dsa_loop.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. * Distributed Switch Architecture loopback driver
  3. *
  4. * Copyright (C) 2016, Florian Fainelli <f.fainelli@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/platform_device.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/phy.h>
  14. #include <linux/phy_fixed.h>
  15. #include <linux/export.h>
  16. #include <linux/ethtool.h>
  17. #include <linux/workqueue.h>
  18. #include <linux/module.h>
  19. #include <linux/if_bridge.h>
  20. #include <net/dsa.h>
  21. #include "dsa_loop.h"
  22. struct dsa_loop_vlan {
  23. u16 members;
  24. u16 untagged;
  25. };
  26. struct dsa_loop_mib_entry {
  27. char name[ETH_GSTRING_LEN];
  28. unsigned long val;
  29. };
  30. enum dsa_loop_mib_counters {
  31. DSA_LOOP_PHY_READ_OK,
  32. DSA_LOOP_PHY_READ_ERR,
  33. DSA_LOOP_PHY_WRITE_OK,
  34. DSA_LOOP_PHY_WRITE_ERR,
  35. __DSA_LOOP_CNT_MAX,
  36. };
  37. static struct dsa_loop_mib_entry dsa_loop_mibs[] = {
  38. [DSA_LOOP_PHY_READ_OK] = { "phy_read_ok", },
  39. [DSA_LOOP_PHY_READ_ERR] = { "phy_read_err", },
  40. [DSA_LOOP_PHY_WRITE_OK] = { "phy_write_ok", },
  41. [DSA_LOOP_PHY_WRITE_ERR] = { "phy_write_err", },
  42. };
  43. struct dsa_loop_port {
  44. struct dsa_loop_mib_entry mib[__DSA_LOOP_CNT_MAX];
  45. };
  46. #define DSA_LOOP_VLANS 5
  47. struct dsa_loop_priv {
  48. struct mii_bus *bus;
  49. unsigned int port_base;
  50. struct dsa_loop_vlan vlans[DSA_LOOP_VLANS];
  51. struct net_device *netdev;
  52. struct dsa_loop_port ports[DSA_MAX_PORTS];
  53. u16 pvid;
  54. };
  55. static struct phy_device *phydevs[PHY_MAX_ADDR];
  56. static enum dsa_tag_protocol dsa_loop_get_protocol(struct dsa_switch *ds,
  57. int port)
  58. {
  59. dev_dbg(ds->dev, "%s: port: %d\n", __func__, port);
  60. return DSA_TAG_PROTO_NONE;
  61. }
  62. static int dsa_loop_setup(struct dsa_switch *ds)
  63. {
  64. struct dsa_loop_priv *ps = ds->priv;
  65. unsigned int i;
  66. for (i = 0; i < ds->num_ports; i++)
  67. memcpy(ps->ports[i].mib, dsa_loop_mibs,
  68. sizeof(dsa_loop_mibs));
  69. dev_dbg(ds->dev, "%s\n", __func__);
  70. return 0;
  71. }
  72. static int dsa_loop_get_sset_count(struct dsa_switch *ds, int port, int sset)
  73. {
  74. if (sset != ETH_SS_STATS && sset != ETH_SS_PHY_STATS)
  75. return 0;
  76. return __DSA_LOOP_CNT_MAX;
  77. }
  78. static void dsa_loop_get_strings(struct dsa_switch *ds, int port,
  79. u32 stringset, uint8_t *data)
  80. {
  81. struct dsa_loop_priv *ps = ds->priv;
  82. unsigned int i;
  83. if (stringset != ETH_SS_STATS && stringset != ETH_SS_PHY_STATS)
  84. return;
  85. for (i = 0; i < __DSA_LOOP_CNT_MAX; i++)
  86. memcpy(data + i * ETH_GSTRING_LEN,
  87. ps->ports[port].mib[i].name, ETH_GSTRING_LEN);
  88. }
  89. static void dsa_loop_get_ethtool_stats(struct dsa_switch *ds, int port,
  90. uint64_t *data)
  91. {
  92. struct dsa_loop_priv *ps = ds->priv;
  93. unsigned int i;
  94. for (i = 0; i < __DSA_LOOP_CNT_MAX; i++)
  95. data[i] = ps->ports[port].mib[i].val;
  96. }
  97. static int dsa_loop_phy_read(struct dsa_switch *ds, int port, int regnum)
  98. {
  99. struct dsa_loop_priv *ps = ds->priv;
  100. struct mii_bus *bus = ps->bus;
  101. int ret;
  102. ret = mdiobus_read_nested(bus, ps->port_base + port, regnum);
  103. if (ret < 0)
  104. ps->ports[port].mib[DSA_LOOP_PHY_READ_ERR].val++;
  105. else
  106. ps->ports[port].mib[DSA_LOOP_PHY_READ_OK].val++;
