121. wc_unlock(wc);
  1122. return DM_MAPIO_SUBMITTED;
  1123. unlock_error:
  1124. wc_unlock(wc);
  1125. bio_io_error(bio);
  1126. return DM_MAPIO_SUBMITTED;
  1127. }
  1128. static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
  1129. {
  1130. struct dm_writecache *wc = ti->private;
  1131. if (bio->bi_private != NULL) {
  1132. int dir = bio_data_dir(bio);
  1133. if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
  1134. if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
  1135. wake_up(&wc->bio_in_progress_wait[dir]);
  1136. }
  1137. return 0;
  1138. }
  1139. static int writecache_iterate_devices(struct dm_target *ti,
  1140. iterate_devices_callout_fn fn, void *data)
  1141. {
  1142. struct dm_writecache *wc = ti->private;
  1143. return fn(ti, wc->dev, 0, ti->len, data);
  1144. }
  1145. static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
  1146. {
  1147. struct dm_writecache *wc = ti->private;
  1148. if (limits->logical_block_size < wc->block_size)
  1149. limits->logical_block_size = wc->block_size;
  1150. if (limits->physical_block_size < wc->block_size)
  1151. limits->physical_block_size = wc->block_size;
  1152. if (limits->io_min < wc->block_size)
  1153. limits->io_min = wc->block_size;
  1154. }
  1155. static void writecache_writeback_endio(struct bio *bio)
  1156. {
  1157. struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
  1158. struct dm_writecache *wc = wb->wc;
  1159. unsigned long flags;
  1160. raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
  1161. if (unlikely(list_empty(&wc->endio_list)))
  1162. wake_up_process(wc->endio_thread);
  1163. list_add_tail(&wb->endio_entry, &wc->endio_list);
  1164. raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
  1165. }
  1166. static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
  1167. {
  1168. struct copy_struct *c = ptr;
  1169. struct dm_writecache *wc = c->wc;
  1170. c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
  1171. raw_spin_lock_irq(&wc->endio_list_lock);
  1172. if (unlikely(list_empty(&wc->endio_list)))
  1173. wake_up_process(wc->endio_thread);
  1174. list_add_tail(&c->endio_entry, &wc->endio_list);
  1175. raw_spin_unlock_irq(&wc->endio_list_lock);
  1176. }
  1177. static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
  1178. {
  1179. unsigned i;
  1180. struct writeback_struct *wb;
  1181. struct wc_entry *e;
  1182. unsigned long n_walked = 0;
  1183. do {
  1184. wb = list_entry(list->next, struct writeback_struct, endio_entry);
  1185. list_del(&wb->endio_entry);
  1186. if (unlikely(wb->bio.bi_status != BLK_STS_OK))
  1187. writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
  1188. "write error %d", wb->bio.bi_status);
  1189. i = 0;
  1190. do {
  1191. e = wb->wc_list[i];
  1192. BUG_ON(!e->write_in_progress);
  1193. e->write_in_progress = false;
  1194. INIT_LIST_HEAD(&e->lru);
  1195. if (!writecache_has_error(wc))
  1196. writecache_free_entry(wc, e);
  1197. BUG_ON(!wc->writeback_size);
  1198. wc->writeback_size--;
  1199. n_walked++;
  1200. if (unlikely(n_walked >= ENDIO_LATENCY)) {
  1201. writecache_commit_flushed(wc, false);
  1202. wc_unlock(wc);
  1203. wc_lock(wc);
  1204. n_walked = 0;
  1205. }
  1206. } while (++i < wb->wc_list_n);
  1207. if (wb->wc_list != wb->wc_list_inline)
  1208. kfree(wb->wc_list);
  1209. bio_put(&wb->bio);
  1210. } while (!list_empty(list));
  1211. }
  1212. static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
  1213. {
  1214. struct copy_struct *c;
  1215. struct wc_entry *e;
  1216. do {
  1217. c = list_entry(list->next, struct copy_struct, endio_entry);
  1218. list_del(&c->endio_entry);
  1219. if (unlikely(c->error))
  1220. writecache_error(wc, c->error, "copy error");
