vrf.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /*
  2. * vrf.c: device driver to encapsulate a VRF space
  3. *
  4. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  5. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
  6. * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
  7. *
  8. * Based on dummy, team and ipvlan drivers
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ip.h>
  20. #include <linux/init.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/netfilter.h>
  23. #include <linux/rtnetlink.h>
  24. #include <net/rtnetlink.h>
  25. #include <linux/u64_stats_sync.h>
  26. #include <linux/hashtable.h>
  27. #include <linux/inetdevice.h>
  28. #include <net/arp.h>
  29. #include <net/ip.h>
  30. #include <net/ip_fib.h>
  31. #include <net/ip6_fib.h>
  32. #include <net/ip6_route.h>
  33. #include <net/route.h>
  34. #include <net/addrconf.h>
  35. #include <net/l3mdev.h>
  36. #include <net/fib_rules.h>
  37. #include <net/netns/generic.h>
  38. #define DRV_NAME "vrf"
  39. #define DRV_VERSION "1.0"
  40. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  41. static unsigned int vrf_net_id;
  42. struct net_vrf {
  43. struct rtable __rcu *rth;
  44. struct rt6_info __rcu *rt6;
  45. #if IS_ENABLED(CONFIG_IPV6)
  46. struct fib6_table *fib6_table;
  47. #endif
  48. u32 tb_id;
  49. };
  50. struct pcpu_dstats {
  51. u64 tx_pkts;
  52. u64 tx_bytes;
  53. u64 tx_drps;
  54. u64 rx_pkts;
  55. u64 rx_bytes;
  56. u64 rx_drps;
  57. struct u64_stats_sync syncp;
  58. };
  59. static void vrf_rx_stats(struct net_device *dev, int len)
  60. {
  61. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  62. u64_stats_update_begin(&dstats->syncp);
  63. dstats->rx_pkts++;
  64. dstats->rx_bytes += len;
  65. u64_stats_update_end(&dstats->syncp);
  66. }
  67. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  68. {
  69. vrf_dev->stats.tx_errors++;
  70. kfree_skb(skb);
  71. }
  72. static void vrf_get_stats64(struct net_device *dev,
  73. struct rtnl_link_stats64 *stats)
  74. {
  75. int i;
  76. for_each_possible_cpu(i) {
  77. const struct pcpu_dstats *dstats;
  78. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  79. unsigned int start;
  80. dstats = per_cpu_ptr(dev->dstats, i);
  81. do {
  82. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  83. tbytes = dstats->tx_bytes;
  84. tpkts = dstats->tx_pkts;
  85. tdrops = dstats->tx_drps;
  86. rbytes = dstats->rx_bytes;
  87. rpkts = dstats->rx_pkts;
  88. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  89. stats->tx_bytes += tbytes;
  90. stats->tx_packets += tpkts;
  91. stats->tx_dropped += tdrops;
  92. stats->rx_bytes += rbytes;
  93. stats->rx_packets += rpkts;
  94. }
  95. }
  96. /* by default VRF devices do not have a qdisc and are expected
  97. * to be created with only a single queue.
  98. */
  99. static bool qdisc_tx_is_default(const struct net_device *dev)
  100. {
  101. struct netdev_queue *txq;
  102. struct Qdisc *qdisc;
  103. if (dev->num_tx_queues > 1)
  104. return false;
  105. txq = netdev_get_tx_queue(dev, 0);
  106. qdisc = rcu_access_pointer(txq->qdisc);
  107. return !qdisc->enqueue;
  108. }
  109. /* Local traffic destined to local address. Reinsert the packet to rx
  110. * path, similar to loopback handling.
  111. */
  112. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  113. struct dst_entry *dst)
  114. {
  115. int len = skb->len;
  116. skb_orphan(skb);
  117. skb_dst_set(skb, dst);
  118. /* set pkt_type to avoid skb hitting packet taps twice -
  119. * once on Tx and again in Rx processing
  120. */
  121. skb->pkt_type = PACKET_LOOPBACK;
  122. skb->protocol = eth_type_trans(skb, dev);
  123. if (likely(netif_rx(skb) == NET_RX_SUCCESS))
  124. vrf_rx_stats(dev, len);
  125. else
  126. this_cpu_inc(dev->dstats->rx_drps);
  127. return NETDEV_TX_OK;
  128. }
  129. #if IS_ENABLED(CONFIG_IPV6)
  130. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  131. struct sk_buff *skb)
  132. {
  133. int err;
  134. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  135. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  136. if (likely(err == 1))
  137. err = dst_output(net, sk, skb);
  138. return err;
  139. }
  140. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  141. struct net_device *dev)
  142. {
  143. const struct ipv6hdr *iph;
  144. struct net *net = dev_net(skb->dev);
  145. struct flowi6 fl6;
  146. int ret = NET_XMIT_DROP;
  147. struct dst_entry *dst;
  148. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  149. if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
  150. goto err;
  151. iph = ipv6_hdr(skb);
  152. memset(&fl6, 0, sizeof(fl6));
  153. /* needed to match OIF rule */
  154. fl6.flowi6_oif = dev->ifindex;
  155. fl6.flowi6_iif = LOOPBACK_IFINDEX;
  156. fl6.daddr = iph->daddr;
  157. fl6.saddr = iph->saddr;
  158. fl6.flowlabel = ip6_flowinfo(iph);
  159. fl6.flowi6_mark = skb->mark;
  160. fl6.flowi6_proto = iph->nexthdr;
  161. fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
  162. dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
  163. if (IS_ERR(dst) || dst == dst_null)
  164. goto err;
  165. skb_dst_drop(skb);
  166. /* if dst.dev is loopback or the VRF device again this is locally
  167. * originated traffic destined to a local address. Short circuit
  168. * to Rx path
  169. */
  170. if (dst->dev == dev)
  171. return vrf_local_xmit(skb, dev, dst);
  172. skb_dst_set(skb, dst);
  173. /* strip the ethernet header added for pass through VRF device */