  107. return ret;
  108. }
  109. static int dsa_loop_phy_write(struct dsa_switch *ds, int port,
  110. int regnum, u16 value)
  111. {
  112. struct dsa_loop_priv *ps = ds->priv;
  113. struct mii_bus *bus = ps->bus;
  114. int ret;
  115. ret = mdiobus_write_nested(bus, ps->port_base + port, regnum, value);
  116. if (ret < 0)
  117. ps->ports[port].mib[DSA_LOOP_PHY_WRITE_ERR].val++;
  118. else
  119. ps->ports[port].mib[DSA_LOOP_PHY_WRITE_OK].val++;
  120. return ret;
  121. }
  122. static int dsa_loop_port_bridge_join(struct dsa_switch *ds, int port,
  123. struct net_device *bridge)
  124. {
  125. dev_dbg(ds->dev, "%s: port: %d, bridge: %s\n",
  126. __func__, port, bridge->name);
  127. return 0;
  128. }
  129. static void dsa_loop_port_bridge_leave(struct dsa_switch *ds, int port,
  130. struct net_device *bridge)
  131. {
  132. dev_dbg(ds->dev, "%s: port: %d, bridge: %s\n",
  133. __func__, port, bridge->name);
  134. }
  135. static void dsa_loop_port_stp_state_set(struct dsa_switch *ds, int port,
  136. u8 state)
  137. {
  138. dev_dbg(ds->dev, "%s: port: %d, state: %d\n",
  139. __func__, port, state);
  140. }
  141. static int dsa_loop_port_vlan_filtering(struct dsa_switch *ds, int port,
  142. bool vlan_filtering)
  143. {
  144. dev_dbg(ds->dev, "%s: port: %d, vlan_filtering: %d\n",
  145. __func__, port, vlan_filtering);
  146. return 0;
  147. }
  148. static int
  149. dsa_loop_port_vlan_prepare(struct dsa_switch *ds, int port,
  150. const struct switchdev_obj_port_vlan *vlan)
  151. {
  152. struct dsa_loop_priv *ps = ds->priv;
  153. struct mii_bus *bus = ps->bus;
  154. dev_dbg(ds->dev, "%s: port: %d, vlan: %d-%d",
  155. __func__, port, vlan->vid_begin, vlan->vid_end);
  156. /* Just do a sleeping operation to make lockdep checks effective */
  157. mdiobus_read(bus, ps->port_base + port, MII_BMSR);
  158. if (vlan->vid_end > DSA_LOOP_VLANS)
  159. return -ERANGE;
  160. return 0;
  161. }
  162. static void dsa_loop_port_vlan_add(struct dsa_switch *ds, int port,
  163. const struct switchdev_obj_port_vlan *vlan)
  164. {
  165. bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
  166. bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
  167. struct dsa_loop_priv *ps = ds->priv;
  168. struct mii_bus *bus = ps->bus;
  169. struct dsa_loop_vlan *vl;
  170. u16 vid;
  171. /* Just do a sleeping operation to make lockdep checks effective */
  172. mdiobus_read(bus, ps->port_base + port, MII_BMSR);
  173. for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
  174. vl = &ps->vlans[vid];
  175. vl->members |= BIT(port);
  176. if (untagged)
  177. vl->untagged |= BIT(port);
  178. else
  179. vl->untagged &= ~BIT(port);
  180. dev_dbg(ds->dev, "%s: port: %d vlan: %d, %stagged, pvid: %d\n",
  181. __func__, port, vid, untagged ? "un" : "", pvid);
  182. }
  183. if (pvid)
  184. ps->pvid = vid;
  185. }
  186. static int dsa_loop_port_vlan_del(struct dsa_switch *ds, int port,
  187. const struct switchdev_obj_port_vlan *vlan)
  188. {
  189. bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
  190. struct dsa_loop_priv *ps = ds->priv;
  191. struct mii_bus *bus = ps->bus;
  192. struct dsa_loop_vlan *vl;
  193. u16 vid, pvid = ps->pvid;
  194. /* Just do a sleeping operation to make lockdep checks effective */
  195. mdiobus_read(bus, ps->port_base + port, MII_BMSR);
  196. for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
  197. vl = &ps->vlans[vid];