  1221. e = c->e;
  1222. do {
  1223. BUG_ON(!e->write_in_progress);
  1224. e->write_in_progress = false;
  1225. INIT_LIST_HEAD(&e->lru);
  1226. if (!writecache_has_error(wc))
  1227. writecache_free_entry(wc, e);
  1228. BUG_ON(!wc->writeback_size);
  1229. wc->writeback_size--;
  1230. e++;
  1231. } while (--c->n_entries);
  1232. mempool_free(c, &wc->copy_pool);
  1233. } while (!list_empty(list));
  1234. }
  1235. static int writecache_endio_thread(void *data)
  1236. {
  1237. struct dm_writecache *wc = data;
  1238. while (1) {
  1239. struct list_head list;
  1240. raw_spin_lock_irq(&wc->endio_list_lock);
  1241. if (!list_empty(&wc->endio_list))
  1242. goto pop_from_list;
  1243. set_current_state(TASK_INTERRUPTIBLE);
  1244. raw_spin_unlock_irq(&wc->endio_list_lock);
  1245. if (unlikely(kthread_should_stop())) {
  1246. set_current_state(TASK_RUNNING);
  1247. break;
  1248. }
  1249. schedule();
  1250. continue;
  1251. pop_from_list:
  1252. list = wc->endio_list;
  1253. list.next->prev = list.prev->next = &list;
  1254. INIT_LIST_HEAD(&wc->endio_list);
  1255. raw_spin_unlock_irq(&wc->endio_list_lock);
  1256. if (!WC_MODE_FUA(wc))
  1257. writecache_disk_flush(wc, wc->dev);
  1258. wc_lock(wc);
  1259. if (WC_MODE_PMEM(wc)) {
  1260. __writecache_endio_pmem(wc, &list);
  1261. } else {
  1262. __writecache_endio_ssd(wc, &list);
  1263. writecache_wait_for_ios(wc, READ);
  1264. }
  1265. writecache_commit_flushed(wc, false);
  1266. wc_unlock(wc);
  1267. }
  1268. return 0;
  1269. }
  1270. static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
  1271. {
  1272. struct dm_writecache *wc = wb->wc;
  1273. unsigned block_size = wc->block_size;
  1274. void *address = memory_data(wc, e);
  1275. persistent_memory_flush_cache(address, block_size);
  1276. return bio_add_page(&wb->bio, persistent_memory_page(address),
  1277. block_size, persistent_memory_page_offset(address)) != 0;
  1278. }
  1279. struct writeback_list {
  1280. struct list_head list;
  1281. size_t size;
  1282. };
  1283. static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
  1284. {
  1285. if (unlikely(wc->max_writeback_jobs)) {
  1286. if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
  1287. wc_lock(wc);
  1288. while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
  1289. writecache_wait_on_freelist(wc);
  1290. wc_unlock(wc);
  1291. }
  1292. }
  1293. cond_resched();
  1294. }
  1295. static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
  1296. {
  1297. struct wc_entry *e, *f;
  1298. struct bio *bio;
  1299. struct writeback_struct *wb;
  1300. unsigned max_pages;
  1301. while (wbl->size) {
  1302. wbl->size--;
  1303. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1304. list_del(&e->lru);
  1305. max_pages = e->wc_list_contiguous;
  1306. bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
  1307. wb = container_of(bio, struct writeback_struct, bio);
  1308. wb->wc = wc;
  1309. wb->bio.bi_end_io = writecache_writeback_endio;
  1310. bio_set_dev(&wb->bio, wc->dev->bdev);
  1311. wb->bio.bi_iter.bi_sector = read_original_sector(wc, e);
  1312. wb->page_offset = PAGE_SIZE;
  1313. if (max_pages <= WB_LIST_INLINE ||
  1314. unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
  1315. GFP_NOIO | __GFP_NORETRY |
  1316. __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
  1317. wb->wc_list = wb->wc_list_inline;
  1318. max_pages = WB_LIST_INLINE;
  1319. }
  1320. BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
  1321. wb->wc_list[0] = e;
  1322. wb->wc_list_n = 1;
  1323. while (wbl->size && wb->wc_list_n < max_pages) {
  1324. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1325. if (read_original_sector(wc, f) !=