  174. __skb_pull(skb, skb_network_offset(skb));
  175. ret = vrf_ip6_local_out(net, skb->sk, skb);
  176. if (unlikely(net_xmit_eval(ret)))
  177. dev->stats.tx_errors++;
  178. else
  179. ret = NET_XMIT_SUCCESS;
  180. return ret;
  181. err:
  182. vrf_tx_error(dev, skb);
  183. return NET_XMIT_DROP;
  184. }
  185. #else
  186. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  187. struct net_device *dev)
  188. {
  189. vrf_tx_error(dev, skb);
  190. return NET_XMIT_DROP;
  191. }
  192. #endif
  193. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  194. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  195. struct sk_buff *skb)
  196. {
  197. int err;
  198. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  199. skb, NULL, skb_dst(skb)->dev, dst_output);
  200. if (likely(err == 1))
  201. err = dst_output(net, sk, skb);
  202. return err;
  203. }
  204. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  205. struct net_device *vrf_dev)
  206. {
  207. struct iphdr *ip4h;
  208. int ret = NET_XMIT_DROP;
  209. struct flowi4 fl4;
  210. struct net *net = dev_net(vrf_dev);
  211. struct rtable *rt;
  212. if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
  213. goto err;
  214. ip4h = ip_hdr(skb);
  215. memset(&fl4, 0, sizeof(fl4));
  216. /* needed to match OIF rule */
  217. fl4.flowi4_oif = vrf_dev->ifindex;
  218. fl4.flowi4_iif = LOOPBACK_IFINDEX;
  219. fl4.flowi4_tos = RT_TOS(ip4h->tos);
  220. fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
  221. fl4.flowi4_proto = ip4h->protocol;
  222. fl4.daddr = ip4h->daddr;
  223. fl4.saddr = ip4h->saddr;
  224. rt = ip_route_output_flow(net, &fl4, NULL);
  225. if (IS_ERR(rt))
  226. goto err;
  227. skb_dst_drop(skb);
  228. /* if dst.dev is loopback or the VRF device again this is locally
  229. * originated traffic destined to a local address. Short circuit
  230. * to Rx path
  231. */
  232. if (rt->dst.dev == vrf_dev)
  233. return vrf_local_xmit(skb, vrf_dev, &rt->dst);
  234. skb_dst_set(skb, &rt->dst);
  235. /* strip the ethernet header added for pass through VRF device */
  236. __skb_pull(skb, skb_network_offset(skb));
  237. if (!ip4h->saddr) {
  238. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  239. RT_SCOPE_LINK);
  240. }
  241. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  242. if (unlikely(net_xmit_eval(ret)))
  243. vrf_dev->stats.tx_errors++;
  244. else
  245. ret = NET_XMIT_SUCCESS;
  246. out:
  247. return ret;
  248. err:
  249. vrf_tx_error(vrf_dev, skb);
  250. goto out;
  251. }
  252. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  253. {
  254. switch (skb->protocol) {
  255. case htons(ETH_P_IP):
  256. return vrf_process_v4_outbound(skb, dev);
  257. case htons(ETH_P_IPV6):
  258. return vrf_process_v6_outbound(skb, dev);
  259. default:
  260. vrf_tx_error(dev, skb);
  261. return NET_XMIT_DROP;
  262. }
  263. }
  264. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  265. {
  266. int len = skb->len;
  267. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  268. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  269. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  270. u64_stats_update_begin(&dstats->syncp);
  271. dstats->tx_pkts++;
  272. dstats->tx_bytes += len;
  273. u64_stats_update_end(&dstats->syncp);
  274. } else {
  275. this_cpu_inc(dev->dstats->tx_drps);
  276. }
  277. return ret;
  278. }
  279. static void vrf_finish_direct(struct sk_buff *skb)
  280. {
  281. struct net_device *vrf_dev = skb->dev;
  282. if (!list_empty(&vrf_dev->ptype_all) &&
  283. likely(skb_headroom(skb) >= ETH_HLEN)) {
  284. struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  285. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  286. eth_zero_addr(eth->h_dest);
  287. eth->h_proto = skb->protocol;
  288. rcu_read_lock_bh();
  289. dev_queue_xmit_nit(skb, vrf_dev);
  290. rcu_read_unlock_bh();
  291. skb_pull(skb, ETH_HLEN);
  292. }
  293. /* reset skb device */
  294. nf_reset(skb);
  295. }
  296. #if IS_ENABLED(CONFIG_IPV6)
  297. /* modelled after ip6_finish_output2 */
  298. static int vrf_finish_output6(struct net *net, struct sock *sk,
  299. struct sk_buff *skb)
  300. {
  301. struct dst_entry *dst = skb_dst(skb);
  302. struct net_device *dev = dst->dev;
  303. struct neighbour *neigh;
  304. struct in6_addr *nexthop;
  305. int ret;
  306. nf_reset(skb);
  307. skb->protocol = htons(ETH_P_IPV6);
  308. skb->dev = dev;
  309. rcu_read_lock_bh();
  310. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  311. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  312. if (unlikely(!neigh))
  313. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  314. if (!IS_ERR(neigh)) {
  315. sock_confirm_neigh(skb, neigh);
  316. ret = neigh_output(neigh, skb);
  317. rcu_read_unlock_bh();
  318. return ret;
  319. }
  320. rcu_read_unlock_bh();
  321. IP6_INC_STATS(dev_net(dst->dev),
  322. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  323. kfree_skb(skb);
  324. return -EINVAL;
  325. }
  326. /* modelled after ip6_output */
  327. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  328. {
  329. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  330. net, sk, skb, NULL, skb_dst(skb)->dev,
  331. vrf_finish_output6,
  332. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  333. }
  334. /* set dst on skb to send packet to us via dev_xmit path. Allows
  335. * packet to go through device based features such as qdisc, netfilter
  336. * hooks and packet sockets with skb->dev set to vrf device.
