io-cmd-file.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * NVMe Over Fabrics Target File I/O commands implementation.
  4. * Copyright (c) 2017-2018 Western Digital Corporation or its
  5. * affiliates.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/uio.h>
  9. #include <linux/falloc.h>
  10. #include <linux/file.h>
  11. #include "nvmet.h"
  12. #define NVMET_MAX_MPOOL_BVEC 16
  13. #define NVMET_MIN_MPOOL_OBJ 16
  14. void nvmet_file_ns_disable(struct nvmet_ns *ns)
  15. {
  16. if (ns->file) {
  17. if (ns->buffered_io)
  18. flush_workqueue(buffered_io_wq);
  19. mempool_destroy(ns->bvec_pool);
  20. ns->bvec_pool = NULL;
  21. kmem_cache_destroy(ns->bvec_cache);
  22. ns->bvec_cache = NULL;
  23. fput(ns->file);
  24. ns->file = NULL;
  25. }
  26. }
  27. int nvmet_file_ns_enable(struct nvmet_ns *ns)
  28. {
  29. int flags = O_RDWR | O_LARGEFILE;
  30. struct kstat stat;
  31. int ret;
  32. if (!ns->buffered_io)
  33. flags |= O_DIRECT;
  34. ns->file = filp_open(ns->device_path, flags, 0);
  35. if (IS_ERR(ns->file)) {
  36. ret = PTR_ERR(ns->file);
  37. pr_err("failed to open file %s: (%d)\n",
  38. ns->device_path, ret);
  39. ns->file = NULL;
  40. return ret;
  41. }
  42. ret = vfs_getattr(&ns->file->f_path,
  43. &stat, STATX_SIZE, AT_STATX_FORCE_SYNC);
  44. if (ret)
  45. goto err;
  46. ns->size = stat.size;
  47. ns->blksize_shift = file_inode(ns->file)->i_blkbits;
  48. ns->bvec_cache = kmem_cache_create("nvmet-bvec",
  49. NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec),
  50. 0, SLAB_HWCACHE_ALIGN, NULL);
  51. if (!ns->bvec_cache) {
  52. ret = -ENOMEM;
  53. goto err;
  54. }
  55. ns->bvec_pool = mempool_create(NVMET_MIN_MPOOL_OBJ, mempool_alloc_slab,
  56. mempool_free_slab, ns->bvec_cache);
  57. if (!ns->bvec_pool) {
  58. ret = -ENOMEM;
  59. goto err;
  60. }
  61. return ret;
  62. err:
  63. ns->size = 0;
  64. ns->blksize_shift = 0;
  65. nvmet_file_ns_disable(ns);
  66. return ret;
  67. }
  68. static void nvmet_file_init_bvec(struct bio_vec *bv, struct sg_page_iter *iter)
  69. {
  70. bv->bv_page = sg_page_iter_page(iter);
  71. bv->bv_offset = iter->sg->offset;
  72. bv->bv_len = PAGE_SIZE - iter->sg->offset;
  73. }
  74. static ssize_t nvmet_file_submit_bvec(struct nvmet_req *req, loff_t pos,
  75. unsigned long nr_segs, size_t count)
  76. {
  77. struct kiocb *iocb = &req->f.iocb;
  78. ssize_t (*call_iter)(struct kiocb *iocb, struct iov_iter *iter);
  79. struct iov_iter iter;
  80. int ki_flags = 0, rw;
  81. ssize_t ret;
  82. if (req->cmd->rw.opcode == nvme_cmd_write) {
  83. if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
  84. ki_flags = IOCB_DSYNC;
  85. call_iter = req->ns->file->f_op->write_iter;
  86. rw = WRITE;
  87. } else {
  88. call_iter = req->ns->file->f_op->read_iter;
  89. rw = READ;
  90. }
  91. iov_iter_bvec(&iter, ITER_BVEC | rw, req->f.bvec, nr_segs, count);
  92. iocb->ki_pos = pos;
  93. iocb->ki_filp = req->ns->file;
  94. iocb->ki_flags = ki_flags | iocb_flags(req->ns->file);
  95. ret = call_iter(iocb, &iter);
  96. if (ret != -EIOCBQUEUED && iocb->ki_complete)
  97. iocb->ki_complete(iocb, ret, 0);
  98. return ret;
  99. }
  100. static void nvmet_file_io_done(struct kiocb *iocb, long ret, long ret2)
  101. {
  102. struct nvmet_req *req = container_of(iocb, struct nvmet_req, f.iocb);
  103. if (req->f.bvec != req->inline_bvec) {
  104. if (likely(req->f.mpool_alloc == false))
  105. kfree(req->f.bvec);
  106. else
  107. mempool_free(req->f.bvec, req->ns->bvec_pool);
  108. }
  109. nvmet_req_complete(req, ret != req->data_len ?