  1326. read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
  1327. break;
  1328. if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
  1329. break;
  1330. wbl->size--;
  1331. list_del(&f->lru);
  1332. wb->wc_list[wb->wc_list_n++] = f;
  1333. e = f;
  1334. }
  1335. bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
  1336. if (writecache_has_error(wc)) {
  1337. bio->bi_status = BLK_STS_IOERR;
  1338. bio_endio(&wb->bio);
  1339. } else {
  1340. submit_bio(&wb->bio);
  1341. }
  1342. __writeback_throttle(wc, wbl);
  1343. }
  1344. }
  1345. static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
  1346. {
  1347. struct wc_entry *e, *f;
  1348. struct dm_io_region from, to;
  1349. struct copy_struct *c;
  1350. while (wbl->size) {
  1351. unsigned n_sectors;
  1352. wbl->size--;
  1353. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1354. list_del(&e->lru);
  1355. n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
  1356. from.bdev = wc->ssd_dev->bdev;
  1357. from.sector = cache_sector(wc, e);
  1358. from.count = n_sectors;
  1359. to.bdev = wc->dev->bdev;
  1360. to.sector = read_original_sector(wc, e);
  1361. to.count = n_sectors;
  1362. c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
  1363. c->wc = wc;
  1364. c->e = e;
  1365. c->n_entries = e->wc_list_contiguous;
  1366. while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
  1367. wbl->size--;
  1368. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1369. BUG_ON(f != e + 1);
  1370. list_del(&f->lru);
  1371. e = f;
  1372. }
  1373. dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
  1374. __writeback_throttle(wc, wbl);
  1375. }
  1376. }
  1377. static void writecache_writeback(struct work_struct *work)
  1378. {
  1379. struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
  1380. struct blk_plug plug;
  1381. struct wc_entry *e, *f, *g;
  1382. struct rb_node *node, *next_node;
  1383. struct list_head skipped;
  1384. struct writeback_list wbl;
  1385. unsigned long n_walked;
  1386. wc_lock(wc);
  1387. restart:
  1388. if (writecache_has_error(wc)) {
  1389. wc_unlock(wc);
  1390. return;
  1391. }
  1392. if (unlikely(wc->writeback_all)) {
  1393. if (writecache_wait_for_writeback(wc))
  1394. goto restart;
  1395. }
  1396. if (wc->overwrote_committed) {
  1397. writecache_wait_for_ios(wc, WRITE);
  1398. }
  1399. n_walked = 0;
  1400. INIT_LIST_HEAD(&skipped);
  1401. INIT_LIST_HEAD(&wbl.list);
  1402. wbl.size = 0;
  1403. while (!list_empty(&wc->lru) &&
  1404. (wc->writeback_all ||
  1405. wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
  1406. n_walked++;
  1407. if (unlikely(n_walked > WRITEBACK_LATENCY) &&
  1408. likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
  1409. queue_work(wc->writeback_wq, &wc->writeback_work);
  1410. break;
  1411. }
  1412. e = container_of(wc->lru.prev, struct wc_entry, lru);
  1413. BUG_ON(e->write_in_progress);
  1414. if (unlikely(!writecache_entry_is_committed(wc, e))) {
  1415. writecache_flush(wc);
  1416. }
  1417. node = rb_prev(&e->rb_node);
  1418. if (node) {
  1419. f = container_of(node, struct wc_entry, rb_node);
  1420. if (unlikely(read_original_sector(wc, f) ==
  1421. read_original_sector(wc, e))) {
  1422. BUG_ON(!f->write_in_progress);
  1423. list_del(&e->lru);
  1424. list_add(&e->lru, &skipped);
  1425. cond_resched();
  1426. continue;
  1427. }
  1428. }
  1429. wc->writeback_size++;
  1430. list_del(&e->lru);
  1431. list_add(&e->lru, &wbl.list);
  1432. wbl.size++;
  1433. e->write_in_progress = true;
  1434. e->wc_list_contiguous = 1;
  1435. f = e;
  1436. while (1) {
  1437. next_node = rb_next(&f->rb_node);
  1438. if (unlikely(!next_node))
  1439. break;
  1440. g = container_of(next_node, struct wc_entry, rb_node);