  337. */
  338. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  339. struct sk_buff *skb)
  340. {
  341. struct net_vrf *vrf = netdev_priv(vrf_dev);
  342. struct dst_entry *dst = NULL;
  343. struct rt6_info *rt6;
  344. rcu_read_lock();
  345. rt6 = rcu_dereference(vrf->rt6);
  346. if (likely(rt6)) {
  347. dst = &rt6->dst;
  348. dst_hold(dst);
  349. }
  350. rcu_read_unlock();
  351. if (unlikely(!dst)) {
  352. vrf_tx_error(vrf_dev, skb);
  353. return NULL;
  354. }
  355. skb_dst_drop(skb);
  356. skb_dst_set(skb, dst);
  357. return skb;
  358. }
  359. static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
  360. struct sk_buff *skb)
  361. {
  362. vrf_finish_direct(skb);
  363. return vrf_ip6_local_out(net, sk, skb);
  364. }
  365. static int vrf_output6_direct(struct net *net, struct sock *sk,
  366. struct sk_buff *skb)
  367. {
  368. int err = 1;
  369. skb->protocol = htons(ETH_P_IPV6);
  370. if (!(IPCB(skb)->flags & IPSKB_REROUTED))
  371. err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
  372. NULL, skb->dev, vrf_output6_direct_finish);
  373. if (likely(err == 1))
  374. vrf_finish_direct(skb);
  375. return err;
  376. }
  377. static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
  378. struct sk_buff *skb)
  379. {
  380. int err;
  381. err = vrf_output6_direct(net, sk, skb);
  382. if (likely(err == 1))
  383. err = vrf_ip6_local_out(net, sk, skb);
  384. return err;
  385. }
  386. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  387. struct sock *sk,
  388. struct sk_buff *skb)
  389. {
  390. struct net *net = dev_net(vrf_dev);
  391. int err;
  392. skb->dev = vrf_dev;
  393. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  394. skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
  395. if (likely(err == 1))
  396. err = vrf_output6_direct(net, sk, skb);
  397. if (likely(err == 1))
  398. return skb;
  399. return NULL;
  400. }
  401. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  402. struct sock *sk,
  403. struct sk_buff *skb)
  404. {
  405. /* don't divert link scope packets */
  406. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  407. return skb;
  408. if (qdisc_tx_is_default(vrf_dev) ||
  409. IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
  410. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  411. return vrf_ip6_out_redirect(vrf_dev, skb);
  412. }
  413. /* holding rtnl */
  414. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  415. {
  416. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  417. struct net *net = dev_net(dev);
  418. struct dst_entry *dst;
  419. RCU_INIT_POINTER(vrf->rt6, NULL);
  420. synchronize_rcu();
  421. /* move dev in dst's to loopback so this VRF device can be deleted
  422. * - based on dst_ifdown
  423. */
  424. if (rt6) {
  425. dst = &rt6->dst;
  426. dev_put(dst->dev);
  427. dst->dev = net->loopback_dev;
  428. dev_hold(dst->dev);
  429. dst_release(dst);
  430. }
  431. }
  432. static int vrf_rt6_create(struct net_device *dev)
  433. {
  434. int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
  435. struct net_vrf *vrf = netdev_priv(dev);
  436. struct net *net = dev_net(dev);
  437. struct rt6_info *rt6;
  438. int rc = -ENOMEM;
  439. /* IPv6 can be CONFIG enabled and then disabled runtime */
  440. if (!ipv6_mod_enabled())
  441. return 0;
  442. vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
  443. if (!vrf->fib6_table)
  444. goto out;
  445. /* create a dst for routing packets out a VRF device */
  446. rt6 = ip6_dst_alloc(net, dev, flags);
  447. if (!rt6)
  448. goto out;
  449. rt6->dst.output = vrf_output6;
  450. rcu_assign_pointer(vrf->rt6, rt6);
  451. rc = 0;
  452. out:
  453. return rc;
  454. }
  455. #else
  456. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  457. struct sock *sk,
  458. struct sk_buff *skb)
  459. {
  460. return skb;
  461. }
  462. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  463. {
  464. }
  465. static int vrf_rt6_create(struct net_device *dev)
  466. {
  467. return 0;
  468. }
  469. #endif
  470. /* modelled after ip_finish_output2 */
  471. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  472. {
  473. struct dst_entry *dst = skb_dst(skb);
  474. struct rtable *rt = (struct rtable *)dst;
  475. struct net_device *dev = dst->dev;
  476. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  477. struct neighbour *neigh;
  478. u32 nexthop;
  479. int ret = -EINVAL;
  480. nf_reset(skb);
  481. /* Be paranoid, rather than too clever. */
  482. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  483. struct sk_buff *skb2;
  484. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  485. if (!skb2) {
  486. ret = -ENOMEM;
  487. goto err;