  110. NVME_SC_INTERNAL | NVME_SC_DNR : 0);
  111. }
  112. static void nvmet_file_execute_rw(struct nvmet_req *req)
  113. {
  114. ssize_t nr_bvec = DIV_ROUND_UP(req->data_len, PAGE_SIZE);
  115. struct sg_page_iter sg_pg_iter;
  116. unsigned long bv_cnt = 0;
  117. bool is_sync = false;
  118. size_t len = 0, total_len = 0;
  119. ssize_t ret = 0;
  120. loff_t pos;
  121. if (!req->sg_cnt || !nr_bvec) {
  122. nvmet_req_complete(req, 0);
  123. return;
  124. }
  125. pos = le64_to_cpu(req->cmd->rw.slba) << req->ns->blksize_shift;
  126. if (unlikely(pos + req->data_len > req->ns->size)) {
  127. nvmet_req_complete(req, NVME_SC_LBA_RANGE | NVME_SC_DNR);
  128. return;
  129. }
  130. if (nr_bvec > NVMET_MAX_INLINE_BIOVEC)
  131. req->f.bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
  132. GFP_KERNEL);
  133. else
  134. req->f.bvec = req->inline_bvec;
  135. req->f.mpool_alloc = false;
  136. if (unlikely(!req->f.bvec)) {
  137. /* fallback under memory pressure */
  138. req->f.bvec = mempool_alloc(req->ns->bvec_pool, GFP_KERNEL);
  139. req->f.mpool_alloc = true;
  140. if (nr_bvec > NVMET_MAX_MPOOL_BVEC)
  141. is_sync = true;
  142. }
  143. memset(&req->f.iocb, 0, sizeof(struct kiocb));
  144. for_each_sg_page(req->sg, &sg_pg_iter, req->sg_cnt, 0) {
  145. nvmet_file_init_bvec(&req->f.bvec[bv_cnt], &sg_pg_iter);
  146. len += req->f.bvec[bv_cnt].bv_len;
  147. total_len += req->f.bvec[bv_cnt].bv_len;
  148. bv_cnt++;
  149. WARN_ON_ONCE((nr_bvec - 1) < 0);
  150. if (unlikely(is_sync) &&
  151. (nr_bvec - 1 == 0 || bv_cnt == NVMET_MAX_MPOOL_BVEC)) {
  152. ret = nvmet_file_submit_bvec(req, pos, bv_cnt, len);
  153. if (ret < 0)
  154. goto out;
  155. pos += len;
  156. bv_cnt = 0;
  157. len = 0;
  158. }
  159. nr_bvec--;
  160. }
  161. if (WARN_ON_ONCE(total_len != req->data_len))
  162. ret = -EIO;
  163. out:
  164. if (unlikely(is_sync || ret)) {
  165. nvmet_file_io_done(&req->f.iocb, ret < 0 ? ret : total_len, 0);
  166. return;
  167. }
  168. req->f.iocb.ki_complete = nvmet_file_io_done;
  169. nvmet_file_submit_bvec(req, pos, bv_cnt, total_len);
  170. }
  171. static void nvmet_file_buffered_io_work(struct work_struct *w)
  172. {
  173. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  174. nvmet_file_execute_rw(req);
  175. }
  176. static void nvmet_file_execute_rw_buffered_io(struct nvmet_req *req)
  177. {
  178. INIT_WORK(&req->f.work, nvmet_file_buffered_io_work);
  179. queue_work(buffered_io_wq, &req->f.work);
  180. }
  181. u16 nvmet_file_flush(struct nvmet_req *req)
  182. {
  183. if (vfs_fsync(req->ns->file, 1) < 0)
  184. return NVME_SC_INTERNAL | NVME_SC_DNR;
  185. return 0;
  186. }
  187. static void nvmet_file_flush_work(struct work_struct *w)
  188. {
  189. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  190. nvmet_req_complete(req, nvmet_file_flush(req));
  191. }
  192. static void nvmet_file_execute_flush(struct nvmet_req *req)
  193. {
  194. INIT_WORK(&req->f.work, nvmet_file_flush_work);
  195. schedule_work(&req->f.work);
  196. }
  197. static void nvmet_file_execute_discard(struct nvmet_req *req)
  198. {
  199. int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
  200. struct nvme_dsm_range range;
  201. loff_t offset, len;
  202. u16 ret;
  203. int i;