  1441. if (read_original_sector(wc, g) ==
  1442. read_original_sector(wc, f)) {
  1443. f = g;
  1444. continue;
  1445. }
  1446. if (read_original_sector(wc, g) !=
  1447. read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
  1448. break;
  1449. if (unlikely(g->write_in_progress))
  1450. break;
  1451. if (unlikely(!writecache_entry_is_committed(wc, g)))
  1452. break;
  1453. if (!WC_MODE_PMEM(wc)) {
  1454. if (g != f + 1)
  1455. break;
  1456. }
  1457. n_walked++;
  1458. //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
  1459. // break;
  1460. wc->writeback_size++;
  1461. list_del(&g->lru);
  1462. list_add(&g->lru, &wbl.list);
  1463. wbl.size++;
  1464. g->write_in_progress = true;
  1465. g->wc_list_contiguous = BIO_MAX_PAGES;
  1466. f = g;
  1467. e->wc_list_contiguous++;
  1468. if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES))
  1469. break;
  1470. }
  1471. cond_resched();
  1472. }
  1473. if (!list_empty(&skipped)) {
  1474. list_splice_tail(&skipped, &wc->lru);
  1475. /*
  1476. * If we didn't do any progress, we must wait until some
  1477. * writeback finishes to avoid burning CPU in a loop
  1478. */
  1479. if (unlikely(!wbl.size))
  1480. writecache_wait_for_writeback(wc);
  1481. }
  1482. wc_unlock(wc);
  1483. blk_start_plug(&plug);
  1484. if (WC_MODE_PMEM(wc))
  1485. __writecache_writeback_pmem(wc, &wbl);
  1486. else
  1487. __writecache_writeback_ssd(wc, &wbl);
  1488. blk_finish_plug(&plug);
  1489. if (unlikely(wc->writeback_all)) {
  1490. wc_lock(wc);
  1491. while (writecache_wait_for_writeback(wc));
  1492. wc_unlock(wc);
  1493. }
  1494. }
  1495. static int calculate_memory_size(uint64_t device_size, unsigned block_size,
  1496. size_t *n_blocks_p, size_t *n_metadata_blocks_p)
  1497. {
  1498. uint64_t n_blocks, offset;
  1499. struct wc_entry e;
  1500. n_blocks = device_size;
  1501. do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
  1502. while (1) {
  1503. if (!n_blocks)
  1504. return -ENOSPC;
  1505. /* Verify the following entries[n_blocks] won't overflow */
  1506. if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
  1507. sizeof(struct wc_memory_entry)))
  1508. return -EFBIG;
  1509. offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
  1510. offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
  1511. if (offset + n_blocks * block_size <= device_size)
  1512. break;
  1513. n_blocks--;
  1514. }
  1515. /* check if the bit field overflows */
  1516. e.index = n_blocks;
  1517. if (e.index != n_blocks)
  1518. return -EFBIG;
  1519. if (n_blocks_p)
  1520. *n_blocks_p = n_blocks;
  1521. if (n_metadata_blocks_p)
  1522. *n_metadata_blocks_p = offset >> __ffs(block_size);
  1523. return 0;
  1524. }
  1525. static int init_memory(struct dm_writecache *wc)
  1526. {
  1527. size_t b;
  1528. int r;
  1529. r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
  1530. if (r)
  1531. return r;
  1532. r = writecache_alloc_entries(wc);
  1533. if (r)
  1534. return r;
  1535. for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
  1536. pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
  1537. pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
  1538. pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
  1539. pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
  1540. pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
  1541. for (b = 0; b < wc->n_blocks; b++) {
  1542. write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
  1543. cond_resched();
  1544. }
  1545. writecache_flush_all_metadata(wc);
  1546. writecache_commit_flushed(wc, false);
  1547. pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
  1548. writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