  488. }
  489. if (skb->sk)
  490. skb_set_owner_w(skb2, skb->sk);
  491. consume_skb(skb);
  492. skb = skb2;
  493. }
  494. rcu_read_lock_bh();
  495. nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
  496. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  497. if (unlikely(!neigh))
  498. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  499. if (!IS_ERR(neigh)) {
  500. sock_confirm_neigh(skb, neigh);
  501. ret = neigh_output(neigh, skb);
  502. rcu_read_unlock_bh();
  503. return ret;
  504. }
  505. rcu_read_unlock_bh();
  506. err:
  507. vrf_tx_error(skb->dev, skb);
  508. return ret;
  509. }
  510. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  511. {
  512. struct net_device *dev = skb_dst(skb)->dev;
  513. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  514. skb->dev = dev;
  515. skb->protocol = htons(ETH_P_IP);
  516. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  517. net, sk, skb, NULL, dev,
  518. vrf_finish_output,
  519. !(IPCB(skb)->flags & IPSKB_REROUTED));
  520. }
  521. /* set dst on skb to send packet to us via dev_xmit path. Allows
  522. * packet to go through device based features such as qdisc, netfilter
  523. * hooks and packet sockets with skb->dev set to vrf device.
  524. */
  525. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  526. struct sk_buff *skb)
  527. {
  528. struct net_vrf *vrf = netdev_priv(vrf_dev);
  529. struct dst_entry *dst = NULL;
  530. struct rtable *rth;
  531. rcu_read_lock();
  532. rth = rcu_dereference(vrf->rth);
  533. if (likely(rth)) {
  534. dst = &rth->dst;
  535. dst_hold(dst);
  536. }
  537. rcu_read_unlock();
  538. if (unlikely(!dst)) {
  539. vrf_tx_error(vrf_dev, skb);
  540. return NULL;
  541. }
  542. skb_dst_drop(skb);
  543. skb_dst_set(skb, dst);
  544. return skb;
  545. }
  546. static int vrf_output_direct_finish(struct net *net, struct sock *sk,
  547. struct sk_buff *skb)
  548. {
  549. vrf_finish_direct(skb);
  550. return vrf_ip_local_out(net, sk, skb);
  551. }
  552. static int vrf_output_direct(struct net *net, struct sock *sk,
  553. struct sk_buff *skb)
  554. {
  555. int err = 1;
  556. skb->protocol = htons(ETH_P_IP);
  557. if (!(IPCB(skb)->flags & IPSKB_REROUTED))
  558. err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
  559. NULL, skb->dev, vrf_output_direct_finish);
  560. if (likely(err == 1))
  561. vrf_finish_direct(skb);
  562. return err;
  563. }
  564. static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
  565. struct sk_buff *skb)
  566. {
  567. int err;
  568. err = vrf_output_direct(net, sk, skb);
  569. if (likely(err == 1))
  570. err = vrf_ip_local_out(net, sk, skb);
  571. return err;
  572. }
  573. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  574. struct sock *sk,
  575. struct sk_buff *skb)
  576. {
  577. struct net *net = dev_net(vrf_dev);
  578. int err;
  579. skb->dev = vrf_dev;
  580. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  581. skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
  582. if (likely(err == 1))
  583. err = vrf_output_direct(net, sk, skb);
  584. if (likely(err == 1))
  585. return skb;
  586. return NULL;
  587. }
  588. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  589. struct sock *sk,
  590. struct sk_buff *skb)
  591. {
  592. /* don't divert multicast or local broadcast */
  593. if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
  594. ipv4_is_lbcast(ip_hdr(skb)->daddr))
  595. return skb;
  596. if (qdisc_tx_is_default(vrf_dev) ||
  597. IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
  598. return vrf_ip_out_direct(vrf_dev, sk, skb);
  599. return vrf_ip_out_redirect(vrf_dev, skb);
  600. }
  601. /* called with rcu lock held */
  602. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  603. struct sock *sk,
  604. struct sk_buff *skb,
  605. u16 proto)
  606. {
  607. switch (proto) {
  608. case AF_INET:
  609. return vrf_ip_out(vrf_dev, sk, skb);
  610. case AF_INET6:
  611. return vrf_ip6_out(vrf_dev, sk, skb);
  612. }
  613. return skb;
  614. }
  615. /* holding rtnl */
  616. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  617. {
  618. struct rtable *rth = rtnl_dereference(vrf->rth);
  619. struct net *net = dev_net(dev);
  620. struct dst_entry *dst;
  621. RCU_INIT_POINTER(vrf->rth, NULL);
  622. synchronize_rcu();
  623. /* move dev in dst's to loopback so this VRF device can be deleted
  624. * - based on dst_ifdown
  625. */
  626. if (rth) {
  627. dst = &rth->dst;
  628. dev_put(dst->dev);
  629. dst->dev = net->loopback_dev;
  630. dev_hold(dst->dev);
  631. dst_release(dst);
  632. }
  633. }
  634. static int vrf_rtable_create(struct net_device *dev)
  635. {
  636. struct net_vrf *vrf = netdev_priv(dev);