  198. vl->members &= ~BIT(port);
  199. if (untagged)
  200. vl->untagged &= ~BIT(port);
  201. if (pvid == vid)
  202. pvid = 1;
  203. dev_dbg(ds->dev, "%s: port: %d vlan: %d, %stagged, pvid: %d\n",
  204. __func__, port, vid, untagged ? "un" : "", pvid);
  205. }
  206. ps->pvid = pvid;
  207. return 0;
  208. }
  209. static const struct dsa_switch_ops dsa_loop_driver = {
  210. .get_tag_protocol = dsa_loop_get_protocol,
  211. .setup = dsa_loop_setup,
  212. .get_strings = dsa_loop_get_strings,
  213. .get_ethtool_stats = dsa_loop_get_ethtool_stats,
  214. .get_sset_count = dsa_loop_get_sset_count,
  215. .get_ethtool_phy_stats = dsa_loop_get_ethtool_stats,
  216. .phy_read = dsa_loop_phy_read,
  217. .phy_write = dsa_loop_phy_write,
  218. .port_bridge_join = dsa_loop_port_bridge_join,
  219. .port_bridge_leave = dsa_loop_port_bridge_leave,
  220. .port_stp_state_set = dsa_loop_port_stp_state_set,
  221. .port_vlan_filtering = dsa_loop_port_vlan_filtering,
  222. .port_vlan_prepare = dsa_loop_port_vlan_prepare,
  223. .port_vlan_add = dsa_loop_port_vlan_add,
  224. .port_vlan_del = dsa_loop_port_vlan_del,
  225. };
  226. static int dsa_loop_drv_probe(struct mdio_device *mdiodev)
  227. {
  228. struct dsa_loop_pdata *pdata = mdiodev->dev.platform_data;
  229. struct dsa_loop_priv *ps;
  230. struct dsa_switch *ds;
  231. if (!pdata)
  232. return -ENODEV;
  233. dev_info(&mdiodev->dev, "%s: 0x%0x\n",
  234. pdata->name, pdata->enabled_ports);
  235. ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
  236. if (!ds)
  237. return -ENOMEM;
  238. ps = devm_kzalloc(&mdiodev->dev, sizeof(*ps), GFP_KERNEL);
  239. if (!ps)
  240. return -ENOMEM;
  241. ps->netdev = dev_get_by_name(&init_net, pdata->netdev);
  242. if (!ps->netdev)
  243. return -EPROBE_DEFER;
  244. pdata->cd.netdev[DSA_LOOP_CPU_PORT] = &ps->netdev->dev;
  245. ds->dev = &mdiodev->dev;
  246. ds->ops = &dsa_loop_driver;
  247. ds->priv = ps;
  248. ps->bus = mdiodev->bus;
  249. dev_set_drvdata(&mdiodev->dev, ds);
  250. return dsa_register_switch(ds);
  251. }
  252. static void dsa_loop_drv_remove(struct mdio_device *mdiodev)
  253. {
  254. struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
  255. struct dsa_loop_priv *ps = ds->priv;
  256. dsa_unregister_switch(ds);
  257. dev_put(ps->netdev);
  258. }
  259. static struct mdio_driver dsa_loop_drv = {
  260. .mdiodrv.driver = {
  261. .name = "dsa-loop",
  262. },
  263. .probe = dsa_loop_drv_probe,
  264. .remove = dsa_loop_drv_remove,
  265. };
  266. #define NUM_FIXED_PHYS (DSA_LOOP_NUM_PORTS - 2)
  267. static int __init dsa_loop_init(void)
  268. {
  269. struct fixed_phy_status status = {
  270. .link = 1,
  271. .speed = SPEED_100,
  272. .duplex = DUPLEX_FULL,
  273. };
  274. unsigned int i;
  275. for (i = 0; i < NUM_FIXED_PHYS; i++)
  276. phydevs[i] = fixed_phy_register(PHY_POLL, &status, -1, NULL);
  277. return mdio_driver_register(&dsa_loop_drv);
  278. }
  279. module_init(dsa_loop_init);
  280. static void __exit dsa_loop_exit(void)
  281. {
  282. unsigned int i;
  283. mdio_driver_unregister(&dsa_loop_drv);
  284. for (i = 0; i < NUM_FIXED_PHYS; i++)
  285. if (!IS_ERR(phydevs[i]))
  286. fixed_phy_unregister(phydevs[i]);
  287. }
  288. module_exit(dsa_loop_exit);
  289. MODULE_SOFTDEP("pre: dsa_loop_bdinfo");
  290. MODULE_LICENSE("GPL");
  291. MODULE_AUTHOR("Florian Fainelli");
  292. MODULE_DESCRIPTION("DSA loopback driver");