  1549. writecache_commit_flushed(wc, false);
  1550. return 0;
  1551. }
  1552. static void writecache_dtr(struct dm_target *ti)
  1553. {
  1554. struct dm_writecache *wc = ti->private;
  1555. if (!wc)
  1556. return;
  1557. if (wc->endio_thread)
  1558. kthread_stop(wc->endio_thread);
  1559. if (wc->flush_thread)
  1560. kthread_stop(wc->flush_thread);
  1561. bioset_exit(&wc->bio_set);
  1562. mempool_exit(&wc->copy_pool);
  1563. if (wc->writeback_wq)
  1564. destroy_workqueue(wc->writeback_wq);
  1565. if (wc->dev)
  1566. dm_put_device(ti, wc->dev);
  1567. if (wc->ssd_dev)
  1568. dm_put_device(ti, wc->ssd_dev);
  1569. if (wc->entries)
  1570. vfree(wc->entries);
  1571. if (wc->memory_map) {
  1572. if (WC_MODE_PMEM(wc))
  1573. persistent_memory_release(wc);
  1574. else
  1575. vfree(wc->memory_map);
  1576. }
  1577. if (wc->dm_kcopyd)
  1578. dm_kcopyd_client_destroy(wc->dm_kcopyd);
  1579. if (wc->dm_io)
  1580. dm_io_client_destroy(wc->dm_io);
  1581. if (wc->dirty_bitmap)
  1582. vfree(wc->dirty_bitmap);
  1583. kfree(wc);
  1584. }
  1585. static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1586. {
  1587. struct dm_writecache *wc;
  1588. struct dm_arg_set as;
  1589. const char *string;
  1590. unsigned opt_params;
  1591. size_t offset, data_size;
  1592. int i, r;
  1593. char dummy;
  1594. int high_wm_percent = HIGH_WATERMARK;
  1595. int low_wm_percent = LOW_WATERMARK;
  1596. uint64_t x;
  1597. struct wc_memory_superblock s;
  1598. static struct dm_arg _args[] = {
  1599. {0, 16, "Invalid number of feature args"},
  1600. };
  1601. as.argc = argc;
  1602. as.argv = argv;
  1603. wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
  1604. if (!wc) {
  1605. ti->error = "Cannot allocate writecache structure";
  1606. r = -ENOMEM;
  1607. goto bad;
  1608. }
  1609. ti->private = wc;
  1610. wc->ti = ti;
  1611. mutex_init(&wc->lock);
  1612. writecache_poison_lists(wc);
  1613. init_waitqueue_head(&wc->freelist_wait);
  1614. timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
  1615. for (i = 0; i < 2; i++) {
  1616. atomic_set(&wc->bio_in_progress[i], 0);
  1617. init_waitqueue_head(&wc->bio_in_progress_wait[i]);
  1618. }
  1619. wc->dm_io = dm_io_client_create();
  1620. if (IS_ERR(wc->dm_io)) {
  1621. r = PTR_ERR(wc->dm_io);
  1622. ti->error = "Unable to allocate dm-io client";
  1623. wc->dm_io = NULL;
  1624. goto bad;
  1625. }
  1626. wc->writeback_wq = alloc_workqueue("writecache-writeabck", WQ_MEM_RECLAIM, 1);
  1627. if (!wc->writeback_wq) {
  1628. r = -ENOMEM;
  1629. ti->error = "Could not allocate writeback workqueue";
  1630. goto bad;
  1631. }
  1632. INIT_WORK(&wc->writeback_work, writecache_writeback);
  1633. INIT_WORK(&wc->flush_work, writecache_flush_work);
  1634. raw_spin_lock_init(&wc->endio_list_lock);
  1635. INIT_LIST_HEAD(&wc->endio_list);
  1636. wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
  1637. if (IS_ERR(wc->endio_thread)) {
  1638. r = PTR_ERR(wc->endio_thread);
  1639. wc->endio_thread = NULL;
  1640. ti->error = "Couldn't spawn endio thread";
  1641. goto bad;
  1642. }
  1643. wake_up_process(wc->endio_thread);
  1644. /*
  1645. * Parse the mode (pmem or ssd)
  1646. */
  1647. string = dm_shift_arg(&as);
  1648. if (!string)
  1649. goto bad_arguments;
  1650. if (!strcasecmp(string, "s")) {
  1651. wc->pmem_mode = false;
  1652. } else if (!strcasecmp(string, "p")) {
  1653. #ifdef DM_WRITECACHE_HAS_PMEM
  1654. wc->pmem_mode = true;
  1655. wc->writeback_fua = true;
  1656. #else
  1657. /*
  1658. * If the architecture doesn't support persistent memory or
  1659. * the kernel doesn't support any DAX drivers, this driver can
  1660. * only be used in SSD-only mode.