  637. struct rtable *rth;
  638. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  639. return -ENOMEM;
  640. /* create a dst for routing packets out through a VRF device */
  641. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
  642. if (!rth)
  643. return -ENOMEM;
  644. rth->dst.output = vrf_output;
  645. rcu_assign_pointer(vrf->rth, rth);
  646. return 0;
  647. }
  648. /**************************** device handling ********************/
  649. /* cycle interface to flush neighbor cache and move routes across tables */
  650. static void cycle_netdev(struct net_device *dev)
  651. {
  652. unsigned int flags = dev->flags;
  653. int ret;
  654. if (!netif_running(dev))
  655. return;
  656. ret = dev_change_flags(dev, flags & ~IFF_UP);
  657. if (ret >= 0)
  658. ret = dev_change_flags(dev, flags);
  659. if (ret < 0) {
  660. netdev_err(dev,
  661. "Failed to cycle device %s; route tables might be wrong!\n",
  662. dev->name);
  663. }
  664. }
  665. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  666. struct netlink_ext_ack *extack)
  667. {
  668. int ret;
  669. /* do not allow loopback device to be enslaved to a VRF.
  670. * The vrf device acts as the loopback for the vrf.
  671. */
  672. if (port_dev == dev_net(dev)->loopback_dev) {
  673. NL_SET_ERR_MSG(extack,
  674. "Can not enslave loopback device to a VRF");
  675. return -EOPNOTSUPP;
  676. }
  677. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  678. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
  679. if (ret < 0)
  680. goto err;
  681. cycle_netdev(port_dev);
  682. return 0;
  683. err:
  684. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  685. return ret;
  686. }
  687. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  688. struct netlink_ext_ack *extack)
  689. {
  690. if (netif_is_l3_master(port_dev)) {
  691. NL_SET_ERR_MSG(extack,
  692. "Can not enslave an L3 master device to a VRF");
  693. return -EINVAL;
  694. }
  695. if (netif_is_l3_slave(port_dev))
  696. return -EINVAL;
  697. return do_vrf_add_slave(dev, port_dev, extack);
  698. }
  699. /* inverse of do_vrf_add_slave */
  700. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  701. {
  702. netdev_upper_dev_unlink(port_dev, dev);
  703. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  704. cycle_netdev(port_dev);
  705. return 0;
  706. }
  707. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  708. {
  709. return do_vrf_del_slave(dev, port_dev);
  710. }
  711. static void vrf_dev_uninit(struct net_device *dev)
  712. {
  713. struct net_vrf *vrf = netdev_priv(dev);
  714. vrf_rtable_release(dev, vrf);
  715. vrf_rt6_release(dev, vrf);
  716. free_percpu(dev->dstats);
  717. dev->dstats = NULL;
  718. }
  719. static int vrf_dev_init(struct net_device *dev)
  720. {
  721. struct net_vrf *vrf = netdev_priv(dev);
  722. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  723. if (!dev->dstats)
  724. goto out_nomem;
  725. /* create the default dst which points back to us */
  726. if (vrf_rtable_create(dev) != 0)
  727. goto out_stats;
  728. if (vrf_rt6_create(dev) != 0)
  729. goto out_rth;
  730. dev->flags = IFF_MASTER | IFF_NOARP;
  731. /* MTU is irrelevant for VRF device; set to 64k similar to lo */
  732. dev->mtu = 64 * 1024;
  733. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  734. dev->operstate = IF_OPER_UP;
  735. netdev_lockdep_set_classes(dev);
  736. return 0;
  737. out_rth:
  738. vrf_rtable_release(dev, vrf);
  739. out_stats:
  740. free_percpu(dev->dstats);
  741. dev->dstats = NULL;
  742. out_nomem:
  743. return -ENOMEM;
  744. }
  745. static const struct net_device_ops vrf_netdev_ops = {
  746. .ndo_init = vrf_dev_init,
  747. .ndo_uninit = vrf_dev_uninit,
  748. .ndo_start_xmit = vrf_xmit,
  749. .ndo_get_stats64 = vrf_get_stats64,
  750. .ndo_add_slave = vrf_add_slave,
  751. .ndo_del_slave = vrf_del_slave,
  752. };
  753. static u32 vrf_fib_table(const struct net_device *dev)
  754. {
  755. struct net_vrf *vrf = netdev_priv(dev);
  756. return vrf->tb_id;
  757. }
  758. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  759. {
  760. kfree_skb(skb);
  761. return 0;
  762. }
  763. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  764. struct sk_buff *skb,
  765. struct net_device *dev)
  766. {
  767. struct net *net = dev_net(dev);
  768. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  769. skb = NULL; /* kfree_skb(skb) handled by nf code */
  770. return skb;
  771. }
  772. #if IS_ENABLED(CONFIG_IPV6)
  773. /* neighbor handling is done with actual device; do not want
  774. * to flip skb->dev for those ndisc packets. This really fails
  775. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  776. * a start.