  204. for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
  205. ret = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
  206. sizeof(range));
  207. if (ret)
  208. break;
  209. offset = le64_to_cpu(range.slba) << req->ns->blksize_shift;
  210. len = le32_to_cpu(range.nlb);
  211. len <<= req->ns->blksize_shift;
  212. if (offset + len > req->ns->size) {
  213. ret = NVME_SC_LBA_RANGE | NVME_SC_DNR;
  214. break;
  215. }
  216. if (vfs_fallocate(req->ns->file, mode, offset, len)) {
  217. ret = NVME_SC_INTERNAL | NVME_SC_DNR;
  218. break;
  219. }
  220. }
  221. nvmet_req_complete(req, ret);
  222. }
  223. static void nvmet_file_dsm_work(struct work_struct *w)
  224. {
  225. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  226. switch (le32_to_cpu(req->cmd->dsm.attributes)) {
  227. case NVME_DSMGMT_AD:
  228. nvmet_file_execute_discard(req);
  229. return;
  230. case NVME_DSMGMT_IDR:
  231. case NVME_DSMGMT_IDW:
  232. default:
  233. /* Not supported yet */
  234. nvmet_req_complete(req, 0);
  235. return;
  236. }
  237. }
  238. static void nvmet_file_execute_dsm(struct nvmet_req *req)
  239. {
  240. INIT_WORK(&req->f.work, nvmet_file_dsm_work);
  241. schedule_work(&req->f.work);
  242. }
  243. static void nvmet_file_write_zeroes_work(struct work_struct *w)
  244. {
  245. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  246. struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
  247. int mode = FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE;
  248. loff_t offset;
  249. loff_t len;
  250. int ret;
  251. offset = le64_to_cpu(write_zeroes->slba) << req->ns->blksize_shift;
  252. len = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
  253. req->ns->blksize_shift);
  254. if (unlikely(offset + len > req->ns->size)) {
  255. nvmet_req_complete(req, NVME_SC_LBA_RANGE | NVME_SC_DNR);
  256. return;
  257. }
  258. ret = vfs_fallocate(req->ns->file, mode, offset, len);
  259. nvmet_req_complete(req, ret < 0 ? NVME_SC_INTERNAL | NVME_SC_DNR : 0);
  260. }
  261. static void nvmet_file_execute_write_zeroes(struct nvmet_req *req)
  262. {
  263. INIT_WORK(&req->f.work, nvmet_file_write_zeroes_work);
  264. schedule_work(&req->f.work);
  265. }
  266. u16 nvmet_file_parse_io_cmd(struct nvmet_req *req)
  267. {
  268. struct nvme_command *cmd = req->cmd;
  269. switch (cmd->common.opcode) {
  270. case nvme_cmd_read:
  271. case nvme_cmd_write:
  272. if (req->ns->buffered_io)
  273. req->execute = nvmet_file_execute_rw_buffered_io;
  274. else
  275. req->execute = nvmet_file_execute_rw;
  276. req->data_len = nvmet_rw_len(req);
  277. return 0;
  278. case nvme_cmd_flush:
  279. req->execute = nvmet_file_execute_flush;
  280. req->data_len = 0;
  281. return 0;
  282. case nvme_cmd_dsm:
  283. req->execute = nvmet_file_execute_dsm;
  284. req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) *
  285. sizeof(struct nvme_dsm_range);
  286. return 0;
  287. case nvme_cmd_write_zeroes:
  288. req->execute = nvmet_file_execute_write_zeroes;
  289. req->data_len = 0;
  290. return 0;
  291. default:
  292. pr_err("unhandled cmd for file ns %d on qid %d\n",
  293. cmd->common.opcode, req->sq->qid);
  294. return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
  295. }
  296. }