  1661. */
  1662. r = -EOPNOTSUPP;
  1663. ti->error = "Persistent memory or DAX not supported on this system";
  1664. goto bad;
  1665. #endif
  1666. } else {
  1667. goto bad_arguments;
  1668. }
  1669. if (WC_MODE_PMEM(wc)) {
  1670. r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
  1671. offsetof(struct writeback_struct, bio),
  1672. BIOSET_NEED_BVECS);
  1673. if (r) {
  1674. ti->error = "Could not allocate bio set";
  1675. goto bad;
  1676. }
  1677. } else {
  1678. r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
  1679. if (r) {
  1680. ti->error = "Could not allocate mempool";
  1681. goto bad;
  1682. }
  1683. }
  1684. /*
  1685. * Parse the origin data device
  1686. */
  1687. string = dm_shift_arg(&as);
  1688. if (!string)
  1689. goto bad_arguments;
  1690. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
  1691. if (r) {
  1692. ti->error = "Origin data device lookup failed";
  1693. goto bad;
  1694. }
  1695. /*
  1696. * Parse cache data device (be it pmem or ssd)
  1697. */
  1698. string = dm_shift_arg(&as);
  1699. if (!string)
  1700. goto bad_arguments;
  1701. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
  1702. if (r) {
  1703. ti->error = "Cache data device lookup failed";
  1704. goto bad;
  1705. }
  1706. wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
  1707. /*
  1708. * Parse the cache block size
  1709. */
  1710. string = dm_shift_arg(&as);
  1711. if (!string)
  1712. goto bad_arguments;
  1713. if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
  1714. wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
  1715. (wc->block_size & (wc->block_size - 1))) {
  1716. r = -EINVAL;
  1717. ti->error = "Invalid block size";
  1718. goto bad;
  1719. }
  1720. if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
  1721. wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
  1722. r = -EINVAL;
  1723. ti->error = "Block size is smaller than device logical block size";
  1724. goto bad;
  1725. }
  1726. wc->block_size_bits = __ffs(wc->block_size);
  1727. wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
  1728. wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
  1729. wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
  1730. /*
  1731. * Parse optional arguments
  1732. */
  1733. r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
  1734. if (r)
  1735. goto bad;
  1736. while (opt_params) {
  1737. string = dm_shift_arg(&as), opt_params--;
  1738. if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
  1739. unsigned long long start_sector;
  1740. string = dm_shift_arg(&as), opt_params--;
  1741. if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
  1742. goto invalid_optional;
  1743. wc->start_sector = start_sector;
  1744. if (wc->start_sector != start_sector ||
  1745. wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
  1746. goto invalid_optional;
  1747. } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
  1748. string = dm_shift_arg(&as), opt_params--;
  1749. if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
  1750. goto invalid_optional;
  1751. if (high_wm_percent < 0 || high_wm_percent > 100)
  1752. goto invalid_optional;
  1753. wc->high_wm_percent_set = true;
  1754. } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
  1755. string = dm_shift_arg(&as), opt_params--;
  1756. if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
  1757. goto invalid_optional;
  1758. if (low_wm_percent < 0 || low_wm_percent > 100)
  1759. goto invalid_optional;
  1760. wc->low_wm_percent_set = true;
  1761. } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
  1762. string = dm_shift_arg(&as), opt_params--;
  1763. if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
  1764. goto invalid_optional;
  1765. wc->max_writeback_jobs_set = true;
  1766. } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
  1767. string = dm_shift_arg(&as), opt_params--;
  1768. if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
  1769. goto invalid_optional;
  1770. wc->autocommit_blocks_set = true;
  1771. } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
  1772. unsigned autocommit_msecs;
  1773. string = dm_shift_arg(&as), opt_params--;
  1774. if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
  1775. goto invalid_optional;
  1776. if (autocommit_msecs > 3600000)
  1777. goto invalid_optional;
  1778. wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
  1779. wc->autocommit_time_set = true;