  777. */
  778. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  779. {
  780. const struct ipv6hdr *iph = ipv6_hdr(skb);
  781. bool rc = false;
  782. if (iph->nexthdr == NEXTHDR_ICMP) {
  783. const struct icmp6hdr *icmph;
  784. struct icmp6hdr _icmph;
  785. icmph = skb_header_pointer(skb, sizeof(*iph),
  786. sizeof(_icmph), &_icmph);
  787. if (!icmph)
  788. goto out;
  789. switch (icmph->icmp6_type) {
  790. case NDISC_ROUTER_SOLICITATION:
  791. case NDISC_ROUTER_ADVERTISEMENT:
  792. case NDISC_NEIGHBOUR_SOLICITATION:
  793. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  794. case NDISC_REDIRECT:
  795. rc = true;
  796. break;
  797. }
  798. }
  799. out:
  800. return rc;
  801. }
  802. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  803. const struct net_device *dev,
  804. struct flowi6 *fl6,
  805. int ifindex,
  806. const struct sk_buff *skb,
  807. int flags)
  808. {
  809. struct net_vrf *vrf = netdev_priv(dev);
  810. return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
  811. }
  812. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  813. int ifindex)
  814. {
  815. const struct ipv6hdr *iph = ipv6_hdr(skb);
  816. struct flowi6 fl6 = {
  817. .flowi6_iif = ifindex,
  818. .flowi6_mark = skb->mark,
  819. .flowi6_proto = iph->nexthdr,
  820. .daddr = iph->daddr,
  821. .saddr = iph->saddr,
  822. .flowlabel = ip6_flowinfo(iph),
  823. };
  824. struct net *net = dev_net(vrf_dev);
  825. struct rt6_info *rt6;
  826. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
  827. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  828. if (unlikely(!rt6))
  829. return;
  830. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  831. return;
  832. skb_dst_set(skb, &rt6->dst);
  833. }
  834. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  835. struct sk_buff *skb)
  836. {
  837. int orig_iif = skb->skb_iif;
  838. bool need_strict;
  839. /* loopback traffic; do not push through packet taps again.
  840. * Reset pkt_type for upper layers to process skb
  841. */
  842. if (skb->pkt_type == PACKET_LOOPBACK) {
  843. skb->dev = vrf_dev;
  844. skb->skb_iif = vrf_dev->ifindex;
  845. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  846. skb->pkt_type = PACKET_HOST;
  847. goto out;
  848. }
  849. /* if packet is NDISC or addressed to multicast or link-local
  850. * then keep the ingress interface
  851. */
  852. need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  853. if (!ipv6_ndisc_frame(skb) && !need_strict) {
  854. vrf_rx_stats(vrf_dev, skb->len);
  855. skb->dev = vrf_dev;
  856. skb->skb_iif = vrf_dev->ifindex;
  857. if (!list_empty(&vrf_dev->ptype_all)) {
  858. skb_push(skb, skb->mac_len);
  859. dev_queue_xmit_nit(skb, vrf_dev);
  860. skb_pull(skb, skb->mac_len);
  861. }
  862. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  863. }
  864. if (need_strict)
  865. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  866. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  867. out:
  868. return skb;
  869. }
  870. #else
  871. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  872. struct sk_buff *skb)
  873. {
  874. return skb;
  875. }
  876. #endif
  877. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  878. struct sk_buff *skb)
  879. {
  880. skb->dev = vrf_dev;
  881. skb->skb_iif = vrf_dev->ifindex;
  882. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  883. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  884. goto out;
  885. /* loopback traffic; do not push through packet taps again.
  886. * Reset pkt_type for upper layers to process skb
  887. */
  888. if (skb->pkt_type == PACKET_LOOPBACK) {
  889. skb->pkt_type = PACKET_HOST;
  890. goto out;
  891. }
  892. vrf_rx_stats(vrf_dev, skb->len);
  893. if (!list_empty(&vrf_dev->ptype_all)) {
  894. skb_push(skb, skb->mac_len);
  895. dev_queue_xmit_nit(skb, vrf_dev);
  896. skb_pull(skb, skb->mac_len);
  897. }
  898. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  899. out:
  900. return skb;
  901. }
  902. /* called with rcu lock held */
  903. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  904. struct sk_buff *skb,
  905. u16 proto)
  906. {
  907. switch (proto) {
  908. case AF_INET:
  909. return vrf_ip_rcv(vrf_dev, skb);
  910. case AF_INET6:
  911. return vrf_ip6_rcv(vrf_dev, skb);
  912. }
  913. return skb;
  914. }
  915. #if IS_ENABLED(CONFIG_IPV6)
  916. /* send to link-local or multicast address via interface enslaved to
  917. * VRF device. Force lookup to VRF table without changing flow struct
  918. */
  919. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  920. struct flowi6 *fl6)
  921. {
  922. struct net *net = dev_net(dev);
  923. int flags = RT6_LOOKUP_F_IFACE;
  924. struct dst_entry *dst = NULL;
  925. struct rt6_info *rt;
  926. /* VRF device does not have a link-local address and
  927. * sending packets to link-local or mcast addresses over
  928. * a VRF device does not make sense
  929. */
  930. if (fl6->flowi6_oif == dev->ifindex) {
  931. dst = &net->ipv6.ip6_null_entry->dst;
  932. dst_hold(dst);
  933. return dst;
  934. }
  935. if (!ipv6_addr_any(&fl6->saddr))
  936. flags |= RT6_LOOKUP_F_HAS_SADDR;
  937. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
  938. if (rt)
  939. dst = &rt->dst;
  940. return dst;
  941. }
  942. #endif
  943. static const struct l3mdev_ops vrf_l3mdev_ops = {
  944. .l3mdev_fib_table = vrf_fib_table,
  945. .l3mdev_l3_rcv = vrf_l3_rcv,
  946. .l3mdev_l3_out = vrf_l3_out,
  947. #if IS_ENABLED(CONFIG_IPV6)
  948. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  949. #endif
  950. };
  951. static void vrf_get_drvinfo(struct net_device *dev,
  952. struct ethtool_drvinfo *info)
  953. {
  954. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  955. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  956. }
  957. static const struct ethtool_ops vrf_ethtool_ops = {
  958. .get_drvinfo = vrf_get_drvinfo,
  959. };
  960. static inline size_t vrf_fib_rule_nl_size(void)
  961. {
  962. size_t sz;
  963. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  964. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  965. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  966. sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
  967. return sz;
  968. }
  969. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  970. {
  971. struct fib_rule_hdr *frh;
  972. struct nlmsghdr *nlh;
  973. struct sk_buff *skb;
  974. int err;
  975. if (family == AF_INET6 && !ipv6_mod_enabled())
  976. return 0;
  977. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  978. if (!skb)
  979. return -ENOMEM;
  980. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  981. if (!nlh)
  982. goto nla_put_failure;
  983. /* rule only needs to appear once */
  984. nlh->nlmsg_flags |= NLM_F_EXCL;
  985. frh = nlmsg_data(nlh);
  986. memset(frh, 0, sizeof(*frh));
  987. frh->family = family;
  988. frh->action = FR_ACT_TO_TBL;
  989. if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
  990. goto nla_put_failure;
  991. if (nla_put_u8(skb, FRA_L3MDEV, 1))
  992. goto nla_put_failure;
  993. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  994. goto nla_put_failure;
  995. nlmsg_end(skb, nlh);
  996. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  997. skb->sk = dev_net(dev)->rtnl;
  998. if (add_it) {
  999. err = fib_nl_newrule(skb, nlh, NULL);
  1000. if (err == -EEXIST)
  1001. err = 0;
  1002. } else {
  1003. err = fib_nl_delrule(skb, nlh, NULL);
  1004. if (err == -ENOENT)
  1005. err = 0;
  1006. }
  1007. nlmsg_free(skb);
  1008. return err;
  1009. nla_put_failure:
  1010. nlmsg_free(skb);
  1011. return -EMSGSIZE;
  1012. }
  1013. static int vrf_add_fib_rules(const struct net_device *dev)
  1014. {
  1015. int err;
  1016. err = vrf_fib_rule(dev, AF_INET, true);
  1017. if (err < 0)
  1018. goto out_err;
  1019. err = vrf_fib_rule(dev, AF_INET6, true);
  1020. if (err < 0)
  1021. goto ipv6_err;
  1022. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  1023. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  1024. if (err < 0)
  1025. goto ipmr_err;
  1026. #endif
  1027. return 0;
  1028. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  1029. ipmr_err:
  1030. vrf_fib_rule(dev, AF_INET6, false);
  1031. #endif
  1032. ipv6_err:
  1033. vrf_fib_rule(dev, AF_INET, false);
  1034. out_err:
  1035. netdev_err(dev, "Failed to add FIB rules.\n");
  1036. return err;
  1037. }
  1038. static void vrf_setup(struct net_device *dev)
  1039. {
  1040. ether_setup(dev);
  1041. /* Initialize the device structure. */
  1042. dev->netdev_ops = &vrf_netdev_ops;
  1043. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1044. dev->ethtool_ops = &vrf_ethtool_ops;
  1045. dev->needs_free_netdev = true;
  1046. /* Fill in device structure with ethernet-generic values. */
  1047. eth_hw_addr_random(dev);
  1048. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1049. dev->features |= NETIF_F_LLTX;
  1050. /* don't allow vrf devices to change network namespaces. */
  1051. dev->features |= NETIF_F_NETNS_LOCAL;
  1052. /* does not make sense for a VLAN to be added to a vrf device */