  1780. } else if (!strcasecmp(string, "fua")) {
  1781. if (WC_MODE_PMEM(wc)) {
  1782. wc->writeback_fua = true;
  1783. wc->writeback_fua_set = true;
  1784. } else goto invalid_optional;
  1785. } else if (!strcasecmp(string, "nofua")) {
  1786. if (WC_MODE_PMEM(wc)) {
  1787. wc->writeback_fua = false;
  1788. wc->writeback_fua_set = true;
  1789. } else goto invalid_optional;
  1790. } else {
  1791. invalid_optional:
  1792. r = -EINVAL;
  1793. ti->error = "Invalid optional argument";
  1794. goto bad;
  1795. }
  1796. }
  1797. if (high_wm_percent < low_wm_percent) {
  1798. r = -EINVAL;
  1799. ti->error = "High watermark must be greater than or equal to low watermark";
  1800. goto bad;
  1801. }
  1802. if (WC_MODE_PMEM(wc)) {
  1803. r = persistent_memory_claim(wc);
  1804. if (r) {
  1805. ti->error = "Unable to map persistent memory for cache";
  1806. goto bad;
  1807. }
  1808. } else {
  1809. size_t n_blocks, n_metadata_blocks;
  1810. uint64_t n_bitmap_bits;
  1811. wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
  1812. bio_list_init(&wc->flush_list);
  1813. wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
  1814. if (IS_ERR(wc->flush_thread)) {
  1815. r = PTR_ERR(wc->flush_thread);
  1816. wc->flush_thread = NULL;
  1817. ti->error = "Couldn't spawn endio thread";
  1818. goto bad;
  1819. }
  1820. wake_up_process(wc->flush_thread);
  1821. r = calculate_memory_size(wc->memory_map_size, wc->block_size,
  1822. &n_blocks, &n_metadata_blocks);
  1823. if (r) {
  1824. ti->error = "Invalid device size";
  1825. goto bad;
  1826. }
  1827. n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
  1828. BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
  1829. /* this is limitation of test_bit functions */
  1830. if (n_bitmap_bits > 1U << 31) {
  1831. r = -EFBIG;
  1832. ti->error = "Invalid device size";
  1833. goto bad;
  1834. }
  1835. wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
  1836. if (!wc->memory_map) {
  1837. r = -ENOMEM;
  1838. ti->error = "Unable to allocate memory for metadata";
  1839. goto bad;
  1840. }
  1841. wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1842. if (IS_ERR(wc->dm_kcopyd)) {
  1843. r = PTR_ERR(wc->dm_kcopyd);
  1844. ti->error = "Unable to allocate dm-kcopyd client";
  1845. wc->dm_kcopyd = NULL;
  1846. goto bad;
  1847. }
  1848. wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
  1849. wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
  1850. BITS_PER_LONG * sizeof(unsigned long);
  1851. wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
  1852. if (!wc->dirty_bitmap) {
  1853. r = -ENOMEM;
  1854. ti->error = "Unable to allocate dirty bitmap";
  1855. goto bad;
  1856. }
  1857. r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
  1858. if (r) {
  1859. ti->error = "Unable to read first block of metadata";
  1860. goto bad;
  1861. }
  1862. }
  1863. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1864. if (r) {
  1865. ti->error = "Hardware memory error when reading superblock";
  1866. goto bad;
  1867. }
  1868. if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
  1869. r = init_memory(wc);
  1870. if (r) {
  1871. ti->error = "Unable to initialize device";
  1872. goto bad;
  1873. }
  1874. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1875. if (r) {
  1876. ti->error = "Hardware memory error when reading superblock";
  1877. goto bad;
  1878. }
  1879. }
  1880. if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
  1881. ti->error = "Invalid magic in the superblock";
  1882. r = -EINVAL;
  1883. goto bad;
  1884. }
  1885. if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
  1886. ti->error = "Invalid version in the superblock";
  1887. r = -EINVAL;
  1888. goto bad;
  1889. }
  1890. if (le32_to_cpu(s.block_size) != wc->block_size) {
  1891. ti->error = "Block size does not match superblock";
  1892. r = -EINVAL;
  1893. goto bad;
  1894. }
  1895. wc->n_blocks = le64_to_cpu(s.n_blocks);
  1896. offset = wc->n_blocks * sizeof(struct wc_memory_entry);
  1897. if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
  1898. overflow:
  1899. ti->error = "Overflow in size calculation";
  1900. r = -EINVAL;
  1901. goto bad;
  1902. }
  1903. offset += sizeof(struct wc_memory_superblock);
  1904. if (offset < sizeof(struct wc_memory_superblock))
  1905. goto overflow;
  1906. offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