  1053. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1054. /* enable offload features */
  1055. dev->features |= NETIF_F_GSO_SOFTWARE;
  1056. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
  1057. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1058. dev->hw_features = dev->features;
  1059. dev->hw_enc_features = dev->features;
  1060. /* default to no qdisc; user can add if desired */
  1061. dev->priv_flags |= IFF_NO_QUEUE;
  1062. dev->priv_flags |= IFF_NO_RX_HANDLER;
  1063. }
  1064. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
  1065. struct netlink_ext_ack *extack)
  1066. {
  1067. if (tb[IFLA_ADDRESS]) {
  1068. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
  1069. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1070. return -EINVAL;
  1071. }
  1072. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
  1073. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1074. return -EADDRNOTAVAIL;
  1075. }
  1076. }
  1077. return 0;
  1078. }
  1079. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1080. {
  1081. struct net_device *port_dev;
  1082. struct list_head *iter;
  1083. netdev_for_each_lower_dev(dev, port_dev, iter)
  1084. vrf_del_slave(dev, port_dev);
  1085. unregister_netdevice_queue(dev, head);
  1086. }
  1087. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1088. struct nlattr *tb[], struct nlattr *data[],
  1089. struct netlink_ext_ack *extack)
  1090. {
  1091. struct net_vrf *vrf = netdev_priv(dev);
  1092. bool *add_fib_rules;
  1093. struct net *net;
  1094. int err;
  1095. if (!data || !data[IFLA_VRF_TABLE]) {
  1096. NL_SET_ERR_MSG(extack, "VRF table id is missing");
  1097. return -EINVAL;
  1098. }
  1099. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1100. if (vrf->tb_id == RT_TABLE_UNSPEC) {
  1101. NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
  1102. "Invalid VRF table id");
  1103. return -EINVAL;
  1104. }
  1105. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1106. err = register_netdevice(dev);
  1107. if (err)
  1108. goto out;
  1109. net = dev_net(dev);
  1110. add_fib_rules = net_generic(net, vrf_net_id);
  1111. if (*add_fib_rules) {
  1112. err = vrf_add_fib_rules(dev);
  1113. if (err) {
  1114. unregister_netdevice(dev);
  1115. goto out;
  1116. }
  1117. *add_fib_rules = false;
  1118. }
  1119. out:
  1120. return err;
  1121. }
  1122. static size_t vrf_nl_getsize(const struct net_device *dev)
  1123. {
  1124. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1125. }
  1126. static int vrf_fillinfo(struct sk_buff *skb,
  1127. const struct net_device *dev)
  1128. {
  1129. struct net_vrf *vrf = netdev_priv(dev);
  1130. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1131. }
  1132. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1133. const struct net_device *slave_dev)
  1134. {
  1135. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1136. }
  1137. static int vrf_fill_slave_info(struct sk_buff *skb,
  1138. const struct net_device *vrf_dev,
  1139. const struct net_device *slave_dev)
  1140. {
  1141. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1142. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1143. return -EMSGSIZE;
  1144. return 0;
  1145. }
  1146. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1147. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1148. };
  1149. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1150. .kind = DRV_NAME,
  1151. .priv_size = sizeof(struct net_vrf),
  1152. .get_size = vrf_nl_getsize,
  1153. .policy = vrf_nl_policy,
  1154. .validate = vrf_validate,
  1155. .fill_info = vrf_fillinfo,
  1156. .get_slave_size = vrf_get_slave_size,
  1157. .fill_slave_info = vrf_fill_slave_info,
  1158. .newlink = vrf_newlink,
  1159. .dellink = vrf_dellink,
  1160. .setup = vrf_setup,
  1161. .maxtype = IFLA_VRF_MAX,
  1162. };
  1163. static int vrf_device_event(struct notifier_block *unused,
  1164. unsigned long event, void *ptr)
  1165. {
  1166. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1167. /* only care about unregister events to drop slave references */
  1168. if (event == NETDEV_UNREGISTER) {
  1169. struct net_device *vrf_dev;
  1170. if (!netif_is_l3_slave(dev))
  1171. goto out;
  1172. vrf_dev = netdev_master_upper_dev_get(dev);
  1173. vrf_del_slave(vrf_dev, dev);
  1174. }
  1175. out:
  1176. return NOTIFY_DONE;
  1177. }
  1178. static struct notifier_block vrf_notifier_block __read_mostly = {
  1179. .notifier_call = vrf_device_event,
  1180. };
  1181. /* Initialize per network namespace state */
  1182. static int __net_init vrf_netns_init(struct net *net)
  1183. {
  1184. bool *add_fib_rules = net_generic(net, vrf_net_id);
  1185. *add_fib_rules = true;
  1186. return 0;
  1187. }
  1188. static struct pernet_operations vrf_net_ops __net_initdata = {
  1189. .init = vrf_netns_init,
  1190. .id = &vrf_net_id,
  1191. .size = sizeof(bool),
  1192. };
  1193. static int __init vrf_init_module(void)
  1194. {
  1195. int rc;
  1196. register_netdevice_notifier(&vrf_notifier_block);
  1197. rc = register_pernet_subsys(&vrf_net_ops);
  1198. if (rc < 0)
  1199. goto error;
  1200. rc = rtnl_link_register(&vrf_link_ops);
  1201. if (rc < 0) {
  1202. unregister_pernet_subsys(&vrf_net_ops);
  1203. goto error;
  1204. }
  1205. return 0;
  1206. error:
  1207. unregister_netdevice_notifier(&vrf_notifier_block);
  1208. return rc;
  1209. }
  1210. module_init(vrf_init_module);
  1211. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1212. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1213. MODULE_LICENSE("GPL");
  1214. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1215. MODULE_VERSION(DRV_VERSION);