  1907. data_size = wc->n_blocks * (size_t)wc->block_size;
  1908. if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
  1909. (offset + data_size < offset))
  1910. goto overflow;
  1911. if (offset + data_size > wc->memory_map_size) {
  1912. ti->error = "Memory area is too small";
  1913. r = -EINVAL;
  1914. goto bad;
  1915. }
  1916. wc->metadata_sectors = offset >> SECTOR_SHIFT;
  1917. wc->block_start = (char *)sb(wc) + offset;
  1918. x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
  1919. x += 50;
  1920. do_div(x, 100);
  1921. wc->freelist_high_watermark = x;
  1922. x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
  1923. x += 50;
  1924. do_div(x, 100);
  1925. wc->freelist_low_watermark = x;
  1926. r = writecache_alloc_entries(wc);
  1927. if (r) {
  1928. ti->error = "Cannot allocate memory";
  1929. goto bad;
  1930. }
  1931. ti->num_flush_bios = 1;
  1932. ti->flush_supported = true;
  1933. ti->num_discard_bios = 1;
  1934. if (WC_MODE_PMEM(wc))
  1935. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  1936. return 0;
  1937. bad_arguments:
  1938. r = -EINVAL;
  1939. ti->error = "Bad arguments";
  1940. bad:
  1941. writecache_dtr(ti);
  1942. return r;
  1943. }
  1944. static void writecache_status(struct dm_target *ti, status_type_t type,
  1945. unsigned status_flags, char *result, unsigned maxlen)
  1946. {
  1947. struct dm_writecache *wc = ti->private;
  1948. unsigned extra_args;
  1949. unsigned sz = 0;
  1950. uint64_t x;
  1951. switch (type) {
  1952. case STATUSTYPE_INFO:
  1953. DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
  1954. (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
  1955. (unsigned long long)wc->writeback_size);
  1956. break;
  1957. case STATUSTYPE_TABLE:
  1958. DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
  1959. wc->dev->name, wc->ssd_dev->name, wc->block_size);
  1960. extra_args = 0;
  1961. if (wc->start_sector)
  1962. extra_args += 2;
  1963. if (wc->high_wm_percent_set)
  1964. extra_args += 2;
  1965. if (wc->low_wm_percent_set)
  1966. extra_args += 2;
  1967. if (wc->max_writeback_jobs_set)
  1968. extra_args += 2;
  1969. if (wc->autocommit_blocks_set)
  1970. extra_args += 2;
  1971. if (wc->autocommit_time_set)
  1972. extra_args += 2;
  1973. if (wc->writeback_fua_set)
  1974. extra_args++;
  1975. DMEMIT("%u", extra_args);
  1976. if (wc->start_sector)
  1977. DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
  1978. if (wc->high_wm_percent_set) {
  1979. x = (uint64_t)wc->freelist_high_watermark * 100;
  1980. x += wc->n_blocks / 2;
  1981. do_div(x, (size_t)wc->n_blocks);
  1982. DMEMIT(" high_watermark %u", 100 - (unsigned)x);
  1983. }
  1984. if (wc->low_wm_percent_set) {
  1985. x = (uint64_t)wc->freelist_low_watermark * 100;
  1986. x += wc->n_blocks / 2;
  1987. do_div(x, (size_t)wc->n_blocks);
  1988. DMEMIT(" low_watermark %u", 100 - (unsigned)x);
  1989. }
  1990. if (wc->max_writeback_jobs_set)
  1991. DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
  1992. if (wc->autocommit_blocks_set)
  1993. DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
  1994. if (wc->autocommit_time_set)
  1995. DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
  1996. if (wc->writeback_fua_set)
  1997. DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
  1998. break;
  1999. }
  2000. }
  2001. static struct target_type writecache_target = {
  2002. .name = "writecache",
  2003. .version = {1, 1, 1},
  2004. .module = THIS_MODULE,
  2005. .ctr = writecache_ctr,
  2006. .dtr = writecache_dtr,
  2007. .status = writecache_status,
  2008. .postsuspend = writecache_suspend,
  2009. .resume = writecache_resume,
  2010. .message = writecache_message,
  2011. .map = writecache_map,
  2012. .end_io = writecache_end_io,
  2013. .iterate_devices = writecache_iterate_devices,
  2014. .io_hints = writecache_io_hints,
  2015. };
  2016. static int __init dm_writecache_init(void)
  2017. {
  2018. int r;
  2019. r = dm_register_target(&writecache_target);
  2020. if (r < 0) {
  2021. DMERR("register failed %d", r);
  2022. return r;
  2023. }
  2024. return 0;
  2025. }
  2026. static void __exit dm_writecache_exit(void)
  2027. {
  2028. dm_unregister_target(&writecache_target);
  2029. }
  2030. module_init(dm_writecache_init);
  2031. module_exit(dm_writecache_exit);
  2032. MODULE_DESCRIPTION(DM_NAME " writecache target");
  2033. MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
  2034. MODULE_LICENSE("GPL");